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The properties of magnetized plasmas are always investigated under the hypothesis that the relativistic

inhomogeneities stemming from the fluid sources and from the geometry itself are sufficiently small to

allow for a perturbative description prior to photon decoupling. The latter assumption is hereby relaxed

and predecoupling plasmas are described within a suitable expansion where the inhomogeneities are

treated to a given order in the spatial gradients. It is argued that the (general relativistic) gradient

expansion shares the same features of the drift approximation, customarily employed in the description of

cold plasmas, so that the two schemes are physically complementary in the large-scale limit and for the

low-frequency branch of the spectrum of plasma modes. The two-fluid description, as well as the

magnetohydrodynamical reduction, is derived and studied in the presence of the spatial gradients of

the geometry. Various solutions of the coupled system of evolution equations in the anti-Newtonian

regime and in the quasi-isotropic approximation are presented. The relation of this analysis to the so-

called separate universe paradigm is outlined. The evolution of the magnetized curvature perturbations in

the nonlinear regime is addressed for the magnetized adiabatic mode in the plasma frame.
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I. MOTIVATIONS

The analyses of the large-scale galaxy distribution [1,2],
of the high-redshift type Ia supernovae [3,4], and of the
CMB observables [5,6] seem to converge, these days, on a
concordance model sometimes called the�CDM scenario,
where � stands for the dark energy component and CDM
accounts for the dark matter component. The �CDM
scenario is just the compromise between the number of
ascertainable parameters and the quality of the observatio-
nal data. The quest for a concordance lore is also able to
shed some light on the presence of large-scale magnetic
fields in nearly all gravitationally bound systems we ob-
serve. Since we do see magnetic fields today over large
distance scales, it seems natural to scrutinize their impact
on the CMB observables. This is the motivation of a
program aimed at bringing the unconventional study of
magnetized CMB anisotropies to the same standard of the
more conventional adiabatic1 paradigm (see [7–10] and
references therein). While different approaches to the prob-
lem are certainly available [11–15] (see [16] for a more
complete list of earlier references), the path followed in
[7,8] led to the calculation of the temperature and polar-
ization anisotropies induced by the magnetized (adiabatic
and entropic) initial conditions. The parameters of the

magnetized background have been estimated (for the first
time) in [9,10] by using the TT and TE correlations2

measured by the WMAP Collaboration. The obtained re-
sults3 show that large-scale (comoving) magnetic fields
larger than 3.5 nG are excluded to 95% C.L. and for
magnetic spectral indices nB ¼ 1:60:8�0:1. These determina-

tions have been conducted in the context of the minimal
m�CDM, where m stands for magnetized. The addition of
a fluctuating dark energy background pins down system-
atically larger values of the magnetic field parameters (see
[10] for further details).
The results obtained so far assumed the simplest setup

for the inclusion of large-scale magnetic fields in the
predecoupling plasma, and it is therefore mandatory to
scrutinize if the main assumptions of the analysis are
consistently posited. For instance, in [7–10] (as well as in
nearly all other approaches) it was assumed that magnetic
fields do not contribute to the electron-photon scattering. In
[17] this assumption has been relaxed by explicitly includ-
ing the magnetic field contribution in the electron-photon
scattering matrix.
In Refs. [7–10], as well as in other perturbative

approaches to the physics of magnetized CMB anisotro-
pies, a common hypothesis is that the intensity of the
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1The wording ‘‘adiabatic paradigm’’ refers here to the situ-

ation where the unique source of inhomogeneity prior to photon
decoupling is localized in the standard adiabatic mode of curva-
ture perturbations. This is the situation contemplated by the
minimal version of the �CDM scenario.

2Following the standard shorthand terminology, the TT corre-
lations denote the temperature autocorrelations while the TE
correlations denote the cross correlation between the tempera-
ture and the E-mode polarization.

3In [7–10] the magnetic power spectrum and the magnetic
spectral index nB are defined with the conventions employed for
the scalar modes of the geometry, where the scale-invariant limit
corresponds to 1.
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magnetized background is sufficiently small to describe
magnetic fields within the standard Einstein-Boltzmann
hierarchy, where the curvature perturbations as well as
the density contrasts all remain in the perturbative regime.
In similar terms, perturbation theory is extremely well
justified for the treatment of baryon acoustic oscillations
because of the absolute smallness of the relative tempera-
ture fluctuations. As far as fully inhomogeneous magnetic
fields are concerned, the perturbative assumption is a direct
consequence of the closure bound applied to the magnetic
field intensity. The natural question, in this context, seems
to be as follows: can we go beyond the standard perturba-
tive expansion and scrutinize its properties in a broader and
firmer scheme? Can we understand which are the possible
nonlinear effects in a gravitating and magnetized plasma to
a given order in the spatial gradients? One of the standard
tools to improve (and partially resum) the perturbative
description of the relativistic fluctuations of the geometry
is the gradient expansion, where the guiding criterion is not
the absolute smallness of the given perturbation relative to
its background value but rather the number of gradients
carried by each term and defining the order of the expan-
sion. The extension of the general relativistic gradient
expansion to the case of magnetized plasmas immediately
suggests a physical connection with analog approximation
schemes adopted in the discussion of weakly coupled
plasmas in flat space-time.

The modest aim of the present analysis will then be to
combine the general relativistic gradient expansion with
the drift approximation (customarily applied in plasma
physics) and to derive a system of equations where both
expansions can be implemented in a unified manner.
We remind the reader that a known tool for computing
the properties of cold plasma involves an expansion in the
gradients of the magnetic and of the electric fields. The
details of the scheme depend upon the problem at hand,
and this richness is reflected in slightly different terminol-
ogies such as the drift approximation [18] (mainly adopted
in kinetic theory) and the guiding center approximation
[19,20] (often used in the physics of cold plasmas and fully
ionized gases4).

Similarly, the general relativistic gradient expansion has
been discussed in several related contexts since the papers
of Lifshitz, Khalatnikov, and Belinskii (see, e.g., [22–25])
but never in combination with either the drift approxima-
tion or the guiding center approximation. More recently,
various applications of the gradient expansion to inflation-
ary models have been studied by Tomita [26,27] as well as
by Deruelle and collaborators [28–30]. The neglect of the
spatial curvature and of the spatial gradients to zeroth order
implies that the obtainable solutions are, in a sense, oppo-
site to the ones customarily discussed in the Newtonian

regime, and this is the reason why they are sometimes
named anti-Newtonian. The latter solutions are also rele-
vant for the so-called separate universe picture stipulating
that any portion of the universe larger than the Hubble
radius rH but smaller than the physical wavelength on the
perturbation will look like a separate unperturbed universe.
The gradient expansion has also been applied to the prob-
lem of the evolution of non-Gaussianities (see, e.g., [31,32]
and references therein) and to the problem of dark energy
[33] with the purpose of demonstrating that the spatial
gradients cannot be responsible for present-day accelera-
tion (see, e.g., [34] and references therein). An instructive
approach to nonlinear power spectra in Einstein gravity has
been developed by Noh, Hwang, and collaborators in a
series of interesting papers [35–37]. Finally, the gradient
expansion can also be employed in the investigation of the
so-called sudden (or quiescent) singularities which arise in
the context of dark energy models with a barotropic index
smaller than that of a cosmological constant (i.e. the super-
negative equations of state) [38].
Even if some of the considerations developed in this

paper will be rather general, it is useful to bear in mind the
essentials of the predecoupling plasma which contains
different components interacting both gravitationally and
electromagnetically. To fix the notations, it is convenient to
separate the total action of the system, i.e. Stot, in three
distinct parts,

Stot ¼ Sgrav þ Sem þ Splasma; (1.1)

where Sgrav and Sem denote, respectively, the gravitational

and the electromagnetic contributions,

SgravþSem ¼
Z
d4x

ffiffiffiffiffiffiffi�g
p �

� R

2‘2P
� 1

16�
F��F

��� j�A
�

�
;

(1.2)

note that g ¼ detðg��Þ and F�� is the Maxwell field

strength; Splasma contains all the different components of

the plasma, which can be written, in the context of the
vanilla �CDM paradigm, as

Splasma ¼ Sei þ S� þ S� þ Scdm þ S�; (1.3)

Sei denotes the contribution of electrons and ions; S� and

S� are, respectively, the contributions of the photons and of
the (massless) neutrinos; and Scdm and S� account for the
cold dark matter and for the dark energy.
Before photon decoupling the conditions of validity of

the general relativistic gradient expansion and of the guid-
ing center approximation are both verified, and it is there-
fore extremely interesting to derive and study the evolution
equations describing the plasma without assuming that the
geometry is a priori conformally flat. Various questions
can be addressed in this scheme, such as, for instance, the
corrections induced by the gradients of the geometry on the
two-fluid plasma description, on the MHD reduction, and
on all the plasma processes which are relevant for a correct

4The expansion in spatial gradients is also relevant in non-
linear magnetohydrodynamics (MHD) in flat space-time [21].
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description of magnetized CMB anisotropies. Needless to
say, the present results are also applicable in the case of
other magnetized systems in curved space-time not neces-
sarily connected to CMB physics.

Some examples of the statements made in the previous
paragraph will now be given for the benefit of the inter-
ested reader. The conventional description of the relativis-
tic inhomogeneities of the geometry and of the fluid
sources is typically performed under the tenets of the
Bardeen formalism [39]. In this framework (and in the
absence of large-scale magnetic fields) the initial condi-
tions of the Einstein-Boltzmann hierarchy are set by solv-
ing the relevant evolution equations in the large-scale limit,
i.e. when the spatial gradients can be neglected (see, e.g.,
[40]). This way of setting initial conditions is typically
employed prior to decoupling when the relevant length
scales are larger than the Hubble radius. The present con-
siderations provide a self-contained formalism, where the
gradients of the electromagnetic fields and the ones of the
fluid sources are treated in a unified manner. It will actually
be shown that the usual perturbative description of the
Einstein-Boltzmann hierarchy in the presence of large-
scale magnetic fields tacitly assumes the present form of
the gradient expansion. For instance, the magnetic energy
density is quadratic in the fields’ strength but it affects the
first-order (perturbative) inhomogeneities. This procedure
can only be rigorously justified within a form of gradient
expansion that treats, on the same footing, the relativistic
fluctuations of the geometry and of the gauge fields.
Another class of problems where the present results can
be applied involves all those nonlinear phenomena arising
in cold plasma in flat space which have not been studied, so
far, in curved backgrounds. An example along this direc-
tion is the nonlinear Hall effect [41]. Another example
involves the potential generation of a primordial vorticity
associated with the fully inhomogeneous description of the
geometry which could play a role in the description of
magnetized collapse and of primordial vorticity. Along
these directions, dedicated discussions are in progress.

The present paper is organized as follows. In Sec. II the
decomposition of the inhomogeneous geometry will be
introduced, paying special attention to the themes which
are mostly relevant for the present discussion. In Sec. III
the evolution equations of weakly coupled plasmas will be
derived in the case where the metric is not assumed to be
conformally flat and, in particular, without resorting to the
standard separation between background geometry and
relativistic fluctuations. In Sec. IV we will scrutinize the
way gradients must be counted in a magnetized plasma
when the background geometry is fully inhomogeneous.
Section V discusses the anti-Newtonian solutions in the
drift approximation. In Sec. VI the quasi-isotropic MHD
solutions are presented. Section VII contains the derivation
of the nonlinear magnetized adiabatic mode whose line-
arized counterpart is one of the elements of the simplest

version of the m�CDM scenario. Finally, Sec. VIII con-
tains our concluding remarks. In Appendixes A and B the
complementary results have been collected with the pur-
pose of keeping the paper self-contained.

II. FULLY INHOMOGENEOUS GEOMETRY

The standard treatments of magnetized CMB anisotro-
pies as well as the discussion of magnetized plasmas in the
early Universe customarily assume that the geometry is
separated into a homogeneous background supplemented
by its relativistic fluctuations. To go beyond the latter
description, the fully inhomogeneous geometry shall then
be described in terms of N, Ni, and �ij denoting, respec-

tively, the lapse function, the shift vector, and the three-
dimensional metric tensor, i.e.5

g00 ¼N2�NkN
k; gij ¼��ij; g0i ¼�Ni;

g00 ¼ 1

N2
; gij ¼NiNj

N2
��ij; g0i ¼�Ni

N2
:

(2.1)

The decomposition of Eq. (2.1) is well known and it is
sometimes referred to as the ADM decomposition from
Arnowitt, Deser, and Misner who applied it to the
Hamiltonian formulation of the general relativistic dynam-
ics (see, e.g., [42,43]). In the ADM variables the extrinsic
curvature Kij and the spatial components of the Ricci

tensor rij become

Kij ¼ 1

2N
½�@��ij þ ð3ÞriNj þ ð3ÞrjNi�; (2.2)

rij ¼ @m
ð3Þ�m

ij � @j
ð3Þ�m

im þ ð3Þ�m
ij
ð3Þ�n

mn � ð3Þ�m
jn

ð3Þ�n
im;

(2.3)

where ð3Þri is the covariant derivative defined with respect
to the metric �ij, @� denotes a derivation with respect to the

time coordinate �, and ð3Þ�m
ij are the Christoffel symbols

computed from �ij. Note that �m
ij ¼ ð3Þ�m

ij but only in the

case Ni ¼ 0 (see Appendix A for details). It is now useful
to introduce the basic logic of the gradient expansion by
looking at the whole system of Einstein equations with
generic electromagnetic and fluid sources.6 In their con-
tracted form the Einstein equations read

R�
� ¼ ‘2P

��
T�
� � T

2
��
�

�
þT �

�

�
; T ¼ g��T�� ¼ T

�
�;

(2.4)

where R�
� is the four-dimensional Ricci tensor while T�

�

and T �
� denote, respectively, the fluid energy-momentum

5The Greek indices will run over the four space-time dimen-
sions, while the Latin indices will denote the spatial indices.

6As mentioned in Sec. I the species present in the plasma prior
to photon decoupling can be interacting directly with the elec-
tromagnetic fields, and this will demand a more detailed de-
scription of the sources, as will be discussed in Sec. III.
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tensor [accounting for the global contribution of all the
species of Eq. (1.3)] and the electromagnetic energy-
momentum tensor:

T�� ¼ ðpþ 	Þu�u� � pg��;

T �
� ¼ 1

4�

�
�F��F

�� þ ��
�

4
F��F

��

�
;

(2.5)

where g��u�u� ¼ 1 [see also Eq. (A12) of Appendix A for

an explicit expression of the latter condition in the ADM
metric (2.1)]. If not otherwise stated, the covariant deriva-
tives with spatial indices listed below will always refer to
the three-dimensional metric. In other words, to simplify

the notation, ð3Þri � ri. Details on the inhomogeneous
geometry of Eq. (2.1) can be found in Appendix A and
will be quoted whenever needed. Bearing in mind these
conventions, the various components of Eq. (2.4) are
given by

@�K�NTrK2þr2N¼N‘2P

�
3pþ	

2
þðpþ	Þu2þT 0

0

�
;

(2.6)

riK �rkK
k
i ¼ N‘2P

�
ui
N
ðpþ 	Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
þT 0

i

�
; (2.7)

@�K
j
i � NKKj

i � Nrji þrirjN

¼ ‘2PN

�
p� 	

2
�j
i � ðpþ 	Þuiuj þT j

i

�
; (2.8)

where, for the sake of simplicity, the shorthand notation
u2 ¼ �ijuiuj has been adopted. Having chosen Ni ¼ 0 in

the general equations of Appendix A, the geometry appear-
ing in Eqs. (2.6), (2.7), and (2.8) is described in terms of
seven independent functions (i.e. �ij and N). It is useful to

keep the lapse function arbitrary for practical purposes
such as, for instance, the matching with the perturbative
treatment of the magnetized fluctuations in the confor-
mally Newtonian gauge (see, e.g., Appendix B). The mo-
mentum constraint [i.e. Eq. (2.7)] can be used, in the
framework of the general relativistic gradient expansion,
to obtain the velocity field in terms of the extrinsic curva-
ture evaluated to the preceding order in the expansion. By
combining the trace of Eq. (2.8) with Eq. (2.6), the standard
form of the Hamiltonian constraint can be readily obtained,

K2 � TrK2 þ r ¼ 2‘2P½	þT 0
0 þ ðpþ 	Þu2�: (2.9)

The traceless part of Eq. (2.8) can instead be written as

@� �K
j
i � NK �Kj

i � N �rji þrirjN �r2N

3
�j
i

¼ ‘2PN

�
�ðpþ 	Þ

�
uiu

j � u2

3
�j
i

�
þ �T j

i

�
; (2.10)

where the barred quantities define the traceless part of the
corresponding variable, i.e.

�K j
i ¼Kj

i �
K

3
�j
i ; �rji ¼ rji �

r

3
�j
i ;

�T j
i ¼T j

i �
T
3
�j
i :

(2.11)

Recalling Eq. (A3) and using Eq. (2.11) it follows that

TrK2 ¼ �Kj
i
�Kj
i þ K2=3. Bearing in mind the explicit form

of Eqs. (2.6), (2.7), and (2.8), to zeroth order in the spatial
gradients, the peculiar velocities as well as the spatial
curvature are neglected. From the momentum constraint,
the zeroth-order results determine the peculiar velocity
which can be used as an input for the following order in
the expansion. By iteration the first-order correction to
the geometry can be determined. While the zeroth order
of the linearized approximation is, by definition, homoge-
neous, the zeroth order of the gradient expansion can be
fully inhomogeneous but does not contain any spatial
gradient. Conversely, the first order depends upon the
spatial gradients and upon the spatial curvature and so on
and so forth.
If the gravitating system is a magnetized plasma (such as

the one present prior to photon decoupling) the inhomoge-
neities of the electromagnetic fields will necessarily mod-
ify the trajectories of the charged species. In this case the
nature of the physical system combines inextricably elec-
tromagnetic and gravitational gradients. The tenets of the
(general relativistic) gradient expansion must be consis-
tently combined with the expansion in spatial derivatives
usually adopted in the analysis of weakly coupled plasmas
in flat space-time [19,20], both in the two- and one-fluid
approximations. There are different ways of introducing
the guiding center approximation, and the simplest one is
to think of a gradient expansion of the large-scale magnetic

field; i.e. denoting with ~B the (flat-space) magnetic field,
we can write

Bið ~x; �Þ ’ Bið ~x0; �Þ þ ðxj � xj0Þ@jBi þ . . . ; (2.12)

where the ellipsis stands for the higher orders in the
gradients leading to both curvature and drift corrections.
A similar expansion can also be written in the case of the
electric field with the caveat that, in a plasma, electric
fields are anyway screened for typical length scales larger
than the Debye radius:

Eið ~x; �Þ ’ Eið ~x0; �Þ þ ðxj � xj0Þ@jEi þ . . . (2.13)

In a flat-space plasma to zeroth order in the expansion
of Eqs. (2.12) and (2.13), only the time derivatives of the
magnetic fields are kept. To first order the spatial deriva-
tives of the magnetic field can then be used as an input to
deduce the electric fields. The first derivatives of the elec-
tric fields (obtained to first order) can be used to deduce the
second spatial derivatives of the magnetic fields and so on.
If we combine the general relativistic gradient expansion
with the drift approximation, the essential step is the
generalization of the two-fluid description and of the
usual MHD reduction to the situation where the fully
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inhomogeneous geometry is parametrized as in Eq. (2.1).
This analysis will lead automatically to the correct dynami-
cal variables whose explicit form can be compared, for
instance, with the corresponding variables deduced in the
context of conformally flat geometries which are usually
assumed in more conventional perturbative expansions.

III. CHARGED FLUIDS
AND GRADIENT EXPANSION

The electromagnetic interaction affects the evolution of
the electron-photon-ion system, while it affects only indi-
rectly the evolution of the weakly interacting species.
Since large-scale magnetic fields gravitate, the relativistic
fluctuations of the geometry are modified by their presence
via Eqs. (2.6), (2.7), and (2.8). The purpose of the present
section is to deduce the usual MHD reduction to lowest
order in the gradient expansion, i.e. by allowing an under-
lying geometry with potentially large inhomogeneities
over sufficiently large length scales. The obtained equa-
tions generalize previous perturbative results (see, in par-
ticular, [9]) and will be cross-checked in the appropriate
limits. The Maxwell equations in a four-dimensional
curved space-time can be written as

r�F
�� ¼ 4�j�; r�

~F�� ¼ 0; (3.1)

wherer� is the covariant derivative defined with respect to

the four-dimensional metric g��, while ~F�� denotes the

dual field strength. In terms of the ADM decomposition of
Eq. (2.1), the field strengths and their duals are

F0i ¼ � Ei

N2
; Fij ¼ ��mk


ijk B
m

N
; (3.2)

~F 0i ¼ �Bi

N2
; ~Fij ¼ �mk


ijk E
m

N
: (3.3)

The totally antisymmetric Levi-Civita tensor 
ijk is de-
fined as


ijk ¼ �ijkffiffiffiffi
�

p ; 
ijk ¼ ffiffiffiffi
�

p
�ijk; (3.4)

where �ijk is the Levi-Civita symbol in flat space. The

Maxwell field strengths with doubly covariant indices are
given in Appendix A [see Eq. (A27)] and simplify when
the shift vector vanishes. Defining with e the electron
charge, the total current appearing in Eq. (3.1) is the sum
of the currents of the electrons and of the ions,7

j� ¼ j�ðeÞ þ j�ðiÞ; j�ðeÞ ¼ �e~neu
�
e ; j�ðiÞ ¼ e~niu

�
i ;

(3.5)

where ~ne and ~ni denote, respectively, the concentrations of
electrons and ions. The generic four-velocity u� satisfies
g��u�u� ¼ 1, which means that

u0 ¼ coshy

N
; ui ¼ vi coshy

N
; coshy ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2

N2

q ;

(3.6)

where v2 ¼ �ijv
ivj. Note that, from now on, we shall

deal, without loss of generality, with the case Ni ¼ 0.
For immediate convenience the notations of Eq. (3.6)
can also be recast in a slightly different form by defining
v̂i ¼ vi=v:

ui ¼ v̂i sinhy;

uiu
j ¼ v̂iv̂

jsinh2y;

uiu0 ¼ v̂iN coshy sinhy;

(3.7)

where v̂iv̂j�ij ¼ 1. Bearing in mind Eqs. (3.5), (3.6), and

(3.7), Eq. (3.1) demands the validity of the following
system of equations:

@i

� ffiffiffiffi
�

p
N

Ei

�
¼ 4�e½ni � ne�; @i

� ffiffiffiffi
�

p
N

Bi

�
¼ 0; (3.8)

@�

� ffiffiffiffi
�

p
N

Bi

�
þ @j½
jki ffiffiffiffi

�
p

�k‘E‘� ¼ 0; (3.9)

@j½ ffiffiffiffi
�

p

jkiBm�km� ¼ 4�e½nivi

ðiÞ � nev
i
ðeÞ� þ @�

� ffiffiffiffi
�

p
N

Ei

�
;

(3.10)

where the electron and ion concentrations have been re-
scaled as

nðiÞ ¼ ~ni
ffiffiffiffi
�

p
coshyi; nðeÞ ¼ ~ne

ffiffiffiffi
�

p
coshye: (3.11)

From the covariant conservation of the electron and ion
currents (i.e. r�j

�
ðeÞ ¼ 0 and r�j

�
ðiÞ ¼ 0), the evolution

equations for the rescaled electron and ion concentrations,

@�ne þ @k½nevk
e� ¼ 0; @�ni þ @k½nivk

i � ¼ 0; (3.12)

imply that, to lowest order in the gradient expansion, ne
and ni are constant. Equations (3.8), (3.9), and (3.10)
assume a simpler form by an appropriate rescaling of the
electric and magnetic fields:

~@ � ~E ¼ 4�e½ni � ne�; ~@ � ~B ¼ 0; (3.13)

@� ~Bþ ~@� ~E ¼ 0; (3.14)

~@� ~B ¼ 4�e½ni ~vi � ne ~ve� þ @� ~E; (3.15)

where the rescaled electric and magnetic fields are given by

Ei ¼
ffiffiffiffi
�

p
N

Ei; Bi ¼
ffiffiffiffi
�

p
N

Bi: (3.16)

7In Eq. (3.5) as well as in other equations, the (lowercase)
roman subscripts label the species (for instance, electrons or
ions) while the (lowercase) italic subscripts (or superscripts)
must be understood as (spatial) tensor indices.
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The shorthand notation employed in Eqs. (3.13), (3.14),
and (3.15) implies, for a generic vector Ai,

~@ � ~A � @iA
i; ð ~@� ~AÞi ¼ @j½N�ik�jn
nmkA

m�:
(3.17)

The vectors appearing in Eqs. (3.13), (3.14), and (3.15)
become three-dimensional Cartesian vectors in the limit
when the background geometry is homogeneous, isotropic,
and conformally flat, i.e.

N ! að�Þ; �ij ¼ a2ð�Þ�ij: (3.18)

Using Eq. (3.18) in Eq. (3.11) we have that, for ye � 1 and
yi � 1, the electron and ion concentrations8 become
ne ¼ a3~ne and ni ¼ a3~ni. Using Eq. (3.18) in Eqs. (3.13),
(3.14), and (3.15) the standard differential operators are

recovered, i.e. ~@ ! ~r, ~@� ~A ! ~r� ~A. In general terms,
the system is not conformally invariant, as can be argued
by looking at the form of Eq. (3.17) and by appreciating
that indices are raised and lowered in terms of �ij. Various

discussions obtained in the limit defined by Eq. (3.18)
[9,10] (see also [7,8]) can be generalized to the fully
inhomogeneous situation. Without dwelling on all possible
generalizations we shall focus our attention only on a
consistent implementation of the two-fluid and one-fluid
descriptions.

Neglecting, for a moment, the terms responsible for the
momentum exchange between electrons and ions, the
covariant conservation of the energy-momentum tensor
of the charged species implies

r�T
��
ðeÞ ¼ jðeÞ� F��; r�T

��
ðiÞ ¼ jðiÞ� F��; (3.19)

where

T
��
ðeÞ ¼ 	eu

�
e u�e ; T

��
ðiÞ ¼ 	iu

�
i u

�
i : (3.20)

Using Eq. (A20) and choosing the free index of Eq. (3.19)
to be timelike, the explicit evolution of the energy density
of the electrons can be obtained, and it is

@�½	ecosh
2ye� þ N2@k

�
	e

N
coshye sinhyev̂

k
e

�
� NK	ecosh

2ye þ ½3rkN þ N�j
kj�	e coshye sinhyev̂

k
e

� NKkj½	ev̂
k
ev̂

j
esinh2ye þ�kj

e � ¼ �jðeÞk Ek; (3.21)

where the contribution of the anisotropic stress of the

electrons �ij
e has also been included for completeness.

The same expression also holds in the case of the ions by
flipping the sign of the electric charge and by replacing
e ! i in the various subscripts (i.e. 	e ! 	i; ye ! yi; . . .
and so on and so forth). By choosing the free index of
Eq. (3.19) to be spacelike, the resulting equation is

@�½	e coshye sinhyev̂
k
e�þ@m½	esinh

2yev̂
m
e v̂

k
eþ�mk

e �
�2NKk

m	e sinhye coshyev̂
m
e þrkN	ecosh

2ye

�NK	e sinhye coshyev̂
k
eþ½rmNþN�n

nm�
�½	ev̂

m
e v̂

k
esinh

2yeþ�km
e �þN�k

mn½	v̂mv̂ns2ðyÞþ�mn�

¼ jðeÞ0

Ek

N
��mqj

ðeÞ
n 
knmBqþCeiþCe�; (3.22)

where Cei and Ce� denote the collision terms of the elec-

trons with ions and photons. Similarly, the evolution equa-
tion for the ion velocity field can be obtained by replacing
e ! i in the relevant subscripts, in full analogy with what
has already been suggested, after Eq. (3.21), for the evo-
lution equations of the energy density. Equations (3.21) and
(3.22) can be expanded in gradients, and, to lowest order,
the evolution of the electron and ion energy densities can
be derived from Eq. (3.21):

@�	e � NK	e ¼ �ene
~ve � ~E

�
;

@�	i � NK	i ¼ eni
~vi � ~E

�
;

(3.23)

where, generically, the following notation will be em-
ployed throughout the paper:

~F � ~G ¼ �mnF
mGn; ð ~F� ~GÞk ¼ �in�m‘

N
FnGm
i‘k:

(3.24)

The reduction from the two-fluid to the one-fluid descrip-
tion follows the standard steps of the flat-space-time case
(see, e.g., [44]) but with the difference that the terms
stemming from the fully inhomogeneous nature of the
underlying geometry will be consistently taken into ac-
count. The idea of the one-fluid reduction is to pass from a
description holding for the two (or more) separate species
to a one-fluid system where the dynamical variables are
global, like the total current, the baryon energy density, the
center-of-mass velocity of the electron-ion system and so
on and so forth. The sum of the ion and of the electron
energy densities is usually referred to as the baryon density,
and its evolution equation is obtained by summing, term by
term, the two equations appearing in Eq. (3.23):

@�	b � NK	b ¼
~J � ~E

�
; (3.25)

where 	b and ~J are, respectively, the baryon density and
the total current:

	b ¼ 	e þ 	i; ~J ¼ eðni ~vi � ne ~veÞ: (3.26)

In Eq. (3.25), the contribution of the electric field has been
kept since it multiplies the total current which will turn out
to be related with spatial gradients of the magnetic fields as
well as with the spatial gradients of the geometry, possibly
multiplied by terms containing the magnetic field itself.
From Eq. (3.22) the evolution equation for the electron
velocity can be written as

8Electrons and ions are nonrelativistic across matter-radiation
equality and around decoupling. Still, because of the masses of
the electrons and ions, the conformal invariance of the whole
system is broken (see, e.g., [7,8]).
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@�v
k
e þ N@kN � Gk

jv
j
e

¼ � e~neN
2

	e
ffiffiffiffi
�

p ½Ek þ ð ~ve � ~BÞk� þ N�eiðvk
i � vk

eÞ

þ 4

3

	�

	e

N�e�ðvk
� � vk

eÞ; (3.27)

where

G k
j ¼

�
@�N

N
�k
j þ 2NKk

j

�
: (3.28)

In Eq. (3.27) the collision terms have been included and
the shorthand notation of Eq. (3.24) has been used for the
vector product. Similarly, the evolution equation for the ion
velocity is given by

@�v
k
i þ N@kN � Gk

jv
j
i

¼ e~niN
2

	i
ffiffiffiffi
�

p ½Ek þ ð ~vi � ~BÞk� þ N�ieðvk
e � vk

i Þ

þ 4

3

	�

	i

N�i�ðvk
� � vk

i Þ: (3.29)

By summing up Eq. (3.27) (multiplied by the electron
mass) and Eq. (3.29) (multiplied by the ion mass) the
evolution equation for the center-of-mass velocity of the
electron-ion system,

vb ¼ mev
k
e þmiv

k
i

me þmi

; (3.30)

can be obtained, and the evolution equations for the
baryon-lepton-photon system are

@�	� ¼ 4

3
KN	� � 4

3
N@k

�
	�

N
vk
�

�
; (3.31)

@�v
k
b ¼ Gk

jv
j
b � N@kN þ ð ~J � ~BÞkN2

�	bð1þme=miÞ
þ 4

3

	�

	b

N��eðvk
� � vk

bÞ; (3.32)

@�v
k
� ¼

�
Gk

j �
NK

3
�k
j

�
vj
� � N2

4	�

@mð	��
mkÞ

� N@kN þ N��eðvk
b � vk

�Þ; (3.33)

where vk
� and 	� denote, respectively, the photon velocity

and the photon energy density. The possibility of describ-
ing the baryon-lepton-photon fluid as a unique physical
entity is a direct consequence of the fact that the electron-
ion collision rate is much larger than the electron-photon
(or ion-photon) rate. While the electron-photon rate in-
creases with the temperature, the Coulomb rate decreases.
The meeting point of the two rates occurs close to the MeV.
Equations (3.31), (3.32), and (3.33) can then be used below
the meeting point of the two rates.
Equation (3.29) (multiplied by eni) can be subtracted

from Eq. (3.27) (multiplied by ene), leading to the gener-
alized Ohm equation, i.e. the evolution equation of the total
current:

@Jk

@�
� Gk

jJ
j ¼ �e½vk

i @jðnivj
i Þ � vk

e@jðneveÞ� � eðni � neÞN@kN þ!2
pe þ!2
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4�
~E� eni
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kj�

	i
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	e
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1þme
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��ðni � neÞðme þmiÞ
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eðnime þ nemiÞ J

k

�

þ e2neniðme þmiÞN2ffiffiffiffi
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�
ð ~vb � ~BÞk þ eN2

ðnime þ nemiÞ ffiffiffiffi
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� ne
mi

me

�
ð ~J � ~BÞk
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e	�

��
�i�

mi

� �e�

me

�
vk
� þ

�
�e�niðme þmiÞ
meðmine þmeniÞ �

�i�neðme þmiÞ
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�
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�
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�e�

eðmine þ nimeÞ
�
mi

me

�
þ �i�

eðmine þ nimeÞ
�
me

mi

��
Jk
�
; (3.34)

where Eq. (3.12) has been used and where the plasma frequencies for electrons and ions are defined, respectively, as

!2
pe ¼ 4�e2neN

2

me
ffiffiffiffi
�

p ; !2
pi ¼

4�e2niN
2

mi
ffiffiffiffi
�

p : (3.35)

Since the plasma is globally neutral, ne ¼ ni ¼ n0 (with
9 n0 ¼ 
bn�). Thus Eq. (3.35) greatly simplifies also because of

the smallness of the ratio between the electron and ion mass:

9Recall that 
b denotes the ratio between the baryonic concentration and the photon concentration, and it is given by 
b ¼
6:219� 10�10ðh20�b0=0:027 73Þð2:725 K=T�0Þ3, where h0 is the indetermination on the present value of the Hubble rate and �b0

parametrizes the present value of the critical fraction of baryons; T�0 is the CMB temperature.
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@Jk

@�
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�
N�ie�

k
j þ

4	��e�

3n0me

�k
j �Gk

j

�
Jj

¼ �e½vk
i @jðnivj

i Þ � vk
e@jðneveÞ� þ

!2
pe

4�

�
Ek þ ð ~vb � ~BÞk

þ N

en0
@jðpe�

kjÞ � ð ~J � ~BÞk
en0

�
: (3.36)

In Eq. (3.36) the terms containing the spatial gradients have
been kept to illustrate the analogies and the differences
with the customary MHD discussions in flat space-time.
The two terms appearing in the third line of Eq. (3.36) are,
respectively, the thermoelectric term (containing the gra-
dient of the pressure) and the Hall term (containing the
vector product of the current and of the magnetic field).
The thermoelectric term contains pressure gradients, and it
is therefore of higher order in the gradient expansion. The
terms containing the velocity field multiplied by its own
gradient are even smaller than the thermoelectric term. The
Hall term is of the same order as the thermoelectric term.
Equation (3.36) can also be schematically written as

@�J
k þ ðN��k

i �Gk
i ÞJi ¼ Sk; (3.37)

where � ¼ �ie þ ½4	�=ð3n0meÞ��e�Þ denotes the sum
of the electron-ion and electron-photon rates. Equations
(3.32) and (3.33) can be combined by noticing that, for
sufficiently early times prior to decoupling, the baryon and
photon velocities coincide. The resulting equation general-
izes the standard evolution equation for the baryon-photon
velocity which plays a role in the semianalytic treatment of
the magnetized CMB anisotropies at small angular scales
[9]. Another possible generalization concerns the propaga-
tion of electromagnetic waves in the plasma which is
relevant for the Faraday rotation of the polarization plane
of the CMB (see, e.g., [45] and also [46]). In conclusion, all
the evolution equations customarily employed for the de-
scription of weakly coupled plasmas in the linearized
approximation can be generalized to the case of a fully
inhomogeneous geometry expressed in ADM variables.

The evolution equations derived in this section repro-
duce, in the conformally flat limit, the standard perturba-
tive results of Ref. [9]. As an example, consider that
Eqs. (3.31), (3.32), and (3.33) describe the evolution of
the photon-baryon system to lowest order in the gradient
expansion. All the quantities appearing in the latter equa-
tions depend both on ~x and � and generalize the perturba-
tive approach to the study of the relativistic fluctuations
of the geometry in a cold plasma. To reproduce the pertur-
bative results it suffices to identify

Nð ~x; �Þ ¼ að�Þ½1þ�ð ~x; �Þ�;
�ijð ~x; �Þ ¼ a2ð�Þ½1� 2c ð ~x; �Þ��ij;

	�ð ~x; �Þ ¼ �	�ð�Þ½1þ ��ð ~x; �Þ�:
(3.38)

Provided �, c , and �� are perturbatively well defined, the

choice of Eq. (3.38) corresponds to the case of the con-
formally Newtonian gauge discussed, for related reasons,
in Appendix B. Using Eq. (3.38), Eqs. (3.31), (3.32), and
(3.33) then become

@��� ¼ 4@�c � 4
3
~r � ~v�; (3.39)

@� ~v� ¼ �1
4
~r�� � ~r�þ a��eð ~vb � ~v�Þ; (3.40)

@� ~vb ¼ �H ~vb þ
~J � ~B

a4	b

� ~r�þ 4

3

	�

	b

a��eð ~v� � ~vbÞ;
(3.41)

which coincide with the system discussed in [9]. For
instance, Eqs. (3.39), (3.40), and (3.41) have been used to
derive the appropriate initial conditions for magnetized
CMB anisotropies in the tight-coupling approximation. In
connection with Eq. (3.31) we should mention a general
feature of the interplay between the gradient expansion and
the more conventional perturbative expansion leading to
Eqs. (3.39), (3.40), and (3.41): the term containing the
velocity field in Eq. (3.31) is of higher order in the gradient
expansion, but it is necessary to recover the correct line-
arized result. This occurrence simply signals that the gra-
dient expansion and the standard perturbative expansion do
not commute: the linearization of the equations written at
the lowest order in the gradient expansion leads to a set of
equations which is different from the one obtained by
linearizing the exact equations. A useful compromise,
as shown in Eq. (3.31), is to keep, in the lowest order of
the gradient expansion, all those terms leading, after the
linearization, to the standard perturbative equations in a
given gauge.

IV. COUNTING GRADIENTS IN WEAKLY
COUPLED PLASMAS

Let us consider, for the sake of concreteness, typical
length scales of the order of (or larger than) the Hubble
radius10 (and hence larger than the Debye length) and
typical time derivatives much smaller than the plasma
frequency [see, e.g., Eq. (3.35)]. In weakly coupled plas-
mas the plasma parameter11 gplasma is, by definition, very

small:

10The definition of the Hubble radius rH refers, strictly speak-
ing, to the homogeneous and isotropic case and can be slightly
ambiguous in the fully inhomogeneous situation, which is the
one treated in the present paper. For the moment, rH must be
considered as the inverse of the trace of the extrinsic curvature
(possibly evaluated in a specific gauge).
11The plasma parameter quantifies, by definition, the inverse of
the number of particles present in the Debye sphere, i.e. the
sphere whose radius is given by the Debye length.
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gplasma ¼ 1

VDn0xe
¼ 24e3

ffiffiffiffiffiffiffiffiffi

ð3Þ
�

s ffiffiffiffiffiffiffiffiffiffiffiffi
xe
b0

p

¼ 2:308� 10�7 ffiffiffiffiffi
xe

p �
h20�b0

0:022 73

�
1=2

;

VD ¼ 4

3
��3

D; �D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T

8�e2n0xe

s
;

(4.1)

where the reference temperature T has been taken to
coincide with the photon temperature (recall that the elec-
tron and proton temperatures coincide up to a small quan-
tity, which is the ratio of r�1

H to the electron-photon rate
[7,8]). Given the smallness of gplasma, the electron-ion

mean free path is much larger than the Debye scale, while
the corresponding collision frequency is much smaller than
the plasma frequency, i.e.

�D

�ei

¼ gplasma

48�
ln�C;

�ei

!pe

¼ ln�C

24
ffiffiffi
2

p
�
gplasma; (4.2)

where �C ¼ ð18 ffiffiffi
2

p
=gplasmaÞ is the argument of the

Coulomb logarithm. Since rH greatly exceeds �ei, the
space-time gradients of the system under consideration
will be ordered as follows:

r<O
�
1

rH

�
� O

�
1

�ei

�
� O

�
1

�D

�
; @� � Oð!peÞ;

(4.3)

where r and @� denote, respectively, the magnitude of a
typical spatial gradient and the magnitude of a typical
time gradient. Let us then consider Eq. (4.3) in conjunction
with Eq. (3.37) and with Eq. (3.15), whose explicit form,
in terms of the total current, can also be written as

ð ~@� ~BÞk ¼ 4�Jk þ @�E
k: (4.4)

Because of the hierarchies established in Eq. (4.3) the time
gradient of the total current must be negligible in compari-
son with the term containing the total rate. Similarly, the
total current must be much larger than the displacement
current, i.e.

@�J
k ’ OðGk

i J
iÞ � N�Jk; 4� ~Jk � @�E

k: (4.5)

Equations (3.37) and (4.3), together with Eq. (4.5), also
imply the following pair of inequalities:

@�J
k � !2

pe@�E
k; @2�J

k � !2
peJ

k: (4.6)

But then Eq. (4.6) means that the Ohm equation of
Eqs. (3.36) and (3.37) reduces to the following Ohm law:

Jk ¼ �½Ek þ ð ~vb � ~BÞk�; � ¼ !2
pe

4�N�ie

; (4.7)

where the conductivity � is not bound to be homogeneous
as in the case of previous treatments [9]. Equation (4.7)
generalizes to the fully inhomogeneous situation the

standard result of the conformally flat limit already men-
tioned in Eq. (3.18) (see, e.g., [8], third reference). Note
that, in the latter limit, the spatial derivatives of the extrin-
sic curvature and of the determinant of the metric are all
vanishing; moreover, the total current, the electric and
magnetic fields, and the conductivity are all rescaled
through different powers of the scale factor with respect
to their flat-space values. Consider now Eq. (4.7) written in
its explicit form. Because of Eqs. (4.4), (4.5), and (4.6), the
Ohmic electric field can be expressed as

Ei ¼ 1

4��
@j½N�ik�jn
mnkB

m� � 1

N
�fq�gp


qpivf
bB

g;

(4.8)

where the second equation reported in Eq. (3.13) has been
used to simplify the obtained result. Equation (4.8) still
implies, for weakly coupled plasmas, that in the drift
approximation the electric fields depend upon the gradients
of the magnetic field in the baryon rest frame. This means
that the electric fields are higher order in the gradients.
From Eq. (4.8), the generalized magnetic diffusivity equa-
tion can be derived, and the result is

@�B
h þ 1

4�
@r

�
N

�
�hs�ru
sui@j½N�ik�jn
nmkB

m�
�

¼ @r½�hs�ru
sui�fq�gpv
f
bB

g
qpi�; (4.9)

where, for immediate convenience, we preferred to avoid
the shorthand notations employed before. The analog
equation for the electric field is instead

@�E
i ¼ �@�

�

qpi

N
�fq�gpv

f
BB

g

�

þ 1

4��
@j½@�ðN�ik�jn
mnkB

mÞ�: (4.10)

In the conformally flat limit mentioned in Eq. (3.18),
Eqs. (4.9) and (4.10) coincide, respectively, with their
flat-space counterparts, namely,

@ ~B

@�
¼ ~r� ð ~vb � ~BÞ þ 1

4��
r2 ~B; (4.11)

@ ~E

@�
¼ � @

@�
ð ~vb � ~BÞ þ 1

4��
r2 ~E; (4.12)

where, according to Eq. (3.16), ~B ¼ a2 ~B and ~E ¼ a2 ~E.
Let us now rewrite Eqs. (2.6), (2.7), and (2.8) in a more

explicit form, which will turn out to be useful in the
forthcoming sections:

@�K � NTrK2 þr2N

¼ N‘2P

�
3pþ 	

2
þ ðpþ 	Þs2ðyÞ þ 	B þ 	E

�
; (4.13)
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riK �rkK
k
i ¼ ‘2P

�
ðpþ 	Þv̂isðyÞcðyÞ

� 1

4��

mnp�im�jn�pkB

kEj

�
; (4.14)

@�K
j
i � NKKj

i � Nrji þrirjN

¼ N‘2P

�
p� 	

2
�j
i � ðpþ 	Þs2ðyÞv̂iv̂

j

� ðpB þ pEÞ�j
i þ ~�j

i þ�j
i ðEÞ þ�j

i ðBÞ
�
; (4.15)

where the notations of Appendix A have been used [see, in
particular, Eqs. (A25), (A24)–(A26), and (A32)–(A34)].
To zeroth order in the gradient expansion, the terms
containing sðyÞ are subleading since y ¼ v=N and
v2 ¼ �ijv

ivj. By combining Eq. (4.13) and the trace of

Eq. (4.15) the terms @�K can be eliminated, and the result-
ing expression is the Hamiltonian constraint

K2 � TrK2 þ r ¼ ‘2P½2ðpþ 	Þs2ðyÞ þ 2	þ ð	E þ 3pEÞ
þ ð	B þ 3pBÞ� (4.16)

coinciding, as expected, with the expression already ob-
tained in Eq. (2.9) in the light of the values of pB and pE.
We recall that the velocity field, the energy density 	, and
the pressure p are global quantities given by the sum over
the individual species:

p ¼ X
a

pa; 	 ¼ X
a

	a;

ðpþ 	Þvk ¼ X
a

ðpa þ 	aÞvk
a ;

(4.17)

and obeying conservation equations which can be ob-
tained, species by species, using the results of
Eqs. (A20) and (A21) reported in Appendix A:

@�	þ N@k

�ðpþ 	Þ
N

vk

�
� NKðpþ 	Þ ¼ 0; (4.18)

@�½ðpþ 	Þvi� þ N2@kðp�ikÞ þ N2@k�
ki þ ðpþ 	ÞN@iN

� 2NKi
jðpþ 	Þvj � NKðpþ 	Þvi ¼ 0: (4.19)

As already mentioned after Eq. (4.8), the baryon rest
frame is particularly useful for the treatment of the finite
conductivity effects. In a perfectly conducting medium
[i.e. �ð ~x; �Þ ! 1] the Ohmic electric field is perfectly
screened. Owing to this occurrence, it is customary to
define the plasma frame where the electric fields are set
to zero. In the usual perturbative expansion defined, for
instance, in Appendix B, the plasma frame coincides with
the baryon rest frame. In the fully nonlinear case, however,
the two concepts do not necessarily coincide. It is finally
appropriate to mention that there are also nonlinearities
associated with the Ohm law itself [see Eq. (3.36)], and an
example along this direction is the so-called nonlinear Hall

effect. This effect comes by retaining the terms ~J � ~B in
Eq. (3.36). The Hall term leads, in the magnetic diffusivity

equation (3.36), to a term of the type ~r�½ ~B�ð ~r� ~BÞ�=
ðen0Þ. The nonlinear Hall term can partially balance or
even become greater than the dynamo term, under certain
conditions [41]. The present framework paves the way for
the consistent treatment of the gravitating counterpart of
the nonlinear effects typical of cold plasmas (see, for
instance, [21]).

V. ANTI-NEWTONIAN DRIFT APPROXIMATION

Consider, for simplicity, the case where N ¼ Nð�Þ; then
�ijð ~x; �Þ corresponds to six unknown functions, and all the

terms containing at least one spatial gradient of N vanish
exactly. The spatial curvature is neglected since it contains
two spatial gradients of �ij. Bearing in mind the definition

of Eq. (2.11), Eqs. (4.13) and (4.15) can be written as

@�K ¼ NTrK2 þ N‘2P
2

½ð3 �pþ �	Þ � 2	� þ 2	B�; (5.1)

@�K ¼ NK2 þ 3‘2PN

2
½ �p� �	� 2	� � 2pB�; (5.2)

@� �K
j
i ¼ NK �Kj

i þ ‘2PN�j
i ; (5.3)

@� �	 ¼ NKð �pþ �	Þ; @�B
i ¼ 0: (5.4)

Concerning Eqs. (5.1), (5.2), (5.3), and (5.4), a few com-
ments are in order. The Ohmic electric fields have been
neglected since they are of higher order and, for the sake of

simplicity, �j
i denotes the total anisotropic stress. Note

that, in Eqs. (5.1), (5.2), (5.3), and (5.4), the total pressure
and the total energy density have been separated, respec-
tively, as p ¼ �p� 	� and 	 ¼ �	þ 	�, where 	� pa-
rametrizes the dark energy density contribution; �p and �	
are the pressure and energy density of an ordinary fluid
characterized by a (possibly inhomogeneous) barotropic
index w ¼ �p= �	. The approximations leading to Eqs. (5.1),
(5.2), (5.3), and (5.4) define the anti-Newtonian limit.
Eqs. (5.1) and (5.2) can also be written in more explicit
terms by introducing the barotropic index and by recalling

that, as in Eq. (2.11), �Kj
i ¼ Kj

i � ðK=3Þ�j
i :

@�K ¼ NK2 þ 3N‘2P
2

½ðw� 1Þ �	� 2	� � 2pB�; (5.5)

@�K¼N

3
K2 þNTr �K2 þN‘2P

2
½ð3wþ 1Þ �	� 2	� þ 2	B�:

(5.6)

By eliminating �	 between Eqs. (5.5) and (5.6) and by
defining dt ¼ Nð�Þd�, the resulting equation is given by
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@tK � wþ 1

2
K2 þ 3ðw� 1Þ

4
Tr �K2

¼ � 3‘2P
2

�
ðwþ 1Þ	� þ ð3w� 1Þ

3
	B

�
: (5.7)

The explicit solution of Eq. (5.3), �Kj
i ð ~x; tÞ, implies that

�Kj
i ð ~x; tÞ ¼

�j
i ð ~xÞffiffiffiffiffiffiffiffiffiffiffiffi
�ð ~x; tp þ ‘2P

�j
i ð ~x; tÞffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð ~x; tÞp ;

�j
i ð ~x; tÞ ¼

Z t ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð ~x; t0Þ

q
�j

i ð ~x; t0Þdt0:
(5.8)

By now introducing the rescaled variable Mð ~x; tÞ ¼
½�ð ~x; tÞ�ðwþ1Þ=4, and by recalling that 	Bð ~x; tÞ ¼
	Bð ~xÞ��2=3, Eq. (5.7) becomes

@2tM ¼ 3

8
ðw2 � 1ÞMðw�3Þ=ðwþ1Þ½Tr�2 þ ‘4PTr�

2

þ 2‘2PTr��� þ
3ðwþ 1Þ2‘2P

4
	�ð ~xÞ

�
�
1þ 3w� 1

3ðwþ 1Þ�Bð ~xÞM�8=½3ðwþ1Þ�
�
M; (5.9)

where �Bð ~xÞ ¼ 	Bð ~xÞ=	�ð ~xÞ. Defining the following
auxiliary coefficients,

C ð ~x; tÞ ¼ 3

8
ðw2� 1Þ½Tr�2þ ‘4PTr�

2þ 2‘2PTr���;

Dð ~xÞ ¼ 3ðwþ 1Þ2‘2P
4

	�ð ~xÞ;
(5.10)

Eq. (5.9) becomes

@2tM ¼ Cð ~x; tÞMðw�3Þ=ðwþ1Þ

þDð ~xÞ
�
1þ 3w� 1

3ðwþ 1Þ�Bð ~xÞM�8=½3ðwþ1Þ�
�
M:

(5.11)

The general form of Eq. (5.11) does not have explicit
analytic solutions. In various limits it is possible to inte-
grate it once with respect to t in terms of space-dependent
integration constants. The result, however, cannot be fur-
ther integrated (or inverted) except in few special cases.
Equation (5.11) can certainly be integrated numerically,
but that study is beyond the scope of the present discussion.

It is useful to look at Eq. (5.11) by bearing in mind the
usual assumptions of the separate universe picture, stipu-
lating that any portion of the universe that is larger than the
Hubble radius rH but smaller than the physical wavelength
on the perturbation will look like a separate unperturbed

universe. Such a framework is justified in the case �Kj
i ¼ 0.

In the latter case, the extrinsic curvature can really be
thought of as the inhomogeneous generalization of the
Hubble parameter. Assuming, for consistency with this
hypothesis, that large-scale electromagnetic fields are ab-
sent, Eqs. (5.1), (5.2), and (5.3) formally coincide with the

Friedmann-Lemaı̂tre equations. Consider next a slightly
more complicated situation, namely, the one where

	� ¼ 0 but �Kj
i � 0. In this case Eq. (5.11) can be explicitly

integrated andM can be determined. Suppose, for the sake
of simplicity, that w ¼ 0 and that �Bð ~xÞ ¼ 0. In this case
Eq. (5.11) can be solved exactly: Cð ~x; tÞ becomes indepen-

dent of t since �j
i ð ~x; tÞ ! 0. The determinant of the metric

becomes, in the cosmic time coordinate t,

�ð ~x; tÞ ¼
�
H2

i ½t� tið ~xÞ�2 � 3

8

Tr�2

H2
i

�
2
; (5.12)

where Hi is a space-time constant while, as already men-
tioned, Tr�2 can have an arbitrary spatial dependence.

From Eq. (5.12) we can argue that even if �Kj
i � 0, Tr�2

affects the final solution in such a way that it can be
reabsorbed in the definition of the initial time coordinate

or, put in different terms, �Kj
i � 0 but goes quickly to zero if

the universe expands since �Kj
i ¼ �j

i=
ffiffiffiffi
�

p
. If the magnetic

anisotropic stress is taken into account, the full system
must be solved consistently, and anti-Newtonian solutions
do not seem sufficient even if general solutions of
Eq. (5.11) are available. Therefore, it seems useful to
explore a slightly different strategy and solve the system
in the quasi-isotropic limit, where the contribution of the
intrinsic curvature and of the magnetic anisotropic stress
can be explicitly taken into account order by order.

VI. QUASI-ISOTROPIC MHD SOLUTION

In the MHD description, the fields Ei, Bi, and Ji defined
in Eqs. (3.16) and (3.26) are solenoidal, i.e.

@iE
i ¼ 0; @iB

i ¼ 0; @iJ
i ¼ 0; (6.1)

so that flat-space MHD is recovered in the conformally flat
limit of Eq. (3.18). Let us consider, as the first example of
the present section, the following parametrization of the
spatial geometry:

�ijð ~x; �Þ ¼ a2ð�Þe�2�ð ~x;�Þ½�ij þ 2hijð ~x; �Þ�;
hii ¼ 0; Nð�Þ ¼ að�Þ; (6.2)

where hij accounts for terms containing more than one

spatial gradient. Using Eq. (6.2) in Eq. (2.2) the explicit
form of the extrinsic curvature becomes

Kj
i ¼

��
@��

a
�H

a

�
�j
i �

@�h
j
i

a

�
: (6.3)

The conformally flat limit of Eqs. (6.2) and (6.3) corre-
sponds to � ! 0 and hij ! 0; following the same logic,

the total fluid pressure and the total energy density can be
separated, respectively, as

pð ~x; �Þ ¼ pð0Þð�Þ þ pð1Þð ~x; �Þ;
	ð ~x; �Þ ¼ 	ð0Þð�Þ þ 	ð1Þð ~x; �Þ;

(6.4)
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where pð1Þð ~x; �Þ and 	ð1Þð ~x; �Þ vanish in the conformally flat
limit. Inserting Eqs. (6.2) and (6.3) into Eqs. (4.8) and (4.9)
the Ohmic electric field and the magnetic diffusivity equa-
tion are, respectively,12

~E ¼ 1

4��
~r� ðe� ~BÞ � e�� ~vb � ~B; (6.5)

@� ~Bþ 1

4��
~r� ½e� ~r� ðe� ~BÞ� ¼ ~r� ð ~vb � ~BÞ:

(6.6)

The terms containing hij have been neglected since they

are of higher order. Inserting Eqs. (6.2) and (6.3) into
Eq. (2.6) the following relation can be obtained,

@2��þH@��� @�H

¼ a2‘2P

�
	þ 3p

6
þ ðpþ 	Þ

3
a2e�2�s2ðyÞ

þ e4�

24�a4
½E2 þ ~E2 þ B2 þ ~B2�

�
; (6.7)

where the following notations have been adopted:

E2 ¼ �ijE
iEj; ~E2 ¼ 2hijE

iEj; B2 ¼ �ijB
iBj;

~B2 ¼ 2hijB
iBju2 ¼ �iju

iuj

¼ a2e�2�½s2ðyÞþ 2c2ðyÞhijv̂iv̂j�;
y¼ v

a
; v2 ¼ �ijv

ivj:

(6.8)

Note that ~E2 � E2 and ~B2 � B2 since ~E and ~B contain hij
and are therefore of higher order in the expansion.
Furthermore, in the resistive MHD limit (i.e.� � 1) 	e �
	B since

	e ¼ 1

8�a4

�
e6�

16�2�2
½j ~r� ~Bj2 þ j ~r�� ~Bj2

þ 2ð ~r�� ~BÞ � ð ~r� ~BÞ� � e4�

2��
½ð ~vb � ~BÞ

� ð ~r� ~BÞ þ ð ~vb � ~BÞ � ð ~r�� ~BÞ� þ e2�j ~vb � ~Bj2
�
:

(6.9)

Equation (6.9) shows, in practice, that at the nonlinear level
the baryon rest frame and the plasma frame are two com-
plementary concepts. While in the baryon rest frame the
electric energy density vanishes as ��2 for large conduc-
tivity, if the conductivity is not large the contributions of
the baryon velocity and of the gradients of the geometry
are of higher order in the spatial gradients in comparison
with the magnetic contributions. The resistive MHD limit

implies, as usual, the largeness of the magnetic Reynolds
number defined as

Rm ¼ u


r � 1; 
 ¼ 1

4��
; (6.10)

where 
 is the magnetic diffusivity, r�1 denotes the
typical length scale associated with spatial gradients, and
u is the modulus of the typical velocity of the plasma
element. The velocity field itself is of higher order in
comparison with 	, p, 	B since, from the momentum
constraint of Eq. (4.14), we can deduce

u0ui ¼ 1

a2‘2Pðpð0Þ þ 	ð0ÞÞ
�
2@i@��þ @k@�h

k
i

þ ‘2Pe
3�

4�a2
ð ~E� ~BÞi

�
; (6.11)

where, following the notations of Eq. (3.7), and to lowest
order in the gradient expansion, the expression u0ui can

also be written as u0ui ¼ e�2�vic
2ðyÞ. The term ~E� ~B

can be written by using Eq. (6.5):

~E� ~B ¼ e�
�ð ~r� ~BÞ � ~Bþ ð ~r�� ~BÞ � ~B

4��

�
� e��ð ~vb � ~BÞ � ~B: (6.12)

Neglecting the Ohmic electric fields, Eq. (4.15) leads to the

evolution equation for hji :

@2�h
j
i þ 2H@�h

j
i

¼ �e2�
��
@i@

j�� 1

3
r2��j

i

�
þ @i�@j�

� �j
i

3
ðr�Þ2

�
� a2‘2P

�
�ðpþ 	Þ

�
uiu

j � u2

3
�j
i

�

þ e4�

4�a4

�
BiB

j � B2

3
�j
i

��
; (6.13)

where, using Eq. (6.2) in Eq. (2.3) and keeping only the
leading contribution in the spatial gradients, rijð ~x; �Þ be-
comes, in explicit terms,

rijð ~x; �Þ ¼ ½r2�� ðr�Þ2��ij þ @i@j�þ @i�@j�;

(6.14)

where r2� ¼ �ij@i@j� is the flat-space Laplacian

and, similarly, ðr�Þ2 ¼ �ij@i�@j�. Finally, the trace of

Eq. (4.15) leads, in the case of Eq. (6.2), to the following
condition:

@2��þ 5H@���ð2H 2þ@�H Þ
¼ 2

3
e2�½2r2��ðr�Þ2�

þa2‘2P

�
p�	

2
�pþ	

3
u2� e4�

24�a4
½B2þ ~B2�

�
: (6.15)

12The vectors appearing hereunder and in the remaining part of
the present section are the standard three-dimensional vectors.
Similarly, the vector products are standard vector products.

MASSIMO GIOVANNINI AND ZAHRA REZAEI PHYSICAL REVIEW D 83, 083519 (2011)

083519-12



Using the parametrization of Eq. (6.4), Eqs. (6.7) and (6.15)
imply the following relations:

@2��þH@�� ¼ a2‘2P
6

ð3pð1Þ þ 	ð1ÞÞ þ a2‘2P
3

	B; (6.16)

@2��þ 5H@�� ¼ 2e2�

3
½2r2�� ðr�Þ2�

þ a2‘2P

�
pð1Þ � 	ð1Þ

2
� pB

�
; (6.17)

3H 2 ¼ ‘2Pa
2	ð0Þ;

2ðH 2 � @�H Þ ¼ ‘2Pa
2ð	ð0Þ þ pð0ÞÞ:

(6.18)

Equations (6.13), (6.16), and (6.17) can be directly solved,
and the result, in the plasma frame, reads

�ð ~x; �Þ ¼ qð ~xÞ þ 2a3wþ1e2qð ~xÞ

3ð3wþ 5ÞH2
i

�
r2qð ~xÞ � ½rqð ~xÞ�2

2

�

� ‘2Pa
3w�1e4qð ~xÞ

60�ð3wþ 1ÞH2
i

B2ð ~xÞ; (6.19)

hji ð ~x;�Þ ¼� 2a3wþ1e2qð ~xÞ

ð3wþ 1Þð3wþ 5ÞH2
i

��
@i@

jqð ~xÞ�r2qð ~xÞ
3

�j
i

�

þ@iqð ~xÞ@jqð ~xÞ� ½rqð ~xÞ�2
3

�j
i

�

� ‘2Pa
3w�1e4qð ~xÞ

2�ð3w� 1Þð3wþ 1Þ
�
Bið ~xÞBjð ~xÞ�B2ð ~xÞ

3
�j
i

�
;

(6.20)

where q ¼ qð ~xÞ is a generic function of the spatial coor-
dinates encoding the dependence of the large-scale inho-
mogeneities. Note also that we used Hi ¼ H i=ai at the
initial reference time �i. Equations (6.19) and (6.20) show
that the relative importance of the spatial gradients does
depend upon the barotropic index.

The results obtained in the particular case of Eq. (6.2)
can also be deduced in a more general parametrization,
namely,

�ik ¼ a2ð�Þ½�ikð ~xÞþ�ikð ~x;�Þ�;

�kj ¼ 1

a2ð�Þ ½�
kjð ~xÞ��kjð ~x;�Þ�; Nð�Þ ¼ að�Þ; (6.21)

where �ijð ~x; �Þ contains the contribution of the gradients

while �ijð ~xÞ is fully inhomogeneous but does not contain

any gradient. The conformally flat limit of Eq. (6.21) does
correspond to �ij ! �ij and �ij ! 0. The indices of �ij

are raised and lowered by using�ij. According to Eq. (2.2),

the extrinsic curvature and its contractions become

Kj
i ¼ � 1

a

�
H�j

i þ
@��

j
i

2

�
;

K ¼ � 1

a

�
3H þ 1

2
@��

�
;

TrK2 ¼ 1

a2
ð3H 2 þH@��Þ;

(6.22)

where, as in the previous case, H ¼ @� lna. From the
momentum constraint it also follows that

rk@��
k
i �ri@�� ¼ 2a‘2Pv̂icðyÞsðyÞðpþ 	Þ: (6.23)

The explicit form of the momentum constraint suggests
looking for the solution in a separable form, namely,

�j
i ð ~x; �Þ ¼ gð�Þ�j

i ð ~xÞ þ fð�Þ�j
i ð ~xÞ: (6.24)

Inserting Eqs. (6.21) and (6.22) into Eq. (4.13) and using
the same parametrization of Eq. (6.4) for the inhomoge-
neous contributions of the pressure and of the energy
density, the following pair of conditions can be obtained:

@�

�
@��

2a

�
þH

a
@�� ¼ �a‘2P

�
3pð1Þ þ 	ð1Þ

2
þ 	B

�
;

(6.25)

@�H ¼ �a2‘2P
6

ð	ð0Þ þ 3pð0ÞÞ: (6.26)

Supposing, for the sake of simplicity, that the barotropic
index is constant, we have that

	ð1Þ ¼ � 1

ð3wþ 1Þ
½@2��þH@���

‘2Pa
2

� 2	B

ð3wþ 1Þ ; (6.27)

where the contribution of the electric fields has been con-
sistently neglected. Inserting now Eqs. (6.21) and (6.22)
into Eq. (4.15) the following equations can be readily
obtained:

@�

�
@��

j
i

2a

�
þH

@��

2a
�j
i þ

3H
2a

@��
j
i þ arji

¼ �a‘2P

�
pð1Þ � 	ð1Þ

2
�j
i þ�j

i ðBÞ � pB�
j
i

�
; (6.28)

@�H þ 2H 2 ¼ � ‘2Pa
2

2
ðpð0Þ � 	ð0ÞÞ: (6.29)

Note that, from Eqs. (6.26) and (6.29), the standard Hubble

parameter is given by H ¼ Hia
�3ðwþ1Þ=2, where Hi is an

integration constant with the same meaning of the analog
constant introduced in Sec. V. Using, then, Eq. (6.27) to

eliminate 	ð1Þ from Eq. (6.28), we have that

@2��
j
i þ 2H@��

j
i þ �j

i

�
1� w

1þ 3w
@2��þ 2

1þ w

1þ 3w
H@��

�

¼ 4

3
a2‘2P

�
3w� 1

3wþ 1

�
	B � 2a2‘2P � 2a2rji�

j
i ðBÞ: (6.30)
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Equation (6.30) can be solved by positing

�j
i ð ~x; �Þ ¼ gð�Þ�j

i ð ~xÞ þ fð�Þ�j
i ð ~xÞ: (6.31)

Then, inserting Eq. (6.31) into Eq. (6.30) and assuming
w � 1=3, we obtain

gð�Þ ¼ a3wþ1; fð�Þ ¼ a3w�1; (6.32)

�j
i ð ~xÞ ¼ � 4

H2
i ð3wþ 5Þð3wþ 1Þ

�
�
Pj
i ð ~xÞ þ

3w2 � 6w� 5

4ð9wþ 5Þ Pð ~xÞ�j
i

�
; (6.33)

�j
i ð ~xÞ ¼ � ‘2P

�H2
i ð3w� 1Þð3wþ 1Þ

�
�
Bið ~xÞBjð ~xÞ þ 9w2 � 9w� 8

9ð6wþ 5� 3w2ÞB
2ð ~xÞ�j

i

�
;

(6.34)

where Pj
i ð ~xÞ ¼ rji ð ~x; �Þa2ð�Þ accounts for the intrinsic cur-

vature computed from �ijð ~xÞ and, by definition,

Bið ~xÞBjð ~xÞ ¼ �mið ~xÞ
�ð ~xÞ BmðxÞBjð ~xÞ;

B2ð ~xÞ ¼ �mnð ~xÞ
�ð ~xÞ Bmð ~xÞBnð ~xÞ;

(6.35)

with �ð ~xÞ ¼ detð�ijÞ. Consequently, �ijð ~x; �Þ can be writ-

ten as

�ijð ~x; �Þ ¼ a2ð�Þ½�ijð ~xÞ þ�ijð ~xÞa3wþ1 þ �ijð ~xÞa3w�1�:
(6.36)

If w ¼ 1=3

�ijð ~x; �Þ ¼ �2½�ijð ~xÞ þ�ijð ~xÞ�2 þ �ijð ~xÞ ln��; (6.37)

where, in the latter case,

�j
i ð ~xÞ ¼ � 1

3H2
i

�
Pj
i ð ~xÞ �

5

24
Pð ~xÞ�j

i

�
;

�j
i ð ~xÞ ¼ � ‘2P

2�H2
i

�
Bið ~xÞBjð ~xÞ � B2ð ~xÞ

3
�j
i

�
:

(6.38)

If w<�1=3 the contributions of the spatial curvature and
of the magnetic field become progressively subleading
even if the terms proportional to �ij are diluted faster. If

�1=3<w< 1=3 the contribution of the spatial curvature
is progressively increasing, while the contribution associ-
ated with the magnetic fields decreases. Finally, ifw> 1=3
both terms increase but at a different rate. The solutions
illustrated in the present section generalize the perturbative
treatment, where the large-scale magnetic fields are taken
as a supplementary component in the linearized equations
of the relativistic metric perturbations. The linearized evo-
lution of the curvature perturbations is usually described

not in terms of �ij but rather in terms of an appropriate

gauge-invariant combination. It is therefore necessary to
consider the interplay between the two different descrip-
tions in the case where fully inhomogeneous magnetic
fields contribute to the curvature perturbations which also
receive an independent contribution from the standard
adiabatic mode.

VII. NONLINEAR ADIABATIC MODE
IN THE PLASMA FRAME

The initial conditions or the calculation of the CMB
observables in the presence of large-scale magnetic fields
are set within linear perturbation theory expressed either in
a specific gauge or within a suitable gauge-invariant treat-
ment [7,8]. In contrast with earlier studies, it has been
recently clarified that different kinds of initial conditions
are contemplated, ranging from the magnetized adiabatic
mode to the various magnetized entropy modes. Nonlinear
generalizations of the magnetized curvature perturbations
will now be discussed.
In the standard perturbative treatment of large-scale

inhomogeneities, the curvature perturbations on comoving
orthogonal hypersurfaces (conventionally denoted by R)
and the curvature perturbations on uniform density hyper-
surfaces (conventionally denoted by 
) are often used to
parametrize the large-scale curvature inhomogeneities.
Both variables are gauge invariant and can therefore be
expressed in any gauge, such as the longitudinal gauge or
the synchronous gauge [39,40]. In the longitudinal gauge
(see Appendix B for an explicit definition in terms of the
ADM variables) and in the plasma frame, R and 
 can be
written as13

�Rð ~x; �Þ ¼ �c �H ðH�þ @�c Þ
H 2 � @�H

; (7.1)

�
ð ~x; �Þ ¼ �c þ �ðLÞ
s 	þ �s	B

3ð	t þ ptÞ ; (7.2)

where �ðLÞ
s 	 denotes the scalar fluctuation of the energy

density of the fluid sources in the longitudinal gauge;
�s	B ¼ B2ð ~xÞ=½8�a4ð�Þ� denotes the fluctuation of the
energy density associated with the fully inhomogeneous
magnetic field, while 	t and pt are, respectively, the total
energy density and pressure determining the (homogene-
ous and isotropic) background geometry.

By computing the difference ( �
 � �R) and by comparing
the obtained result with the Hamiltonian constraint [see

Eq. (B5) of Appendix B], the difference ( �
 � �R) becomes

13The notation �R and �
 (as opposed to R and 
) is meant to
distinguish the quantities defined in perturbation theory from
their counterparts defined to a given order in the gradient
expansion.
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�
 � �R ¼ 2r2c

3‘2Pa
2ðpt þ 	tÞ

; (7.3)

which is negligible in the limit of typical length scales
much larger than the Hubble radius at the corresponding

epoch. The variables �
 and �R are gauge invariant: their
numerical value does not change for two coordinate sys-
tems connected by infinitesimal coordinate transforma-
tions of the type

x� ! ~x� ¼ x� þ ��; �� ¼ a2ð�Þð�0;�@i�Þ; (7.4)

where both �0 and � depend on the space-time point.14 A
coordinate transformation of the type (7.4) will change
metric fluctuations according to the Lie derivative in the
direction of the vector ��; consider, for the sake of con-
creteness, the transformation from the synchronous coor-
dinate system to the longitudinal one:

c ðSÞ ! c ðLÞ ¼ c ðSÞ þH �0;

FðSÞ ! FðLÞ ¼ FðSÞ � �;
(7.5)

BðSÞ ! BðLÞ ¼ BðSÞ þ �0 � @��;

�ðSÞ ! �ðLÞ ¼ �ðSÞ � @��0 �H �0:
(7.6)

In the synchronous gauge�ðSÞ ¼ 0 and BðSÞ ¼ 0, while, by

definition of the longitudinal gauge, FðLÞ ¼ 0 and BðLÞ ¼ 0
(see, e.g., [40]). Consequently, the standard relation be-

tween the variables appearing in �
 and �R can be written as

c ¼ ��þH@�F;

� ¼ �@2�F�H@�F;

�ðLÞ
s ¼ �ðSÞ

s � @�	t@�F:

(7.7)

By inserting Eq. (7.7) into Eqs. (7.1) and (7.2), the standard

synchronous expression of �R and �
 can be readily ob-
tained as

�R ¼ �þ H@��

H 2 � @�H
; �
 ¼ �þ �ðSÞ

s 	þ �s	B

3ð	t þ ptÞ ;

(7.8)

and it coincides, as expected, with previous discussions
(see, e.g., [40]). Because of gauge invariance, the evolution

equations for �
 and �R can be derived and discussed in
any gauge, for instance, by linearizing the covariant con-
servation of the energy-momentum tensor of the sources.
Let us consider, for the sake of concreteness, the matter-
radiation transition, and let us define the fluctuation of
the total pressure in terms of the sound speed and of the
nonadiabatic pressure fluctuation �pnad:

�sp ¼ �c2st�s	þ �pnad; �c2st ¼ @�pt

@�	t

¼ 4

3ð3�þ 4Þ ;
(7.9)

where � ¼ að�Þ=aeq and the sound speed, as shown in the

case of the matter-radiation transition, is fully homogene-
ous. The result for the evolution of �
 , when the plasma
effects are carefully included, has been given in the second
paper of Ref. [47],

@� �
 þ H�pnad

ðpt þ 	tÞ ¼
~E � ~J

3a4ðpt þ 	tÞ
þH�s	Bð3�c2st � 1Þ

3ð	t þ ptÞ

þ H�s	E

3ð	t þ ptÞF ð�; �cstÞ � �t
3
; (7.10)

where the following quantities have been introduced:

F ð�; �cstÞ ¼ ½3�c2stg21�2 þ g22ð3�c2st � 2Þ�
g21�

2 þ g22
; �t ¼ ~r � ~vt;

(7.11)

g1 and g2 are two numerical constants which depend upon
the �CDM parameters which can be explicitly computed
(see the second paper of [47]). For the fiducial set of
�CDM parameters, g1 � g2 ’ 10�5. Neglecting the
electric fields, Eq. (7.11) can be easily solved by direct
integration since, for length scales much larger than the
Hubble radius, Eq. (7.11) reads

@ �


@ ln�
¼ � �spnad

ðpt þ 	tÞ þ
�
�c2st � 1

3

�
�s	B

ðpt þ 	tÞ ; (7.12)

with the result that, in the case of the magnetized adiabatic
mode (i.e. �pnad ¼ 0), the solution of Eq. (7.12) becomes

�
ð ~x; �Þ ¼ �
�ð ~xÞ � 3

4
R��Bð ~xÞ �

3�þ 4
: (7.13)

In the nonlinear case it does not make sense to separate the
energy density and the pressure in a background value
supplemented by the corresponding fluctuations. Still, it
will be possible to define the sound speed in terms of the
barotropic index, i.e.

c2stð ~x; �Þ ¼ @�p

@�	
¼ wþ @�w

NKðpþ 	Þ : (7.14)

Equation (7.14) coincides with the second relation of
Eq. (7.9) in the fully homogeneous case. However, when
the description of the geometry is given in fully inhomoge-
neous terms, the two definitions lead to different results.
Let us now see how the curvature perturbations can be

generalized to the nonlinear level. A possible nonlinear
generalization of the variable 
 is given by


i ¼
ri ln

ffiffiffiffi
�

p
3

þ NK

3@�	
rið	þ 	BÞ; (7.15)

while a complementary generalization is

14As explained in Appendix B, the first part of the present
section assumes the standard perturbative treatment and, there-
fore, the underlying background geometry is taken to be con-
formally flat as in the case of the vanilla �CDM scenario.
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i ¼
ri ln

ffiffiffiffi
�

p
3

þrið	þ 	BÞ
3ðpþ 	Þ : (7.16)

Note that Eqs. (7.15) and (7.16) are equivalent to zeroth
order in the gradient expansion since @�	 ¼ NKðpþ 	Þ.
However, for practical reasons, the definition (7.16) will be
preferred. With similar logic, the nonlinear generalization
of R can be written as

R i ¼
ri ln

ffiffiffiffi
�

p
3

þriðK2 � TrK2Þ
6‘2Pð	þ pÞ : (7.17)

The variable given in Eq. (7.15) is inspired by the one
defined in Ref. [48] in the case of an energy-momentum
tensor dominated by a single scalar field. The pair of
variables defined in Eqs. (7.16) and (7.17) can be compared
to their linearized counterpart by expressing the extrinsic
curvature in a specific gauge. For instance, in the longitu-
dinal gauge, using the results of Appendix B [in particular,
Eq. (B2)] Eqs. (7.16) and (7.17) become


i ! ri

�
�c þ �ðLÞ

s 	þ �s	B

3ð	t þ ptÞ
�
;

Ri ! ri

�
�c �H ðH�þ @�c Þ

H 2 � @�H

�
;

(7.18)

which also implies, because of Eqs. (7.1) and (7.2),


 ðLÞi ! ri
�
 and RðLÞ

i ! ri
�R. By taking the difference

of 
i and Ri and by using the Hamiltonian constraint of
Eq. (2.9), we obtain


i �Ri ¼ rir

6‘2Pðpþ 	Þ �
riðpþ 	Þu2
3ðpþ 	Þ : (7.19)

By expanding the right-hand side of Eq. (7.19) to first order
in the (longitudinal) metric fluctuations, it can be verified
that the obtained result coincides with the spatial gradient
of Eq. (7.3). As far as gauge invariance is concerned, the
approach followed here is similar to the one invoked in
related contexts (see, e.g., [48,49]): Eqs. (7.16) and (7.17)
can be shown to be gauge invariant to a given order in the
gradient expansion. Suppose, indeed, that we evaluate
Eqs. (7.16) and (7.17) not in the longitudinal gauge but in
a different gauge, for instance, the synchronous gauge.
If the variables are truly nonlinear gauge-invariant varia-
bles, they must also be gauge invariant for infinitesimal
gauge transformations of the kind discussed in Eqs. (7.5)
and (7.6). With the help of Eq. (B9), the synchronous gauge
expression of Ri can be written as

RðSÞ
i ¼ ri

�
�þ H@��

H 2 � @�H

�

þ 1

3
ri

�
r2Fþ H

H 2 � @�H
r2@�F

�
; (7.20)

where the notation RðSÞ
i reminds us that Ri is computed

in the synchronous coordinate system. The first term in

square brackets of Eq. (7.20) clearly coincides with the

spatial gradient of �R [see Eq. (7.1)]. The second term in
square brackets in Eq. (7.20) therefore breaks gauge in-
variance, but it is of higher order in the gradients. The same
kind of considerations can also be extended to the case of

i. In summary, recalling Eq. (7.8) (i.e. the synchronous

form of �R and �
), we have that, in the synchronous
parametrization,


 ðSÞi ¼ ri
�
 þrir2F

3
� 
 ðLÞi þOðr3Þ; (7.21)

RðSÞ
i ¼ ri

�Rþ 1

3
ri

�
r2Fþ H

H 2 � @�H
r2@�F

�

� RðLÞ
i þOðr3Þ: (7.22)

Equations (7.21) and (7.22) are rather interesting and sug-
gest that the variables 
i andRi defined in Eqs. (7.16) and
(7.17) can be computed in any suitable gauge. If the two
gauges differ by an infinitesimal coordinate transforma-
tion, the terms leading to a breaking of gauge invariance
are of higher order in the gradient expansion. In the specific
example of Eqs. (7.21) and (7.22) the extra terms contain
three gradients.
The observation of the previous paragraph fails, how-

ever, in the case of more general coordinate transforma-
tions. Still, the results suggested by Eqs. (7.21) and (7.22)
can be generalized, along the lines of [48,49], to the case
when the coordinate transformations are finite but still
sufficiently well behaved. Consider, in particular, the fol-
lowing coordinate transformation:

Xi ¼ Xið ~x; �Þ; T ¼ Tð ~x; �Þ: (7.23)

As discussed in [48,49], along lines of constant Xi, the old
coordinates change as dx� ¼ @�Tds, where s is an arbi-
trary parameter and

Xi ¼ fið ~xÞ þ
Z @iT

@�T@
�T

dT: (7.24)

If the new time coordinate T is nonsingular, the second
term in the transformation of Eq. (7.24) can be discarded to
leading order in the gradient expansion.
From Eqs. (7.16) and (7.17) the evolution equation of

the nonlinear curvature perturbations can be obtained in
explicit terms by using the governing equations and the
covariant to the conservation equation to leading order in
the spatial gradients. Let us therefore take the first time
derivative of 
i, and let us drop the contribution of the
electric fields which are subleading to zeroth order in
the drift approximation; the result of this simple manipu-
lation is
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@�
i ¼ 1

3
ri

�
@�

ffiffiffiffi
�

pffiffiffiffi
�

p
�
þ 1

3ðpþ 	Þ rið@�	þ @�	BÞ

� rið	þ 	BÞ
3ðpþ 	Þ2 ½@�pþ @�	�: (7.25)

But to first order in the gradient expansion, @�	 ¼
NKðpþ 	Þ and @�	B ¼ 4NK	B=3. Thus Eq. (7.25)
becomes

@�
i ¼ KN

3ðpþ 	Þ ðrip� c2stri	Þ þ NK

3

�
1

3
� c2st

� ri	B

ð	þ pÞ
þ 4

9

	B

pþ 	
riðNKÞ: (7.26)

Equation (7.26) generalizes Eq. (7.10), as it can be easily
appreciated by considering various specific limits.
Suppose, for instance, that the barotropic index w is con-
stant both in time and in space and that 	B ¼ 0. Then,
c2st ¼ w and Eq. (7.26) implies @�
i ¼ 0. This is the case of
the single adiabatic mode in the absence of magnetic fields.

In general terms the solution of Eq. (7.26) represents a
complicated self-consistent problem since both c2st and w
will be both space and time dependent; moreover, always
from a general point of view, riðNKÞ and ri	B can be of
the same order. To simplify the situation let us make the
following (not completely realistic) assumption:

riðNKÞ
NK

� ri	B

	B

; wð�Þ ¼ 1

3ð�þ 1Þ ; (7.27)

where, as before, � ¼ a=aeq. Equation (7.26) can then be

solved directly, and the result is


ið ~x; �Þ ¼ �
ið ~xÞ � 3�

4ð3�þ 4Þ
ri	þri	B

	
; (7.28)

where the integration constant has been matched with the
value of 
i determined in the linearized approximation.
The solution (7.28) is interesting but it assumes an expres-
sion for the evolution of the barotropic index which is only
justified in the homogeneous and isotropic cases.

A much safer approach for the computation of the
curvature perturbations is to first obtain the quasi-isotropic
MHD solutions at the wanted order in the gradients (as
already done in Sec. VI) and then to evaluate explicitlyRi

and 
i. Bearing in mind that, in the notations of Sec. VI,ffiffiffiffi
�

p ¼ a3ð�Þ ffiffiffiffiffiffiffiffiffiffi
�ð ~xÞp ½1þ �ð ~x; �Þ=2�, the explicit expression

of Rið ~x; �Þ can be computed, and it is

Rið ~x; �Þ ¼ 1

6

@i�

�
þ 1

6
½gð�Þ@i�þ fð�Þ@i��

þ H
6ðH 2 � @�H Þ ½@�g@i�þ @�f@i��: (7.29)

Recalling the explicit expressions of �ð ~xÞ and �ð ~xÞ, we
have that

Rið ~x; �Þ ¼ 1

6

@i�

�
� @iP

18H2
i ðwþ 1Þa

3wþ1

� 4ð9wþ 7Þð9wþ 1Þ
3ð3w� 1Þð3wþ 1Þð6wþ 5� 3w2Þðwþ 1Þ

� @i�Ba
3w�1; (7.30)

where now �Bð ~xÞ ¼ ‘2PB
2ð ~xÞ=ð24�H2

i Þ. By using the ex-

plicit expression of the Hamiltonian constraint, the variable

ið ~x; �Þ is only sensitive, by construction, to the gradients
of the magnetic fields, i.e.


ið ~x;�Þ¼Rið ~x;�Þþ @iP

6‘2Pa
2ð	þpÞ

¼1

6

@i�

�
� 4ð9wþ7Þð9wþ1Þ
3ð3w�1Þð3wþ1Þð6wþ5�3w2Þðwþ1Þ

�@i�Ba
3w�1: (7.31)

Both in the case of Eq. (7.30) and in the case of Eq. (7.31),
the leading order result is fully inhomogeneous, and it
accounts for the large-scale curvature perturbations con-
nected, in this specific case, to the adiabatic solution. The
spatial gradients affecting Ri are induced both by the
spatial curvature and by the magnetic inhomogeneities.
Conversely, the spatial gradients of the curvature affect 
i
only to higher orders because of a cancellation arising
when the solution forRi is inserted into the fully inhomo-
geneous form of the Hamiltonian constraint of Eq. (7.19).

Note that in the case w ¼ 1=3, Eq. (6.38) implies that �j
i is

traceless. This implies that the contribution of the magnetic
fields to the curvature perturbation vanishes to first order in
the gradient expansion in a radiation-dominated universe,
while the effect of ordinary spatial inhomogeneities does
contribute. Consequently, it has been shown that, while it is
difficult to solve explicitly the nonlinear generalization of
the evolution equation for the magnetized curvature per-
turbations, the same techniques leading to the quasi-
isotropic solutions can be used to derive the expression
of the nonlinear generalization of the magnetized curvature
perturbations.

VIII. CONCLUDING REMARKS

The general relativistic gradient expansion has been
combined with the standard tenets of the drift approxima-
tion used in the description of cold plasmas. Nonlinear
effects are typical of both general relativistic dynamics and
of magnetohydrodynamics in flat space-time. It is then
natural to treat them in a unified perspective, where the
standard linearized approximation is not assumed from the
very beginning. A fully nonlinear system has been derived
in terms of the ADM variables and discussed in specific
physical limits. The evolution of magnetic and curvature
inhomogeneities has been treated and solved on the same
footing. The present findings have also been contrasted
with the standard linearized description of magnetized
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curvature perturbations, both in the presence of nonadia-
batic pressure fluctuations and in the case of adiabatic
initial conditions. After introducing the nonlinear magne-
tized adiabatic mode, an explicit evolution equation for the
magnetized curvature perturbations has been derived to
leading order in the spatial gradients. While the results of
the present investigation pave the way for more thorough
scrutiny of nonlinear effects in gravitating plasmas prior to
photon decoupling, they also fill an existing gap in the
present literature. Indeed, the treatment of magnetized
plasmas usually rests upon equations written in homoge-
neous and isotropic backgrounds supplemented by the
corresponding relativistic fluctuations of the geometry
and of the fluid sources. Here our modest attempt has
been to suggest and partially develop a description which
is independent of the background but valid to a given order
in the spatial gradients.

APPENDIX A: ELECTROMAGNETIC FIELDS
AND ADM DECOMPOSITION

The explicit forms of the Christoffel symbols in terms of
the ADM variables of Eq. (2.1) are

�0
00 ¼

@�N

N
þ Nkð3ÞrkN

N
� NmNn

N
Kmn;

�0
0i ¼

riN

N
� Nm

N
Kmi;

�i
00 ¼ Nð3ÞriN þ @�N

i � 2NNmKi
m þ Nmð3ÞrmN

i

� Ni

N
ð@�N þ Nmð3ÞrmN � NmNnKmnÞ;

�0
ij ¼ � 1

N
Kij;

�j
i0 ¼ �Nj

ð3ÞriN

N
þ NjNm

N
Kmi � NKj

i þð3Þ riN
j;

�i
mn ¼ ð3Þ�i

mn þ Ni

N
Kmn:

(A1)

In Eq. (A1) the indices are lowered and raised by using �ij

so that, for instance, Kj
i ¼ �kjKki;

ð3Þri is the covariant
derivative defined with respect to the spatial metric �ij, and

the corresponding Christoffel symbol is

ð3Þ�i
mn ¼ 1

2�
ijð�@j�mn þ @n�jm þ @m�njÞ: (A2)

Recalling Eqs. (2.2) and (2.3) the traces K, TrK2, and r are
defined as

K ¼ Ki
i; TrK2 ¼ Kj

iK
i
j; r ¼ �ijrij: (A3)

From Eq. (A1) the components of the Ricci tensor and the
Ricci scalar read

R0
0 ¼

@�K

N
� TrK2 þr2N

N
� Nm

N
rmK þ Nq

N
Lq; (A4)

R0
i ¼

1

N
Li; (A5)

Rj
i ¼

1

N
@�K

j
i � KKj

i � rji þ
1

N
rirjN � Nm

N
rmK

j
i

þ 1

N
rmN

jKm
i � 1

N
riN

mKj
m � Nj

N
Li; (A6)

where, for the sake of conciseness, the following notations
have been adopted:

ð3Þri ¼ ri; Li ¼ ðriK �rkK
k
i Þ: (A7)

From Eqs. (A4)–(A7), the components of the Einstein
tensors can be easily obtained, and they are

G0
0 ¼

1

2
ðK2 þ r� TrK2Þ þ Nq

N
Lq; (A8)

G0
i ¼

1

N
ðriK �rkK

k
i Þ; (A9)

Gj
i ¼

1

N
@�ðKj

i � K�j
i Þ � K

�
Kj

i �
K

2
�j
i

�
þ TrK2

2
�j
i

�
�
rji �

r

2
�j
i

�
þ 1

N
ðrirjN �r2N�j

i Þ

� Nm

N
rmðKj

i � K�j
i Þ þ

1

N
rmN

jKm
i

� 1

N
riN

mKj
m � Nj

N
Li: (A10)

For a perfect relativistic fluid the components of the
energy-momentum tensor with covariant indices are

T00 ¼ ðpþ 	Þu0u0 � pðN2 � NkN
kÞ;

Ti0 ¼ ðpþ 	Þu0ui þ pNi;

Tij ¼ ðpþ 	Þuiuj þ p�ij:

(A11)

The condition g��u�u� ¼ 1 implies, in terms of the ADM

variables,

½u0 � Nkuk�2 ¼ N2ð1þ u2Þ; u2 ¼ �ijuiuj: (A12)

Equations (A11) and (A12) are written in general terms,
and therefore, we shall also have that, in general,

T0
0 ¼ 	þ ðpþ 	Þu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p �
Nkuk
Nu

þ uffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
�
; (A13)

T0
i ¼ ðpþ 	Þ

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
ui; (A14)

Tj
i ¼�p�j

i �ðpþ	Þuiuj�pþ	

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þu2

p
uiN

j: (A15)

From Eqs. (A9) and (A14) the explicit forms of the
Hamiltonian and of the momentum constraints (i.e.
G0

0 ¼ ‘2PT
0
0 and G0

i ¼ ‘2PT
0
i ) become, respectively,
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K2 þ r� TrK2 ¼ 2‘2P½	þ ð	þ pÞu2�;
Li ¼ ‘2Pðpþ 	Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
ui:

(A16)

Note that the term proportional to Lq in G0
0 vanishes

exactly with the terms containing Nkuk in Eq. (A13)
once the momentum constraint is imposed. In the case
Ni ¼ 0 and within the parametrization of Eqs. (3.6) and
(3.7), the relevant component of the fluid energy-
momentum tensor can be written as

T00 ¼ 1

N2
½	cosh2yþ psinh2y�;

T0i ¼ pþ 	

N
sinhy coshyv̂i;

Tij ¼ ðpþ 	Þv̂iv̂jsinh2yþ p�ij:

(A17)

The covariant conservation of the energy-momentum ten-
sor can be written in terms of the Christoffel symbols
obtained in Eq. (A1),

r�T
�0 ¼ @0T

00 þ @kT
k0 þ ð2�0

00 þ �k
0kÞT00

þ ð3�0
0k þ �j

kjÞT0k þ �0
kjT

kj;

r�T
�i ¼ @0T

0i þ @kT
ki þ �i

00T
00 þ 2�i

0jT
0j

þ ð�0
00 þ �k

0kÞTi0 þ �i
jkT

jk þ ð�0
j0 þ �k

jkÞTij;

(A19)

which can also be explicitly written, in ADM variables, as

r�T
�0 ¼ 1

N2

�
@�½ps2ðyÞ þ 	c2ðyÞ�

þ N2@k

�
pþ 	

N
cðyÞsðyÞv̂k

�

� NK½ps2ðyÞ þ 	c2ðyÞ
�
þ ½3rkN þ N�j

kj�
� ðpþ 	ÞsðyÞcðyÞv̂k � NKkj½ðpþ 	Þv̂kv̂js2ðyÞ
þ p�kj þ�kj�

�
; (A20)

r�T
�i ¼ 1

N
@�½ðpþ 	ÞsðyÞcðyÞv̂i�

þ @k½ðpþ 	Þs2ðyÞv̂iv̂k þ p�ik þ�ki�

þ riN

N
½	c2ðyÞ þ ps2ðyÞ� � 2Ki

jðpþ 	ÞsðyÞcðyÞv̂j

� Kðpþ 	ÞsðyÞcðyÞv̂i þ �i
kj½ðpþ 	Þv̂kv̂js2ðyÞ

þ p�kj þ�kj� þ
�rjN

N
þ �k

jk

�
� ½ðpþ 	Þv̂iv̂js2ðyÞ þ p�ij þ�ij�; (A21)

where the shorthand notation cðyÞ ¼ coshy and sðyÞ ¼
sinhy has been adopted and where�ij denotes the possible
contribution of the anisotropic stress which has been

included for completeness. Note that, in Eqs. (A20) and
(A21), there is no potential ambiguity since, when the shift

vector vanishes, �k
ij coincides with

ð3Þ�k
ij. This is not the

case, in general, as the last equality of Eq. (A1) clearly
shows.
Finally, the components of the electromagnetic energy-

momentum tensor T �
� become, in ADM variables,

T 0
0 ¼

1

8�
ffiffiffiffi
�

p
�
qmn

EmEn

N
þ �nkPijm


ijk

2
BmBn

�
�
pnm

N
þ �nk


ijk

2
Qijm

�
BnEm

�
; (A22)

T 0
i ¼

1

4�N
ffiffiffiffi
�

p ½QijkE
kEj � PijkB

kEj�; (A23)

T j
i ¼

1

4�
ffiffiffiffi
�

p
��
qim
N

EmEj��abPimn

jmbBnBa

�

þ
�
Qimn�ab


jmbEnBa�pmi

BmEj

N

�

þ1

4
�j
i

�
Pmnk�ab


mnbBkBaþ 2

N
ðpabB

aEb�qabE
aEbÞ

�Qmnk�ab

mnbEkBa

��
: (A24)

In Eqs. (A22)–(A24) the following auxiliary tensors have
been introduced,

qki ¼ NkNi þ �ikðN2 � NmN
mÞ

N
ffiffiffiffi
�

p ;

pki ¼
Nk�ij�mn


mjnffiffiffiffi
�

p ;

(A25)

Qijk ¼
Nj�ik � Ni�jk

N
ffiffiffiffi
�

p ; Pijk ¼
�im�jn�pk


mnpffiffiffiffi
�

p :

(A26)

In terms of the tensors given in Eqs. (A25) and (A26)
the covariant components of the field strengths can be
written as

F0i ¼ qkiE
k � pkiB

k; Fij ¼ QijkE
k � PijkB

k;

(A27)

while the contravariant components of the field strength
have already been reported in Eqs. (3.2) and (3.3) in terms
of Ek ¼ ðN=

ffiffiffiffi
�

p ÞEk and of Bk ¼ ðN=
ffiffiffiffi
�

p ÞBk. In the gauge

where the shift vector vanishes, it is easy to show, within
the present decomposition, that

qki ¼ Nffiffiffiffi
�

p �ki; pki ¼ 0; Qijk ¼ 0;

Pijk ¼
�im�jn�pkffiffiffiffi

�
p 
mnk;

(A28)
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and Eqs. (A22)–(A24) reduce to

T 0
0 ¼

�mn

8��
ðEmEn þ BmBnÞ; (A29)

T 0
i ¼ ��im�jn�pk


mnk

4��N
BpEj; (A30)

T j
i ¼

1

4��

�
�imE

mEj þ �imB
mBj

� �j
i

2
�mnðEmEn þ BmBnÞ

�
: (A31)

In terms of the shorthand notation employed in the bulk of
the paper, the components reported in Eqs. (A29)–(A31)
can also be written as

T 0
0 ¼

1

8��
ð ~E � ~Eþ ~B � ~BÞ � 	B þ 	E; (A32)

T 0
i ¼ � �im

4��
ð ~E� ~BÞm; (A33)

T j
i ¼

1

4��
½�imE

mEj þ �imB
mBj � �j

i

2
ð ~E � ~Eþ ~B � ~BÞ�

� �ðpE þ pBÞ�j
i þ�j

i ðEÞ þ�j
i ðBÞ; (A34)

where pe ¼ 	e=3 and pB ¼ 	B=3; �j
i ðEÞ and �j

i ðBÞ
denote, respectively, the electric and the magnetic aniso-
tropic stress.

APPENDIX B: RELATIONS
TO THE BARDEEN FORMALISM

The Bardeen formalism [39] is one of the main tools
customarily employed for a quantitative assessment of the
impact of large-scale magnetic fields on the CMB anisot-
ropies. It is therefore useful to describe the relation of the
methods described in the present paper to the Bardeen
approach. In the linearized theory of cosmological pertur-
bations the fluctuations can be separated in scalar, vector,
and tensor modes as

�g�� ¼ �sg�� þ �vg�� þ �tg��: (B1)

The scalar modes of the geometry are parametrized in
terms of four independent functions. The vector modes
are parametrized in terms of two pure vectors Wi and Qi

obeying ð3ÞriQ
i ¼ 0 and ð3ÞriW

i ¼ 0. Finally, the tensor
modes are parametrized in terms of a rank-two tensor hij
which is both divergenceless and traceless. Overall, before
gauge fixing, the number of independent functions
amounts to 10. At the nonlinear level, the decomposition
of Eq. (B1) is meaningless, but still the more general
description discussed in this paper contains, as special
cases, the gauge-dependent approaches to the magnetized
CMB anisotropies [8,9]. For instance, the choice of the

conformally Newtonian gauge (often dubbed the
longitudinal gauge) corresponds to Ni ¼ 0, Nð ~x; �Þ ¼
að�Þ½1þ�ð ~x; �Þ�, and �ijð ~x; �Þ ¼ a2ð�Þ½1� 2c ð ~x; �Þ��ij.

The extrinsic curvature and
ffiffiffiffi
�

p
are therefore given by

Kj
i ¼

�
�H

a
þ 1

a
ð@�c þH�Þ

�
�j
i ;

ffiffiffiffi
�

p ¼ a3ð1� 3c Þ:
(B2)

From Eqs. (A8)–(A10), the various components of the
Einstein tensors can be obtained by keeping only the terms
which are linear in the metric fluctuations. For instance,
Eq. (A8) implies

G0
0ð ~x; �Þ ¼ �G0

0ð�Þ þ �sG
0
0ð ~x; �Þ; (B3)

�G0
0ð�Þ ¼ 3

H 2

a2
;

�sG
0
0ð ~x; �Þ ¼

2

a2
½r2c � 3H ðH�þ c 0Þ�:

(B4)

It is useful to remark that, in Eq. (B4), j�sG
0
0ð ~x; �Þj<

�G0
0ð�Þ, as implied by the validity of the perturbative ap-

proximation. Conversely, in the gradient expansion, what
matters is not the absolute magnitude of the perturbation in
comparison with the background, but rather the number of
gradients defining the various orders of the expansion.
Following the same procedure of Eq. (B4) the evolution
equations in the longitudinal gauge can be explicitly ob-
tained from Eqs. (A9) and (A10):

r2c � 3H ðH�þ @�c Þ ¼ ‘2P
2
a2½�s	þ �s	B þ �s	E�;

(B5)

2r2ðH�þ @�c Þ þ ‘2P

�
ðpt þ 	tÞ�t þ

~r � ð ~E� ~BÞ
4�a4

�
¼ 0;

(B6)

2

�
@2�c þH ð@��þ 2@�c Þ þ ðH 2 þ 2@�H Þ�

þ 1

2
r2ð�� c Þ

�
�j
i þ @i@

jð�� c Þ

¼ ‘2P½ð�spþ �spe þ �spBÞ�j
i � ~�j

i

��j
i ðEÞ ��j

i ðBÞ�; (B7)

where �t ¼ ~r � ~vt. In analog terms the evolution equations
can be obtained in a different gauge either by performing
the appropriate gauge transformation on both sides of
Eqs. (B6) and (B7), or by using again the general form of
the Ricci (or Einstein) tensors reported in Appendix A. The
synchronous gauge equations can be obtained by positing
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Nð�Þ ¼ að�Þ;
�ijð ~x; �Þ ¼ a2ð�Þ½ð1þ 2�Þ�ij þ 2@i@jF�:

(B8)

In the case of the synchronous gauge condition the extrin-
sic curvature and

ffiffiffiffi
�

p
read

Kj
i ¼

1

a
½�H�j

i � @���
j
i � @i@

j@�F�;ffiffiffiffi
�

p ¼ a3ð1þ 3�þr2FÞ:
(B9)

Finally, not only can the evolution of the scalar modes be
readily obtained but also those for the vector and for the
tensor modes. For instance, from Eq. (A6), in the gauge

Nð�Þ ¼ að�Þ; �ij ¼ a2ð�Þ�ij;

Nið ~x; �Þ ¼ a2ð�ÞQið ~x; �Þ;
(B10)

the vector fluctuation of the Ricci tensor can be written

Rj
i ð ~x;�Þ¼ �Rj

i ð�Þþ�vR
j
i ð ~x;�Þ;

Rj
i ð�Þ¼� 1

a2
ð@�H þ2H 2Þ�j

i ;

�vR
j
i ð ~x;�Þ¼

1

2a2
f½@i@�Qjþ@j@�Qi�þ2H ½@iQjþ@jQi�g:

(B11)

In the bulk of the paper we do not dwell on the derivation of
the linearized results. It will, however, be understood that
they are easily obtainable from the general expressions
reported in Appendix A by going through the same steps
outlined in the specific examples sketched in this appendix.
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