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For the Lagrangian L ¼ G lnG where G is the Gauss-Bonnet curvature scalar we deduce the field

equation and solve it in closed form for 3-flat Friedmann models using a state-finder parametrization.

Further we show that among all Lagrangians FðGÞ this L is the only one not having the formGr with a real

constant r but possessing a scale-invariant field equation. This turns out to be one of its analogies to fðRÞ
theories in two-dimensional space-time. In the appendix, we systematically list several formulas for the

decomposition of the Riemann tensor in arbitrary dimensions n, which are applied in the main deduction

for n ¼ 4.
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I. INTRODUCTION

Fourth-order gravity has been a serious alternative to
general relativity since 1918 when H. Weyl (see [1]) was
guided by the idea of the scale invariance of the action
which required an R2-term in its integrand instead of the
Einstein-Hilbert action integrand R. In fact, the integralR
Rn ffiffiffiffiffiffiffi�g

p
dkx in k-dimensional space-time is scale-

invariant just in the case k ¼ 2n, leading to n ¼ 2 for the
usual space-time dimension k ¼ 4. For details see e.g. the
reviews [2–5], and the books [6,7]. For a broader view to
this topic, and also on the growth of (quantum) perturba-
tions to today’s observed large-scale structures by infla-
tion; see the references cited in Refs. [2–7].

Since 1947 it became clearer that the cosmological
evolution can be better modeled if both the R and R2 terms
belong to the action; see C. Gregory [8]. In the 1980s, the
inflationary cosmology was related to fourth-order gravity
by Starobinsky [9], and this paper initiated several follow-
up papers, e.g. [10,11]; generalizations by inclusion of R3

terms and later by a general fðRÞ have been worked out e.g.
in [12,13].

In 1921, R. Bach [14] (see [15] for details) initiated a
detailed investigation of the conformally invariant field
equations following from the Lagrangian CijklC

ijkl. In

1977 it was shown, that a theory with a Lagrangian of the
form

�þ Rþ �R2 þ �CijklC
ijkl; (1.1)

where units are chosen that light velocity equals 1 and
Newton’s constant equals ð16�Þ�1, can be renormalized;
see K. Stelle [16].

In this context it is often mentioned that the addition of a
multiple of the Gauss-Bonnet term (see also [17,18])

G ¼ RijklR
ijkl � 4RijR

ij þ R2 (1.2)

to a Lagrangian like (1.1) does not alter the field equations,
but it leads to a surface term which may become essential

in the quantization. The relation to topology is as follows:
the field equations come out by applying continuous de-
formations of the metric, but

R
G

ffiffiffiffiffiffiffi�g
p

d4x is a topological

invariant; see [19–22]. Lanczos deduced only the four-
dimensional case, whereas Lovelock generalized to arbi-
trary dimensions. His sequence Ln starts with L1 ¼ R,
L2 ¼ G, and each Ln leads to a topological invariant in
the 2n-dimensional space or space-time.
Recently, a lot of papers appeared which contain the

Gauss-Bonnet term in the action. To circumvent the vanish-
ing of its variational derivative, essentially three ways have
been given: models in dimension larger than 4 (see e.g.
[23–28]), models where G is multiplied by a scalar � (see
[29], [30]), and models where FðGÞ instead of G is used
in the Lagrangian with a suitably chosen nonlinear function
F (see e.g. [31]). Applications of theorieswithGauss-Bonnet
term to cosmology can also be found in [32–44].

II. STATE-FINDER PARAMETRIZATION

The metric of a 3-flat Friedmann model with synchro-
nized time coordinate t reads

ds2¼dt2�a2ðtÞðdx2þdy2þdz2Þ; aðtÞ>0: (2.1)

We assume that the Taylor development of aðtÞ exists, the
dot in Eq. (2.2) denotes d=dt, and the Hubble parameter h
is defined as usual via

hðtÞ ¼ _a

a
¼ _�; � ¼ lna: (2.2)

In what follows, we always exclude a constant function
aðtÞ as it represents the trivial Minkowski space-time so-
lution. So, we restrict to functions aðtÞwhich have hðtÞ ¼ 0
at isolated moments of time only; at those moments, our
exact solutions to be deduced below have to be matched
together.
A time-inversion leads to a change of the sign of h, so we

may assume in the following that always hðtÞ> 0. Under
these circumstances we define for any natural number
n � 2*hjschmi@rz.uni-potsdam.de
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zn ¼ aðnÞan�1

_an
; aðnÞ ¼ dna

dtn
: (2.3)

The expression zn is, up to a constant factor, uniquely
determined by the conditions that it is proportional to the
n-th time derivative of a with proportionality factor con-
taining a and _a only, is time-reparametrization invariant,
and is scale-invariant. For obvious reasons, it proves useful
to define also z0 ¼ z1 ¼ 1.

Another but equivalent method to define the parameters

zn goes as follows: it is the only product of a
ðnÞ with powers

of a and _awhich is dimensionless in both interpretations of
metric (2.1). In the first interpretation of (2.1), a is a
dimensionless quantity; dimensions are encoded in t, x,
y, and z. In the second interpretation of (2.1), x, y, and z are
dimensionless quantities; dimensions are encoded in t and
a; t is being measured in seconds.

These parameters zn are especially useful if one wants to
solve a scale-invariant field equation as we are going to do
below. As usually done, we define a field equation to be
scale-invariant if for any of its solutions gij and any real

constant c, also the homothetically related metric e2cgij
represents a solution.

Our parameters zn are related to the usual notation (see
[45–49]), as follows:

z2 ¼ €aa

_a2
¼ �q; z3 ¼ j; z4 ¼ �k: (2.4)

Here, q is the deceleration parameter, j the jerk parameter,
and k the kerk parameter. The notion state-finder parameter
refers to the pair ðj; sÞ, where s is defined for q � 1=2 via

s ¼ j� 1

3ðq� 1=2Þ : (2.5)

Next, we give some relations between the parameters

zn and the Hubble parameter h. Solving Eq. (2.3) for aðnÞ
we get

aðnÞ ¼ zn _a
n

an�1
: (2.6)

The temporal derivative of Eq. (2.6) has the same left-hand
side as Eq. (2.6) with n replaced by nþ 1. Equating the
related right-hand sides, we get

znþ1 ¼ _zn=hþ znðnz2 þ 1� nÞ: (2.7)

From Eqs. (2.2) and (2.4) we easily deduce z2 dependent
on h,

z2 ¼ �q ¼ 1� d

dt

�
1

h

�
¼ 1þ _h=h2: (2.8)

And for n � 3 we can iteratively deduce zn with Eq. (2.7),
the next two terms being

z3 ¼ j ¼ _z2
h
þ z2ð2z2 � 1Þ ¼ 1þ 3 _h=h2 þ €h=h3 (2.9)

and

z4 ¼ �k ¼ 1þ 6 _h

h2
þ 4 €h

h3
þ 3 _h2

h4
þ 1

h4
d3h

dt3
:

So we get the relation to the other set of dimensionless
constants (see Eq. (3.12) of [2])

"p ¼ dph

dtp
� h�p�1: (2.10)

This leads to z1 ¼ "0 ¼ 1, z2 ¼ 1þ "1, and z3 ¼
1þ 3"1 þ "2.
If we take the logarithmic cosmic scale factor � [see

Eq. (2.2)] as new time coordinate we can rewrite
Eq. (2.7) as

znþ1 ¼ dzn
d�

þ znðnz2 þ 1� nÞ: (2.11)

After some reformulation we also get as metric

ds2 ¼ d�2

hð�Þ2 � e2�ðdx2 þ dy2 þ dz2Þ (2.12)

with the scale-invariant parameters being

q ¼ �1� 1

h
� dh
d�

; (2.13)

from Eq. (2.8), and from Eqs. (2.9) and (2.10)

j ¼ 2q2 þ q� dq

d�
(2.14)

and

k ¼ 3jqþ 2j� dj

d�
: (2.15)

We will apply these formulas in Sec. IV.

III. GAUSS-BONNET LAGRANGIAN

For two-dimensional space-times, Lagrangians of the
type fðRÞ have been discussed e.g. in [50–53]. In [50],
the Lagrangian

fðRÞ ¼ Rkþ1 (3.1)

was shown to lead to nontrivial classical results even in the
limit k ! 0. In [52], this limit was shown to produce the
same field equation as the Lagrangian

fðRÞ ¼ R � lnR: (3.2)

This property is related to the fact that
R
R

ffiffiffi
g

p
d2x is a

topological invariant related to the genus of the space.
Similarly, in [53], the integrand R was kept constant but

instead the dimension of space-time was formally defined
as 2þ �, and the limit � ! 0 was discussed.
We now want to transfer this idea to the set of four-

dimensional space-times. To this end we consider a general
function FðGÞ with G from Eq. (1.2) as integrand of the
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action. The full field equations are given e.g. in Eq. (5) of
[35] using the notation FG ¼ dFðGÞ=dG,

0 ¼ 1

2
gijFðGÞ � 2FGRR

ij þ 4FGR
i
kR

kj � 2FGR
iklmRj

klm

� 4FGR
ikljRkl þ 2RF;ij

G � 2gijRhFG � 4RikF;j
G;k

� 4RjkF;i
G;k þ 4RijhFG þ 4gijRklFG;kl � 4RikjlFG;kl:

(3.3)

The integral IG ¼ R
G

ffiffiffiffiffiffiffi�g
p

d4x is a topological invariant

related to the Euler characteristic. Therefore, the function
FðGÞ ¼ G leads to the field equation reading 0 ¼ 0 trivi-
ally fulfilled by all metrics gij, i.e., every space-time

represents a stationary point of the action IG.
Next, we consider the action

I ¼
Z

FðGÞ ffiffiffiffiffiffiffi�g
p

d4x (3.4)

and ask for its properties if a scale transformation is
applied to the metric. More exactly: What happens with I
in Eq. (3.4) if we replace gij by its homothetically equiva-

lent metric e2�gij, where � is an arbitrary constant? If I

does not change at all by this transformation, then we call I
scale-invariant. G goes over to e�4�G by this transforma-
tion and so, obviously, only FðGÞ ¼ c2 � G with a constant
c2 leads to a scale-invariant action I.

A less trivial question is the following one: Under which
conditions is the action I in Eq. (3.4) almost scale-
invariant, i.e., scale-invariant up to adding a multiple of
IG? In other words: Which functions FðGÞ have the prop-
erty that replacing gij by e2�gij in Eq. (3.4) leads to the

action I þ k� � IG with constant k�? The answer is, besides

the case already discussed above,

FðGÞ ¼ c1 � G � lnGþ c2 �G (3.5)

with constants c1 � 0 and c2 is the complete set of solu-
tions.1 A word about dimensions: the argument of the
logarithm should be dimensionless so instead of lnG we
should have written lnðG=G0Þ. However, a change of the
value G0 can be compensated by a redefinition of the
constant c2. As the term with c2 does not contribute to
the field equation, we may put it to zero classically.
Dividing everything by c1 we finally get the only interest-
ing remaining almost scale-invariant case to be

FðGÞ ¼ G � lnG: (3.6)

If we insert Eq. (3.6) into Eq. (3.3), the following simpler
field equation appears:

0 ¼ 1

2
gijG � lnG� 2ðRRij � 2Ri

kR
kj þ RiklmRj

klm

þ 2RikljRklÞ � ð1þ lnGÞ þ 2RhðlnGÞ;ij � 2gijRðlnGÞ
� 4RikðlnGÞ;j;k � 4RjkhðlnGÞ;i;k þ 4RijðlnGÞ
þ 4gijRklðlnGÞ;kl � 4RikjlðlnGÞ;kl: (3.7)

Because of its importance it seems justified to deduce this
case by another way: Take a small positive parameter � and
define

F�ðGÞ ¼ 1

�
� ðG1þ� �GÞ; (3.8)

which leads to the same vacuum equation as the
LagrangianG1þ�. Then the limit � ! 0 in Eq. (3.8) exactly
leads to (3.6). As a sketch of the proof, put G ¼ ex, then

G� ¼ e�x � 1þ �x ¼ 1þ � lnG:

IV. EXACT FRIEDMANN MODELS

We apply the notation of Sec. II, especially metric (2.1)
with Hubble parameter (2.2) etc. If we start with aðtÞ ¼ tn

with positive values n and t, we get h ¼ n=t, � ¼ n lnt,
q ¼ ð1� nÞ=n, j ¼ ðn� 1Þðn� 2Þ=n2, k ¼ �ðn� 1Þ�
ðn� 2Þðn� 3Þ=n3, t ¼ e�=n, and hð�Þ ¼ n � e��=n. The
metric can then also be written as

ds2 ¼ d�2

n2
e2�=n � e2�ðdx2 þ dy2 þ dz2Þ: (4.1)

This leads to the de Sitter space-time as n ! 1, where
q ¼ �1, j ¼ 1, k ¼ �1, and s ¼ 0. Within Einstein’s
theory and with pressureless matter of density �, the
deceleration q is related to the critical density �c necessary
to close the universe via 2q ¼ �=�c.
Using Eqs. (6) and (7) of [35], or using Eq. (3) of [38] we

get

R ¼ 6ð _hþ 2h2Þ; G ¼ 24ð _hh2 þ h4Þ (4.2)

and the vacuum equation following from the action (3.4) as

0 ¼ G � FG � FðGÞ � 24 _G � h3 � FGG; (4.3)

where FG ¼ dF=dG and FGG ¼ dFG=dG. In comparison
with the full field equation (3.3), this is a surprisingly
simple equation. We test the previously discussed property
as follows: adding c2 �G to this F, the set of solutions to
Eq. (4.3) will not change. For nonvanishing FGG, i.e., a
nonlinear function FðGÞ, Eq. (4.3) is of third order in the
metric, as it represents the constraint equation to the full
fourth-order field equation.
Now we insert the example FðGÞ ¼ G lnG of Eq. (3.6)

into Eq. (4.3) and get via FG ¼ 1þ lnG and FGG ¼ 1=G
and after multiplication with G ¼ �24h4 � q

0 ¼ G2 � 24 _G � h3: (4.4)

1For negative values of G, the term lnG should be replaced by
lnjGj. The singularity at G ! 0 is a mild one and in the models
of our interest, jGj is positive anyhow.
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The singular case G ¼ 0 needs an extra consideration:

looking at Eq. (4.2) this leads to _h ¼ �h2, as the case
h ¼ 0 was already excluded earlier. This behavior can be
written in the original form (2.1) by aðtÞ ¼ t, i.e. the
deceleration vanishes identically, q ¼ 0.

Now we look for the remaining solutions of Eq. (4.4),
i.e., those with G � 0. To this end we insert Eqs. (2.8) and
(4.2) into Eq. (4.4). The result is the second-order equation
for h,

ð _hh2 þ h4Þ2 ¼ h3 � d
dt

ð _hh2 þ h4Þ; (4.5)

reducing via _q
h ¼ dq

d� [see Eq. (2.2)] to the following first-

order equation for the deceleration parameter q:

dq

d�
¼ 4qþ 3q2: (4.6)

The fact that Eq. (4.6) does not contain the Hubble
parameter is a consequence of the scale invariance of the
field equation. By the way, Eqs. (2.14) and (2.6) can be
combined to q2 þ 3qþ j ¼ 0 characterizing this field
equation.

The other solution with constant value q is q ¼ �4=3.

Using Eq. (2.8) we get 3 _h ¼ h2, i.e. h ¼ �3=t and
finally aðtÞ ¼ 1=t3. These two solutions with constant q,
i.e. aðtÞ ¼ t and aðtÞ ¼ 1=t3, represent self-similar space-
times: multiplying the metric of space-time with a constant
factor can be compensated by a time-translation.

Let us finally come to the case on nonconstant q in
Eq. (4.6). Considering solutions as identical ones, if they
are related by a scale-transformation, exactly three solu-
tions remain, characterized by

qð�Þ ¼ � 4

3þ 3 � e�4�
; � 4

3
< q< 0 (4.7)

and

qð�Þ ¼ � 4

3� 3 � e�4�
; (4.8)

where � may take all real values in Eq. (4.7), but Eq. (4.8)
is not defined for � ¼ 0 and represents one solution
for �> 0, i.e. q <�4=3 and another one for �< 0, i.e.
q > 0. Coming back to a relation for the scale factor,
we get

qðaÞ ¼ � €aa

_a2
¼ � 4

3� 3=a4
: (4.9)

One of the two remaining quadratures can still be done in

explicit form via Eq. (2.13), i.e. dðlnhÞd� ¼ �1� q, leading to

hðaÞ ¼ c

a
� ja4 � 1j�1=3 (4.10)

with a positive constant c. The final step to get the function
aðtÞ is then via the integral

Z aðtÞ

að0Þ
ja4 � 1j�1=3da ¼ c � t: (4.11)

V. CONCLUSION

For the Lagrangian L ¼ G lnG, where G [see Eq. (1.2)]
is the Gauss-Bonnet curvature scalar, we deduced the field
equation and solved it completely up to one final quad-
rature, Eq. (4.11) in closed form for 3-flat Friedmann
models using a state-finder parametrization (see
Ref. [54]). Further we have shown that among all
Lagrangians FðGÞ this L is the only one not having the
form Gr with a real constant r but possessing a scale-
invariant field equation. This turns out to be one of its
analogies to fðRÞ theories in two-dimensional space-time.
Recently, several other modifications of Einstein gravity

have been discussed (see e.g. [55] for a nonlocal one), and
here we propose with the arguments given above, the
gravitational Lagrangian

Lg ¼ �þ Rþ �R2 þ �CijklC
ijkl þ �G lnG (5.1)

is worth considering in more detail than done up to now.

APPENDIX

Here we present some decompositions of the Riemann
tensor from the geometric point of view which are implic-
itly used in the text above, and which may have some
interest in themselves and have other applications, too.
In four dimensions, the Riemann tensor Rijkl possesses

44 ¼ 256 real components. By use of the known symme-
tries, this figure reduces to 20, but this 20-dimensional
space is even harder to imagine. For example, to work
with the field equation (3.3) it is necessary to know, that
in four dimensions,

CiklmCjklm ¼ 1

4
�i
jC

gklmCgklm

and how this can be used for evaluating analogous terms
with the Riemann tensor.
Below, we will present four different possibilities for

arranging this set of components to get a more understand-
able system.
The Riemann tensor Rijkl of a space-time of dimension

n � 3 can be decomposed according to several different
criteria:
(1) The usual one into the Weyl tensor Cijkl plus a term

containing the Ricci tensor Rij plus a term contain-

ing the Riemann curvature scalar R.
(2) Two traceless parts plus the trace.
(3) The Weyl tensor plus only one additional term.
(4) Two divergence-free parts plus the trace.
We use the following two properties of the Riemann

tensor:
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Rijkl ¼ �Rijlk; Rijkl ¼ Rklij: (A1)

The Ricci tensor is the trace of the Riemann tensor: Rij ¼
gklRikjl, where gkl denotes the metric of the space-time,

and the Riemann curvature scalar is the trace of the Ricci
tensor R ¼ gklRkl. The sign conventions are defined such
that in Euclidean signature the curvature scalar of the
standard sphere is positive.

For any symmetric tensor Hij we define another tensor

H�
ijkl via

H�
ijkl ¼ Hikgjl þHjlgik �Hilgjk �Hjkgil: (A2)

Then the tensor H�
ijkl automatically fulfils the identities in

Eq. (A1). For the special case Hij ¼ gij we get the sim-

plified form

g�ijkl ¼ 2gikgjl � 2gilgjk: (A3)

1. The usual decomposition

The Weyl tensor Cijkl is the traceless part of the

Riemann tensor, i.e. gikCijkl ¼ 0. It vanishes identically

for n ¼ 3. Using the notation of Eqs. (A2) and (A3) we
make the ansatz

Rijkl ¼ Cijkl þ �R�
ijkl þ �Rg�ijkl: (A4)

Then the coefficients� and� have to be specified such that
the tracelessness condition for the Weyl tensor becomes an
identity. This condition determines the coefficients � and
� uniquely, and the result is

� ¼ 1

n� 2
and � ¼ �1

2ðn� 1Þðn� 2Þ : (A5)

Thus, we get the usual formula

Rijkl ¼ Cijkl þ 1

n� 2
ðRikgjl þ Rjlgik � Rilgjk � RjkgilÞ

� 1

ðn� 1Þðn� 2ÞRðgikgjl � gilgjkÞ:

2. The decomposition using traceless parts

In distinction from the previous subsection, we now
perform a decomposition which is more consequent than
the usual one into trace and traceless parts. To this end we
define Sij as the traceless part of the Ricci tensor, i.e.

gijSij ¼ 0 with Sij ¼ Rij þ 	Rgij possessing the unique

solution 	 ¼ �1=n, i.e., Sij ¼ Rij � Rgij=n. Then the

analogous equation to Eq. (A4) is

Rijkl ¼ Cijkl þ �S�ijkl þ �Rg�ijkl: (A6)

This becomes a correct identity if and only if

� ¼ 1

n� 2
and � ¼ 1

2nðn� 1Þ : (A7)

So we get

Rijkl ¼ Cijkl þ 1

n� 2
ðSikgjl þ Sjlgik � Silgjk � SjkgilÞ

þ 1

nðn� 1ÞRðgikgjl � gilgjkÞ:

3. Decomposition into two parts

Let us define a tensor Lij ¼ Rij þ 
Rgij such that a

parameter " exists which makes

Rijkl ¼ Cijkl þ "L�
ijkl; (A8)

becoming a true identity. It turns out that this is possible if
and only if


 ¼ �1

2ðn� 1Þ and " ¼ 1

n� 2
: (A9)

Thus, we can write Lij ¼ Rij � 1
2ðn�1ÞRgij and

Rijkl¼Cijklþ 1

n�2
ðLikgjlþLjlgik�Lilgjk�LjkgilÞ:

(A10)

4. Decomposition into divergence-free parts

Now, besides the identities from Eq. (A1), we also use
identities involving the covariant derivatives, denoted by a
semicolon, of the Riemann tensor. The Bianchi identity
reads

Rijkl;m þ Rijlm;k þ Rijmk;l ¼ 0:

Its trace can be obtained by transvection with gik and reads

Rjl;m þ Ri
jlm;i � Rjm;l ¼ 0: (A11)

It should be mentioned that the transvection with respect
to other pairs of indices does not lead to further identities.
The Einstein Eij tensor is defined as Eij ¼ Rij þ �Rgij,

where � has to be chosen such that the Einstein tensor is
divergence-free, i.e., Ei

j;i ¼ 0. Using the trace of Eq. (A1)

(again, there is essentially only one such trace), namely
2Ri

l;i � R;l ¼ 0, we uniquely get � ¼ �1=2, i.e., the

Einstein tensor is Eij ¼ Rij � 1
2Rgij.

With the ansatz

Rijkl ¼ Wijkl þ �E�
ijkl þ Rg�ijkl (A12)

it holds: the coefficients � and  are uniquely determined
by the requirements that Eq. (A12) is an identity, and the
divergence of the tensorWijkl vanishes,W

i
jkl;i ¼ 0. We get

uniquely the following values of the constants: � ¼ 1 and
 ¼ 1

4 . Then
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Rijkl ¼ Wijkl þ Eikgjl þ Ejlgik � Eilgjk � Ejkgil

þ 1

2
Rðgikgjl � gilgjkÞ (A13)

defines a decomposition of the Riemann curvature tensor
into the divergence-free tensors Wijkl, Eij, gij, and the

scalar R.

It should be mentioned that for every n > 2,
the four tensors Rij, Sij, Lij, and Eij represent four

different tensors. And it is a remarkable fact that the
coefficients in Eij and in Eq. (A13) do not depend on

the dimension n.
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