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We consider one-loop graviton corrections to Green’s scalar field functions in the de Sitter phase of an

inflationary space-time, a topic relevant to the computation of cosmological observables beyond linear

order. By embedding de Sitter space into an ultraviolet complete theory, such as M theory, we argue that

the ultraviolet (UV) cutoff of the effective field theory should be taken to be fixed in physical coordinates,

whereas the infrared (IR) cutoff is expanding as space expands. In this context, we demonstrate how to

implement three different regularization schemes—the brute-force cutoff regularization, dimensional

regularization and Pauli-Villars regularization—obtaining the same result for the scalar propagator if we

use any of the three regularization schemes.
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I. INTRODUCTION

The study of quantum fields in an expanding universe
has become a cornerstone of modern cosmology. It is
believed that the fluctuations of a scalar quantum field
induce the gravitational fluctuations, which in an infla-
tionary universe scenario evolve into the inhomogeneities
in the distribution of galaxies and into the anisotropies of
the cosmic microwave background which we observe to-
day. The computation of the generation and evolution of
cosmological perturbations is typically performed at linear
order (see e.g. [1] for an overview of the theory of cosmo-
logical perturbations), i.e. at tree level. Recently, however,
there has been a great deal of interest in studying pertur-
bations at higher order (see e.g. [2] for recent reviews).
There are both phenomenological and purely theoretical
reasons for this interest. On the phenomenological side, an
important issue has been the study of non-Gaussianities
induced by the nonlinearities in the underlying field equa-
tions (see e.g. [3] for some recent reviews and [4] for two
early papers on this subject). On the purely theoretical side,
there are various questions. Foremost, there is the question
of divergences which arise in computing perturbatively to
higher orders. There will clearly be ultraviolet (UV) diver-
gences as there are in any quantum field theory.
Furthermore, in a theory which involves massless modes
like gravity there is the possibility of infrared (IR) diver-
gences. In inflationary cosmology, these divergences were
noticed in early work [5] and lead to a linear growth of the
coincident point of the two-point function of a scalar field
� in the de Sitter phase

h�2ðxÞi �H3t; (1.1)

where H is the Hubble constant and t is physical time. The
role of these divergences for cosmological perturbations
was first discussed in [6]. They could have both interesting

and also dangerous effects. For one, they could invalidate
the entire perturbative approach (see e.g. [7]). On the other
hand, there have been speculations that IR divergences in
the gravity wave sector [8] or in the sector of scalar metric
fluctuations [9] could lead to a dynamical relaxationmecha-
nism for the cosmological constant, a mechanism which
would leave behind a remnant cosmological constant of
exactly the right magnitude to explain dark energy [10].
The interest has focused on studying quantum fields in a

de Sitter background since such a background is a good
approximation for the phase of inflationary expansion in
the very early Universe. Free quantum fields in nontrivial
gravitational backgrounds have been studied extensively
(see e.g. [11] for a textbook treatment), and the study of
such fields has evolved into a mature subject.
In comparison, the study of interacting fields in cosmo-

logical backgrounds is a field still in its infancy. A good
understanding of this topic, however, is vital if we are to
compute correlation functions of cosmological fluctuation
variables to higher than tree order. In particular, we are
interested in a correlation function of the variable com-
monly denoted by either � or R [1,12] which represents
the curvature perturbation in a comoving gauge. Since
General Relativity is intrinsically nonlinear, nonlinearities
will be important for the evolution of � even if the matter
field is a free field. It is particularly important to consider
the interactions of scalar fields (such as �) with gravitons.
For early work on the quantum theory of gravitons in de
Sitter space the reader is referred to [8]. Early work on
interacting quantum fields in de Sitter-like backgrounds
see e.g. [13–16]. For a mathematical physics approach to
interacting quantum field theory in cosmological back-
grounds see e.g. [17].
A few years ago, Weinberg [18] wrote a seminal paper

studying quantum contributions to correlation functions
of curvature perturbations in de Sitter space.1 Using
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1See [19] for fully dimensionally regulated and renormalized
computations involving gravitons in de Sitter.
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dimensional regularization, and working in the ‘‘in-in
formalism’’ [20] he found the one-loop result2

h�2k i �
1

k3
H4

M2
pl

log

�
k

�

�
; (1.2)

where k is a comoving wave number, � is a physical
ultraviolet renormalization scale, and H is the Hubble
constant during the de Sitter phase. As expected, there
are both ultraviolet and infrared divergences.3 The former
are removed via renormalization, but the latter persist and
could have an important effect.

Similar calculations to those of Weinberg were then
performed using a ‘‘brute-force’’ cutoff regularization
[24–27] yielding consistent results. However, in [28] the
result of Weinberg [18] was questioned on the basis of
the fact that k is a comoving scale whereas � is physical.
The authors of [28] found the result

h�2k i �
1

k3
H4

M2
pl

log

�
H

�

�
: (1.3)

The difference between the results of [18,28] can be traced
to different assumptions made about the nature of the UV
and IR cutoff scales (see e.g. [24,29] for other recent
work). Recently, Weinberg [30] has reconsidered the prob-
lem and now advocates that one should use Pauli-Villars
regularization instead of dimensional regularization.
However, one should be able to obtain the same result
using different renormalization schemes.4

The purpose of this paper is to address the two issues
mentioned in the previous paragraph. First, by putting the
scalar quantum field theory model in the context of an
ultraviolet complete theory, we will be able to argue that
the correct way to impose the cutoffs is to use a fixed
physical ultraviolet cutoff scale but a comoving infrared
cutoff. Second, we will show in terms of a simple example
that all three regularization schemes commonly used—-
brute-force cutoff, dimensional regulations, and Pauli-
Villars regularization—all give the same result.

In the following section we will discuss what we can
learn about the renormalization issue of quantum fields in
de Sitter space by embedding de Sitter into an ultraviolet
complete theory such as string or M theory. From this
discussion, we can draw conclusions on how an effective
quantum field theory of one low-mass scalar field is em-
bedded in the ultraviolet complete theory. In particular, this
teaches us how to impose the ultraviolet cutoff. In Sec. III

we review the quantization of fields in de Sitter space-time.
We then turn to the computation of Green’s function for a
massless scalar field in de Sitter space. In Sec. IV, V, and VI
we perform the calculation of the one-loop corrections to
Green’s function using, in turn, brute-force cutoff, dimen-
sional regularization, and Pauli-Villars regularization. We
obtain the same results. In the final section we discuss our
results.

II. INDUCED EFFECTIVE FIELD THEORY IN
FOUR SPACE-TIME DIMENSIONS FROM

STRING THEORY

General Relativity is not renormalizable, and its quanti-
zation is an outstanding challenge. Cosmological perturba-
tions (both scalar metric fluctuations associated with
matter perturbations, and gravitational waves) can be quan-
tized at the linear level [32,33], but in the absence of an
ultraviolet complete theory of quantum gravity which re-
duces to General Relativity in the low-energy limit ques-
tions of consistency of the quantization scheme remain.
By embedding the de Sitter phase of an inflationary

universe into an ultraviolet complete quantum theory of
gravity, it is possible to study how the conventional theory
of fields on de Sitter space arises as a low-energy effective
field theory. This, in turn, will help us justify the cutoff
scales which need to be introduced in order to eliminate
UV and IR divergences.
In spite of ‘‘no-go’’ theorems [34] derived in the context

of supergravity, it has been possible in the past years to
construct inflationary solutions of string theory, using input
from string theory which goes beyond simple supergravity
(see [35] for some reviews).5

String theory (M theory) is defined in 10 (11) space-time
dimensions. In order to make contact with four-
dimensional physics at low energies, it is crucial to com-
pactify the extra spatial dimensions and to stabilize their

2Here, � is the curvature fluctuation in comoving coordi-
nates—see [1].

3There has been a lot of recent work focusing on whether the
infrared divergences are real or not (see e.g. [21] for a review and
[22] for a selection of other references). This is an issue which
we will not touch here. Note that there is a close connection
between the IR divergences and stochastic inflation [23].

4There have also been some attempts to go beyond a pure loop
expansion [31].

5One example of an inflationary model arising from type IIB
reduction of M theory [36–38] is obtained by considering a D3
brane moving in the presence of a stack of D7 branes. The D7
branes wrap the extra dimensions which are taken to have the
form of a particular Calabi-Yau manifold. In the four-
dimensional effective field theory, a hybrid inflationary model
of a D-term type results: the separation between the D3 brane
and the stack of D7 branes yields the inflaton field, and the scalar
field � whose condensation ends inflation can be identified with
a D3-D7 string mode that becomes tachyonic at a critical value
of the D3/D7 interbrane distance. It has been established [39–41]
that fluxes about the internal dimensions can stabilize all com-
plex structure moduli at tree level, and nonperturbative effects
can stabilize the radial moduli [42,43]. Alternatively, in a het-
erotic string theory, string gases winding the extra dimensions
[44,45] can stabilize all geometric moduli [46–49], and gaugino
condensation can be used to stabilize the dilaton [50]. In a
separate paper we will revisit the geometry of this D3-D7
system, and show that from an M theory starting point the
geometry of our four-dimensional world becomes de Sitter space
[51].
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sizes and shapes (which are the geometrical moduli).
String theory also admits branes and fluxes and they lead
to more moduli, i.e. more degrees of freedom which from
the four-dimensional point of view act as fields. There are
Kaluza-Klein modes of the higher dimensional fields
which once again yield four-dimensional fields. The upshot
of this is that string or M theory give rise to a vast number
of scalar fields in the four-dimensional effective field
theory.

If all of the moduli are successfully stabilized, then only
a very small number of fields remain light, including the
graviton and the scalar field which plays the role of the
inflaton. All other fields obtain a mass which is character-
ized by a combination of the compactification scale and the
string scale. We will denote this scale as M.

Since there are an infinite number of scalar fields in four-
dimensional fields, all interacting with each other, the UV
theory is highly nontrivial at energy scales larger than M.
This scale is the natural cutoff scale of the low-energy
effective field theory. This cutoff scale must be fixed (at
least at late cosmological times) in physical coordinates to
avoid time-dependent coupling constants at low energies.
Thus, we learn that the ultraviolet cutoff energy scale is
fixed in physical coordinates and hence increasing in co-
moving coordinates (as used in most works, in particular,
in [28]).

If we follow a mode with an initial frequency smaller
than M forward in time as space expands, its physical
frequency decreases while the comoving frequency stays
the same. If we imagine setting initial conditions for all
modes at the beginning of the inflationary period, or at
some fixed time in de Sitter space (using the cosmological
slicing of de Sitter space), then there is a natural infrared
cutoff, as can be seen by the following argument: Physics
inside the initial Hubble radius H�1 cannot determine the
initial conditions on scales larger than H�1. Hence, the
initial conditions on the initial super-Hubble scales depend
on the prehistory of the cosmological model, the history
before the onset of the inflationary phase. If we are inter-
ested in effects due to the de Sitter phase, we must cut out
the modes which are initially super-Hubble. Hence, the
initial Hubble radius is the natural infrared wavelength
cutoff. The wavelengths of modes are stretched as space
expands, and hence the IR cutoff length will expand as
well. The IR energy cutoff is fixed in comoving coordinates
but decreases in physical coordinates.

There is a geometrical picture which represents the setup
we are considering here and which is illustrated in Fig. 1.
The horizontal plane represents our four space-time dimen-
sional universe; the vertical axis is the energy scale. Each
mode corresponds to a wave in the horizontal plane at a
particular height. Modes which lie between the UVand IR
cutoff scales are within the domain of the effective field
theory. As the Universe expands, the height of the wave
decreases, and new waves enter the region of the effective

field theory from the UV sea of modes. The IR cutoff scale
decreases as t increases.6

The low-energy effective action can be written com-
pletely in terms of a small number of low-mass scalar
fields �i interacting with graviton fluctuations hij. The

masses mi of all stringy modes and other moduli fields
must be larger than the UV cutoff scale. Otherwise, the
effective action would not make any sense beyond the scale
mi since these modes would have to be inserted in the loop
diagrams of correlation functions of the light modes, e.g.
of �, which would change the behavior of the h��i
correlator.
The massive modes contain the KK reductions of all the

ten-dimensional light states in four dimensions over any
compactifying manifold as well as the massive stringy
modes and their KK reductions over the same six-
dimensional internal manifold. All the massive states do
couple to gravity, and correspondingly every low-energy
state has an infinite number of interaction terms. Thus, with
all the massive modes and the infinite series expansion of
the metric, the loop integrals for correlation functions of
low-mass fields at energies above the scale M are com-
pletely out of control. However as is well known, the new
stringy states that enter the Wilsonian action at the scale
where Einstein gravity breaks down change the UV picture
completely and in fact control the UV divergences. The
final UV behavior is finite and shows no divergences.

de Sitter spacetime
X123

IR

UV

t

FIG. 1 (color online). Fields in a de Sitter space can be
arranged succinctly in a five-dimensional space. The horizontal
plane represents our four space-time dimensional expanding
universe (the spatial dimensions in the plane of the paper, the
time direction into the paper), and the fifth dimension is the
energy scale � � ð�UV;�IRÞ of the field. As the Universe
expands, the energy of a mode decreases. Thus, as t increases,
the mode moves downwards in the cube. The modes tracked in
the effective field theory lie between the UVand IR cutoffs. If the
z-axis represents physical energy, then the UV cutoff is at a
height which is fixed in time, whereas the IR cutoff scale is
decreasing as t increases. New modes continually enter the
region of the effective field theory from the UV sea as t
increases.

6Note that we are not the first to use these IR and UV cutoff
prescriptions—see e.g. [52].
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Thus, it makes sense to study the UV behavior of a
single light state coupled to gravitational fluctuations up
to a specified UV cutoff using the four-dimensional effec-
tive field theory of the low-energy modes. Beyond the UV
cutoff we expect the behavior that we discussed above will
kick in.

But for an effective theory to make sense below�UV we
should be able to regularize the loop integrals unambigu-
ously without resorting to extra massive degrees of free-
dom. We must therefore study the effects of the choice of
regulators and of the regularization schemes. These ques-
tions make sense within the effective four-dimensional
action and will concern the rest of this paper.

The simplified Lagrangian of the low-energy effective
theory, expressed using the Arnowittt-Deser-Misner
(ADM) decomposition of the four-dimensional space-
time metric into spatial metric gij (the Latin indices run

over the three spatial coordinates), shift vectorNi and lapse
function N, is

L ¼ 1

2

Z ffiffiffiffiffiffiffiffiffiffiffiffi
detgij

q
½NRð3Þ þ N�1ðEijE

ij � E2Þ
þ N�1ð _�� Ni@i�Þ � Ngij@i�@j��; (2.1)

where Eij represents the extrinsic curvature tensor, and R3

denotes the Ricci scalar of the spatial metric. We can even
insert a potential �2NV for the scalar field �. The above
Lagrangian implies that there are at least two interaction
vertices:

L1 � a

2
hij@i�@j�; L2 � �a

4
hilhlj@i�@j� (2.2)

which enter into the computation of one-loop corrections
of gravitons to h��i, i.e. the two-point correlation
function.

In our five-dimensional picture, (2.2) will give rise to
two distinct nonbifurcating surfaces. An alternative, but
equivalent, viewpoint will be to take (2.1) as the Wilsonian
action at the scale �UV, and as we go down the scale we
will only consider modes with momenta up to that scale.
Clearly, the existence of any extra massive states will spoil
this simple Wilsonian picture.

III. QUANTIZATION AND MODES IN DE SITTER
SPACE-TIME

To study the modes in de Sitter space it is convenient to
go to the comoving frame in which the four-dimensional
background metric becomes

ds2 ¼ a2ð�Þ
�
�d�2 þX3

i¼1

dzi:dzi

�
: (3.1)

For the sake of simplicity, we consider the spatial sections
to be flat. Note that � is conformal time.

In the presence of scalar field matter, the metric contains
10 degrees of freedom for fluctuations, four of them scalar,

four vector and two tensor (classifying the fluctuations
according to how they transform under spatial rotations,
the usual procedure in cosmology). Two scalar and two
vector modes are gauge. We fix the gauge by setting four
metric fluctuation variables to zero. Note that in this gauge
there are no propagating ghosts7 or interactions, unlike
what would happen if one were to use a covariant gauge-
fixing procedure (see e.g. [53] for studies using covariant
gauges). The Hamiltonian and momentum constraints
eliminate four further variables, leaving us with one8 scalar
mode (a combination of the scalar matter field and the
scalar metric fluctuation) and the two tensor modes which
are the two graviton polarization fields. The scalar field and
the graviton obey the following differential equations (with
a prime denoting the derivative with respect to conformal
time):

�00 þ 2aH�0 � 52� ¼ 0

h00ij þ 2aHh0ij �52hij ¼ 0:
(3.2)

We can use the above equations to describe the modes of
the scalar field and the metric. The mode expansion for the
scalar field is the standard one. For the graviton we will use
a basis of polarization tensors eijðk; sÞ (s ¼ �) to describe

the mode expansion as

hijðz; �Þ ¼
Z

d3k
X
s¼�

½aðkÞeijðk; sÞhs;kð�Þeik�z

þ ayðkÞe�ijðk; sÞh�s;kðtÞe�ik�z�; (3.3)

where h�;k denote the mode functions. The polarization

tensors satisfy the identity:

X
s

eijðp̂; sÞe�klðp̂; sÞ ¼ �ik�jl þ �il�kl � �ij�kl þ �klp̂ip̂j

� �ikp̂jp̂l � �ilp̂jp̂k � �jkp̂ip̂l

� �jlp̂ip̂k þ p̂ip̂jp̂kp̂l; (3.4)

and the subscript s of the graviton is the helicity. We have
used p̂ to denote the unit momenta and k to denote the
absolute value.
The mode functions in de Sitter space are easy to obtain.

We assume that the modes start out on sub-Hubble scales in
their vacuum state, the usual assumption made in infla-
tionary cosmology. Let us denote the scalar field modes
that appear in the standard mode expansion by uk. The final
result for these modes is

7We thank Alex Maloney and Guy Moore for asking probing
questions which stimulated us to focus on this issue.

8For n scalar fields there would be n scalar modes.
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uk ¼ H

ð2�Þ3=2
ffiffiffiffiffiffiffiffi
2k3

p ð1þ ik�Þe�ik�

h�;k ¼ H

ð2�Þ3=2
ffiffiffiffiffi
k3

p ð1þ ik�Þe�ik�;
(3.5)

where we note that both the modes hþ;k and h�;k are given

by the same expression.
Now that we have identified the physical modes of the

system, we can move on to study the behavior of these
modes in a de Sitter phase of an inflationary universe.
Specifically, we need to understand what it means to
impose IR and UV cutoffs in an expanding universe. The
mode decomposition of the fields is defined in comoving
coordinates. As we have argued in the previous section, the
UV cutoff of the effective field theory should be at a fixed
physical wavelength, and hence at a comoving wavelength
which is decreasing as aðtÞ�1. The comoving high fre-
quency cutoff is hence increasing. In physical coordinates,
it is the UV cutoff which remains the same whereas the
physical IR wavelength cutoff is increasing. Since
the Hubble radius H�1ðtÞ, the length which separates the
high frequency region where the modes are oscillating
from the low frequency region where the modes are frozen
out, is at a fixed value in physical coordinates, we conclude
that the volume of phase space of short wavelength modes
is constant, whereas that of the long wavelength modes is
increasing. As short wavelength modes exit the Hubble
radius during the inflationary expansion of space, new UV
modes enter the region of validity of the effective field
theory to replenish the phase space.

Figure 2 gives a sketch of the evolution of various scales
in de Sitter space-time. The horizontal axis represents
physical distance, the vertical distance time. The wave-
length of a fixed mode increases as time proceeds. If t0 is
the beginning of inflation, then the mode whose

wavelength is indicated by the distance between the two
red solid slanted lines indicates the IR cutoff scale whose
wavelength is growing with time. In contrast, the UV cut-
off wavelength is fixed in physical coordinates—by the
distance between C and D in the sketch. The Hubble radius
has a constant physical distance.
In the following, we will consider the one-loop graviton

corrections to the two-point function of �. We perform the
computation using three different regularization schemes:
(i) Brute cutoff regularization,
(ii) Dimensional regularization,
(iii) Pauli-Villars regularization.

and show that all the three regularization schemes yield
identical results.9

In an upcoming work [54] other interactions of �will be
studied, and an extension of our method to higher
n-correlation functions will be worked out. However, we
want to point out that the steps presented in this paper to
regularize the one-loop two-point function extend in a
straightforward way to higher n-point functions, including
nontrivial fermionic and gauge interactions.

IV. BRUTE CUTOFF REGULARIZATION

A. Preliminaries

The ‘‘Brute Cutoff’’ scheme consists of eliminating the
contributions of modes with wave numbers above a certain
ultraviolet cutoff scale and below a certain infrared cutoff
scale from the loop integrals. The specification of these
cutoffs is the first place where all the subtleties that
we mentioned above regarding UV and IR cutoffs will
show up.
In scattering experiments one is interested in computing

transition rates between prescribed in and out states. The
questions in cosmology are very different. Here, one is
interested in the evolution for a finite duration of time of a
certain initial state. Thus, we are not interested in calculat-
ing S-matrix elements, but rather expectation values of
operators at some later time: t evaluated in a state set �
up at some initial time ti. The formalism appropriate for
performing this computation is the Schwinger-Keldysh
[20] or ‘‘in-in’’ formalism.
We are interested in computing the expectation value

h�jOðtÞj�i (4.1)A B

C D

t0

FIG. 2 (color online). A representation of how modes evolve in
de Sitter space. The vertical axis denotes time, the horizontal
axis physical space. The grey dashed half wave and the solid
grey half wave at time t0 denotes waves of Hubble length. The
red slanted solid lines delineate the wavelength of a wave which
exits the Hubble radius at time t0 (whose initial value is given by
the length between A and B). The solid blue vertical lines
indicate the ultraviolet cutoff wavelength (the distance between
C and D) which is constant in physical coordinates.

9One might worry about preserving the Ward identity using
the above regulators. The Pauli-Villars regulator (as like the
dimensional regulator) does preserve the Ward identity.
However, to preserve the Ward identity using the brute cutoff
regulator one might need to add extra terms to the Lagrangian.
The final answer is that any violation of the Ward identity is
cancelled by these extra terms without affecting the two-point
correlation functions. Therefore in this work we will ignore these
subtleties.
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of some operator O evaluated at time t � ti in some state
� prescribed at some early time ti, which we consider to
tend to �1. We take the state � to be the initial vacuum
state. Working in the interaction representation, the for-
mula for this correlation function (4.1) becomes

h�jOðtÞj�i ¼ h0j �Tei
R

t

�1 HIðt0Þdt0OIðtÞTe�i
R

t

�1 HIðt0Þdt0 j0i
(4.2)

where j�i is the vacuum in the interacting theory and j0i is
the free field vacuum. The right-hand side of the equation
is calculated in the interaction picture. T and �T denote
time-ordered and anti-time-ordered products.

Considering a free scalar field theory for matter,10 there
are two diagrams which contribute to the above expecta-
tion value at the one-loop level. They are shown in
Fig. 3. We will evaluate these diagrams in the following
subsection.

B. In-in calculation of loop corrections to the
two-point function

The contribution GI
pð�Þ of the first diagram of Fig. 3 to

the one-loop corrections of the scalar correlation is due to
the three field interaction (2.2) is given by the following
expression:

GI
pð�Þ ¼�4ð2�Þ6Re

Z �

�1
d�1a

2ð�1Þ
Z �

�1
d�2a

2ð�2Þ

	
Z

d3qp4sin4	

�
	ð�1 ��2Þu2pð�Þu�pð�1Þu�pð�2Þ

	 up0 ð�1Þu�p0 ð�2Þhqð�1Þh�qð�2Þ

� 1

2
jupð�Þj2upð�1Þu�pð�2Þup0 ð�1Þ

	 u�p0 ð�2Þhqð�1Þh�qð�2Þ
�
; (4.3)

where p is the momentum of the external line, q is the
momentum of the graviton and p0 � p� q is the momen-
tum of the internal scalar field. The factor p4sin4	 comes
from summing over the graviton polarization states:

X
s

eijðp̂; sÞe�klðp̂; sÞpipjpkpl ¼ p4sin4	: (4.4)

Note that in Eq. (4.3), the second part in the bracket is
exponentially small in the UV because of the exponential
oscillation of the modes. Therefore, when we calculate the
UV divergence of Diagram I, we can just integrate the first
part without effecting the result. In the UV limit, the
correlation can then be simplified as

GI;UV
p ð�Þ ¼ �4Re

Z �

�1
d�1

Z �1

�1
d�2u

2
pð�Þu�pð�1Þu�pð�2Þ

	
Z d3q

2q2
p4sin4	e�2iqð�1��2Þ

¼ �lim
�1!�2

Z �

�1
d�1 Im½u2pð�Þu�2p ð�1Þ�

	
Z d3q

q3
p4sin4	: (4.5)

On the other hand, if we want to keep both the IR and UV
effects, we can take (4.3), do the time integral first and then
integrate over the loop momentum. The final result
(writing only the divergent part) can be expressed in the
following way:

GI
pð� ¼ 0Þ

¼ H2

ð2�Þ32p3

H2

ð2�Þ2
�
2 logðp=�IRÞ þ 2

3
logð�UV=pÞ

�

(4.6)

where H is the Hubble constant and p is the incoming
momentum of the scalar field.
Once we have the result for Diagram I of Fig. 3, we can

evaluate Diagram II. This follows arguments more or less
similar to those made when considering (4.3). The one-
loop correction to the scalar correlation function from the
four field interaction in (2.2) then takes the form

GII
p ð�Þ ¼ ð2�Þ3

Z �

�1
d�1a

2ð�1Þ Im½u2pð�Þu�2p ð�1Þ�

	
Z

d3q2p2sin2	jhqð�1Þj2 (4.7)

where now the quantity 2p2sin2	 comes from the summa-
tion of the following graviton polarization:X

s

eilðp̂; sÞe�jlðp̂; sÞpipj ¼ 2p2sin2	: (4.8)

To evaluate this one should once again first do the time
integral and then integrate the loop momentum. The final
result (once again writing only the divergent terms) is
given by

σ σ

h

σ σ

h

h (δσ)h

h

(δσ)

(δσ)(δσ)h

FIG. 3 (color online). The two one-loop diagrams which we
study here. They are related to the two amplitudes given in the
text. The first diagram gives amplitude I and the second one
amplitude II.

10To be complete, we should consider the self-coupling of �
which is unavoidable if the coupling of matter to scalar gravi-
tational fluctuations is taken into account.
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GII
p ð� ¼ 0Þ ¼ H2

ð2�Þ32p3

H2

ð2�Þ2

	
�
2 logð�IR=�UVÞ � 5

6
�2

UV

�
; (4.9)

where all the terms appearing have been defined above. So
far, the two results (4.6) and (4.9) agree with those given in
[52] (see also [28]).

Finally, we can rewrite (4.6) and (4.9) using the renor-
malization scales �IR and �UV. In this language the two
amplitudes are reexpressed as

GI
pð� ¼ 0Þ ¼ H2

ð2�Þ32p3

H2

ð2�Þ2

	
�
2 logðp=�IRÞ þ 2

3
logð�UV=pÞ

�

GII
p ð� ¼ 0Þ ¼ H2

ð2�Þ32p3

H2

ð2�Þ2

	
�
2 logð�IR=�UVÞ � 5

6
�2

UV

�
: (4.10)

However, this is not the final answer because there is a
subtlety associated with applying cutoffs in the comoving
and in the physical coordinate systems. To understand this
and analyze the results correctly, we turn to the implemen-
tation of the cutoffs.

C. Physical UV and comoving IR cutoffs

In the previous subsection we have not carefully dis-
cussed the UV and IR cutoffs for our case. The subtlety
about this has been discussed earlier in Sec. II. It is now
time to apply what we learned in that section to our two
results (4.6) and (4.9) or equivalently to (4.10).

Note that the calculations in the above subsection are
based on the assumption that the UV and IR cutoffs are
both comoving. During inflation, we know that the UV
modes are generated and IR modes are stretched outside of
the Hubble radius. Thus, the phase space is increasing in de
Sitter space. Therefore (using for the moment a superscript
‘‘c’’ to designate a quantity in comoving coordinates), in
the comoving frame the IR cutoff �c

IR will remain un-
changed, whereas the UV cutoff �c

UV will change because
new high energy modes will enter the system. Therefore
we can rewrite �c

UV as

�c
UV ¼ 
UVað�Þ (4.11)

such that 
UV is the physical UV cutoff (i.e. which remains
unchanged in the physical ðxi; tÞ frame). Thus, we can
reexpress Eq. (4.7) as

GII
p ð�Þ ¼ ð2�Þ3

Z �

�1
d�1a

2ð�1Þ Im½u2pð�Þu�2p ð�1Þ�

	
Z 
UVað�1Þ

�IR

d3q2p2sin2	jhqð�1Þj2 (4.12)

where both 
UV and�IR are constant. Thus, completing the
above integral and replacing the cutoffs by the renormal-
ization scales ~�UV and �IR, we get

GII
p ð� ¼ 0Þ ¼ H2

ð2�Þ32p3

H2

ð2�Þ2

	
�
2 logð�IR=pÞ þ 2 logðH= ~�UVÞ � ~�2

UV

H2

�
:

(4.13)

For the other one-loop diagram in Fig. 3 i.e.GI
p, we can use

(4.3) and (4.5) to easily obtain the following result:

GI
pð�¼ 0Þ ¼ H2

ð2�Þ32p3

H2

ð2�Þ2

	
�
2 logðp=�IRÞþ 2

3
logð ~�UV=HÞ

�
(4.14)

where one may note the appearance of H inside the loga-
rithm as above. Note also that ~�UV is the physical renor-
malization scale, whereas �IR is the comoving
renormalization scale.

V. DIMENSIONAL REGULARIZATION

Our next step is to analyze the dimensional regulariza-
tion of the two one-loop diagrams of Fig. 3. Dimensional
regularization is rather subtle here because we need to first
find the modes in de Sitter space in d ¼ 4þ � dimensions
where � ! 0. This is related to one of the issues associated
with dimensional regularization: absence of the usual ana-
lytic form of the action integrand as a function of the wave
number. Of course a way out of this problem is to analyze
the system in a slow roll inflationary scenario or an equiva-
lent de Sitter space-time.
In the following we will start by finding the modes in d

space-time dimensions for the de Sitter background.

A. Free field quantization

In d dimensional space-time, the Lagrangian of the
massless scalar field in the conformal FRW background
metric is written as

L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detg
p �

� 1

2
a�2���@��@��

�

¼ � 1

2
ad�2���@��@��: (5.1)

Canonical quantization requires that the field should
be redefined. Considering the power of the scale factor a
in Eq. (5.1), we are led to defining canonical variables v

and ~h as

v � �a�1��=2 ~h � hffiffiffi
2

p a�1��=2; (5.2)

where � ¼ d� 4. In the limit � ! �1, we get
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vk ¼ 1

ð2�Þ3=2 ffiffiffiffiffi
2k

p e�ik� ~h�;k ¼ 1

ð2�Þ3=2 ffiffiffiffiffi
2k

p e�ik�:

(5.3)

Once we know the behavior for the redefined compo-
nents at � ! �1, one may use them to determine the
expressions for the modes uk and h�;k. With the usual

vacuum initial conditions (5.3), the d-dimensional equa-
tion of motion of the free fields can be solved to give us the
following mode expansions:

uk ¼ ei�ð1þð�=4ÞÞH1þð�=2Þð�k�Þð3þ�Þ=2

4�
ffiffiffi
2

p
kð3þ�Þ=2 H ð3þ�Þ=2ð�k�Þ

h�;k ¼ ei�ð1þð�=4ÞÞH1þð�=2Þð�k�Þð3þ�Þ=2

4�kð3þ�Þ=2 H ð3þ�Þ=2ð�k�Þ;
(5.4)

where H ð3þ�Þ=2 is a Hankel function. The d-dimensional

modes can now be Taylor expanded around � ¼ 0 to give
us the following mode components:

uk ¼ H

ð2�Þ3=2
ffiffiffiffiffiffiffiffi
2k3

p ð1þ ik�Þe�ik�

�
1þ�

2
logð�H�Þþ � � �

�
:

(5.5)

Note that there is an extra term � logð�H�Þ in the mode
expansion. It is important to consider this term in dimen-
sional regularization. As was pointed out in [28], this
correction term will change the one-loop final result from
logðk=�Þ to logðH=�Þ. In the following analysis we will
carefully consider the implication of this term in the regu-
larization process.

B. Zeroth order regularization

Let us start by ignoring the � logð�H�Þ term in the
mode expansion. We will call this the zeroth order calcu-
lation and in the next section we will introduce the correc-
tion term. For dimensional regularization, it is useful to
introduce the RG scale �D in the interaction Lagrangians
that modifies our earlier interactions (2.2) in the following
way:

L1 ¼ a��ð�=2Þ
D

2
hij@i�@j�

L2 ¼ a���
D

2
hilhlj@i�@j�:

(5.6)

Using these, the value of the first diagram in Fig. 3 can now
be worked out in the following way:

GI
pð�Þ¼�4ð2�Þ6þ2�Re

Z �

�1
d�1a

2þ�ð�1Þ

	
Z �

�1
d�2a

2þ�ð�2Þ
Z
d3þ�qp4sin4	

�
	ð�1��2Þ

	u2pð�Þu�pð�1Þu�pð�2Þup0 ð�1Þu�p0 ð�2Þhqð�1Þh�qð�2Þ

�1

2
ju2pð�Þj2upð�1Þu�pð�2Þup0 ð�1Þ

	u�p0 ð�2Þhqð�1Þh�qð�2Þ
�
: (5.7)

The analysis of the above integral will be a little easier
compared to the integrals arising in the brute cutoff scheme
because in the current scheme the cutoff � does not depend
on time. This means that we can do the time integral first,
yielding the following expression:

GI
pð�Þ ¼ H4

ð2�Þ6p4

Z
d3þ�q

	
Z

d3þ�p0�3ðpþ p0 þ qÞfðp; p0; qÞ; (5.8)

where we have kept all the momentum dependences from
(5.7) in the function fðp; p0; qÞ. An immediate advantage in
writing (5.7) in the form (5.8) is that we can use dimen-
sional analysis to predict

Z
d3þ�q

Z
d3þ�p0�3ðpþ p0 þ qÞfðp; p0; qÞ / p1þ�F;

(5.9)

where the constant of proportionality will be determined
below, and F represents the following functional form in
either the UVor the IR:

F ¼ F0

�
þ F1 (5.10)

where F0 and F1 are both independent of � as expected. In
the above Eq. (5.10) one might wonder why F just has a
single pole. This is because in flat space-time one-loop
dimensional regularization has only a single pole. The
curved space-time cannot yield more poles.
In the limit of � ! 0, the � appearing in the denomina-

tor cancels out in the standard way to give us the following
result:

Z
d3þ�q

Z
d3þ�p0�3ðpþ p0 þ qÞfðp; p0; qÞ

¼ pðF0 logpþ constantÞ; (5.11)

where the constant term in independent of p but allows a
��1 singular term. This divergence is not a problem as it
will be renormalized by the UV completion of our theory.
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Let us now choose a momentum scale p such that we
can divide the d3q momentum integral into two parts:11

0 
 q 
 p and p 
 q 
 1. We can equivalently divide

F0 into two parts: FðIRÞ
0 and FðUVÞ

0 whose values can be

read off from (5.7). This gives us12:

2�FðUVÞ
0

3

Z 1

p

dq

q

�
q

�D;UV

�
�

¼p

�
2�FðUVÞ

0

3
logð�D;UV=pÞþconstant

�

2�pFðIRÞ
0

Z p

0

dq

q

�
q2

�D;IRð�1Þ�D;IRð�2Þ
�
�=2

¼½að�1Það�2Þ��=2p½2�FðIRÞ
0 logða�D;IR=pÞþconstant�;

(5.12)

whereas before, the constant parts in the above equations
are divergent but independent of p. Note also that, since in
dimensional regularization we always choose physical re-
normalization group (RG) scales, they are related to the
RG scales used in the brute cutoff scheme of the previous
section in the following way:

�D;UV ¼ ~�UV; �D;IR ¼ �IR

a
: (5.13)

Combining (5.12) with (5.7), we get our final result for the
zeroth order analysis:

GI;0
p ð�¼0Þ¼ H2

ð2�Þ32p3

H2

ð2�Þ2

	
�
2logðp=�IRÞþ2

3
logð ~�UV=pÞ

�
; (5.14)

where the subscript in GI;0
p denotes the one-loop term

without the � logð�H�Þ correction. Note also that we
have chosen the RG scales �IR and �UV as before.13

For the second diagram in Fig. 3 we can basically follow
the same set of ideas to get the UVand IR divergence. The
amplitude for the second diagram is given by

GII
p ð�Þ ¼ ð2�Þ3þ�

Z �

�1
d�1a

2þ�ð�1Þ Im½u2pð�Þu�2p ð�1Þ�

	
Z

d3þ�q2p2sin2	jhqð�1Þj2: (5.15)

If we ignore the � logð�H�Þ correction to the modes, we
can rewrite the amplitude as

GII;0
p ð� ¼ 0Þ ’ H4

ð2�Þ62p3

Z
d3þ�q

ð6p2 þ 5q2Þ2p2sin2	

8p4q3

¼ H2

ð2�Þ32p3

H2

ð2�Þ2 ½2 logð�IR=pÞ

þ 2 logðp= ~�UVÞ�: (5.16)

C. First order regularization

Let us now add back the � logð�H�Þ correction term. In
the following we will compute the effect of this addition to
our loop regularization. Before we go about doing this,
note that every mode has this kind of correction. In the loop
integrals for the two diagrams, i.e. (5.7) and (5.15), the
� logð�H�Þ in the loop can be cancelled by the scale
factor in the equation. This is because the correction dis-

appears if the modes are multiplied with a�=2. When the
loop diagram is considered, there is a factor proportional to
a2þ� coming from the time integral. However the correc-
tion from u2pð�Þ can be absorbed in the redefinition of the

renormalization scale, as we mentioned earlier.
Taking all the above into account, the correction toGII

p is

as follows:

GII;1
p ð� ¼ 0Þ ’ H4�

ð2�Þ62p3

Z
d3þ�q logðH=pÞ

	 ð6p2 þ 5q2Þ2p2sin2	

8p4q3
þ �	 constant:

(5.17)

The above integral can be computed in exactly the way that
we did in the previous subsection, i.e. by dividing into two
parts dealing with IR and UV divergences, respectively. In
fact there are no IR divergences because the prefactor

½að�1Það�2Þ��=2 of (5.12) in the IR calculations will cancel
the first order corrections from upð�1Þupð�2Þ in (5.7) and

11This is because p is the only allowed scale for us here.
Therefore this gives a natural demarcation between UV and IR
physics.
12It is easy to see that the UVand IR divergence are determined
by the sign of �. First consider the momentum integral, which
contains UV and IR divergences simultaneously:

Z �UV

�IR

dp

p
¼ log

�
�UV

�IR

�
:

This integral, which is defined in four dimensions, can be
rewritten in d ¼ 4þ � dimensions by making the following
change:

Z dp

p1��
¼ p�

�
:

The � dependence of the above integral tells us that when we use
dimensional regularization to deal with UV and IR divergences,
different choices of � should be made. For example, when
p ! 1, and � < 0 can keep the UV divergence under control.
Whereas when p ! 0 then � > 0 in order to keep the IR
divergence under control.

13Note that the additional 1þ �
2 logð�H�Þ correction term

coming from u2pð�Þ in (5.7) only adds a correction term to
(5.14) that can be absorbed in the definition of the renormaliza-
tion scale.
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(5.15). Therefore combining GII;1
p and GII;0

p , we get our
final result:

GII
p ð� ¼ 0Þ ¼ GII;0

p þGII;1
p

¼ H2

ð2�Þ32p3

H2

ð2�Þ2 ½2 logð�IR=pÞ

þ 2 logðH= ~�UVÞ�: (5.18)

Similarly one may also compute GI;1
p . For this, if we are

considering the UV divergence, we can use the approxi-
mation �2 ! �1. Since there are no IR divergences, this
gives us

GI;1
p ð� ¼ 0Þ ¼ H2

ð2�Þ32p3

H2

ð2�Þ2
�
2

3
logðp=HÞ

�
(5.19)

which, when combined with GI;0
p in (5.14), gives us the

following result:

GI
pð�¼0Þ¼ H2

ð2�Þ32p3

H2

ð2�Þ2

	
�
2logðp=�IRÞþ2

3
logð ~�UV=HÞ

�
: (5.20)

One may now compare (5.18) and (5.20) with (4.13) and
(4.14), respectively, that we got using the brute cutoff.
They match precisely for the logarithmic terms. One might
however wonder about the additional quadratic piece in
(4.13):

� H2

2p3ð2�Þ5 � ~�
2
UV (5.21)

This term cannot be seen from the dimensional regulari-
zation because this method is optimized to capture the
logarithmic divergences. Any divergences higher than
logarithmic require a more involved regularization
scheme.

VI. PAULI-VILLARS REGULARIZATION

Now that we have seen how the results from the brute
cutoff and dimension regularization match up precisely, it
is time to analyze the UV/IR divergences using the Pauli-
Villars regularization scheme. Our starting point is to take
the interactions (2.2) along with a potential Vð�Þ that could
in principle appear from moduli stabilization in M theory.

A. Pauli-Villars regulators

Pauli-Villars regularization is a scheme to cancel the
divergences in loops by introducing one or several massive
fields, sacrificing general covariance or gauge symmetry of
the underlying theory. In this regularization process, the
propagator of a field becomes proportional to

1

k2
� 1

k2 þM2
0

¼ 1

k2 þ k4=M2
0

; (6.1)

whereM is a cutoff mass. In the high energy E � M0 limit
the propagator vanishes, cancelling the UV divergence by
the heavy field. Similarly in the low-energy E � M0 limit
the propagator regains its massless limit.
The above is the standard story behind Pauli-Villars

regularization. To extend this to more complicated scenar-
ios we need to add more than one type of Pauli-Villars
fields. This would, for example, change (6.1) to the follow-
ing propagator:

1

k2
þX

n

Z�1
n

k2 þM2
n

¼ 1

k2
Q
n
ðk2 þM2

nÞ=
Q
n
M2

n

; (6.2)

where Z�1
n are the typical coefficents for the free parts of

the Pauli-Villars Lagrangian and Mn are the masses of the
regulator fields. These coefficients satisfyX

n

Z�1
n ¼ �1;

X
n

Z�1
n M2

n ¼ 0: (6.3)

To apply the Pauli-Villars regularization scheme to our
case, we need two sets of Pauli-Villars fields: one set for
the scalar field � and the other set for the graviton field hij.

We will call these fields as �n and �n
ij, respectively. The

typical Lagrangian for our scalar field � in the presence of
gravitational interaction is given by

L¼ ffiffiffiffiffiffiffi�g
p �

R

2
�a2

2
@��@

���V1ðhij;�Þ�V2ð�Þ
�
; (6.4)

where V2ð�Þ is a potential term for � whose form follows
from the ultraviolet theory being considered, and V1ðhij; �Þ
is the minimal coupling of the metric hij with � that

generates the two interactions (2.2).
Once we switch on the two sets of Pauli-Villars fields the

Lagrangian with the scalar field � takes the following
form:

Ls ¼ ffiffiffiffiffiffiffi�g
p �

�a2

2
@��@

��

� 1

2

X
n

Z�1
n ðg��@��n@��n þM2

n�
2
nÞ

� V1

�
hij þ

X
n

�n
ij; �þX

n

�n

�
� V2

�
�þX

n

�n

��
;

(6.5)

where we have shifted the fields ðhij; �Þ by their corre-

sponding regulator fields in the potential to generate the
required couplings between them. The gravitational part of
the Lagrangian can also be adjusted to take into account the
action of the regulator fields:

L g ¼ ffiffiffiffiffiffiffi�g
p �

1

2
R0 � 1

8
g��@�hij@�hij

� 1

8

X
n

~Z�1
n ðg��@��

n
ij@��

n
ij þ ~M2

n�
n2
ij Þ

�
; (6.6)
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where R0 is the curvature associated with the background
de Sitter space-time and ð ~Zn; ~MnÞ satisfy relations similar
to (6.3). The above action for the graviton hij and the

regulator fields �n
ij make sense because the free graviton

field and free scalar field are the same up to some constant.
Thus, adding the regulator fields should be identical for
both cases.

Having obtained the full action for our case, let us
investigate the interaction terms. The linear shift in the
potential V1ðhij; �Þ immediately gives us the following

relevant interactions:

L 3 ¼ a

2

�
hij þ

X
n

�n
ij

�
@i�@j�L4

¼ � a

4

�
hþX

n

�n

�
il

�
hþX

m

�m

�
lj
@i�@j�: (6.7)

The above are the two kinds of interactions that we will
consider for our case. However there are additional inter-
actions of the form:

a

2

X
n;m;l

ðhij þ �n
ijÞð@i�@j�m þ @i�l@j�mÞ � V2

�
�þX

k

�k

�

� a

4

X
n;m;k;p

ðhþ �nÞilðhþ �mÞljð@i�@j�k þ @i�p@j�kÞ:

(6.8)

Before we analyze the above interactions, it is easy to
see from (6.5) that the interaction V2ð�þP

k�kÞ leads to
diagrams that are unambiguously regularized in [30]. So all
we need to consider are the other interactions. Most of the
interactions in (6.8) are not one-loop. The only one-loop
diagrams are given in Fig. 4. Since both diagrams have the
same �m fields propagating in the loop, the regularization
for hij proceeds in exactly the same way as in the case of

the first interaction in (6.7). This is evident when we
incorporate the diagrams in Fig. 4 in our computations.

B. Quantization of the Pauli-Villars fields

As we see from (6.7), the only relevant Pauli-Villars
fields that we need to consider in our case are the fields
�n
ij, since the �n fields appear in diagrams that are not

relevant in our case. Therefore, let us start by defining
�0
ij � hij with ~Z0 � 1, ~M0 ¼ 0, and �n

ij for n � 1 being

the set of Pauli-Villars fields. We can then write down the
following mode expansion:

�n
ijðz; �Þ ¼

Z
d3q

X
s¼�

½aðqÞeijðq; sÞ�n
s;qð�Þeiq�z

þ ayðqÞe�ijðq; sÞ�n�
s;qð�Þe�iq�z� (6.9)

where eij satisfies the identity (3.4) and �n
s;q � �n

q denote

the modes of �n
ij for a given momentum q. The creation and

annihilation operators then satisfy

½anðk1Þ; aymðk2Þ� ¼ �3ðk1 � k2Þ�mn: (6.10)

One may similarly quantize the other set of Pauli-Villars
fields �n, but will not do so here. The mode expansion of
the fields �n is used to compute the two diagrams of Fig. 4.

C. The regularization process

We are now ready to perform the actual regularization
process using the two interactions (6.7). Our method will
be very similar to the one recently developed in [30], which
the reader may consult for additional information. Note
that the analysis of [30] only dealt with the scalar field �
and its Pauli-Villars partners �n. We therefore extend the
technique of [30] to apply to graviton fluctuation.
As before, our aim is to regularize the two-point func-

tions using a Pauli-Villars field. To do this, note that the
internal momentum integral may be separated into two
parts, exactly as in [30]. As one part we choose an interval
where the internal momenta are much smaller than the
masses of the regulator fields, in the other part we take
the interval where the internal momenta are of the same
order as the masses or larger. We will call the separation
scale Q (following [30]). It plays no physical role.
Therefore, the final two-point function should not depend
on the scale Q.
The two-point function for the second interaction in

(6.7) is then given (using comoving coordinates) by

GII
p ¼ð2�Þ3

Z �

�1
d�1a

2ð�1ÞIm½u2pð�Þu�2p ð�1Þ�pipj

	X
s

X
KMN

~Z�1
K

Z
d3qeilðq̂;sÞe�ljðq̂;sÞ�K

Mqð�1Þ�K�
Nqð�1Þ:

(6.11)

The above integral may now be divided into two intervals
as discussed above by introducing the momentum scale Q.
If we also choose the masses ~Mn ¼ Mn (n � 1, ~M0 ¼ 0)
for simplicity, then we can express (6.11) for q > Q in the
following way:

σ σ

χ

γ ij
n

m

σ σ

h

χ

ij

m

FIG. 4 (color online). The other one-loop interactions in the
theory.
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�
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�
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Q

�
� Q2

að�1Þ2
;

�
(6.12)

where in the second equality we have chosen the renormalization scales �A and �B. These two scales will be related to
each other, but we will make the identification after we add the contributions from amplitudes with q < Q. For q < Q our
result is

GII;<Q
p ¼ ð2�Þ3

Z �

�1
d�1a

2ð�1Þ Im½u2pð�Þu�2p ð�1Þ�2p2
Z Q

�IR

d3qsin2	jhqð�1Þj2: (6.13)

Once we restrict our result to the de Sitter space-time, the final amplitude will be given by the sum of the above two, i.e. the
sum of (6.12) and (6.13). This gives

GII
p �GII;>Q

p þGII;<Q
p

¼8

3
�ð2�Þ3

Z �

�1
d�1a
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�
�2
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�
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�IR

��

¼ H2

ð2�Þ32p3

H2

ð2�Þ2
�
2logð�IR=pÞþ2logðH= ~�UVÞ� ~�2

UV

H2

�
; (6.14)

where to go from the second step to the final one, we have identified �A ¼ �B ¼ ~�UV and �IR � �IRa. This matches
precisely with the other two regularization schemes defined with physical UV cutoff and comoving IR cutoff.

Finally, for the first interaction of (6.7) the amplitude is given by the following expression (again using comoving
coordinates):

GI
p ¼ �4ð2�Þ6 Re
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�
: (6.15)

The above integral can again be restricted to the two intervals exactly as before. For q > Q, (6.15) takes the following
form:
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; (6.16)

where ~�UV is the required physical UV renormalization scale. On the other hand, for q < Q we have the following
expression which is a slight variation of (4.3):

GI;<Q
p ¼ �4ð2�Þ6 Re
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: (6.17)
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In de Sitter space we can add up (6.17) and (6.16) to give
us the following final expression for the one-loop
interaction:

GI
p � GI;>Q

p þGI;<Q
p

¼ H2

ð2�Þ32p3

H2

ð2�Þ2
�
2 logðp=�IRÞ þ 2

3
logð ~�UV=HÞ

�
;

(6.18)

which again matches precisely with the results that we got
from the other two regularization schemes.

VII. CONCLUSIONS

In this paper we have computed one-loop graviton cor-
rections to Green’s function of a scalar matter field in de
Sitter space using three different regularization schemes:
brute-force cutoff, dimensional regularization and the
Pauli-Villars prescription. We have shown that careful
evaluation in the three cases leads to the identical result.

There are both infrared and ultraviolet divergences
which appear in the one-loop computation. By embedding
the de Sitter phase into an ultraviolet complete theory we
were able to justify the use of an ultraviolet cutoff at a fixed
physical scale. This leads to the conclusion that the Hilbert
space of modes of the effective low-energy field theory is
growing as space is expanding, and this in turn leads to the

presence of a growing contribution of infrared modes to
correlation functions.
The embedding of an inflationary model in the context

of the string theory allows us to study the trans-Planckian
‘‘problem’’ [55] for cosmological fluctuations in inflation-
ary cosmology. In toy models of inflation, it is unclear what
state to choose for the fluctuation modes when they arise
from the ‘‘trans-Planckian sea’’. The answer, however, will
be well defined once the inflationary model is embedded in
an ultraviolet complete theory. We are currently investigat-
ing this issue [56]. We are also planning to study further
consequences of the growth of the phase space of infrared
modes which contribute to correlation functions.
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