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Growing neutrino quintessence solves the coincidence problem for dark energy by a growing

cosmological value of the neutrino mass which emerges from a cosmon-neutrino interaction stronger

than gravity. The cosmon-mediated attraction between neutrinos induces the formation of large-scale

neutrino lumps in a recent cosmological epoch. We argue that the nonlinearities in the cosmon field

equations stop the further increase of the neutrino mass within sufficiently dense and large lumps. As a

result, we find the neutrino-induced gravitational potential to be substantially reduced when compared to

linear extrapolations. We furthermore demonstrate that inside a lump the possible time variation of

fundamental constants is much smaller than their cosmological evolution. This feature may reconcile

current geophysical bounds with claimed cosmological variations of the fine structure constant.
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I. INTRODUCTION

The theoretical and observational implications of a cou-
pling between a light quintessence field or cosmon and
other matter species have been widely explored in the
literature [1–15]. However, both cosmological tests and
laboratory measurements challenge many of these scenar-
ios and lead to strong bounds on the allowed strength of the
coupling. This motivates the search for mechanisms that
tend to naturally suppress the observable traces of these
interactions which could be manifested, for example, in
deviations from the gravitational force law or in the time
dependence of fundamental constants.

One possible suppression mechanism relies on the den-
sity dependence of fundamental couplings due to the den-
sity dependence of the value of a light scalar field [16]. If
the mass of the scalar field is larger than the inverse size of
a dense object, then the local value of the field typically
adapts to the local density of the object rather than to the
cosmological evolution. For the example of the chameleon
mechanism [17–20] the mass of the scalar field itself
increases with density such that for sufficiently large cou-
pling and dense objects the scalar field value decouples
from the cosmological evolution. The scalar field, called a
chameleon field under these circumstances, is allowed to
interact with all forms of matter. The strength of the
coupling can be substantially larger than that of gravity.
Strong enough nonlinearities are a general ingredient for
this type of mechanism to work.

Growing neutrino quintessence [21,22] is also charac-
terized by important nonlinearities. The coupling between
the cosmon and neutrinos is substantially larger than the
gravitational coupling and results in the formation of very
large neutrino structures at late times [23]. In this work, we

focus on this scenario and discuss the implications for the
gravitational potential of such neutrino lumps and on the
variation of the electromagnetic fine structure constant in
the presence of a field coupling to electromagnetism.
We find a strong backreaction effect which substantially

reduces the neutrino mass within such neutrino lumps as
compared to its cosmological value. In consequence, this
effect leads to a substantial reduction of the neutrino-lump-
induced gravitational potential. Inside a neutrino lump the
possible time variation of fundamental constants is
strongly suppressed as compared to their cosmological
time evolution.
Strong nonlinear features are present in this scenario

despite the fact that the density dependent mass of the
scalar field typically remains smaller than the inverse
size of the object and that the chameleon mechanism
does not operate. The main ingredient of the nonlinear
behavior is the nonlinear dependence of the local neutrino
mass on the local value of the cosmon field. This combines
with a nonlinear cosmon potential.
We assume that a very rapid increase of a local fluctua-

tion in the neutrino number density ends after some viri-
alization process in a quasistatic lump containing a given
number of neutrinos. For subsequent time we take a static
neutrino number density n�ð~rÞ which is a function of the
distance to the center of the lump. We then solve the field
equation for the cosmon field � taking into account the
cosmological time variation of � outside the lump. The
field equation for the local cosmon field � has a source
term proportional to�m�ð�Þn�ð~rÞ, where� is the cosmon-
neutrino coupling and may depend on �. The value of the
neutrino mass m�ð�Þ depends on � and we assume, for
simplicity, an equal mass for all three neutrino species. In
the scalar field equation, the source term may be partly
balanced by gradient terms and the derivative of the cos-
mon potential, @Vð�Þ=@�. This results in an almost static
value of the cosmon field which depends, however, on the
neutrino density n�ð ~rÞ.
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A key ingredient of the growing neutrino quintessence
scenario is the coupling of the cosmon to the trace of the
stress energy tensor of neutrinos, (�� � 3p�), where ��

and p� denote the neutrino energy density and pressure,
respectively. For most of the cosmological evolution neu-
trinos are relativistic and almost massless, thus p� ’ ��=3.
Consequently, in this regime, the coupling is ineffective
and both components (cosmon and neutrinos) evolve inde-
pendently. The relativistic neutrinos permeate the universe
homogeneously, only subject to cosmic expansion as in
‘‘standard cosmology.’’ Furthermore, the cosmon tracks
the background evolution following an attractor solution
on trajectories characteristic of the presence of an expo-
nential field potential [3,24–27]. However, as soon as the
neutrinos turn nonrelativistic, the interaction switches on
as p� ’ 0. Since the abundance of cosmic neutrinos is
predicted by standard cosmology, the moment in time
when neutrinos become nonrelativistic is determined by
the present value of the mass as well as the strength of the
cosmon-neutrino coupling and the cosmon potential.
Typically, in the growing neutrino scenario, the cosmon-
neutrino coupling exceeds the strength of the gravitational
interaction by 2 to 3 orders of magnitude. The neutrino
mass grows more rapidly for larger values of the coupling,
but starts to increase later in time such that neutrinos
become nonrelativistic at redshift zNR � 5–10.

As the neutrino mass grows, in turn, the neutrinos gain
influence on the dynamics of the scalar field. Eventually
the cosmon is forced out of the attractor and the early
cosmological solution crosses over to an almost constant
asymptotic field value at late times. Consequently, the
energy density corresponding to the value of the exponen-
tial cosmon potential at the transition acts similarly to a
cosmological constant and drives cosmic acceleration. In
the growing neutrino scenario, the corresponding dark
energy scale is directly related to the particle physics scale
of the present neutrino mass [21,22]. This is a possible
solution of the ‘‘why now?’’ problem of dark energy.

Only after neutrinos have turned nonrelativistic, the
cosmon becomes the mediator of a ‘‘fifth force’’ between
neutrinos. The strength of this interaction is proportional to
the square of the coupling. The range of this force is of the
order of the Hubble length, since the time-evolving mass of
the cosmon roughly equals the Hubble parameter. This is in
contrast to adiabatic models of mass varying neutrinos,
which assume a scalar field with a mass much larger than
the Hubble scale [28–32]. The mass of the cosmon emerges
naturally from possible explanations of an exponential
potential stemming from an asymptotically vanishing di-
latation anomaly [33].

Because of the strong long-ranged force, at z < zNR,
fluctuations in the nonrelativistic neutrinos grow rapidly
on all scales larger than the free-streaming length. Recent
studies have widely explored the evolution of the growing
neutrino perturbations both in the linear [34–36] and in the

nonlinear regime [23], finding a substantial clustering of
neutrinos up to supercluster scales and beyond. Typically,
neutrino perturbations with sizes larger than * 10 Mpc
become nonlinear at a redshift of z � 1–2 [34–38].
Around this redshift the universe is thus populated by
virialized neutrino lumps bound by the fifth force and by
gravity. Present findings indicate that the neutrino profile
within these lumps is consistent with a highly concentrated
Navarro-Frenk-White (NFW) distribution.
Noting that the impact of these overdensities on the local

scalar field dynamics is amplified by the large coupling,
one can ask whether neutrino lumps provide a new source
for highly nonlinear effects. In this paper we explore this
question and analyze the resulting theoretical and obser-
vational consequences. To this end, we first determine the
spatial cosmon profile within individual virialized neutrino
lumps embedded within a time-evolving homogeneous
neutrino background.
By considering example cases, we find the nonlinear

structure of the field equation to have the stunning effect
of decoupling the value of the cosmon within a lump from
its large-scale cosmological behavior. This implies a sub-
stantial reduction of the neutrino mass within neutrino
lumps. To probe the dependence of these effects on the
properties of the neutrino lumps, we investigate a family of
neutrino distribution functions n�ðrÞ. For a given n�ðrÞ we
numerically solve the scalar field equation, with the bound-
ary condition that outside the object the cosmon asymp-
totes to the cosmological value. This allows us to
determine the average neutrino mass in the interior of
various families of neutrino lumps. The average neutrino
mass turns out to decrease with increasing number of
neutrinos in the lump. This implies a substantial reduction
of the gravitational potential �� of large-scale neutrino
lumps compared to linear extrapolations which are based
on the cosmological neutrino mass. These findings reflect
the importance of backreaction effects in the growing
neutrino scenario. Furthermore, they bear significant con-
sequences for the effect of neutrino lumps on the large-
scale structure and the cosmic neutrino background in the
form of the integrated Sachs-Wolfe effect [38,39].
Finally, one may wonder whether the described non-

linear effects in growing neutrino cosmologies might imply
new interpretations of cosmological observations. For ex-
ample, we consider the implications of our findings for the
variation of the fine structure constant � which would
result from a coupling of the cosmon to electromagnetism.
We demonstrate that within large neutrino lumps, the
nonlinear effects suppress the time variation of the fine
structure constant, while allowing for a strong variation in
the background. This may reconcile geophysical bounds
with claimed cosmological observations of a time variation
of �.
This paper is organized as follows. After setting the

stage for our analysis, in Sec. II we set up the general
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equations governing the cosmon dynamics inside and out-
side of a neutrino lump. In Sec. III we present our numeri-
cal results for the spatial cosmon profile and the neutrino
mass and comment on the difference in field behavior
compared to linear approximations. In Sec. IV, we present
our results for the average neutrino mass for various fam-
ilies of lumps and comment on the implications for their
gravitational potential. We also discuss possible backreac-
tion effects on the background cosmological value of the
scalar field and the growth of large-scale neutrino pertur-
bations. In Sec. V we explore the consequences of our
finding for the variation of the fine structure constant in the
presence of a scalar field coupled to electromagnetism.
Finally, in Sec. VI we summarize our results and conclude.
In a brief appendix, we derive relations between the pa-
rameters characterizing the NFW neutrino distribution
function.

II. SETTING THE STAGE

In this work, it is our aim to estimate the spatial cosmon
profile at late times for various families of neutrino lumps,
formed at a redshift zNL ’ 1–2. To this aim we consider the
perturbation to the field generated by a single virialized
neutrino lump embedded in a time-evolving neutrino back-
ground of uniform density. This approximation is justified
in the limit that the distance between lumps is much larger
than their virial radius rvir.

As we will show in Sec. III, for a given static neutrino
distribution in the interior and a given time-evolving back-
ground density well outside, the properties of a lump and
its impact on the field can essentially be quantified by a
single parameter, namely, the total number of neutrinos N�

it contains. In this section, we will present the main ingre-
dients of the growing neutrino scenario [21,22] and
describe the background evolution of the cosmon.
Furthermore, we will set up the field equation for the
spatial dependence of the cosmon within the approach
outlined above.

A. The growing neutrino scenario

We take both the scalar field potential Vð�Þ as well as
the neutrino mass m�ð�Þ to depend exponentially on the
scalar field value,

Vð�Þ ¼ M4 exp

�
��

�

M

�
; (1)

m�ð�Þ ¼ m̂ exp

�
��

�

M

�
; (2)

whereM ¼ ð8�GNÞ�1=2 denotes the reduced Planck mass,
m̂ is a constant that fixes the neutrino mass scale and �> 0
and �< 0 are free model parameters. To comply with
observational bounds on the amount of early dark energy,
the parameter specifying the exponential potential is

constrained to be � * 10 [40]. Note that according
to our choice in Eq. (2), the dimensionless coupling �
generally defined as

� � �M
d lnm�

d�
(3)

is a constant. However, similar effects to the ones we
encounter for a constant coupling are expected in the
case of a field dependent coupling, �ð�Þ, as has been
suggested within a particle physics context [22].
As in previous works [21,23], we assume � ¼ 10 and

� ¼ �52 for our numerical studies. We choose a present
cosmological neutrino mass �m�0 ¼ 2:3 eV consistent with
current cosmological and experimental bounds. The value
of m̂ in Eq. (2) is then dictated by the precise timing of the
transition from matter to cosmon domination according to
the observed dark energy abundance �de � 0:73.

B. Time evolution of the cosmon in the
cosmological background

The dynamics of the cosmological background field �� is
described by the Klein Gordon equation,

€��þ 2H _��þ a2
dV

d ��
¼ a2

�

M
ð��ð ��Þ � 3p�ð ��ÞÞ; (4)

where dots denote the derivative with respect to conformal
time � and H ¼ _a=a is the corresponding Hubble pa-
rameter. Furthermore, �� and p� denote the neutrino en-
ergy density and pressure, respectively. One observes that
the neutrino source term on the right-hand side of Eq. (4) is
strongly suppressed as long as neutrinos are relativistic,
since p� ’ ��=3. However, when they turn nonrelativistic,
p� ’ 0, the source term ���=M becomes of dynamical
importance. For constant �, the energy densities of the
cosmon and of the neutrinos evolve asymptotically pro-
portional to each other. Averaging over oscillations in time,
the cosmological value �� evolves as

��ðzÞ ¼ ��0 � 3M

�� �
lnð1þ zÞ;

��0 ¼ M

�
ln

�
M4

�de

ð1� �=�Þ
�
;

(5)

with z being the cosmic redshift and �de ¼ Vð�Þ þ �� ’
Vð�Þ denoting the dark energy density.

C. Quasistatic cosmon field in a neutrino lump

Initial neutrino perturbations can evolve into virialized
lumps with a highly concentrated NFW-type neutrino dis-
tribution. Because of the neutrino-cosmon coupling, the
spatial profile of the scalar field�ðrÞ resulting from a given
static spherically symmetric distribution n�ðrÞ of nonrela-
tivistic neutrinos is determined from the following field
equation:
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�00 þ 2

r
�0 ¼ dVð�Þ

d�
� �

M
��ð�; rÞ; (6)

where

��ð�; rÞ ¼ n�ðrÞm�ð�Þ: (7)

Here and in what follows a prime denotes a derivative with
respect to the radial coordinate r. Furthermore, the last
equality applies for nonrelativistic neutrinos, with �� and
n� denoting the neutrino energy density and number
density, respectively.

In growing neutrino quintessence, the source term in the
spatial field equation depends of the field value in contrast
to other classes of coupled dark energy scenarios [41]. The
reason is that mð�Þ in Eq. (2) cannot be linearized as
��=M � 1 owing to the large coupling and the large field
value. This issue will be discussed in detail in Sec. III.

The solution of the field equation (6) has to obey the
following boundary conditions:

�0ðrÞjr¼0 ¼ 0 and �ðrÞjr!1 ¼ ��: (8)

The first condition follows from requiring the field value to
be finite and well defined at r ¼ 0 and the second implies
that the field must converge to its cosmological back-
ground value �� in the limit of r going to infinity. The
possible dependence of the solution on redshift is induced
by the redshift dependence of the background field value
�� ¼ ��ðzÞ.
We assume here, implicitly, that the neutrino number

distribution n�ð~rÞ for a virialized lump has decoupled
from the cosmological evolution and therefore is time-
independent. In addition to the static lump distribution
n�ð~rÞ, the cosmon also couples to the cosmological back-
ground neutrino density �n�ðzÞ which is much smaller than
n�ð~rÞ within the lump. This coupling to the background,
therefore, only plays a role at the border or outside the
lump.

D. Neutrino distribution

The spherically averaged radial distribution of neutrinos
within virialized lumps is typically described by a highly
concentrated Navarro-Frenk-White profile [23]

nNFWðrÞ ¼ ns
ðr=rsÞð1þ r=rsÞ2

; (9)

where ns is the normalization of the number density which
can be different for different lumps. The characteristic
scale rs separates the inner part r � rs with nNFW / r�1

from the outer region, where nNFW / r�3. The number of
neutrinos contained within a radius R can be written as

N�ðRÞ ¼ 4�
Z R

0
drr2nNFWðrÞ ¼ N�FðRÞ; (10)

with

N� ¼ 4�nsr
3
s ; (11)

FðRÞ ¼ ln

�
1þ R

rs

�
� R

Rþ rs
: (12)

Because the increase of N�ðRÞ for large R � rs is only
logarithmic,

N�ðRÞ ’ N� ln
�
R

ers

�
; (13)

we can use N� as a reasonable parametrization for
the number of neutrinos in the lump. More exactly, N�
approximately gives the number of neutrinos within a
radius 10rs.
This implies that instead of ns and rs one may use N�

and rs for the parametrization of the profile n�ðrÞ ¼
nNFWðrÞ. We typically compare N� with the total number
of neutrinos within our horizon,

Ntot ¼ 4� �n�0
3H3

0

’ 2:4� 1087; (14)

where n�0 denotes the present cosmological number den-
sity of neutrinos and H0 the present Hubble parameter.
Thus, for a NFW profile, we will characterize the neutrino
lumps by the two numbers N�=Ntot and rs.
It is also possible that the logarithmic increase of N�ðRÞ

does not extend to arbitrary large R. This happens if a
neutrino lump competes for the neutrinos in neighboring
lumps. One may imagine that the infall of further neutrinos
is stopped at some characteristic time and subsequently all
available neutrinos concentrate in a finite volume of size
characterized by a virial radius rvir. We account for this
possibility by considering a second type of profile,

nstepðrÞ ¼
�
nNFWðrÞ; r < rvir
0; r > rvir

: (15)

In what follows we will refer to these two possibilities,
Eqs. (9) and (15), as the ‘‘pure NFW’’ and the ‘‘step
NFW,’’ respectively. We will see that the pure NFW (which
corresponds to rvir ! 1) and the step NFW yield qualita-
tively similar results.
The step NFW profile (15) implies a well specified

number of neutrinos corresponding to the lump

N� ¼ 4�
Z rvir

0
drr2nNFWðrÞ ¼ N�FðcÞ; (16)

with

FðcÞ ¼ lnð1þ cÞ � c

1þ c
’ lnc� 1; (17)

where c ¼ rvir=rs and the last equality holds for c � 1. A
neutrino lump is in this case characterized by three pa-
rameters: N�=Ntot, rs, and the concentration c. For a finite
rvir or c we may also replace N�=Ntot by N�=Ntot.
Note that for each class of lumps with given N� and rvir

the maximal value for the number of lumpsN l within the
horizon is
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N l ¼ Ntot

N�

: (18)

This corresponds to the limit when all neutrinos in the
visible universe are captured in identical lumps.

In order to satisfy the second of the boundary conditions
in Eq. (8) we must add to the lump profile a cosmological
background number density �n�ðzÞ such that

n�ðz; rÞ ¼ nNFWðrÞ�ðrvir � rÞ þ �n�ðzÞ; (19)

with

�n �ðzÞ ¼ �n�0ð1þ zÞ3; (20)

where �n�0 corresponds to the present value and we recall
that rvir ! 1 for the pure NFW profile. Of course Eq. (20)
only remains a reasonable estimate for the neutrino number
density provided most neutrinos are not yet concentrated in
lumps. Once most of the neutrinos are in lumps, the time
evolution of the cosmological average value of the quin-
tessence field ��ðzÞ is more complicated and backreaction
effects ought to be taken into account. For our purposes
Eq. (20) is sufficient, since we are only interested in the
effects of a given time evolution ��ðzÞ on the cosmon
profile inside a lump and not in the computation of the
evolution of ��ðzÞ itself. In general, the redshift dependence
of ��ðzÞ can be made consistent by an approximate formal
choice of �n�ðzÞ in Eq. (19). The detailed redshift depen-
dence of �� and �n�ðzÞ is unimportant for the findings of this
work.

III. MASS FREEZING

In this section we demonstrate that the neutrino mass
inside of sufficiently dense and large neutrino lumps does
not follow the cosmological evolution. For this purpose, we
numerically solve the cosmon field equation, Eq. (6), for
spherically symmetric static neutrino distributions (9) and
(15). The boundary condition �0ðr ¼ 0Þ ¼ 0 ensures the
regularity of the solution. The second boundary condition
is given by the asymptotic value of � for large r ! 1,
�ðr ! 1Þ ¼ �� [see Eq. (8)]. The value �� must equal the
cosmological average value of the cosmon field (or more
precisely, the average over regions without lumps). Thus
we compute the solutions for different ‘‘boundary values’’
��. The time or redshift dependence of the cosmon field in
the lump is then induced by inserting the cosmological
value of ��ðzÞ. This procedure assumes that the adaptation
of the cosmon field inside the lump to the cosmological
value occurs on a sufficiently small time scale compared to
the inverse Hubble parameter, and that the use of a static
solution provides a good approximation. In practice we
impose the boundary value ��ðzÞ for some very large value
of r � rs, where the derivative of the potential and the
source term in the field equation nearly cancel each other.

Let us start by discussing the approximation of linear
field equations, where the field dependence of the neutrino

massm�ð�Þ in Eq. (6) is neglected and @V=@� � 0. In this
case, the general solution can be written as �ðrÞ ¼ ��þ
	�ðrÞ, where 	�ðrÞ vanishes for r ! 1 and is indepen-
dent of ��. A cosmological change of �� would then result
in a displacement of the cosmon field for the whole lump
configuration. Such a linear approximation would be valid
for uncoupled quintessence or sufficiently small �—in this
case the cosmon field acts as a ‘‘cosmological clock.’’ If
the variation of fundamental couplings (such as the fine
structure constant) can bewritten as a linear dependence on
the displacement of�, then their evolution inside the lump
follows the cosmological evolution [42–44].
In our case of strong coupling, � � 1, the linear ap-

proximation is not justified as the �-dependence of m� /
expð���=MÞ plays an important role. We demonstrate
this here for the case of a constant �. For a �-dependent
�ð�Þ the effect may even be more pronounced. In Fig. 1
we illustrate the radial dependence of�ðrÞ for the pure and
step NFW neutrino profiles for a lump with N� ¼
4� 10�3Ntot, evaluated for ��0 ¼ ��ðz ¼ 0Þ corresponding
to the present cosmological value of the field. The values of
the parameters rs will be motivated at the end of this
section. We find a qualitatively similar behavior �ðrÞ for
the two profiles. In the outer region of the lump, the value
of rs is not important. As one might have expected, the
deviations of�ðrÞ from the cosmological value �� occur for
larger r for the pure NFW profile. In the inner region of the
lump mainly rs matters (for a given N�), while the value of
rvir only plays a minor role. Though the typical deviations
of �ðrÞ from the cosmological value are only half a per-
cent, their impact on the value of the neutrino mass is of
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−2
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10
2

0.994

0.995

0.996

0.997

0.998

0.999

1

1.001
pure NFW, r

s
 = 1.3Mpc

pure NFW, r
s
 = 2.6Mpc

step NFW, r
s
 = 1.3Mpc, c = 30

step NFW, r
s
 = 2.6Mpc, c = 30

FIG. 1 (color online). Scalar field profile �ðr; z ¼ 0Þ in the
radial direction for a pure NFW neutrino profile [Eq. (9)] and
for a step NFW profile [Eq. (15)]. For both cases N� ¼ 4�
10�3Ntot. We show curves for rs ¼ 1:3 Mpc and rs ¼ 2:6 Mpc.
For the step NFW profile we set c ¼ 30.
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considerable importance due to the large value of the
coupling �.

For the various profiles of n�ðrÞ, we found the value of
m� in the interior to be roughly 3 to 4 orders of magnitude
smaller than the present cosmological one, �m�0. This sig-
nificant reduction owes to the exponential dependence
m�ðrÞ= �m� ¼ expð��ð�ðrÞ � ��Þ=MÞ, which makes the
neutrino mass very sensitive to the decrease of the field
value in the interior of a lump. The implications of this
result for the gravitational potential of a neutrino lump as
well as for the cosmological evolution of the cosmon will
be discussed in Sec. IV.

These findings suggest that the neutrino mass inside
the lump does not follow the cosmological evolution. We
demonstrate this in Figs. 2 and 3, where we evaluate the
neutrino mass for the same neutrino profiles of Fig. 1 and
for two different redshifts z ¼ 0 and z ¼ 0:14. We com-
pare the neutrino mass as a function of the distance from
the center of the lump with the present cosmological value
of the neutrino mass, �m�0. For large r the neutrino mass
follows the cosmological evolution independently of the
properties of the lump. In contrast, for small r the change
of the neutrino mass is very substantially reduced. The
curves for the same profile n�ðrÞ but with different ��ðzÞ
are nearly on top of each other. Inside the lump, the value
of m�ðrÞ depends essentially only on the parameters char-
acterizing the neutrino number density profile of the lump,
mainly on N� and to a smaller extent, on rs. This demon-
strates very directly the ‘‘mass freezing’’ effect. The time
evolution of the neutrino mass inside the lump is frozen at
its value at some redshift characteristic for the formation of
the lump. It depends on the neutrino density of the lump,
but not on the cosmological evolution. This decoupling of
the local properties from the cosmological evolution is

very similar to the decoupling of the gravitational potential
of a galaxy from the cosmological expansion. We will
discuss in Sec. V that this decoupling can have important
consequences for a possible observation of time variation
of fundamental constants.
We demonstrate the decoupling explicitly in Fig. 4,

where we show the difference of the local field between
z ¼ 0 and z ¼ 0:14, ��ðrÞ ¼ �ðz ¼ 0; rÞ ��ðz ¼
0:14; rÞ for the neutrino number densities described above.
The figure illustrates that in the considered example cases
the radial field profile in the interior changes up to 3 orders
of magnitude less than for large r. It can be verified that a
larger N� enhances this effect.
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FIG. 3 (color online). Neutrino mass profile m�ðrÞ= �m�0 in the
radial direction for redshifts z ¼ 0 and z ¼ 0:14 for the step
NFW profile.

10
−2

10
0

10
2

10
−4

10
−3

10
−2

10
−1

10
0

Pure NFW

z = 0, r
s
 = 1.3Mpc

z = 0.14, r
s
 = 1.3Mpc

z = 0, r
s
 = 2.6Mpc

z = 0.14, r
s
 = 2.6Mpc

FIG. 2 (color online). Neutrino mass profile m�ðrÞ= �m�0 in the
radial direction for redshifts z ¼ 0 and z ¼ 0:14 for the pure
NFW profile.
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We conclude that nonlinear effects turn out to be very
strong and it is interesting to compare the behavior of the
solution within the lump with a ‘‘local density approxima-
tion’’ where the gradient terms in the scalar field equation
are neglected. In this case, the cosmon field locally follows
the neutrino number density according to

@Vð�Þ
@�

¼ �

M
m�ð�Þn�ðrÞ; (21)

or equivalently

�M3e�� ��0=Me��ð�� ��0Þ=M ¼ � �

M
e��ð�� ��0Þ=M �m�0n�ðrÞ:

(22)

Here we choose a constant ��0 and assume that Vð ��0Þ
equals the present dark energy density,

Vð ��0Þ ’ 0:7�c ’ 10�120M4; (23)

where �c denotes the present critical energy density. We
compare in Figs. 5 and 6 the numerical solution of Eq. (6)
with the local density approximation (22) for various neu-
trino number profiles n�ðrÞ. We observe that though the
local density approximation and the numerical solution are
convergent for large r, they are fairly different for small r.
This is a reflection of the fact that the cosmon mass is not
large enough for the chameleon mechanism to operate in
our growing neutrino quintessence model [41].

In other words, the boundary conditions (8) prevent the
field to sit at the minimum of the effective potential, �min,
but instead at larger values. The field cannot be at smaller
values �ðr ¼ 0Þ<�min, because this would lead to a
runaway solution (if we think of r as the time variable)
and the boundary condition at infinity would not be

reached. For the local approximation to work, the mass
of the cosmon would have to be much larger than the
inverse size of the lump.
We finally comment on our choice of rs for a given value

of N�. Even though the dependence of our numerical
results on rs is moderate, as can be seen by comparing
Figs. 2 and 3, it is substantial enough to warrant some
estimate of this parameter. For a given N�, the radius rs
determines the density in the core of the lump. Realizing
that nNFWðrsÞ ¼ ns=4, one has nNFWðrsÞ ¼ N�=16�r3s . For
r � rs one finds nNFWðrÞ ’ nsrs=r ’ N�=4�r2sr. Thus
smaller rs enhances the core density. This qualitative fea-
ture also applies to lumps with a finite size rvir, if we keep
N� fixed (both for fixed c or fixed rvir).
Some insight on orders of magnitude can be gained from

the early stages of the formation of individual lumps which
has been analyzed in Ref. [23]. Given that the cosmon-
neutrino interaction is ineffective during the relativistic
neutrino regime, the initial power spectrum for the linear
neutrino perturbations is the same as in standard cosmol-
ogy. Once the neutrinos turn nonrelativistic, the cosmon-
neutrino interaction becomes effective and, as a result of
the large coupling, the neutrino perturbations grow rapidly
on all scales larger than the free-streaming length.
After a first phase, where an initial neutrino fluctuation

accompanies the universe’s expansion, its potential energy
becomes important with respect to the kinetic energy of the
neutrinos it contains. Eventually, the perturbation reaches
its maximal size and thereafter, with increasing inward
velocities, contracts according to the laws of free fall until
virialization occurs and the collapse terminates.
The Navier-Stokes equations describe the formation

process of an individual neutrino lump in an expanding
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FIG. 5 (color online). Comparison of the local density approxi-
mation (thin lines) with the numerical solution (thick lines) for
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universe in physical space as a function of time. A numeri-
cal code has been developed [23], which allows one to
track the corresponding time evolution of the relative
neutrino density perturbation 	� � 	��= ��� as well as
the cosmon perturbation 	� � �ðrÞ � �� from the linear
regime up to the highly nonlinear regime, until shortly
before the neutrino lump virializes. In this code, there is
no assumption on the final number density profile of the
lump. The neutrino number density distribution is related
to the spherically averaged density contrast 	� and field
perturbation 	� at a given redshift zf by

n�ðr; zfÞ ¼ �n�0ð1þ zfÞ3ð1þ 	�ðr; zfÞÞe�	�ðr;zf Þ=M: (24)

Using results of this numerical analysis, we show in
Fig. 7 the number of neutrinos N�ðRÞ within a sphere
with radius R,

N�ðRÞ ¼ 4�
Z R

0
drr2n�ðrÞ; (25)

at two moments in time: when the code terminates (zf ¼
2:017) and shortly before (zi ¼ 2:044). (The termination of
the code due to numerical instabilities can be associated
with the onset of virialization. At this moment the potential
and the kinetic energy of the neutrinos in the lump have
reached roughly equal values.) We have fitted this particu-
lar case, which corresponds to a final gravitational radius
Rf ¼ 72:1 Mpc, to the NFW profile [cf. Eq. (10)]. We
define Rf as in Ref. [23], i.e. the distance to the center of
the lump where the gravitational potential is a factor 2
smaller than the potential at the center.

For zi ¼ 2:044 one finds N�=Ntot ¼ 1:2� 10�2, rs ¼
64:2 Mpc, while zf ¼ 2:017 yields N�=Ntot ¼ 5:5� 10�3,

rs ¼ 15:7 Mpc. It is clear that at these redshifts the neu-
trinos continue to fall into the structure, resulting in an
increase of N� and rs with z. Nevertheless, this gives
already an idea of the order of magnitude of these quanti-
ties for larger lumps. Once the further infall of neutrinos is
stopped or substantially reduced, e.g. by competing lumps,
we expect the concentration process of the neutrinos to go
on for a while until a static virialized situation is reached.
This concentration process leads to a reduction of rs for
almost constant N�. This motivates the values of rs used
in our figures. For lumps with a finite radius rvir we
may also relate ns to the neutrino number density contrast
�n � hni= �n�0. This is discussed in the appendix.

IV. GRAVITATIONAL POTENTIAL OF
NEUTRINO LUMPS

The strength of the nonlinear effects depends on the
number of neutrinos in a lump as we will demonstrate in
this section. For this purpose we consider here neutrino
number profiles n�ðrÞ with a finite virial radius rvir such
that the total number of neutrinos N� is well defined and it
is related to N� and c according to Eq. (16). For cosmo-
logical purposes we need to compute the average neutrino
mass in the lump

hm�i ¼ 4�

N�

Z rvir

0
drr2n�ðrÞm�ð�ðrÞÞ: (26)

The gravitational potential of the lump for large distances
r > rvir is determined by hm�i and N� as

��ðrÞ ¼ � 8�

M2

N�hm�i
r

: (27)

The overall size of the cosmologically averaged value of
the fluctuations of the neutrino induced gravitational po-
tential determines the size of possibly observable signals
for neutrino lumps, as the integrated Sachs-Wolfe effect in
the cosmic microwave background anisotropies [38] or the
bulk flow of peculiar velocities [45,46].
In particular, we are interested in the average reduction

factor rmðN�Þ ¼ hm�i= �m�0 of the neutrino mass within
lumps. We present in Fig. 8 the factor rm as a function of
the number of neutrinos N� in the lump. We show our
results for two values of the concentration parameter c ¼
ð10; 30Þ to which corresponds N� ¼ ð0:7; 0:4ÞN� and we
assume a self-similar relation between lumps such that

rs ¼ b

�
N�

NtotFðcÞ
�
1=3

Mpc; (28)

assuming b ¼ 8:2 and b ¼ 16:4. This relation arises for a
fixed ns using Eqs. (11) and (16). For a lump with N� ¼
4� 10�3 and c ¼ 30, these values of b lead, respectively,
to the values of rs ¼ 1:3 Mpc and rs ¼ 2:6 Mpc that we
used in previous sections. We find a substantial reduction
(rm < 1=2) even for relatively small lumps with N� ¼
10�6Ntot. The spread of the different lines for the various
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FIG. 7 (color online). The number of neutrinos N� within a
sphere of radius R at two epochs during the collapse of a lump.
The lines represent the corresponding fits to a pure NFW profile.
The data on N� were obtained using results of a dedicated
numerical analysis.
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sets of parameters can be interpreted as an indication of the
uncertainty due to our limited knowledge of the actual
profile n�ðrÞ. The qualitative behavior, however, is com-
mon to all cases.

For lumps with number of neutrinos fraction N�=Ntot in
the range 10�6 to 10�1 the average neutrino mass is
between 1 and 3 orders of magnitude smaller than its
present cosmological value. This result demonstrates the
significance of nonlinear effects in the growing neutrino
scenario, here quantified in terms of the backreaction on
the neutrino mass.

Our result implies important modifications for the gravi-
tational potential of a neutrino lump when compared to
linear perturbation theory. Since the neutrino mass is its
source on all scales, the magnitude of the gravitational
potential is reduced by the same factor rmðN�Þ compared
to extrapolations based on the cosmological neutrino mass.

By a similar argument, we expect an effective suppres-
sion of the cosmon-mediated attractive force between neu-
trino lumps which is proportional to 2�2. This can be
estimated by the averaged interaction strength h�i for the
neutrinos in a neutrino lump, defined as

h�i ¼ �M
@ lnhm�i

@�
: (29)

The nonlinear effects reduce the attractive force of the
lump on a surrounding neutrino fluid by a factor h�i=�
as compared to the same number of neutrinos in the
absence of nonlinear effects. The attraction between two
equal lumps is correspondingly reduced by a factor
ðh�i=�Þ2. Furthermore, the characteristic time scale for
the infall of neutrinos into a lump governed by the fifth
force is inversely proportional to the interaction strength.
This implies that the characteristic time scale for the infall

is increased by a factor �=h�i compared to the considera-
tion excluding nonlinear effects and thus results in a slow
down of the infall. In the same line, the time scale for the
clumping of lumps to larger ones is enhanced by a factor
ð�=h�iÞ2.
In Fig. 9, we show the averaged interaction strength h�i

as a function of the number of neutrinos in the lump for
c ¼ ð10; 30Þ, again assuming b ¼ 8:2 and b ¼ 16:4. In the
range N�=Ntot ¼ 10�6 to 10�1, we find the averaged inter-
action strength h�i to be reduced by up to 1 order of
magnitude compared to the cosmological value � ¼ �52
for a step NFW neutrino profile. Again, this suppression is
a reflection of the nonlinearities in the field equation. We
found, however, that within the same radius R ¼ crs,
lumps with a pure NFW neutrino profile and with
N�ðRÞ=Ntot ’ 10�2–10�1 have an averaged interaction
strength h�i & 1, which implies that the effective
cosmon-neutrino interaction strength may even be smaller
than the gravitational strength.
In any case, if a large fraction of the neutrinos in the

horizon is captured in large neutrino lumps, this may first
alter the cosmological field equations for the background
fields by order-one effects. Second, it may significantly
modify the growth of neutrino fluctuations with long wave-
lengths due to backreaction effects from fluctuations with
shorter wavelengths. More precisely, owing to neutrino
clustering on smaller scales, fluctuations on large length
scales will experience a modified effective neutrino mass.
In addition, they will be subjected to a smaller effective
cosmon force and thus exhibit a substantially reduced
growth rate compared to linear extrapolations. Our results
for the gravitational potential can be used to compute the
impact of neutrino lumps on the large-scale structure and
the cosmic neutrino background in the form of the inte-
grated Sachs-Wolfe effect [38].
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FIG. 8 (color online). Dependence of the ratio between the
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In summary, a fluid of neutrino lumps behaves very
differently from a fluid of smoothly distributed neutrinos.
If the typical size of the lump is sufficiently large and if the
true neutrino number distribution in the lump should result
in h�i & 1, then the fluid of lumps behaves quite similarly
to dark matter, with only a moderate enhancement of the
total attractive force. The time scale for a further growth of
structure is comparable to the time scale for the gravita-
tional growth of dark matter structures. The early very
rapid growth of neutrino structure terminates effectively
once the lumps reach a critical size. A detailed estimate of
this critical size would be highly interesting as it limits the
size of the largest structures that can be expected in our
universe.

We also note that the relation between cosmological and
terrestrial bounds for the neutrino mass may strongly de-
pend on whether our galaxy is within a large neutrino lump
or not. If our galaxy is indeed in a neutrino lump, then the
choice of parameters � ¼ �52 and m̂ in Eq. (2) (corre-
sponding to a present cosmological neutrino mass �m�0 ¼
2:3 eV) would lead to a substantially smaller neutrino mass
seen on a terrestrial experiment. Conversely, a present
terrestrial bound m� < 2 eV could be compatible with a
substantially larger mass for unbound neutrinos, allowing
realistic cosmologies with smaller values of j�j.

V. THE VARIATION OF FUNDAMENTAL
PARAMETERS

A scalar field is expected to have couplings with other
forms of matter (unless some unknown symmetry principle
explicitly forbids them) and consequently, if the field is
varying, it generates variations of masses and coupling
constants [1,2,47,48]. In contrast to the neutrino-cosmon
coupling, the interaction between the cosmon and baryons,
leptons, or photons must be much weaker than gravity in
order to avoid conflict with the severe observational
bounds. Some suppression mechanism for the field depen-
dence of particle masses (except for neutrinos and possibly
dark matter) and dimensionless couplings as gauge or
Yukawa couplings must be at work, perhaps by a fixed
point behavior [33,49]. Unfortunately, the strength of such
a suppression is very model dependent such that a variation
of a coupling of an observable size is not always guaran-
teed. However, if the neutrino mass arises from the field
dependence of a heavy triplet in the cascade (or seesaw II)
mechanism, this directly induces a small field dependence
on the Fermi and fine structure constants [22]. Among the
various fundamental couplings of the standard model of
particle physics, we concentrate here on the fine structure
constant �. Results for other couplings are similar.

The possibility that dark energy couples to electromag-
netism and that it leads to the variation of the fine structure
constant has been raised numerous times in the literature
[47,48]. Claims that the fine structure constant was smaller
in the past between redshifts 2–3, ��=���5� 10�6,

suggested by the Keck/HIRES high-resolution quasar
spectra, have been reported [50,51], though these claims
are under intense scrutiny and debate [52]. On the other
hand, geological bounds from the Oklo natural reactor
active at an equivalent redshift z � 0:14 yield ��=� ¼
ð0:7	 1:8Þ � 10�8 [53] and an independent analysis gives
��=� ¼ ð0:6	 6:2Þ � 10�8 [54]. For a linear depen-
dence of ��=� on redshift, we can immediately identify
an inconsistency between the Oklo bounds and the claimed
cosmological variation at high redshift. This discrepancy
is approximately of a factor 103=ð2=0:14Þ � 70.
Additionally, strong constraints on the current variation
arise from atomic clock measurements, _�=� ¼ ð�1:6	
2:3Þ � 10�17 yr�1 [55]. Under the assumption that any
observed variation of the fine structure constant of the
order 10�5 at redshifts 2–3 arises from a slowly time
varying field which exhibits a small linear coupling to
electromagnetism, the atomic clocks and the Oklo bounds
challenge, therefore, models of dark energy with a mono-
tonic scalar field evolution [56–60].
There are, however, several factors that may alleviate the

apparent discrepancy between the bounds on the present
variation and the Oklo bounds and the claims of a variation
at high redshift. For example, the time evolution of the field
may have slowed down in recent times due to the coupling
of the quintessence field to matter [61], such as in the
growing neutrino scenario or in crossover quintessence
[62]. We discuss here another effect, namely, that our
galaxy may be within a large neutrino lump such that the
cosmon field has decoupled from the cosmological evolu-
tion at a recent redshift, say z � 1. We expect then a
substantial reduction of the present time variation and
predict a different value of the fundamental constants in
different regions of the lump and within different lumps.
Indeed, we will see that inside a lump the time variation
of the cosmon field can be sufficiently small to prevent a
violation of the Oklo bound even for the substantial varia-
tion of � claimed in Refs. [50,51].
In the following, we assume that we live within a large

neutrino lump which formed rapidly around z ’ 1–2 and
since then it maintained an approximately constant neu-
trino profile as given in Eq. (9) or (15). We will identify a
set of model parameters for the growing neutrino scenario,
which effectively leads to a decoupling of the value of the
scalar field inside a neutrino lump and its cosmological
value.
In the case in which the evolution of the scalar field is

sufficiently small, i.e. j��j ¼ j���0j<M, we can take
the cosmon coupling with electromagnetism to be linear.
This can be seen as the first term of a Taylor expansion.
The evolution of � is then given by

��

�
� �� �0

�0

¼ 

��

M
; (30)

where 
 is a constant.
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Accordingly, the local variation of � (by local we mean
as measured with atomic clocks or with Oklo) is given by
the difference of the local value of the field at two different
epochs (z � 0 or z ¼ 0:14 for atomic clocks and Oklo,
respectively). Hence, for Oklo, we have

�
��

�

�
Oklo

¼ 


M
½�ðz ¼ 0:14; rÞ ��ðz ¼ 0; rÞ
; (31)

where r represents our radial position in the neutrino lump.
Similarly, the cosmological variation of � can be seen as a
result of the difference between the value of the field at a
distance Rc from the center of the lump (where the ob-
served molecular cloud is located) at high redshift (e.g.
zc ¼ 2) before the lump has formed and the local value of
the field today

�
��

�

�
cloud

¼ 


M
½�ðzc ¼ 2; RcÞ ��ðz ¼ 0; rÞ
: (32)

For practical purposes we will first identify �ðzc; RcÞ with
the cosmological value ��ðzcÞ and we will discuss other
scenarios for �ðzc; RcÞ below.

In order to solve the discrepancy between the Oklo
bound and the claimed variation of � cosmologically, the
ratio between Eqs. (31) and (32)

fðrÞ � �ðz ¼ 0:14; rÞ ��ðz ¼ 0; rÞ
��ðzc ¼ 2Þ ��ðz ¼ 0; rÞ ; (33)

must satisfy

� 4:4� 10�3 & fðrÞ & 1:9� 10�3; (34)

where we have used the strongest Oklo bound of Ref. [53]
and assume that ��=�ðzc ¼ 2Þ ¼ �5:7� 10�6 as sug-
gested by the results of Refs. [50,51].

The quantity f above can be thought of as the ratio of
two distinct effects. On the one hand we have a reduction
factor between the local evolution of the field (between
redshift zl of the local observation and today) and the
background evolution

flðzl; rÞ � �ðzl; rÞ ��ðz ¼ 0; rÞ
��ðzlÞ � ��ðz ¼ 0Þ : (35)

This quantity is, up to the normalization by the back-
ground, identical to �� illustrated in Fig. 4. On the other
hand we have a measurement of the difference between the
value of the field outside the lump in the distant past at
redshift zc and its present value compared to the cosmo-
logical evolution in the same time interval

fcðzc; r; RcÞ � �ðzc; RcÞ ��ðz ¼ 0; rÞ
��ðzcÞ � ��ðz ¼ 0Þ : (36)

Then we obtain that for a generic zl and zc, the ratio f is
simply given by

fðzl; zc; rÞ ¼ flðzl; rÞ
fcðzc; r; RcÞ

��ðzlÞ � ��ðz ¼ 0Þ
��ðzcÞ � ��ðz ¼ 0Þ : (37)

Provided the value of the suppression factor fl is suffi-
ciently smaller than the cosmological shift factor fc, local
bounds at zl become easier to be satisfied even for a large
cosmological variation of � at zc. We emphasize that the
same ratio fðrÞ applies to all time variations of couplings to
which a linear approximation similar to Eq. (30) holds.
In Fig. 10 we show the overall suppression factor fðrÞ in

Eq. (33) for our model. We also indicate with the dashed
lines the value of f between which the discrepancy be-
tween the Oklo bounds and claimed cosmological variation
is lifted. In our example with N� ¼ 4� 10�3, no discrep-
ancy is present if our local position is r & 10rs for the pure
NFW profile whereas for the step NFW, r is constrained to
be r & 3rs.
The suppression factor depends strongly on the number

of neutrinos in the lump. In Fig. 11 we show fðr ¼ 0:1rsÞ
as a function of N�=Ntot for b ¼ 8:2 and c ¼ 30. It
becomes evident that only for large lumps the claimed
observed cosmological variation of � and the Oklo bounds
is consistent.
Finally, we notice that the field evolution outside the

lump, ��ðzÞ � ��ð0Þ, is a useful quantity for comparison, but
actually does not appear in the observable quantities. For
the local observations, including Oklo, only the difference
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FIG. 10 (color online). The suppression factor fðrÞ for four
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�ðzl; rÞ ��ð0; rÞ matters, while the observable cosmo-
logical variations only depend on �ðzc; RcÞ ��ð0; rÞ. In
this context we note that�ðzc; RcÞ depends on the observed
position of the molecular cloud. If lumps form early
enough, it is even conceivable that at a cosmological
redshift zc � 2, the scalar field is already sufficiently in-
homogeneous such that a possible cosmological time evo-
lution of couplings is replaced by a dependence of ��=�
on the position of the molecular cloud. This would result in
a dependence of ��=� on the particular observed quasar.
In the case of an inhomogeneous situation,�ðzc; RcÞ ought
to be replaced by �ðzc; Rc; �; ’Þ, i.e., it depends on the
angular coordinates. (For large enough zc the distance Rc

to the cloud can be related to the redshift of the cloud zc.) A
systematic survey of the variation of fundamental cou-
plings with respect to these coordinates would produce a
map of the inhomogeneities of the cosmon field. An analy-
sis suggesting an angular dependence of � has recently
been reported [63].

VI. CONCLUSIONS

In this work, we have explored backreaction effects
arising in growing neutrino quintessence. They result
from the response of local scalar field variations to the
formation of large-scale nonlinear neutrino lumps in the
presence of a cosmon-neutrino coupling. The coupling
strength is typically much larger than the gravitational
interaction. This amplifies the effects of the nonlinear
nature of the neutrino source term in the field equation
inside of a highly concentrated neutrino lump. By numeri-
cally solving for the spatial scalar field profile assuming an
NFW distribution for the neutrino number density, we have

demonstrated that these nonlinearities are manifested in a
strong reduction of the neutrino mass within a neutrino
lump. Stunningly, for realistic example cases, we found in
the interior of a lump a suppression of the neutrino mass by
several orders of magnitude compared to the cosmological
value well outside of the lump. A key result of our work is
that the radial profile of the cosmon field and thus of the
neutrino mass are effectively frozen inside a lump, once it
virializes, while both the cosmological field and the back-
ground neutrino mass may continue to evolve with time.
The radial dependence of the scalar field and the neutrino
mass in the interior of the lump are essentially fixed by the
neutrino distribution.
For the time being, substantial uncertainties regarding

the neutrino number distribution in the lump subsist. We
have investigated here an NFW profile, but it should be
mentioned that neutrino lumps differ from dark matter
clusters in several important aspects: (i) the relevant time
scale of formation is much shorter, such that there is plenty
of time to reach a quasistatic equilibrium configuration;
(ii) the varying mass of the neutrinos can have important
effects for the stable profile; and (iii) if the neutrino mass in
the core of the lump is very small, the neutrinos with high
enough momentum behave close to relativistic particles,
leading to a less concentrated profile. The true neutrino
profile may be determined by a self-consistent stable static
solution similar to Refs. [64–66]. For this purpose, how-
ever, one needs to gain some insight on the average veloc-
ity distribution of the neutrinos inside the lump, resulting
in an effective pressure which depends on the radius. The
strong reduction of the neutrino mass inside the lump is an
effect that seems to be rather robust, independent of the
details of the neutrino number distribution. The size of the
effect mainly depends on the total number of neutrinos
contained in the lump, and to a smaller extent on the core
density or concentration. We have demonstrated this by
investigating distributions with different neutrino numbers
and core densities. In principle, also the neutrino number
distribution can be influenced by a change of the cosmo-
logical evolution of ��. We have neglected this effect
taking the neutrino number distribution to be static after
virialization. In view of the effective decoupling of the
lump from the cosmological evolution this ansatz is self-
consistent, at least as far as the qualitative features are
concerned.
We have computed the average neutrino mass hm�i

within various families of neutrino lumps. For the specific
scenario under consideration and for lumps withN�=Ntot in
the range 10�6 to 10�1, we found its value to be between 1
and 3 orders of magnitude smaller than the cosmological
mass. This result reflects the importance of backreaction
effects in growing neutrino quintessence. In particular, it
causes the gravitational potential of very large neutrino
lumps to also be reduced by several orders of magnitude
when compared to estimates based on the value of the
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FIG. 11 (color online). The suppression factor fðr ¼ 0:1rsÞ for
the step NFW profile with respect to the number of neutrinos in a
lump for b ¼ 8:2 and c ¼ 30. The horizontal dashed lines
represent the current Oklo bounds.
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cosmological neutrino mass. This reduction stems from the
fact that the gravitational potential is sourced by the total
neutrino mass in the lump and therefore sensitive to the
average neutrino mass. Similarly, we found a substantial
reduction of the effective coupling between large neutrino
lumps and the cosmon.

Finally, we have considered the implications of our
findings for the variation of the fine structure constant �,
which would result from a coupling of the cosmon to
electromagnetism, or the variation of other fundamental
constants. Variations of particle masses and coupling con-
stants result from variations of the value of the cosmon
field�. We find that the time variation of� is substantially
reduced inside large neutrino lumps, as compared to
the outside variation. If our galaxy is located within such
a lump, local time variations—as observed by precision
experiments or the analysis of the Oklo natural reactor—
would be substantially suppressed as compared to cosmo-
logical observations. This may weaken the discrepancy
between bounds for local variations of � and claims of
an observed variation in molecular absorption spectra at
high redshifts, which would result from simple linear ex-
trapolations. For sufficiently strong inhomogeneities of the
cosmon field at a redshift around z ¼ 2, the observed
values of ��=� could even depend on the position of the
molecular clouds and therefore on direction. In our model,
the maximal variation of � is limited by the maximal ratio
of the neutrino masses outside and inside our lump. The
neutrino mass locally must exceed m� > 0:05 eV and its
value in the background cannot be larger than a few eV
without conflicting with cosmological limits. These
bounds consequently constrain our position inside the
lump.

Our investigation illustrates the significant impact of
strong backreaction effects in the growing neutrino sce-
nario on the interpretation of cosmological observations.
These nonlinear effects are expected to be even larger in
the case of a field dependent cosmon-neutrino coupling
�ð�Þ. Unfortunately, the large size of the backreaction
effects also implies that only once backreaction is incorpo-
rated properly in the full analysis, the range of parameters
of growing neutrino quintessence, which is compatible
with cosmological observations, can be analyzed. In par-
ticular, the growth of large-scale neutrino perturbations
itself can be expected to be significantly modified. The
reason is that after the formation of neutrino lumps on
smaller scales these large-scale perturbations feel a re-
duced effective neutrino mass and effective coupling.

Our findings have important consequences for the ef-
fects of neutrino lumps on the cosmic microwave back-
ground in the form of the integrated Sachs-Wolfe effect
[38] or on enhanced bulk flows [46]. Indeed, neutrino
lumps would be observable mainly by the gravitational
potential induced around them. In this sense, they are
very similar to dark matter clusters. Galaxies will have

tendency to fall into the large-scale lump potentials. The
timewhen this effect becomes important and the size of the
effect depends crucially on the size of the gravitational
potential generated by the lumps and therefore on the
effective neutrino mass inside the lump. Also the cosmo-
logical background evolution will be modified once a large
fraction of the neutrinos is within lumps.
The growing neutrino scenario seems to be one of the

first examples for a realistic backreaction effect which
modifies the parameters of the homogeneous and isotropic
field equation by order-one effects.

ACKNOWLEDGMENTS

N. J. N. is supported by Deutsche Forschungsge-
meinschaft, Project No. TRR33 and is also partially sup-
ported by the Projects No. CERN/FP/109381/2009 and
PTDC/FIS/102742/2008. The authors thank Youness
Ayaita, Maik Weber, and Nico Wintergerst for numerous
discussions and are in debt to Nico Wintergerst for
also providing the data that allowed the computation
of N�ðRÞ.

APPENDIX

In this appendix, we consider neutrino number density
profiles n�ðrÞ with a finite virial radius rvir such that the
total number of neutrinos N� is well defined. In this case
we can relate the parameters used in the main text to the
neutrino number overdensity �n � hn�i= �n�0.
The neutrino structure, bound by the fifth force and by

gravity [23,64–66], has an average density hn�i defined by

N� ¼ 4�

3
hn�ir3vir: (A1)
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FIG. 12 (color online). The virial radius of a neutrino lump as
a function of the total number N� of neutrinos it contains for
�n ¼ 1:1� 104.
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We can rewrite this equation in terms of the ratio of the
number of neutrinos in the lump, N�, with respect to the
total number of neutrinos, Ntot, within the horizon,

rvir ¼ 1

H0

�
N�

Ntot�n

�
1=3

; (A2)

where Ntot ¼ 4� �n�0=ð3H3
0Þ. The conservation of the num-

ber of neutrinos taking part in the formation process of
the lump and the self-similarity of the free fall of collaps-
ing structures may suggest that �n is a constant. In this
case, however, the ratio of the average energy density
h��i of the lump to the present neutrino energy density in
general does not coincide with �n, h��i= ���0 � �n. The
reason is that with increasing density of the forming lump
the mass of the neutrinos in the interior increases slower
than the background neutrino mass or it can even freeze
or decrease. If �n is a universal constant for all types and
sizes of lumps, then it partly fixes the parameters rs and
ns of the neutrino number density distribution. Inserting
Eq. (A2) into Eq. (9), we can determine the functional
form of the corresponding NFW distribution for a given
N� in terms of �n and the concentration c,

ns ¼ ðcH0Þ3
4�FðcÞNtot�n (A3)

rs ¼ 1

cH0

�
N�

Ntot�n

�
1=3

: (A4)

In Fig. 12 we plot the resulting functional dependence of
the virial radius rvir on the number of neutrinos N� it
contains for �n ¼ 1:1� 104 according to Eq. (A2). For
the dedicated numerical simulation in Sec. III, the neutri-
nos contained in a volume with radius R ¼ 25 Mpc have
reached this overdensity at z ¼ 2:017. The spherical infall
of the neutrino shells corresponding to radii r < R at z ¼
2:017 is not affected by neutrinos in shells with r > R. We
may thus discuss a situation with no neutrinos for r > R at
z ¼ 2:017. The dynamics of the neutrinos in the shells with
r < R is the same as in the simulation. For this scenario the
value �n ¼ 1:1� 104 constitutes a lower bound for the
final overdensity as �n can only increase due to a still
ongoing collapsing process.
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