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Primordial non-Gaussianity introduces a scale-dependent variation in the clustering of density peaks

corresponding to rare objects. This variation, parametrized by the bias, is investigated on scales where a

linear perturbation theory is sufficiently accurate. The bias is obtained directly in real space by comparing

the one- and two-point probability distributions of density fluctuations. We show that these distributions

can be reconstructed using a bivariate Edgeworth series, presented here up to an arbitrarily high order. The

Edgeworth formalism is shown to be well-suited for ‘‘local’’ cubic-order non-Gaussianity parametrized by

gNL. We show that a strong scale dependence in the bias can be produced by gNL of order 105, consistent

with cosmic microwave background constraints. On a separation length of�100 Mpc, current constraints

on gNL still allow the bias for the most massive clusters to be enhanced by 20–30% of the Gaussian value.

We further examine the bias as a function of mass scale, and also explore the relationship between the

clustering and the abundance of massive clusters in the presence of gNL. We explain why the Edgeworth

formalism, though technically challenging, is a very powerful technique for constraining high-order

non-Gaussianity with large-scale structures.

DOI: 10.1103/PhysRevD.83.083504 PACS numbers: 95.35.+d

I. INTRODUCTION

One of the most intriguing unanswered questions in
cosmology is whether or not the primordial seeds that
grew into large-scale structures observed today were laid
down as a Gaussian random field. In the simplest single-
field inflation model of the early Universe, the initial
distribution of the primordial seeds, or density fluctuations,
is expected to be very close to Gaussian [1,2], but devia-
tions from Gaussianity may be large in more complex
models involving multiple fields [3–8] or a noncanonical
Lagrangian [9–11]. Therefore, a detection of a significant
level of primordial non-Gaussianity is of great importance
as it would effectively rule out a large class of single-field
inflation and open an observational window to the early
Universe.

The observational signatures of primordial non-
Gaussianity manifest across a large range of physical
scales. On very large scales of order several gigaparsecs,
non-Gaussianity can be detected, for instance, in the
3-point correlation function (bispectrum) of the cosmic
microwave background (CMB) anisotropies (see [12,13]
for recent reviews). In the simplest setting in which the
bispectrum is parametrized by the constant fNL, the pros-
pect of constraining non-Gaussianity with the CMB seems
very promising indeed. The Planck satellite [14] will most
likely tighten the constraint on fNL to O (a few). On
smaller scales, the distribution of galaxy clusters can pro-
vide competitive constraints on non-Gaussianity, which
changes the abundances and clustering properties of
large-scale structures (see [15,16] and references therein).

A particularly interesting large-scale-structure probe of
non-Gaussianity was presented in the seminal work of
Dalal et al. [17], who showed quantitatively that non-
Gaussianity induces characteristic changes the clustering
of density peaks corresponding to rare objects.
Specifically, for a separation length r, we can write

�pkðrÞ ¼ b2LðrÞ�ðrÞ; (1)

where �pk denotes the correlation function of density

peaks, � is that of the underlying dark-matter distribution
and bL is the bias parameter (these parameters will be
explained in detail later). Physically, the bias quantifies
how the density peaks traces of the underlying matter
distribution. If the density fluctuations are Gaussian dis-
tributed, it can be shown that the bias is almost constant
(i.e. scale independent) to a good approximation [18]. The
scale dependence of the bias induced by non-Gaussianity is
the focus of this work.
Scale-dependent bias from non-Gaussianity is a rela-

tively young but rapidly developing topic. While the de-
pendence of the bias on fNL was investigated in [17], a
number of authors have since examined the bias for higher-
order non-Gaussianity [19], nonlocal models [20] and,
more recently, scale-dependent fNL [21] amongst others.
The focus of previous works in this area has been the
calculation of the bias in Fourier space while relying on
either numerical simulations or some well-known mass
functions. In this work, we show that it is possible to
calculate the bias directly in real space by comparing the
one- and two-point probability distribution functions
(pdfs).
We propose to reconstruct the pdfs by using the

Edgeworth series in one and two variables (see [22,23]*siri@astro.ox.ac.uk
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for reviews). The Edgeworth formalism is a mathemati-
cally powerful way to capture the statistical essence of
non-Gaussian distributions. In previous astrophysical ap-
plications, the Edgeworth series were invariably heavily
truncated [24–28] yielding pdfs that may not be well-
defined, non-negative distributions. In this work, we give
a general algorithm which allows the Edgeworth series to
be kept to arbitrarily high order.

We shall see later that given a limited amount of statis-
tical information on the density fluctuations, the
Edgeworth formalism is particularly well suited for the
reconstruction of non-Gaussian distributions in which
the cubic-order non-Gaussianity parameter, gNL, is non-
zero. This parameter will be the main focus of our
calculations. Once well-defined pdfs are reconstructed,
the information on the non-Gaussian bias can then be
easily extracted from the one- and two-dimensional pdfs.

II. THE PRIMORDIAL DENSITY FLUCTUATIONS

We begin by introducing the necessary parameters
which will allow us to describe the density fluctuations
statistically.

Let �c, �b, �r, �� be the time-dependent energy den-
sities of cold dark matter, baryons, radiation, and dark
energy. Let �m ¼ �c þ �b. We define the density parame-
ter for species i as

�i � �iðz ¼ 0Þ
�crit

; (2)

where �crit is the critical density defined by �crit �
3H2

0=8�G. The Hubble constant, H0, is parametrized by

the usual formulaH0 � 100h km s�1 Mpc�1. Results from
a range of astrophysical observations are consistent with
h ’ 0:7, �c ’ 0:23, �b ’ 0:046 and �r ’ 8:6� 10�5,
with �� ¼ 1��m ��r (see e.g. [29,30]).

The density fluctuation field, �, is defined at redshift z as

�ðx; zÞ � �mðx; zÞ � h�mðzÞi
h�mðzÞi ; (3)

where h�mi is the mean matter energy density. As we
are mainly interested in the present-day value of �, we shall
drop the z dependence in our notation and take �¼
�ðz¼0Þ. The Fourier decomposition of �ðxÞ is given by

�ðxÞ ¼
Z dk

ð2�Þ3 �ðkÞe
ik�x: (4)

The gravitational Newtonian potential� is related to the
density fluctuation by the cosmological Poisson equation

�ðkÞ ¼ 2

3�m

�
k

H0

�
2
�ðkÞ: (5)

Statistical information on �ðxÞ can be deduced from that of
�ðkÞ. However, due to the finite resolution of any obser-
vation, we can only empirically obtain information on the

smoothed density field. Given a length scale R, the
smoothed density field, �R, is given by

�Rðk; zÞ ¼ WðkRÞTðkÞ�ðkÞ; (6)

where k ¼ jkj. We choose W to be the spherical top-hat
function of radius R. In Fourier space, we have

WðkRÞ ¼ 3

�
sinðkRÞ
ðkRÞ3 � cosðkRÞ

ðkRÞ2
�
: (7)

It is also useful to define the mass of matter enclosed by the
top-hat window as

M � 4

3
�R3�m � 1:16� 1012

�
R

h�1 Mpc

�
3
h�1M�: (8)

We follow the approach outlined in [31] and use the trans-
fer function T of Dicus

TðxÞ¼ ln½1þð0:124xÞ2�
ð0:124xÞ2

�
�
1þð1:257xÞ2þð0:4452xÞ4þð0:2197xÞ6
1þð1:606xÞ2þð0:8568xÞ4þð0:3927xÞ6

�
1=2

:

(9)

In addition, we also incorporate the baryonic correction of
Eisenstein and Hu [32], whereby the transfer function is
evaluated at

xEH ¼ k�1=2
r

H0�m

�
�þ 1� �

1þ ð0:43ksÞ4
��1

; (10)

with

�¼1�0:328lnð431�mh
2Þ�b

�m

þ0:38lnð22:3�mh
2Þ
�
�b

�m

�
2
;

and

s ¼ 44:5 lnð9:83=�mh
2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 10ð�bh
2Þ3=4

q Mpc:

The matter power spectrum, PðkÞ, can be defined via the
two-point correlation function in Fourier space as

h�ðk1Þ; �ðk2Þi ¼ ð2�Þ3�Dðk1 þ k2ÞPðkÞ; (11)

where �D is the three-dimensional Dirac delta function. In
linear perturbation theory, it is usually assumed that infla-
tion laid down an initial spectrum of the form kns , where ns
is the scalar spectral index (assumed to be 0.96 in this
work). Physical processes which evolve PðkÞ through the
various cosmological epochs can simply be condensed into
the equation

PðkÞ / P�ðkÞT2ðkÞ; (12)

where P�ðkÞ / kns�4. It is also common to define the

dimensionless power spectrum P ðkÞ as
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P ðkÞ � k3

2�2
P�ðkÞ /

�
k

H0

�
ns�1

: (13)

Consequently, the variance of density fluctuations
smoothed on scale R can be written as

�2
RðzÞ ¼

Z 1

0

dk

k
A2ðk; zÞP ðkÞ; (14)

where

Aðk; zÞ ¼ 2

3�m

�
k

H0

�
2
Dðz ¼ 0ÞTðxEHÞWðkRÞ; (15)

with the growth factor gðz ¼ 0Þ � 0:76. In our numerical
work, we shall normalize P ðkÞ so that

�8 � �ðR ¼ 8h�1 Mpc; z ¼ 0Þ ¼ 0:8: (16)

Finally, the correlation function � is defined in real space
as �ðx1;x2Þ ¼ h�ðx1Þ; �ðx2Þi. If jx1 � x2j ¼ r, we can
write

�ðrÞ ¼
Z 1

0

dk

k
A2ðk; zÞP ðkÞj0ðkrÞ; (17)

where j0ðxÞ ¼ sinx=x (see e.g. [33]). In the limit that
r ! 0, we recover the autocorrelation (14).

III. THE CLUSTERING OF DENSITY PEAKS

The idea that the clustering of density peaks could be
measured can be traced back to the pioneering work of
Kaiser [18]. Let P1 be the probability that the overdensity
at a randomly selected point is above some threshold �c,
so that

P1 ¼
Z 1

�c

pðxÞdx; (18)

where pðxÞ is the pdf for the overdensity. We shall take
pðxÞ to be a weakly non-Gaussian distribution, which
permits a valid Edgeworth expansion. This will be dis-
cussed in detail in the next section. We take �c ¼ 1:686,
corresponding to the threshold overdensity for spherical
collapse.

Density peaks tend to cluster, and therefore the occur-
rences of two density peaks are not independent random
events. Indeed, the probability that the overdensities at two
randomly selected points, separated by comoving distance
r, both exceed �c is given by

P2 ¼
Z 1

�c

Z 1

�c

pðx1; x2Þdx1dx2; (19)

where pðx1; x2Þ is the joint pdf. The density-peak correla-
tion function �pk can be defined as

�pkðrÞ ¼ P2

P2
1

� 1: (20)

Note that �pk ¼ 0 if any two density peaks occur

independently.
The bias parameter, bL, in Lagrangian coordinates is

given by the ratio

b2L ¼ �pkðrÞ
�ðrÞ ; (21)

which quantifies the amplitude at which density peaks
trace the underlying matter distribution on linear scales.
Here � is the linearly evolved correlation function given by
Eq. (17). At late time, what is observable is the Eulerian
bias, b,

b ¼ 1þ bL; (22)

valid on linear regime (see, e.g. [34] for more accurate
expressions on nonlinear scales). If the underlying distri-
bution of �were Gaussian, it is well known that in the limit
�c=�R 	 1 [18]

bGaussian � 1þ �c

�2
R

; (23)

which is scale independent to a good approximation. Our
goal is to quantify the variation in b induced by non-
Gaussianity.

IV. THE EDGEWORTH SERIES

Equation (20) shows that it is possible to calculate the
bias directly once the probability distribution pð�Þ and the
joint distribution pð�1; �2Þ are known. In this section, we
shall explain how these distributions can be reconstructed
from a few lowest-order moments of the distribution. This
technique involves the Edgeworth series, which has been
explored by previous authors in simpler forms [24–28,35].
The Edgeworth series can be summarized schematically as

Non-Gaussian pdf ¼ Gaussian� ð1þ deviationÞ; (24)

where the deviation comprises all known moments of the
distribution. In what follows, we define the normalized
overdensity as

� ¼ �R

�R

; (25)

so that h�2i ¼ 1.

A. Univariate series

We shall use the form of the univariate Edgeworth series
given by Petrov [36], who developed a method for calculat-
ing the series to arbitrarily high order. Given a non-Gaussian
pdf with zero mean and variance �2

R, we can express its
deviation from Gaussianity as a power series in �R:

pð�Þ ¼ Nð�Þ
�
1þ X1

s¼1

�s
REsð�Þ

�
; (26)
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where Nð�Þ is the normal distribution

Nð�Þ ¼ 1

�R

ffiffiffiffiffiffiffi
2�

p exp

�
��2

2

�
; (27)

and the coefficients Es in the power series are given by

Esð�Þ ¼
X
fkmg

�
Hsþ2rð�Þ

Ys
m¼1

1

km!

�
Smþ2

ðmþ 2Þ!
�
km
�
: (28)

We now explain the various components of the coefficient
(28). First, the sum is taken over all distinct sets of non-
negative integers fkmgsm¼1 satisfying the Diophantine equa-

tion

k1 þ 2k2 þ . . .þ sks ¼ s: (29)

We also define

r � k1 þ k2 þ . . .þ ks: (30)

Second, the function Hnð�Þ is the Hermite polynomial of
degree n. They can be defined by the Rodrigues formula

Hnð�Þ ¼ ð�1Þne�2=2 dn

d�n ðe��2=2Þ: (31)

For example,H0ð�Þ ¼ 1 andH1ð�Þ ¼ �. Higher-order pol-
ynomials can be easily obtained via the recurrence relation

Hnþ1ð�Þ ¼ �Hnð�Þ � nHn�1ð�Þ: (32)

Third, the reduced cumulants, Sn, is defined by

SnðRÞ � h�n
Ric

�2n�2
R

; (33)

where h�n
Ric is the nth cumulant. For a distribution with zero

mean, the relationships between the first few cumulants and
moments are

h�Ric ¼ 0; h�2
Ric ¼ �2

R;

h�3
Ric ¼ h�3

Ri; h�4
Ric ¼ h�4

Ri � 3�4
R:

(34)

Note that if pð�Þ is Gaussian, the cumulants of order 
 3
vanish identically, and so do the expansion coefficients (28),
as one might expect.

Throughout this work we shall often make references to
the skewness and kurtosis, which are defined, respectively,
as h�3

Ri=�3
R and h�4

Ri=�4
R. The excess kurtosis is defined ash�4

Ri=�4
R � 3, with 3 being the kurtosis of the Gaussian

distribution.

B. Bivariate series

The bivariate Edgeworth series appeared in astrophys-
ical contexts in [37–39], although in these works the series
was truncated at low order and resembles a bivariate Gram-
Charlier series (see [22] for details of the distinction). In
[40,41], the authors presented a bivariate Edgeworth series
expanded to an arbitrary number of terms. In this form, the
series is given by

pð�; �0Þ ¼ Nð�; �0Þ
�
1þ X1

s¼1

X
fPmg

X
fpi;qi;�ig

Fð�; �0Þ
�
; (35)

where � and �0 are normalized overdensities smoothed on
the same scale. The bivariate Gaussian distribution
Nð�; �0Þ is given by

Nð�; �0Þ ¼ 1

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p exp

�
��2 � 2���0 þ �02

2ð1� �2Þ
�
; (36)

where � is the normalized correlation

�ðrÞ � �ðrÞ
�2

R

: (37)

Given an integer s, the second sum in (35) is taken over all
distinct sets of positive integers fPmg‘m¼1 satisfying the
partition conditions

P1þP2þ . . .þP‘¼ s; P1
P2
 . . .
P‘>0: (38)

For a given partition fPmg‘m¼1, the third sum is taken
over all distinct sets of non-negative integers ðpi; qiÞ sat-
isfying the bipartition condition

pi þ qi ¼ Pi þ 2: (39)

If ðpi; qiÞ appears �i times in the bipartition, we write

½P1P2 . . .P‘�¼ ½ðp1;q1Þ�1ðp2;q2Þ�2 . . .ðpJ;qJÞ�J �

with
XJ
i¼1

�i¼‘: (40)

As an example, the partitions and bipartitions for the
integer 3 are given in Table I. The number of partitions
and bipartitions for integers up to 6 are shown in Table II.

TABLE I. The partitions and bipartitions for the integer 3.

Partition

[Eq. (38)]

Bipartition

[Eq. (39)]

[3] (50), (41), (32), (23), (14), (05)

[21] (40)(30), (40)(21), (40)(12), (40)(03),

(31)(30), (31)(21), (31)(12), (31)(03),

(22)(30), (22)(21), (22)(12), (22)(03),

(13)(30), (13)(21), (13)(12), (13)(03),

(04)(30), (04)(21), (04)(12), (04)(03)

[111] ð30Þ3, ð21Þ3, ð12Þ3, ð03Þ3,
ð30Þ2ð21Þ, ð30Þ2ð12Þ, ð30Þ2ð03Þ, ð21Þ2ð30Þ,
ð21Þ2ð12Þ, ð21Þ2ð03Þ, ð12Þ2ð30Þ, ð12Þ2ð21Þ,
ð12Þ2ð03Þ, ð03Þ2ð30Þ, ð03Þ2ð21Þ, ð03Þ2ð12Þ,
(30)(21)(12), (30)(21)(03), (30)(12)(03),

(21)(12)(03)
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For each unique bipartition, the function F is given by

Fð�; �0Þ ¼
�YJ
i¼1

1

�i!

�
�piqi

pi!qi!

�
�i
�
Hp;qð�; �0Þ;

p ¼ XJ
i¼1

pi�i; q ¼ XJ
i¼1

qi�i:

(41)

Here Hp;q denotes the bivariate Hermite polynomial

defined analogous to (31) as

Hp;qð�; �0Þ ¼ ð�1Þpþq

~Nð�; �0Þ
@pþq

@�p@�0q ~Nð�; �0Þ;

~Nð�; �0Þ � exp

�
��2 � 2���0 þ �02

2ð1� �2Þ
�
:

(42)

In the Appendix, we outline how Hp;qð�; �0Þ can be effi-

ciently computed. The coefficient �p;q is defined as

�p;qðrÞ ¼ h�p�0qic
�pþq ; (43)

where �0 � �ðx0Þ. In other words, �p;q is the connected

part of the correlation between �̂p and �̂0q. We shall refer to
h�p�0qic as a joint cumulant (typically there would be a
number of joint cumulants of the same order). Similarly,
we speak of a joint skewness in the case pþ q ¼ 3, or a
joint kurtosis when pþ q ¼ 4.

Finally, note that F contains information on the cumu-
lants of order 3 and higher. One also easily checks that (35)
reduces to the bivariate Gaussian distribution when F ¼ 0.

V. CUMULANTS AND LOCAL NON-GAUSSIANITY

The previous section established the ingredients neces-
sary for the reconstruction of the non-Gaussian pdfs in one
and two variables via the Edgeworth series. It is useful to
connect these ingredients (which consist of cumulants of
the distributions) to a more familiar measure of non-
Gaussianity, for example, the parameters fNL and gNL.

The most widely studied type of non-Gaussianity is the
‘‘local’’ type parametrized, at lowest orders, by fNL and
gNL, which are the coefficients in the Taylor expansion of
the nonlinear Newtonian potential, �, in terms of the
linear, Gaussian field, �,

�ðxÞ¼�ðxÞþfNLð�2ðxÞ�h�2iÞþgNL�
3ðxÞþ . . . : (44)

We adopt the ‘‘large-scale-structure’’ convention in which
� is extrapolated to z ¼ 0. We also take fNL and gNL to be
constant, although it is conceivable that they may be scale
dependent. In this section, we shall calculate the joint
skewness and kurtosis as a function of fNL and gNL (see
[25,37] for previous treatments of the joint cumulants).

A. Joint skewness

We loosely take joint skewness to mean a family of
correlations comprising the following quantities

h�3ic; h�03ic; h�2�0ic; h��02ic: (45)

The first two quantities are equal to the one-point cumulant
�4S3. It is worth emphasizing the subtle difference
between S3 and �3;0

�3;0 ¼ �S3: (46)

The remaining two correlations in (45) equal

�3�1;2ðrÞ¼2fNL
Z dk

ð2�Þ3
Z dk0

ð2�Þ3AðkÞAðk
0ÞAðjkþk0jÞ

�P�ðkÞP�ðk0Þ
�
1þ2

P�ðjkþk0jÞ
P�ðkÞ

�
eiðkþk0Þ�r;

(47)

where r ¼ jrj ¼ jx2 � x1j [42]. This expression cannot be
analytically evaluated without significant approximations
as was done in [25,37]. In this work, we numerically
evaluate the joint cumulants directly by a simple change
of coordinates. In (47), one can align r along the z axis and
introduce spherical coordinates to arrive at

�3�1;2ðrÞ¼ fNL
8�2

�Y2
i¼1

Z 1

0

dki
ki

AðkiÞP ðkiÞ
Z 1

�1
d	i

Z 2�

0
d�i

�

�Aðk12Þ
�
1þ2

P�ðk12Þ
P�ðk2Þ

�
eirðk1	1þk2	2Þ; (48)

where k12 � ðk21 þ k22 þ 2k1k2�12Þ1=2; (49)

and �ij�½ð1�	2
i Þð1�	2

j Þcosð�i��jÞþ	i	j�1=2:
(50)

Note that we can obtain �3;0 by simply evaluating

�1;2ð0Þ.

B. Joint kurtosis

Joint kurtosis refers to three quantities, namely, h�4ic,
h�3�0ic and h�2�02ic. Again, it is worth pointing out that

�4;0 ¼ �2S4; (51)

TABLE II. The number of partitions and bipartitions for some
integers.

Integer Number of partitions Number of bipartitions

1 1 4

2 2 15

3 3 46

4 5 131

5 7 342

6 11 851
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and that �4;0 may be obtained from the other 2-point

correlations via the relations

�4;0 ¼ �3;1ð0Þ ¼ �2;2ð0Þ: (52)

A change of coordinates again yields the integral
expressions for these correlations,

�4�3;1ðrÞ¼
�Y3
i¼1

Z 1

0

dki
ki

AðkiÞP ðkiÞ
Z 1

�1
d	i

Z 2�

0
d�i

�

�Aðk4Þeirðk1	1þk2	2þk3	3Þ

� 3

32�3

�
gNL

�
1þ3

P�ðk4Þ
P�ðk3Þ

�
þ4f2NLI

�
; (53)

�4�2;2ðrÞ¼
�Y3
i¼1

Z 1

0

dki
ki

AðkiÞP ðkiÞ
Z 1

�1
d	i

Z 2�

0
d�i

�

�Aðk4Þeirðk1	1þk2	2Þ� 1

32�3

�
3gNL

�
�
1þ2

P�ðk4Þ
P�ðk1Þþ

P�ðk4Þ
P�ðk3Þ

�
þ4f2NLJ

�
; (54)

where k4�ðk21þk22þk23þ2k1k2�12þ2k2k3�23

þ2k1k3�13Þ1=2: (55)

Here I and J are the contributions of fNL to the
4-point correlations. The forms of these contributions de-
pend on the symmetries in the integrals above. One can
show that

I ¼ ð12Þ
ð2Þ

�
1þ ð2Þð4Þ

ð1Þð3Þ
�
; (56)

J ¼ð13Þ
ð3Þ

�
1þð3Þð4Þ

ð1Þð2Þ
�
þð12Þþð23Þ

ð2Þ
�
1þð2Þð4Þ

ð1Þð3Þ
�
; (57)

where we have used the shorthand ð1Þ � P�ðk1Þ and

ð23Þ � P�ðk23Þ, etc.1 Since I and J blow up whenever

k12,k23 or k13 vanishes, it is necessary to introduce a large-
scale cutoff to evaluate these integrals. To avoid sources of
errors associated with this cutoff, we shall only consider
the case in which fNL ¼ 0.
Figure 1 shows the joint pdfs with gNL ¼ �107, 0 and

107 (fNL ¼ 0) reconstructed using the bivariate Edgeworth
expansion of order 4. We have chosen large values of gNL
to visually illustrate the effect of gNL on the joint pdf
(namely, the increase in the sharpness of the peak as gNL
increases).

VI. POSITIVITYOF THE RECONSTRUCTED PDFS

Since the reconstructed pdf will be used to calculate the
abundance and the bias of large-scale structures, it is
important that the pdf obtained via the Edgeworth series
is positive definite.
In general, the positivity of the Edgeworth series is

difficult to maintain. As far as we are aware, there exists
no general prescriptions that guarantee the positivity of the
bivariate Edgeworth series (see [35] for the analysis of the
univariate series). Our investigation shows that the joint
pdf tends to develop negative regions whenever the uni-
variate pdf does. For the fourth-order series used in this
paper, the combinations of S3 and S4 that yield a non-
negative pdf are shown in Fig. 2. For fNL ¼ 0, this corre-
sponds to gNL in the range 0 & gNL & 108. For gNL outside
this range, the reconstructed pdf can develop regions in
which p < 0. This range of validity is well within the
observational constraints on [43]gNL (at 2�):

gNL= -107 Gaussian

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16

gNL= 107

FIG. 1 (color online). The joint pdfs pð�1; �2Þ corresponding to (left to right) gNL ¼ �107, 0 and 107 (fNL ¼ 0), reconstructed using
the bivariate Edgeworth expansion of order 4, with smoothing scale R ¼ 8h�1 Mpc and separation r ¼ 100h�1 Mpc. The horizontal
bar gives the color code for the probability value on the square grid ½�3; 3�2. The distributions peak more sharply with increasing gNL.
Large values of gNL have been used for illustrative purposes.

1Setting fNL ¼ 0 in Eqs. (53) and (54), we recover Eqs. (A5)–
(A6) of [19]. The latter then proceeded with large-scale approx-
imations in Fourier space whereas we have not.
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�5:6� 105 < gNL < 6:4� 105 (Vielva and Sanz [43])
�7:4� 105 < gNL < 8:2� 105 (Smidt et al. [44])
�3:5�105<gNL<8:2�105 (Desjacques and Seljak [19])

In Sec. VIII, we shall discuss whether it is possible
to extend the range of validity of the Edgeworth series to
include extreme values of gNL.

VII. SCALE-DEPENDENT BIAS INDUCED BY gNL

Using the results in the previous sections, we are now
ready to calculate the bias shift induced by gNL. We
summarize the main steps and technical details below.

(1) For a given value of gNL, we calculate the one- and
two-point cumulants using (48), (53), and (54) for a
range of values of separation length r. We only
consider the case fNL ¼ 0 to avoid additional errors
from the infrared cutoff in the integrals (53) and (54).
We initially perform this step at a fixed smoothing
scale R ¼ 8h�1 Mpc (the dependence on R will be
investigated shortly).

(2) The cumulants are then used to reconstruct the
univariate and bivariate pdfs using the Edgeworth
expansions (26) and (35) of order 4.

(3) The reconstructed pdfs are checked to ensure that
they are non-negative. For the univariate pdf, this is
satisfied when gNL is in the range ½0; 108�. For these
values the bivariate pdfs were also found to be non-
negative.

(4) Finally, the pdfs are integrated and combined to give
the bias b as described in Sec. III.

It is worth investigating whether the bias is sensitive
to the order at which the bivariate series is truncated.
First, note that increasing the expansion to fifth-order
expansion results in no change in the bivariate
pdf (since we have assumed that the odd joint cumulants
vanish). Figure 3 shows the fractional change in the joint
probability P2 (Eq. (19)) expressed as the ratio
jP2ðsixth orderÞ=P2ðfourth orderÞ � 1j with gNL ¼ 106.

We see that the change is less than 0.01% over the range
of scales of interest. Thus, we conclude that the bivariate
expansion is not strongly sensitive to the truncation order.
This is generally observed for other values of gNL.
Considering this modest increase in accuracy at the price
of a tremendous increase in the runtime of the code, we
find that the fourth-order bivariate expansion is adequate
for our current investigation.2

A. Results

Figure 4 shows the effects of non-Gaussianity on
the bias with gNL up to 106, using the smoothing scale
R ¼ 8h�1 Mpc (corresponding to objects of mass
�1013h�1M�). The bias is plotted as a function of sepa-
ration length of up to�100h�1 Mpc (a typical intercluster
distance). This is the main result of our work. Note that in
the Gaussian case, b is constant on sufficiently large scales
to a good approximation.
In general, we observe that large gNL enhances the

clustering of objects on the largest separation scales. A
significant enhancement in the bias can be observed on
scales of around 80 Mpc and beyond, consistent with the
results of the numerical simulations in [19]. For gNL ¼
5� 105 (saturating the CMB constraint) the bias is en-
hanced by as much as 20–30% at separation length of
�100h�1 Mpc.
The bias for gNL ¼ �105 and �5� 105 in 4 are

included for comparison but should be regarded with
caution. As described earlier, the reconstructed pdfs are
not positive definite in these cases due to the lack of
information on higher-order moments. Nevertheless, we
see the general trend that a negative gNL can significantly
suppress the clustering of density peaks.

 0

 0.5

 1

 1.5

 2

-0.3 -0.2 -0.1  0  0.1  0.2  0.3

σ2 S
4

σS3

FIG. 2. Validity of the fourth-order Edgeworth expansion (26).
The shaded region corresponds to the combinations of S3 and S4
for which there exists a non-negative pdf. On cluster scales
where � ’ 1, this corresponds to jfNLj&103 and 0�gNL�108.
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FIG. 3. Fractional change in the joint probability P2 [Eq. (19)]
as the order of the bivariate Edgeworth expansion increases from
4 to 6, plotted against separation length (with gNL ¼ 106). The
change is less than 0.01%, showing that the expansion (35) is not
highly sensitive to the truncation.

2For detail of the sensitivity of the univariate series to the order
of truncation, see [35]
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B. Dependence on the mass scale

We now consider the non-Gaussian bias when the
smoothing scale R, or, equivalently, mass scale M,
varies while keeping the separation length fixed. This is

useful in determining the effects of non-Gaussianity on the
clustering of structures of varying masses for a given
separation length. Figure 5 summarizes these effects for
r ¼ 50 and 100h�1 Mpc. In each panel, the bias is plotted
as a function of mass scale (M< 1016M�). In addition, we
impose the constraint r * 3R to avoid nonlinear effects
that emerge when the smoothing and separation scales are
comparable.
We observe a monotonic increase in b as R increases,

although this dependence is generally weak for a wide
range of separation scales. The monotonic increase in
b=bGaussian is observed for smoothing scales R well above
the separation length. The change in curvature seen in the
lower panel on the right for gNL ¼ 106 is most likely a
symptom of nonlinear effects as R� r, and a gradual
breakdown of the fourth-order expansion.
At large separations and in the presence of large gNL, we

observe a noticeable enhancement in the bias. For example,
at r� 100 Mpc, the bias for the most massive clusters
(M� a few� 1015M�) is enhanced by 20–30% with
gNL ¼ 5� 105. For a shorter separation length of order a
few� 10 Mpc, gNL introduces only a subpercent enhance-
ment in the bias.

C. Clustering versus abundance

The two main manifestations of non-Gaussianity in the
distribution of large-scale structures are in the abundance
and the clustering of rare objects. These effects for gNL are
displayed in Fig. 6, which shows the bias as a function of
the differential abundance
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FIG. 4 (color online). The effects of gNL on the bias b as a
function of separation length r. The upper panel shows bðrÞ for
various values of gNL. The lower panel shows the ratio between
the non-Gaussian and Gaussian biases. These curves were cal-
culated at smoothing scale R ¼ 8h�1 Mpc, using fourth-order
Edgeworth expansions. See the text for more discussion.
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FIG. 5 (color online). The effects of gNL on the bias as a function of the mass scale M for a fixed separation length r ¼ 50h�1 Mpc
(left) and 100h�1 Mpc (right). In each figure, the upper panel shows the bias bðMÞ for a range of values of gNL, while the lower panel
shows the ratio of the non-Gaussian and Gaussian biases. See the text for more discussion.

SIRICHAI CHONGCHITNAN AND JOSEPH SILK PHYSICAL REVIEW D 83, 083504 (2011)

083504-8



dn

dM
¼ �2

�m

M

d

dM

Z 1

�c=�ðMÞ
pðx;MÞdx; (58)

where nðMÞ is the number density of objects of massM and
pðx;MÞ is the pdf smoothed by a window function con-
taining massM. On the horizontal axis, the range of masses
varies from 1016M� (the rarest clusters) down to 1013M�
(a typical galaxy group). Again, we see the general trend
that both the bias and the abundance of massive clusters
increase with gNL (see e.g. [35] for detailed calculation
of the abundance). The non-Gaussian effects are more
pronounced for rarer, more massive clusters.

VIII. POSITIVITY OF THE PDF BY
SQUARE-WEIGHTING

Given moments up to order 4 of the distribution of large-
scale structures, we have shown that it is possible to con-
struct positive-definite pdfs (in both one and two variables)
for gNL in the range ½0; 108�. For the technique to be

applicable for gNL outside this range, higher-order mo-
ments must be known. A similar conclusion can be drawn
for the case of purely fNL-type non-Gaussianity (with
gNL ¼ 0).
The positivity of the Edgeworth series is a long-standing

problem which is not easily overcome. An interesting
solution sometimes employed in the economics literature
is the square-weighting and renormalization of the
Edgeworth series [45–47]. For instance, one could take

pð�Þ ¼ Nð�Þ
C1

�
1þ X1

s¼1

�s
REsð�Þ

�
2
; (59)

for the univariate series, and similarly,

pð�; �0Þ ¼ Nð�; �0Þ
C2

�
1þ X1

s¼1

X
fPmg

X
fpi;qi;�ig

Fð�; �0Þ
�
2
; (60)

for the bivariate series. Here C1, C2 are constants that
renormalize the pdf in each case (note that for the
Gaussian case, C1 ¼ C2 ¼ 1).
We have experimented with the square-weighting and

found the method to be unsatisfactory. For instance, we
found numerical artefacts such as oscillations in the bias
due solely to the square-weighting, and are therefore un-
physical. This is not surprising because the square-
weighting changes the statistical information of the distri-
bution significantly, and thus the results are difficult to
interpret. In addition, there is an order-of-magnitude in-
crease in computing time due to the renormalization at
every time step. Therefore, until further analyses of this
sort of square-weighting are performed, we cannot recom-
mend this technique at this point. Nevertheless, for
illustrative purposes, we display the reconstructed
square-weighted pdf in Fig. 7, in which large values of
positive and negative fNL skew the pdfs (which are positive
definite) in opposite directions as expected.
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FIG. 6 (color online). The effect of gNL on the clustering-
abundance relationship for rare objects with separation
r ¼ 100h�1 Mpc. Left: The bias as a function of differential
abundance dn=dM. Masses of objects in this range vary from
�5� 1015M� (the rarest clusters) to 1013M�.

fNL= -103 Gaussian

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16

fNL= 103

FIG. 7 (color online). The joint pdfs pð�1; �2Þ corresponding to (left to right) fNL ¼ 103, 0 and 103 (gNL ¼ 0), reconstructed using
the square-weighted bivariate Edgeworth expansion of order 4, with smoothing scale R ¼ 8h�1 Mpc and separation r ¼ 100h�1 Mpc.
The horizontal bar gives the color code for the probability value on the square grid ½�3; 3�2. The peak is skewed to the right (towards
the first quadrant of the x� y plane) for fNL < 0, and left (towards the fourth quadrant) for fNL > 0.
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IX. CONCLUSIONS

In this work, we have demonstrated an alternative
method of calculating the bias in the clustering of rare
objects in the presence of primordial non-Gaussianity. Our
method is based on the reconstruction of the pdf of density
fluctuations using the Edgeworth series in one and two
variables. The bias obtained in this way is in real space,
in contrast with previous works that examined the scale-
dependence bias in Fourier space.

A step-by-step guide to our method is presented in
Sec. VII. Some of the expressions involved [e.g. (35)]
may seem complicated, but this is because they incorpo-
rate information on arbitrarily high-order correlations. As
long as estimates on these high-order correlations are
available, our formalism can, in principle, be used to study
the observable signatures of high-order non-Gaussianity.
In addition, the reconstruction algorithm is independent of
the form of non-Gaussianity, hence making our method
easily applicable to nonlocal forms of non-Gaussianity
as well.

The Edgeworth formalism is a powerful technique that
captures all the statistical information of a probability
distribution. However, previous astrophysical applications
generally dealt with the lowest-order expansions, and
therefore the reconstructed pdfs were often found not to
be positive definite (in fact, at the lowest order the uni-
variate pdf can never be positive definite). Results ob-
tained from working with pdfs that are not positive
definite are unreliable, especially in the context of large-
scale structures which are particularly sensitive to the tail
end of the pdf.

In this work, we concentrate on the case of non-
Gaussianity parametrized by positive gNL, which
yields pdfs (both uni- and bivariate) that are positive
definite. It may be surprising to some that the Edgeworth
formalism is more easily applied to the case with gNL � 0
rather than the case with purely fNL-type non-Gaussianity.
The reason is that at leading order, fNL corresponds
to the skewness of the distribution. As shown in our
previous work [35], this information alone cannot
define a non-negative pdf. Our previous work also showed
that the Edgeworth formalism for the case of pure fNL
requires the knowledge of moments of order at least 5, for
which there exist some observational constraints [48,49].
The results for fNL are expected to be similar to that of gNL.
This degeneracy can, in theory, be broken by comparing
the statistics of voids with that of massive clusters, as any
asymmetry in the pdf must be due to the presence of odd-
order cumulants. In practice, however, there is the obvious
difficulty of determining the abundance and clustering
properties of voids. See [35,50,51] for recent progress.

Our main results show that gNL-type non-Gaussianity
can significantly affect the clustering of massive clusters
on large separations (� 100 Mpc, typical of intercluster
distances). A strong scale dependence of the bias can be

seen in Fig. 4, which summarizes our main results for gNL
up to 106. It appears that current constraints on gNL still
allow the bias for the most massive clusters to be enhanced
by 20–30% of the Gaussian value. Our findings are relevant
to observations and N-body simulations in which the clus-
tering of extremely massive objects are seen [52]. An
interesting extension of this work is, therefore, a pdf re-
construction using moments observed in large surveys and
simulations. It would then be important to include finite-
volume effects [53,54] which have been shown to system-
atically alter the cumulants and hence introduce spurious
non-Gaussian effects. By using high-order moments and
including finite-volume corrections, we expect to be able to
extend the Edgeworth formalism to probe a much wider
range of high-order non-Gaussianity. This is the subject of
our future work.
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APPENDIX: BIVARIATE HERMITE
POLYNOMIALS

The bivariate Hermite polynomial Hn;m is defined via

the differential Eq. (42). In this Appendix, we outline a
technique which allowsHðn;mÞ to be evaluated efficiently.
First, we assume m 
 n, otherwise one may appeal to

the identity

Hn;mðx; yÞ ¼ Hm;nðy; xÞ; (A1)

which can be deduced from (42). The numerical value of
Hm;nðx; yÞ can be computed using the recurrence relation

first obtained by Hermite himself [55]

Hn;mþ1ðx;yÞ¼ 1

1��2
½ðy��xÞHn;mðx;yÞþ�nHn�1;mðx;yÞ

�mHn;m�1ðx;yÞ�; n;m
1: (A2)

This recurrence requires the knowledge of H1;1 and H0;m

for m 
 0. It is straightforward to evaluate H1;1 directly

from (42), giving

H1;1ðx; yÞ ¼ ðy� �xÞðx� �yÞ
ð1� �2Þ2 þ �

1� �2
: (A3)

For H0;m, a simple change of variable gives

H0;mðx; yÞ ¼ ð1� �2Þ�m=2Hm

�
y� �xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
�
; (A4)

where Hm is the standard Hermite polynomial.
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Górski, Astrophys. J. 534, 25 (2000).
[39] T.Y. Lam and R.K. Sheth, Mon. Not. R. Astron. Soc. 398,

2143 (2009).
[40] V. K. B. Kota, Z. Phys. A 315, 91 (1984).
[41] V. K. B. Kota, K. B. K. Mayya, and J. A. C. Alcaras, J.

Phys. A 42, 145201 (2009).
[42] S. Matarrese and L. Verde, Astrophys. J. 677, L77 (2008).
[43] P. Vielva and J. L. Sanz, Mon. Not. R. Astron. Soc. 404,

895 (2010).
[44] J. Smidt et al., arXiv:1001.5026.
[45] A. R. Gallant and D.W. Nychka, Econometrica 55, 363

(1987).
[46] I. Mauleón and J. Perote, The European Journal of Finance

6, 225 (2000).
[47] J. Perote and E. del Brı́o, International Advances in

Economic Research 12, 425 (2006).
[48] D. J. Croton et al. (2dFGRS Team), Mon. Not. R. Astron.

Soc. 352, 1232 (2004).
[49] A. J. Ross, R. J. Brunner, and A.D. Myers, Astrophys. J.

649, 48 (2006).
[50] G. D’Amico, M. Musso, J. Noreña, and A. Paranjape,

Phys. Rev. D 83, 023521 (2011).
[51] T.Y. Lam, R. K. Sheth, and V. Desjacques, Mon. Not. R.

Astron. Soc. 399, 1482 (2009).
[52] H. J. Tian, M.C. Neyrinck, T. Budavári, and A. S. Szalay,
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