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Using a new parallel computing technique, we have run the largest cosmic string simulations ever

performed. Our results confirm the existence of a long transient period where a nonscaling distribution of

small loops is produced at lengths depending on the initial correlation scale. As time passes, this initial

population gives way to the true scaling regime, where loops of size approximately equal to one-twentieth

the horizon distance become a significant component. We observe similar behavior in matter and radiation

eras, as well as in flat space. In the matter era, the scaling population of large loops becomes the dominant

component; we expect this to eventually happen in the other eras as well.
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I. INTRODUCTION

The formation and evolution of field theoretic cosmic
strings has been extensively studied for the past 30 years
(see [1] and references therein). The idea [2] that super-
strings could be stretched to cosmological scales by the
expansion of the universe has recently [3–5] revived the
interest in cosmic string networks. The existence of a
cosmological network of strings may yield observational
signatures that can be detected with current or planned
experiments, giving us the opportunity to probe new
physics at tremendous energy scales. This has motivated
the study of many aspects of cosmic strings.

Early work on cosmic strings focused on the simple and
generic observational predictions arising from their kine-
matic gravitational effects, namely, searching for their
imprint on the cosmic microwave background via the
Kaiser-Stebbins effect [6], or by looking for the telltale
identical pair of images of an astrophysical object being
lensed by a cosmic string [7]. These effects are enhanced
by increasing the energy scale of the string, and can there-
fore be used to place an upper bound on the dimensionless
string tension G� [8–10]. Another observational signature
predicted by the evolution of a cosmic string network is the
existence of a stochastic background of gravitational waves
[11] emitted by the oscillating string loops which continu-
ally break off the network. This is an important effect since
it allows the loops to shrink and decay, preventing them
from becoming a dominant contribution to the energy
budget of our observable universe. Particular features of
the string evolution, such as cusps and kinks, create a
focused burst rather than stochastic gravitational wave
emission, and so allow much lighter strings to produce a
detectable intermittent signal [12]. Additionally, cosmic
strings can also produce other forms of radiation, either
due to the partial annihilation of the string itself in regions
of high curvature [13–16], or due to the their coupling to
some other nongravitational degree of freedom such as an
axion [17], a dilaton [18], or some other light field [19].
Radiation of this type has been studied in connection with

cosmic ray physics, where we can use the observational
bounds on these fluxes to place limits on the parameters of
the cosmic string models [20].
However, it is clearly necessary to understand the sta-

tistical properties of the cosmic string network in detail
before we can obtain robust predictions of observational
signatures. Characterizing the essential properties of the
network throughout its evolution has been approached in
several different ways. Early work on this subject studied
the properties of the network with analytical methods
[21–23]. The central thesis of this work was the approach
of the network to a scaling solution, whereby the strings
contribute a constant fraction of the energy density of the
universe. The existence of a scaling solution is paramount
to the viability of cosmic string models, since the network
would otherwise become the dominant fraction of energy
in the universe, in clear contradiction with observations.
After the initial impetus from the analytical description

of the scaling solution, people turned to numerical simu-
lation as a technique to compute the relevant parameters of
the string network. Several groups independently devel-
oped codes to evolve a network of Nambu-Goto equations
in an expanding universe [24–28]. Perhaps the most inter-
esting conclusion of all these papers was that there does
exist a scaling regime for long (‘‘infinite’’) strings, where
the average distance between the strings, dðtÞ, and the
coherence length, �ðtÞ, both scale in proportion to the
particle horizon distance, given by dhðtÞ ¼ a�, where �
is the conformal time and a the scale factor,

dðtÞ � �ðtÞ � dhðtÞ � t: (1)

In fact, although the codes were significantly different,
they appeared to be close to a quantitative agreement on
the parameters of the network.
Further analytical work has been done by several differ-

ent groups [29–31], but the necessity of large numerical
simulations in understanding the properties of the string
network over a large range of scales has always remained.
The constant improvement of computers and the introduc-
tion of new algorithms allowed for a second generation of
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numerical simulations [32–36] of much larger size.
Reference [33] studied the loop number density and loop
energy distribution and found an approach to scaling val-
ues of these quantities for loop sizes above a few thousands
of the horizon size. Then Refs. [35,36] studied the loop
production function and found an approach to scaling in
that function, but their results were not compatible with the
loop distribution found by [33].

References [9,10,14] simulated cosmic string loop net-
works using lattice field theory, but their results did not
agree with the Nambu-Goto simulations of other groups.
Instead, they found very significant emission directly from
long strings. Attempts by other groups to reproduce this
effect in field theory simulations [15,16] did not succeed.

One of the realizations which emerged from all these
efforts was that there are two different time scales associ-
ated with the approach of a network to scaling. The first
time scale parametrizes the way long strings in the network
reach a steady state with the correct macroscopic proper-
ties of the scaling solution, and a second, much longer time
scale is associated with the small-scale structure of the
network. In other words, the component of the network
produced in loops, as well as the short wavelength spec-
trum of perturbations on long strings, seem to approach
scaling at a slower rate. This makes their study much more
difficult in numerical simulations, where one is limited by
computational resources. This has motivated us to develop
a code based on new parallel simulation techniques [37]
which allows us to run simulations with dynamic range an
order of magnitude larger than those previously reported in
the literature. The results of these simulations will be
described in a series of papers. Here we focus on the
loop production function.

With a larger dynamic range, it becomes possible to
clearly distinguish behavior at two relevant length scales,
namely, the ‘‘smallest scales’’ (i.e., the simulation resolu-
tion, the gravitational backreaction scale, or in our case the
scale of initial conditions), and the scale set by the particle
horizon. There is an ongoing controversy as to which scale
is important in determining the typical size at which loops
are produced. Roughly speaking, the claims are that all
loops are produced at scales set by the particle horizon
[21,22], that all loops are produced at the smallest scales
[26–28], or that some mixture of both is produced [31,38].

Our results confirm those of Olum and Vanchurin [36],
and our new techniques enable us to study loop production
in much more detail and to much later times. We see a
significant fraction of loop production in a broad, scaling
peak reaching downward from about one-twentieth of the
horizon scale, along with an initially dominant but decreas-
ing population at the smallest scales. This is true in both the
matter and radiation eras, as well as in flat space. In the
matter era, the horizon-scale population becomes domi-
nant at late times. We expect this to happen as well in the
radiation and flat-space cases, but we are not currently able

to run long enough simulations to see whether such re-
gimes develop. There appear to be two different peaks in
the scaling spectrum of loops at significant fractions of the
horizon size.

II. SIMULATION TECHNIQUES

The first step of any cosmic string simulation is to
establish the initial distribution of strings. We have used
the procedure of Vachaspati and Vilenkin [39] to generate
the initial configuration of the network. This procedure
constructs a string from the square faces that it must pass
through. For each such face, we choose a random position
on that face equally distributed in a square filling the
central 20% of the face in each direction, and we connect
each position to the next by a straight string segment. For
each such segment, we then choose a velocity v in a
random direction perpendicular to the string with v2 evenly
distributed between 0 and 0.25. These random perturba-
tions mitigate the lattice nature of the initial conditions.
The algorithm for the subsequent evolution of Nambu-

Goto strings is based on that presented in [32], where the
strings are described by a collection of straight segments
linked together to form kinky long strings and loops. These
piecewise linear strings can be simulated exactly (up to
computational arithmetic error) in flat space [32]. In an
expanding background one can write the equations of
motion for the string in conformal coordinates so that the
causal structure of Minkowski space is preserved. The
resulting equations cannot be analytically solved, but
they can be well approximated by expanding the solution
to first order in the product of H, the expansion rate of the
universe, and the segment size being simulated [36]. This
approximation improves as the simulation progresses since
the Hubble distance grows relative to the size of the
segments.
The other important ingredient in this algorithm is the

intercommutation of string when two pieces of the string
world-sheet intersect. It is believed that most gauge theory
cosmic strings would intercommute with a probability P of
essentially unity. But this may not be true for fundamental
strings in a four-dimensional compactification, where the
probability of such a process is suppressed. In the present
paper wewill only explore the case P ¼ 1. Other cases will
be studied in subsequent publications.
The evolution of the string network continually produces

loops of all sizes. It is useful to distinguish between the
subhorizon ‘‘loops’’ and the superhorizon ‘‘long strings’’
which make up the rest of the network. In our periodic
space, all simulated strings are technically loops, and so we
classify them by defining loops to be those strings which
will never intersect any other string, including themselves.
Because of the nature of our evolution algorithm it would
be computationally intractable to evolve tiny loops, so we
must remove them at some point. Loops whose physical
size is much smaller than the interstring distance are likely
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to evolve without intersecting with any other string. In flat
space we expect small loops to fragment until eventually
all the string energy in the loop ends up in non-self-
intersecting trajectories. It is then safe to log and remove
those loops from the simulation, since they would not have
any effect on the network properties. In an expanding
universe the situation is complicated by the fact that loops
are affected by the cosmological friction, so a non-self-
intersecting loop could, in principle, be destabilized and
chop itself up, triggering a new stage of fragmentation. We
expect this effect to be negligible for any loop of size
significantly smaller than the Hubble distance. We have
checked that this is not an important effect by letting non-
self-intersecting loops oscillate a number of times before
being removed. The results do not show any significant
deviation in any of these cases.

One of the main goals of this project is to extend the
dynamic range of prior simulations performed using simi-
lar algorithms. Because of the fact that the simulations
exist in a periodic space, the dynamic range is limited by
the time it takes information to propagate across the box. A
possible solution to this problem was implemented in
[32,35] by periodically doubling the size of the box of
the simulation. Here we have chosen an alternative way to
extend the running time, by splitting the box into different
regions that are simulated by many different computers, in
other words using a parallel code. This allows us to faith-
fully simulate cosmic strings in a much bigger box, and
consequently to run to much later times. We developed, to
this end, a parallel Nambu-Goto string simulation using the
algorithm of [32,35,36] and reported on preliminary results
in [40]. This parallel method proved to be indeed superior
to the single processor codes, but it also had some ineffi-
ciencies associated with the very different work loads that
different processors encounter in a simulation of this kind.
At late times, some regions of the simulation volume will
have little or no string, while others will have a great deal.
In such a case, the power of parallel computing is greatly
diminished, since all the other processors must wait for the
one with the most simulation work to do. Faced with that
difficulty we have developed a new parallelization tech-
nique, whereby the spacetime volume is divided into small
4-volumes whose boundaries are lightlike, i.e. they have
only initial and final surfaces. This permits the individual
4-volumes to run independently of one another, imposing
only that each individual job must wait for those that
provide data for its initial surfaces. This new method is
particularly useful for our type of simulation, and it has
allowed us to increase the dynamic range by almost an
order of magnitude with respect to all previous cosmic
string simulations. A detailed account of this new tech-
nique and its comparison with conventional parallelization
methods is given in [37].

Our technique naturally gives rise to a periodic simula-
tion volume in the form of a rhombic dodecahedron with

opposite faces identified. A point and its images form a
face-centered cubic lattice. We will refer to the constant
comoving distance between a point and its closest images as
the size of the simulation volume,L. The comoving volume

being simulated is thus V ¼ L3=
ffiffiffi
2

p
. The face-centered

cubic lattice is close-packed, so the ratio of V to L3 is the
smallest possible. As shown in [36], the rate of information
propagation through the simulationvolume is about half the
speed of light, so in a box of size L, we can run a simulation
whose duration in conformal time is also L.
We have run simulations in flat space of size 2000 for a

conformal time duration1 2000 in units of the initial cell
size of the Vachaspati-Vilenkin algorithm. Such a simula-
tion contains at maximum about 14 billion linear pieces
of string simultaneously, and in the course of evolution
creates about one trillion segments and produces about
10 billion loops of string. If one counts the largest total
amount of data existing at one moment of simulation time,
we believe this ranks among the largest simulations of any
kind ever performed.
In the expanding universe we are not able to simulate as

large a volume. The reason is that as the universe expands,
the comoving length of linear pieces of string decreases
(i.e., they are not purely stretched with the expansion).
Thus, while the density of string in expanding cases is
not very different from the flat case at the same time, the
number of pieces of string to be simulated is much larger,
and so the simulation effort much greater.
In the case of the radiation era, this has limited us so far

to simulations of size 1500. In the matter era, the expansion
is much more rapid and the problem more severe; the
largest simulations we have so far run had size 500.
Once one has decided to create strings with a

Vachaspati-Vilenkin cell size of 1, one must choose a
conformal time �i for the start of the simulation. This
time determines the horizon distance, which will be used
to define scaling, and in the expanding universe it controls
the Hubble constant, which determines the rate of red-
shifting and stretching. We choose �i so that the initial
conditions correspond as closely as possible to the con-
ditions that one would expect (based on later stages in the
simulation) in a scaling solution at that time.
In the matter era, we found the best initial conformal

time to be 4.5. We can thus run until conformal time 504.5,
without contamination from the periodicity of the volume.
Our dynamic range, defined as the ratio of final to initial
conformal time, is thus 112. In the radiation era, we chose
initial time 6. We can thus run until conformal time 1506,
for dynamic range 251. In flat space, we chose initial time
4.0 and ran until time 2004, for a dynamic range of 501.
These dynamic ranges are much larger than those of any

previous simulation. The largest simulation before this was
done by our group [36] and claimed dynamic range 60 in

1We work throughout in units where the speed of light is 1.
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the matter era and 120 in the radiation era. However, that
claim was based on an artificial setting of the initial clock
to 2.0 and 1.0, respectively. The initial conditions in those
simulations were more appropriate for initial times of order
4.5 and 6.0, giving effective dynamic ranges 27 and 20.
Reference [33] used dynamic range 8 in matter and 17 in
radiation, and all other previous simulations were smaller.
A snapshot of a flat-space simulation is shown in Fig. 1.

III. SCALING NETWORK DYNAMICS

Suppose that the cosmic string network does evolve into
a scaling regime. Then we hope that simulations will show
an approach to this regime. What should we look for?

A. String density

First, let us consider scaling of the long string energy
density, which is the easiest to find. Let d denote the
average interstring distance of long strings, defined by

d ¼
ffiffiffiffiffiffiffi
�

�1

s
; (2)

where � is the tension of the string and �1 is the energy
density of the long string network. In a scaling regime we
expect this distance to be proportional to the horizon
distance dh ¼ a�, so that

� ¼ d

dh
(3)

is a constant.

B. Loops

Now let us turn to the distribution of loops. We charac-
terize loops by their energy �l, and we call l the length.
Some groups have concentrated on the loop density distri-
bution, which we will denote here as2

nðl; tÞ ¼ dN

dldV
(4)

so that nðl; tÞdl is number of loops in the network at
time t whose lengths lie between l and lþ dl. Others
concentrate on the density of loop production, which we
will denote

fðl; tÞ ¼ dN

dtdldV
(5)

so that fðl; tÞdtdl is the number of loops produced per
unit volume with l 2 ½l; lþ dl� at times t 2 ½t; tþ dt�.
To put these functions in terms of scaling variables, we

trade the loop length l for a length in scaling units,
x ¼ l=dh. Similarly, we will use a scaling length interval
dx and a scaling spatial volume d3h or spacetime volume d4h.
Thus we define the dimensionless functions

nðxÞ ¼ d4hnðl; tÞ (6)

and

fðxÞ ¼ d5hfðl; tÞ: (7)

We write the left-hand sides as functions of x, since in a
scaling regime these functions will depend only on x, not
on time.

C. Energy balance

The production of loops and scaling of long strings are
related. If we consider a long piece of string whose length
is l, the expansion of the universe will stretch and redshift it
according to the relation [22]

dl

dt
¼ Hlð1� 2hv21iÞ; (8)

FIG. 1 (color online). A picture of the string network at time
500 in a flat-space simulation of size 500. Long strings (here, any
loop longer than the horizon size) are shown in light gray and
loops are colored (shaded) according to their length, defined as
total energy divided by �. Non-self-intersecting loops smaller
than length 10 have been removed. The edges of the simulation
volume are shown as black straight lines. The rhombic dodeca-
hedron is seen from one of the order-4 vertices, so that its
projection looks square. The side of the square is the horizon
distance, 500 units. The largest loop, shown in dark green (dark
gray) on the far right above the centerline, has length about 148.
It appears much smaller because it is wrapped into a closed loop,
because it has depth that cannot be seen, because it is wiggly, and
because its length includes its kinetic energy. Loops of this size
are rarely seen in the loop production function, so this loop will
probably fragment or rejoin the long string network.

2But note that [35,36] used nðl; tÞ to denote the production
density, which we call fðl; tÞ here.
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where hv21i is the average squared velocity of the long
strings. The energy density in long strings then obeys the
Boltzmann equation

d�1
dt

¼ �2Hð1þ hv21iÞ�1 ��
Z 1

0
lfðl; tÞdl: (9)

Now consider a cosmology with scale factor a� t�, so that
� is equal to 0 in flat spacetime, 1=2 for radiation domi-
nation, and 2=3 for matter domination. The horizon
distance is then t=ð1� �Þ. In a scaling regime �1 ¼
�=ð�2d2hÞ, so we can rewrite Eq. (9) asZ 1

0
lfðl; tÞdl ¼ 2

�2d3h

�
1� �

1� �
hv21i

�
: (10)

In scaling variables, Eq. (10) becomesZ 1

0
xfðxÞdx ¼ 2

�2

�
1� �

1� �
hv21i

�
: (11)

A consequence of Eq. (11) is that any scaling loop
production function fðxÞ must be normalizable, in the
sense that the left-hand side of Eq. (11) converges.

Below, we will measure � and hv21i in our simulations
and use them to predict the left-hand side of Eq. (11), as a
check on the consistency of our results.

D. Integrated loop production

The loop density distribution arises from all prior pro-
duction of loops. We will ignore gravitational damping,
which is not included in our simulation. We also, at first,
ignore the decrease in the energy of loops from redshifting
of their center-of-mass velocities. In this approximation,
subhorizon loops retain their physical length l, and the only
change in the distribution of loops in a comoving volume is
due to the production of new loops from the long string
network. Thus

d

dt
½a3ðtÞnðl; tÞ� ¼ a3ðtÞfðl; tÞ: (12)

Accordingly we can find nðl; tÞ from fðl; tÞ by integration,

nðl;tÞ¼ 1

a3ðtÞ
Z t

0
a3ðt0Þfðl;t0Þdt0 ¼

Z t

0

�
t0

t

�
3�
fðl;t0Þdt0; (13)

since aðtÞ � t�.
We would like to write this in terms of the scaling

functions nðxÞ ¼ d4hðtÞnðl; tÞ and fðxÞ ¼ d5hðtÞfðl; tÞ. Let
us change the integration variable from t0, the creation
time of the loop, to x0 ¼ l=dhðt0Þ, the scaling length that
it had when it formed. We similarly exchange t0=t for x=x0
to get

nðxÞ ¼ ð1� �Þx3��4
Z 1

x
x03�3�fðx0Þdx0: (14)

Since � is at most 2=3, 3� 3� is at least 1. Since fðxÞmust
be normalizable [in the sense of Eq. (11)], the integral on
the right-hand side of Eq. (14) converges even if x is taken

to 0. Thus for loops sufficiently below the horizon size
(x � 1), Eq. (14) is insensitive to the lower limit, and
we get a power-law prediction [1] for the loop density
distribution,

nðxÞ ¼ !�x
3��4; (15)

with

!� ¼ ð1� �Þ
Z 1

0
x3�3�fðxÞdx: (16)

Now let us consider the effect of the center-of-mass
velocity of emitted loops on Eq. (14). We will continue
to neglect gravitational damping. As we will show below,
typical loop velocities increase with decreasing x, and tiny
loops are usually emitted with quite large boosts. For
simplicity, we will assume that the dominant contribution
to Eq. (14) comes from a single x1 corresponding to a
typical loop center-of-mass velocity v1. For x near x1,
the effects are somewhat complicated [41], and we will
not attempt to model them here, but for x � x1 matters are
simpler. In this case, the most important loops have been
redshifted essentially to rest, and thus their energy has

decreased by a factor �1 ¼ ð1� v2
1Þ�1=2.

Thus we can update our calculation by taking loops with
length l to have been formed with length l0 ¼ �1l.
Equation (13) becomes

nðl; tÞ ¼ �1

Z t

0

t03�

t3�
fðl0; t0Þdt0: (17)

The factor of �1 arises because nðl; tÞ is the loop density
per unit l, while fðl0; t0Þ is the loop production density per
unit l0 and dl0=dl ¼ �1.
The relationship between x0 and t0 is now x0 ¼

l0=dhðt0Þ ¼ �1l=dhðt0Þ so x=x0 ¼ t0=ð�1tÞ, and we find
once again that for x � x1 we have Eq. (15), but with

!� ¼ ð1� �Þ�3��3
1

Z 1

0
x3�3�fðxÞdx: (18)

Equation (15) tells us that the scaling loop density
distribution nðxÞ has a universal form (for small x) that
does not depend on the shape of fðxÞ, except in an overall
factor. The only way that a simulation could find a function
nðl; tÞ whose l � t behavior does not have the form
d�4
h nðxÞ with nðxÞ given by Eq. (15) is for the loop pro-

duction in that simulation to not be in a scaling regime.
This conclusion applies even though real cosmic strings,

unlike those in usual simulations, would be affected by
gravitational damping. It does not make sense to claim that
simulations indicate a nonnormalizable fðxÞ, but that fðxÞ
will be cut off for low x by gravitational damping. If
simulations indicate a scaling function fðxÞ, then if one
did a very long simulation, one should observe fðxÞ ap-
proaching that scaling form. In order to approach a non-
normalizable fðxÞ, the fraction of the energy of the string
network emitted into loops in a Hubble time in the simu-
lation would have to grow without bound. Such a situation
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could never be found in a simulation that conserved energy,
so such a result does not make sense.

The same argument applies to analytic claims about loop
production functions. It is not reasonable to predict a non-
normalizable fðxÞ on the basis of analytic reasoning that
ignores gravitational backreaction, and then claim that
such a thing is made acceptable by the inclusion of gravity.
What could such analysis predict about strings with infini-
tesimal G�, so that gravity could be ignored? Some con-
sistent answer should emerge, which means that the
nonnormalizable growth of fðxÞ would have to be cut off
at some small x. One must then analyze whether this cutoff
is at a smaller or larger scale than that produced by gravi-
tational damping, which would depend on the value of G�
under consideration.

IV. RESULTS: LONG STRING DENSITY

We now present results from our simulations, beginning
with the scaling of the long string density. Long strings are
commonly defined as those whose energy is above some
threshold. Here, however, we distinguish the long strings
from the loops based on interactions. If a loop undergoes
three oscillations3 without intersecting itself or another
string, we retroactively consider it to be a loop beginning
at the time when it was formed. Everything else belongs to
the long string network.

With this definition, we compute the parameter
� ¼ d=dh, with d given by Eq. (2). For a scaling network
we expect � to achieve a constant value. In Fig. 2 we plot �
as a function of conformal time �. The top group of lines
shows 13 runs of size 500 in the matter era, the middle
group six runs of size 1500 in the radiation era, and the
bottom group four runs of size 2000 in flat spacetime. In all
cases, the scaling of long strings is well established early in
the simulation. We note that in the flat case, the scaling
results entirely from loop production, as there is no Hubble
friction present.

Nevertheless, as seen in this plot against logarithmic
time, the interstring distance is slowly changing, even at
end of the simulations, so the final value cannot be pre-
cisely determined. At late times, there is also quite a lot of
noise because of fluctuations in the actual long loops
produced.

We average the interstring distance over all runs in each
era at the end of the simulation, and show the results in
Table I, in comparison with previous simulations. In gen-
eral we see good agreement with other recent results. The
exception is the field theory simulations [10] which do not
seem to agree with any Nambu-Goto simulation, and the

flat-space simulations of Ref. [34], which gave an inter-
string distance twice as large as ours.
The agreement with other simulations whose dynamic

range was significantly smaller than ours supports the
conclusion that the long string component of the network
finds its way to a scaling solution on a relatively short time
scale, even if the other properties of the network have not
relaxed to their scaling solutions yet. We will comment on
this effect again when we discuss the scaling of loops.

V. RESULTS: LOOP PRODUCTION

In this section we study the loop production function
fðxÞ and the loop distribution function nðxÞ, as defined
above. We consider a loop to be produced when it first

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 10  100  1000

γ

η

FIG. 2 (color online). The ratio of the interstring distance to
the horizon size. The top group of lines is for the matter era,
the middle group the radiation era, and the bottom group flat
spacetime.

TABLE I. Values of �, the ratio of the interstring distance to
the horizon size, from present and past simulations.
Reference [10] used lattice field theory and included all string
in �1. All other simulations used Nambu-Goto, and all but the
present paper included loops larger than some scaling threshold
in �1. Here we include all loops which will fragment (or rejoin)
in �1. This is the correct definition for the calculation of energy
conservation in Sec. VD below. Including only loops larger than
the horizon size would increase � by no more than 3%.

First author and reference Flat Radiation Matter

Albrecht [25] 0.07 0.12

Bennett [27] 0.14 0.18

Allen [28] 0.13

Vanchurin [32] 0.096

Ringeval [33] 0.162 0.188

Martins [34] 0.23 0.13 0.20

Bevis [10] 0.255 0.285

This paper 0.12 0.15 0.17

3This is the minimum number of oscillations before our
algorithm can confirm that the trajectory is non-self-intersecting.
Changing this to a larger number does not significantly affect the
results.
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enters a nonintersecting trajectory. Loops that fragment or
that rejoin the long string network are not counted.

The distribution fðxÞdx gives the spectrum of loop
production, which is not necessarily integrable. Instead
we seek the distribution of power going into loops
xfðxÞdx. Because of the wide range of loop sizes covered
by our simulations, it is illuminating to plot this power
density in logarithmic units: x2fðxÞd lnx. In order to inter-
pret the area under the curves as the total power produced
in loops, we plot x2fðxÞ on linear-log axes in the figures
below.

A. Matter era

We have performed 13 simulations on a comoving box
of 500 initial correlation lengths each, in a matter era
background. The initial conformal time was set to
�i ¼ 4:5, and we ran until �f ¼ 504:5. Following the

algorithm described above, we removed the non-self-
intersecting loops from the simulation, keeping record of
their size and time of production. Using this information,
we can reconstruct the loop distribution nðxÞ and the loop
production function fðxÞ as time progresses to determine if
either approaches a scaling regime.

We first turn our attention to the loop production func-
tion. We plot in Fig. 3 the data for fðxÞ. The error bars show
1 standard deviation from the 13 successive runs.

The form of the curves in Fig. 3 is similar to that of [36],
but because our simulation is larger than that of [36] we
can follow the evolution of fðxÞ to much later times.

Notice these curves have a slightly increasing area to-
ward later times. This suggests the interstring distance d
began at a value larger than its scaling value, and the
initially lower power going into loops allowed it to

decrease toward the scaling value. This is confirmed in
Fig. 2. Why did we not choose our initial time so that the
initial � ¼ d=dh was equal to the scaling value? The
reason is that we found it more important to have the height
of the small loop production peak start out unchanging in
time, so that we could be sure that the decrease at later
times (shown in Fig. 3) was not an artifact of the initial
conditions. One cannot make both choices simultaneously
because the structures on strings in the initial conditions
are not very close to the scaling regime.
We can get a better look at the relative shapes of the

curves in Fig. 3 by normalizing each curve to unity. This is
done in Fig. 4, which now gives the relative flow of power
into loops of different sizes. We see that the normalized
fðxÞ appears to converge more rapidly to a final scaling
form.
We can identify three different peaks in the loop pro-

duction. The first is sharply peaked at x � 0:05. The sec-
ond is centered approximately an order of magnitude
smaller in x, and is much wider. The third peak is clearly
moving toward smaller x, representing the transient (non-
scaling) population of loops seeded by the initial condi-
tions. The nonscaling peak is decreasing in area relative to
the scaling portion of the distribution, and is subdominant
after a conformal time of order 100. At the farthest reach of
our simulation, the nonscaling power represents of order
25% of the total loop power, and we expect it to continue to
decline in larger simulations.
It is clear from the time dependence of fðxÞ that the

small-scale structure and loop production has not com-
pletely reached scaling, but we consider the late-time
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FIG. 3 (color online). The spectrum of loop production power
x2fðxÞ in the matter era.
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FIG. 4 (color online). Normalized x2fðxÞ during the matter
era. While perhaps 70% of the power goes into initial-conditions
loops at conformal time 50.0, less than 25% does so by confor-
mal time 500.0.
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behavior of our data to be evidence that a time-independent
loop production function exists without the aid of an addi-
tional smoothing mechanism such as gravitational radia-
tion. While it is possible that the nonscaling third peak will
continue to evolve toward smaller x while maintaining a
constant (but certainly subdominant) area, we do not
expect this to be the case.

The other two peaks appear to scale: they do not move
toward smaller x at later times. We do not know why there
are two such peaks, but one speculation is that one peak
represents loops which resulted by chance from two or
more spacelike-separated intercommutations, while the
other represents those that were formed from features on
a long string by a single reconnection. Another possibility
is that the peak with smaller x represents the results of
fragmentation after loops are formed, while the peak with
larger x represents those which happen to form in non-self-
intersecting trajectories.

To study the center-of-mass velocities of loops, we

define p ¼ v=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
, the loop momentum per unit rest

mass, and let fðx; pÞdxdp be the scaling production rate of
loops with x 2 ½x; xþ dx� and p 2 ½p; pþ dp�. To show
xfðx; pÞdxdp we plot x2pfðx; pÞ on logarithmic axes in
Fig. 5. As expected, small loops at late times are mostly
formed with ultrarelativistic speeds.

We now plot in Fig. 6 the number density distribution
nðxÞdx, which is represented by xnðxÞ on logarithmic axes.
We see that the solution is in good agreement with the
results of Eq. (15), which for the matter era predict a
power-law behavior of the form x�1. This is different
from the result obtained in [33], where the power law
was found to be of the form x�1:4. As we showed in
Sec. III D above, the scaling form of xnðxÞ could not go
as x�1:4 throughout the range of x where loops are pro-
duced. Either there must be significant loop production in
the simulations of [33] at scales below where the x�1:4 fit

applies or their loop distribution must not have reached its
final scaling form.

B. Radiation era

Figure 7 shows less dramatic, but similar, scaling be-
havior in the radiation era, where we performed six simu-
lations of size L ¼ 1500 comoving initial correlation
lengths. The results are again qualitatively similar to those
of [36]. Notice that the total power going into loops is
much higher for radiation domination than for matter.
The approach to loop scaling is much slower (in confor-

mal time) than occurs in our simulations of the matter era.
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FIG. 5. Contour plot showing the distribution of loop power in
the matter era, for conformal times from 283.1 to 504.5. Here

p ¼ v=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2
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FIG. 6 (color online). The number density distribution of loops
xnðxÞ during the matter era.
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Nevertheless, it appears that a large but shrinking popula-
tion of transient loops at the initial-conditions scale
is making way for a scaling population sharply peaked at
x ¼ 0:05, with a nearly flat distribution extending over
many orders of magnitude, perhaps peaked an order of
magnitude smaller in x.

We can understand the slower approach to scaling as
follows. During radiation domination, the increase of scale
factor with conformal time is much lower, and so strings
are being stretched and thus smoothed more slowly, caus-
ing small-scale structure to persist for longer. Furthermore,
the redshifting of string energy is less efficient than during
the matter era, and therefore the network will need to make
more use of loop production in order to reach a scaling
solution, so the overall production rate is much higher.

We cannot predict the scaling form of fðxÞ as well as we
could for the matter era, since a dominant fraction of power
is in the transient regime. But the late-time radiation era
power looks similar to that in the matter era at a much
earlier time. We expect that the radiation era evolution
should be similar to that in the matter era, with the scaling
features eventually dominating, and fðxÞ eventually ap-
proaching a time-independent form, but the approach to
scaling will last much longer.

The velocity dependence of the loop production function
can be seen in Fig. 8.

We show in Fig. 9 our data set nðxÞ binned logarithmi-
cally from the simulation. The data obtained this way agree
quite well with the analytical results presented earlier for

the radiation era, where xnðxÞ ¼ !1=2x
�3=2. This should

not be misinterpreted as true scaling, since we know that a
dominant portion of the power in loops is in a transient, not
a scaling population.

Roughly speaking, there are three possibilities which
can occur at very late times (assuming �r is static). The
nonscaling peak could smear itself out as it continues to
move toward smaller x while creating an extremely broad

plateau. It could conceivably move off the plateau and
continue indefinitely toward smaller x while maintaining
a constant area. It could also decline while the peak at
x ¼ 0:05 grows, and not leave a tremendous plateau. We
conjecture the last to be the case. It should be pointed out
that the first two cases are essentially identical in terms of
the prediction for !1=2, but that third case will cause a

relative increase by up to an order of magnitude. It is this
uncertainty which prevents us from claiming that the loop
density shown in Fig. 9 is in the final scaling regime. This
illustrates why the spectrum of loop power fðxÞ is a more
precise indicator of scaling than nðxÞ, the spectrum of
existing loops.

C. Flat space

We present in Fig. 10 the results of our four simulations
performed in a box of size 2000. Because redshifting is
nonexistent, all smoothing of the strings comes from loop
production. This massive loop production clearly smooths
the strings enough for a scaling peak at x � 0:1 to appear,
although it remains small even until conformal time 2000.
The results in Fig. 10 are qualitatively similar to those of

[35], but the ratio of the scaling to the nonscaling peak
height in [35] was significantly larger. There are several
differences between the present simulation and that of [35],
which make a direct comparison difficult. Reference [35]
achieved box size 800 by a technique of successive dou-
blings of the box size [32], whereas we simulate a box of
size 2000 directly. The box-doubling technique required
intercommutation probability P ¼ 0:5, whereas we use
P ¼ 1. We run only for an interval of conformal time equal
to the box size L, whereas [35] ran significantly beyond
conformal time 800. Finally, [35] used somewhat smoother
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FIG. 8. Contour plot showing the distribution of loop power in
the radiation era, for conformal times from 475 to 1006. Here

p ¼ v=
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initial conditions in which a point was interpolated be-
tween each pair of successive Vachaspati-Vilenkin faces,
whereas we draw a straight line between those points.
Smoother initial conditions may have led to a lower peak
at the initial-condition scale. Note also that [35,36] show
x2fðxÞ on a logarithmic scale, whereas the vertical axis in
Fig. 10 is linear.

Perhaps the most important features of Fig. 10 are the
turnaround of the transient peak and the existence of a
scaling peak. After a time � � 150, the amplitude of the
transient peak begins to decrease. Following the arguments
presented above, we again expect that this decrease will
continue, leading to a loop production function consisting
of a time-independent distribution peaked at x � 0:1.

D. Energy balance check

Having measured values for � and hv21i directly from
the simulations we can now use Eq. (11) to predict the total
power emitted by the long string network in the form of
loops, P Prediction, and compare it with the direct computa-
tion of this power from the integral of the loop production
function, namely,

P Simulation ¼
Z 1

0
xfðxÞdx: (19)

We show in Table II the comparison of these quantities
for the matter, radiation, and flat eras. We see that the
agreement between the predicted result and the numeri-
cally found value is within the statistical noise in all cases.
We consider this is an important check for our simulations
since it serves as a nontrivial test of our code and
algorithms.

VI. CONCLUSIONS

We have developed a new parallel computing technique
[37] that has allowed us to run the largest cosmic string
simulations ever performed, reaching an increase in dy-
namic range of roughly an order of magnitude with respect
to previous studies. The results of our simulations indicate
a much slower approach to scaling for loops than for the
long string contribution to the network. This clearly shows
the need to push the dynamic range of the simulation to its
largest possible extent in order to prevent contamination by
transient states.
How is it possible for the interstring distance to be quite

close to the final scaling value at early times, while the loop
production function is still very far from scaling? Surely an
important part (in flat space, the only part) of the loss of
energy from the long string network is due to the produc-
tion of loops, so if the loop production mechanism is not in
a scaling regime, why does the energy loss rate scale?
The explanation is presumably that described by

Bouchet [42]. The loops are produced by a two-step pro-
cess. The first step is the intercommutation of infinite
strings, which maintains the interstring distance by the
usual feedback mechanism in which an increase in the
string network density leads to more intercommutations.
The second step is the formation of loops triggered by or
made up of the large kinks formed in the intercommuta-
tions. It controls how the removed string ends up in loops
of different sizes. Thus the first step can be scaling long
before the second.
Our simulations confirm the results of [35,36]: There is

an initially dominant transient feature in the loop produc-
tion function which very slowly subsides to reveal a sig-
nificant fraction of loops produced in a scaling regime. In
the matter era, we find this population dominates over
nonscaling loop production. Because this does not occur
until extremely late times, we do not believe that prior
claims of having found the final form of loop scaling in
numerical simulations are correct.
In light of our results, we expect that the final loop

production function will eventually be dominated by a
broad peak of loop sizes proportional to the horizon size
but ranging downward from about a twentieth of that size.
We achieve this to good accuracy only in the matter era,
where approximately 75% of loop power has achieved
scaling by a conformal time of 500. This will clearly
have an impact on the observational signatures of string
networks. We will report on this in future publications.
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FIG. 10 (color online). The loop production power x2fðxÞ in
flat spacetime.

TABLE II. Predictions from energy balance.

� hv21i P Prediction P Simulation

Matter 0.17 0.35 21 19

Radiation 0.15 0.40 53 51

Flat 0.12 0.45 139 136
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APPENDIX A: INFINITELY DIFFICULT
COSMIC STRING LOOPS

We have identified some new features of Nambu-Goto
cosmic strings which are impractical to faithfully simulate.
One of these features can be called a ‘‘skipping stone.’’ It
occurs in particular cases when a network contains a loop
which to good approximation is piecewise linear with five
or six kinks, and which collides with a long straight seg-
ment of string. The collision may occur in such a way as to
break off a loop again immediately afterward, one with less
energy but precisely the same shape.

The problem is that the smaller loop will then repeat this
process, skipping off the long string again and again, losing
energy each time, but never changing shape. Just as a
skipping stone leaves behind a geometric series of ripples,
this loop will perform (in the Nambu-Goto approximation)
an infinite number of intercommutations, leaving behind a
geometric series of kinks on the string.

Such a physical process represents a nightmare for a
numerical simulation which has no minimum resolution,
since each of these ripples will be recorded and evolved.

To avoid the tremendous computational resources re-
quired to simulate these rare skipping stones all the way

down to the minimum size set by the floating point reso-
lution, we have intentionally failed to perform a certain,
very small number of intercommutations. These avoided
intercommutations are chosen to only include the collision
of a disjoint loop with another string, and so never prevent
the formation of a loop. Furthermore, the avoided inter-
commutation must occur within a very short distance of a
very large number of kinks, i.e., only after the stone has
skipped at least 50 times do we allow it to pass through the
surface of the water. The fraction of intercommutations we
ignore is less than 0.2%.
Although these features occur with a varying degree of

severity, and rarely plague small simulations, in a simula-
tion of size 2000 they are virtually guaranteed to occur at
least once with enough alignment so as to bog down one
computer for literally days as it attempts to evolve through
an amount of simulation 4-volume which normally takes a
few seconds.
If cosmic strings exist, we expect that ‘‘infinite repeti-

tion’’ phenomena such as we discuss here occur in the real
universe. Real cosmic strings would not have exactly
straight segments, but this is of little consequence. If an
approximation of the skipping stone phenomenon began,
each successive iteration would involve shorter pieces of
the original strings, which would thus be closer to straight.
Of more importance is that the kinks separating the straight
segments would not be infinitely sharp. Some kinks appear
anew each cycle, but some remain from the original shape
of the loop, and these would have been smoothed by
gravitational backreaction. Thus the gravitational damping
scale would set a lower bound on the size of self-similar
loops that could be produced. Since the number of detach-
ments and rejoinings grows only logarithmically with the
ratio of the loop size to the curvature radius at the kink, and
since the entire phenomenon is quite rare, we do not expect
it to have any observable consequences.
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