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This is a general work on gravitational lensing. We present new expressions for the optical scalars and

the deflection angle in terms of the energy-momentum tensor components of matter distributions. Our

work generalizes standard references in the literature where normally stringent assumptions are made on

the sources. The new expressions are manifestly gauge invariant, since they are presented in terms of

curvature components. We also present a method of approximation for solving the lens equations, that can

be applied to any order.
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I. INTRODUCTION

There being so many excellent publications that have
covered the study of gravitational lensing, our justification
for another general article on the subject comes from the
fact that we present new expressions for the optical scalars
and deflection angle for a wide variety of matter distribu-
tions in terms of the matter components.

Gravitational lensing has became a significant tool to
make progress in our knowledge on the matter content of
our Universe. In particular, there is a large number of
works that use gravitational lensing techniques in order
to know how much mass is in galaxies or clusters of
galaxies. One of the most exciting results was to reaffirm
the need for some kind of dark matter, that appears to
interact with the barionic matter only through gravitation.

The question in which there is not yet general agreement
is on the very nature of this dark matter. The most common
conception is that it is based on collisionless particles [1],
and where the pressures are negligible. However, in the
context of cosmological studies, one often recurs to models
of dark matter in terms of scalar fields [2–5]. There is also
the possibility that dark matter was described in terms of
spinor fields [6].

One method to study the nature of dark matter consists in
observing the deformation of images of galaxies behind a
matter distribution that is the source of a gravitational lens.

The fact that gravitational lensing can be useful for the
study of the nature of dark matter has been emphasized
many times, in particular in respect to the question of its
equation of state [7–9].

In many astrophysical situations, the gravitational ef-
fects on light rays are weak, and the source and observer
are far away from the lens; therefore, they are studied
under the formalism of weak field and thin gravitational
lenses. The basic and familiar variables in this discussion
are shown in Fig. 1.

In this framework, the lens equation reads

�a ¼ �a � dls
ds

�a: (1)

The differential of this equation can be written as

��a ¼ Aa
b��

b; (2)

where the matric Aa
b is in turn expressed by

Aa
b ¼ 1� �� �1 ��2

��2 1� �þ �1

� �
; (3)

where the optical scalars �, �1,and �2 are known as con-
vergence � and shear components f�1; �2g, and have the
information of distortion of the image of the source due to
the lens effects.
It is somehow striking that in most astronomical works

on gravitational lensing, it is assumed that the lens scalars
and deflection angle can be obtained from a Newtonian-
like potential function. These expressions, although are
easy to use, have some limitations:
(i) They neglect more general distribution of energy-

momentum tensor Tab; in particular, they only take
into account the timelike component of this tensor.
In this way, they severely restrict the possible
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FIG. 1. This graph shows the basic and familiar angular var-
iables in terms of a simple flat background geometry. The letter s
denote sources, the letter l denotes lens and the observer is
assumed to be situated at the apex of the rays.
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candidates to dark matter that can be studied with
these expressions.

(ii) They are not expressed in terms of gauge invariant
quantities.

(iii) Since these expressions are written in terms of a
potential function, it is not easily seen how differ-
ent components of Tab contribute in the generation
of these images.

Moreover, most of them assume from the beginning that
thin lens is a good approximation.

In other cases in which the thin lens approximation is not
used [10], the results are presented in a way in which gauge
invariance is not obvious; however, see [11].

In this paper, we extend the work appearing in standard
references on gravitational lensing[12–15] and present new
expressions that do not suffer from the limitations men-
tioned above. In particular, we present gauge invariant
expressions for the optical scalars and deflection angle
for some general class of matter distributions. In this first
work on the subject, we study weak field gravitational
lensing over a flat background.

In Sec. II, we present the general setting, starting from
the geodesic deviation equation, where we fix some of our
notation, and obtain gauge invariant expressions for the
lens scalars. We also present a method of approximation
for solving the lens equations that can be applied to any
order. In Secs. III and IV , we will restrict the study to
axially symmetric lenses, and we present expressions for
the lens scalars and deflection angle in the thin lens case. In
Sec. V, we concentrate on the spherically symmetric case,
and after a general study of this geometry, we obtain
expressions in terms of the energy-momentum distribution
of these optical quantities. We end with a summary final
Sec. VI and a couple of appendices.

II. INTEGRATED EXPANSION AND SHEAR

A. General equations: The geodesic deviation equation

Let us consider the general case of a null geodesic
starting from the position ps (source) and ending at po

(observer). Let us characterize the tangent vector as
‘ ¼ @

@� , so that

‘brb‘
a ¼ 0; (4)

that is, � is an affine parameter.
We can now consider also a continuous set of nearby

null geodesics. This congruence of null geodesics can be
constructed in the following way. Let S be a two dimen-
sional spacelike surface (the source image) such that the
null vector ‘ is orthogonal to S. Next, we can generalize ‘
to be a vector field in the vicinity of the initial geodesic in
the following way: let the function u be defined so that it is
constant along the congruence of null geodesics emanating
orthogonally to S and reaching the observing point po.
Then, without loss of generality, we can assume that

‘a ¼ rau; (5)

which implies that the congruence has zero twist.
We can complete to a set of null tetrad, so that ma

and �ma are tangent to S. At other points, ma is chosen
so that it is tangent to the surfaces u ¼ constant and
� ¼ constant. Then, a deviation vector at the source image
can be expressed by

&a ¼ & �ma þ �&ma: (6)

In order to propagate this deviation vector along the null
congruence, one requires that its Lie derivate vanishes
along the congruence; that is,

L ‘&
a ¼ 0; (7)

which is equivalent to

‘brb&
a � &brb‘

a ¼ 0: (8)

From this, it can be proved that

‘ð‘b&bÞ ¼ 0: (9)

The expansion and shear of the congruence are defined
[16] respectively by

� ¼ 1

2
ra‘

a (10)

and

j�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
rða‘bÞra‘b � �2

s
; (11)

whose relation to the spin coefficient[17] quantities 	 and
� is given by

� ¼ � 1

2
ð	þ �	Þ (12)

and

j�j2 ¼ � ��; (13)

with certain abuse of the notation on the first appearance
of j�j.
Let us now calculate the covariant derivative of &a in the

direction of ‘,

‘brb&
a ¼ ‘ð&Þ �ma þ &‘brb �m

a þ c:c:; (14)

while

&brb‘
a ¼ & �mbrb‘

a þ c:c:; (15)

where c.c. means complex conjugate.
Let us note that

�mbrb‘
a ¼ ð��0 þ ��Þ‘a � ��ma � 	 �ma (16)

and

‘brb �m
a ¼ ð �
� 
Þ �ma � ��na � �0‘a; (17)
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where we are using the GHP [17] notation for the spin
coefficients. In our case, one has

� ¼ 0 (18)

since ‘ is geodesic. Notice that the Lie derivative of vector
m in the direction of ‘ is

½‘;m�a ¼ ð �	þ 
� �
Þma þ � �ma þ ð ��0 � �� ��0Þ‘a:
(19)

Then, since the Lie transport of m in the direction of ‘
should not have any ‘ component, because m are always
tangent to the surfaces u ¼ constant and � ¼ constant, one
obtains that

�0 ¼ �0 � ��: (20)

Therefore, from Eq. (8), one has

‘ð&Þ �ma þ &ð �
� 
Þ �ma þ &ð ��ma þ 	 �maÞ þ c:c: ¼ 0;

(21)

which implies

0 ¼ ‘ð&Þ þ &ð �
� 
Þ þ &	þ �&�: (22)

Using the GHP notation, one can write the previous
equation as

0 ¼ Þð&Þ þ &	þ �&�;

where Þ is the well behaved derivation of type f1; 1g in the
direction of ‘. In order to have simple relations in terms
of coordinate derivatives in the direction of �, the complex
phase of m and �m can be chosen so that 
 ¼ 0, so that
finally one has

‘ð&Þ ¼ @&

@�
¼ �&	� �&�: (23)

We see then that 	 determines the instantaneous
expansion, and � determines the instantaneous shear of
the congruence.

Let us recall from the GHP equations [17] that

‘ð	Þ ¼ 	2 þ � ��þ�00; (24)

and

‘ð�Þ ¼ ð	þ �	Þ�þ�0: (25)

Defining the matrix P from

P ¼ 	 �
�� �	

� �
; (26)

one has

‘ðPÞ ¼ P2 þQ; (27)

where Q is given by

Q ¼ �00 �0
��0 �00

� �
(28)

with

�00 ¼ � 1

2
Rab‘

a‘b (29)

and

�0 ¼ Cabcd‘
amb‘cmd: (30)

Defining X by

X ¼
�
&
�&

�
; (31)

the equation for & can be written as

‘ðXÞ ¼ �P; (32)

so that

‘ð‘ðXÞÞ ¼ �QX; (33)

which it only involves curvature quantities.

B. Approximation method for solving the geodesic
deviation equation

Although the last equation can be integrated numerically
without problems, it is sometimes convenient to have at
hand some method for approximated solutions. So, next we
present an approximation scheme that can be applied to
any order one wishes to obtain; however, we will concen-
trate on the linear approximation since in weak field lens
studies it is consistent to consider linear effects of the
curvature on geodesic deviations.
Let us first transform to a first order differential equa-

tion, defining V to be

V � dX
d�

(34)

and

X �
�
X
V

�
; (35)

one obtains

‘ðXÞ ¼ dX

d�
¼ V

�QX

� �
¼ AX (36)

with

A � 0 I
�Q 0

� �
: (37)

Equation (36) can be reexpressed in integral form,
which gives

X ð�Þ ¼ X0 þ
Z �

�0

Að�0ÞXð�0Þd�0: (38)

One can define the sequence

X 1ð�Þ ¼ X0 þ
Z �

�0

Að�0ÞX0d�
0; (39)
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X 2ð�Þ ¼ X0 þ
Z �

�0

Að�0ÞX1ð�0Þd�0; (40)

and so on.
Assuming thatQ is in some sense small, one expects that

this sequence will converge and therefore provide for the
solution.

Let us observe that

X 2ð�Þ ¼ X1ð�Þ þ
Z �

�0

Að�0Þ
Z �0

�0

Að�00Þd�00d�0X0 (41)

and that

Að�0ÞAð�00Þ ¼ A0A00 ¼ �Q00 0
0 �Q0

� �
; (42)

where we are using the notation Q0 ¼ Qð�0Þ. Similarly,
one has

A0A00A000 ¼ 0 �Q00
Q0Q000 0

� �
(43)

and

A0A00A000A0000 ¼ Q00Q0000 0
0 Q0Q000

� �
: (44)

So, one can see that only at the fourth product of matrices
A’s one has complete second order of matrices Q’s.
Returning to the sequence, the third element in first

order is given by

X3ð�Þ ¼ X0 þ
Z �

�0

0 I

�Q0 0

 !
d�0X0

þ
Z �

�0

Z �0

�0

�Q00 0

0 �Q0

 !
d�00d�0X0

þ
Z �

�0

Z �0

�0

Z �00

�0

0 �Q00

0 0

 !
d�000d�00d�0X0: (45)

Working out each term, one can see that

X 3ð�Þ ¼ I� R
�
�0

R
�0
�0
Q00d�00d�0 ð�� �0ÞI�

R
�
�0

R
�0
�0
ð�00 � �0ÞQ00d�00d�0

�R
�
�0
Q0d�0 I� R

�
�0
ð�0 � �0ÞQ0d�0

 !
X0; (46)

where one can check that the second row is just the
derivative of the first row.

Let us note that in this equation, one has not yet deter-
mined whether the position designated by � is to the future
or the past of the position designated by �0, so that one can
use this approximated expression for both cases, keeping
the same direction for the vector ‘. If one changes the
direction of the vector ‘, then one has to take into account
that V changes to �V . In particular, it is easy to see
that (46) is invariant under interchange of � ! �� and
V ! �V .

Note, also, that the double integral that appears in the
first row and second column can by written by doing an
integration by parts asZ �

�0

Z �0

�0

ð�00 � �0ÞQð�00Þd�00d�0

¼
Z �

�0

ð�� �0Þð�0 � �0ÞQð�0Þd�0: (47)

In the following, we will make use of this equality.

C. The integrated shear and expansion

Now, in order to integrate the geodesic deviation
equation, we must choose the correct initial conditions.
In the case of light rays belonging to the past null cone of
the observer and intersecting S at the source, these initial
conditions are X ¼ 0 and V � 0; thus, one can think the
beam starts backwards in time from the observer position,
and so initially has vanishing departure, but with nonzero
expansion and shear.

Therefore, in the linear approximation one has

X ð�Þ¼
�
ð���0ÞI�

Z �

�0

ð���0Þð�0 ��0ÞQ0d�0
�
V ð�0Þ

(48)

and

V ð�Þ ¼
�
I�

Z �

�0

ð�0 � �0ÞQ0d�0
�
V ð�0Þ: (49)

In these integrations, �0 indicates the position at the ob-
server and from now on, �s will indicate the position at the
source.
We observe from the first expression, that if the metric

were flat (Q ¼ 0), in order to get a deviation vector con-
structed fromX1, defined asX evaluated at �s ¼ �0 þ ds,
one must choose as initial condition

V ð�0Þ ¼ 1

ð�s � �0ÞXð�s ¼ �0 þ dsÞ ¼ 1

ds
X1: (50)

Let us remark that we have just fixed the scale of the affine
parameter � to coincide with the measure of spacelike
distances.
But, in the case of the presence of a gravitational lens, if

an observer sees an image of ‘‘size’’ Xo, which means
Xo � dsV o (since actually what is observed is V o ¼
V ð�0Þ), then it should be produced by a source of size
Xs ¼ Xð�sÞ, as described by Eq. (48) and depicted in
Fig. 2.
In order to simplify the notation, we set from now on

�0 ¼ 0 and �s ¼ ds, then Eq. (48) reduces to
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X s ¼
�
I� 1

ds

Z ds

0
�0ðds � �0ÞQ0d�0

�
Xo: (51)

Note also that although a generic complex displacement
should be & ¼ j&jei�, for our purposes it is enough to
consider a complex displacement & of unit modulus;
namely, & ¼ ei’. Then, from Eq. (51) one would have

&sð’Þ ¼
�
1� 1

ds

Z ds

0
�0ðds��0Þ�00ð�0Þd�0

�
�
1

ds

Z ds

0
�0ðds��0Þ�0ð�0Þd�0

�
e�2i’

�
ei’; (52)

where one can see that for the flat case one has
&ð�;’Þ ¼ ei’. From this equation, it is also observed that
the expansion is only governed by the integration of �00,
and that the shear is only given by the integration of �0.

D. Expressions for the lens optical scalar in terms
of Weyl and Ricci curvature from geodesic

deviation equation

In order to compare with the standard representation of
the lens scalar, we note that the original deviation vector in
the source will be given by Eq. (51), i.e.�

&s
�&s

�
¼
�
I�

Z ds

0

�0ðds � �0Þ
ds

Q0d�0
��

&o
�&o

�
; (53)

if we make the following decomposition into real and
imaginary part,

&o ¼ &oR þ i&oI; (54)

&s ¼ &sR þ i&sI; (55)

�0 ¼ �0R þ i�0I; (56)

we obtain from Eq. (53) that

&sR ¼
�
1�

Z ds

0

�0ðds � �0Þ
ds

ð�0
00 þ�0

0RÞd�0
�
&oR

�
�Z ds

0

�0ðds � �0Þ
ds

�0
0Id�

0
�
&oI;

&sI ¼
�
1�

Z ds

0

�0ðds � �0Þ
ds

ð�0
00 ��0

0RÞd�0
�
&oI

�
Z ds

0

�0ðds � �0Þ
ds

�0
0Id�

0&oR: (57)

Note also that in principle, the integration must be made
through the actual geodesic followed by a photon in its path
from the source to observer. However, the last expressions
are valid only in the limit where the linear approximation is
valid. If one considers a linear perturbation from flat space-
time, then the curvature components�00 and�0 would be
already of linear order. Then, in the context of weak field
gravitational lensing, it is consistent to consider a null
geodesic in flat spacetime, since the actual null geodesic
can be thought of as a null geodesic in flat spacetime plus
some corrections of higher orders.
We choose, then, a null geodesic coming from a source

located at a distance ds from the observer, and select a
Cartesian coordinate system where this geodesic will
propagate along the y negative direction. As we mentioned
previously, one can actually integrate the equations either
along the physical direction or one can integrate to the past
from a null geodesic that starts at the observer position. We
make this second choice.
We also need a null tetrad fla; ma; �ma; nag, adapted to

this geodesic:

la ¼ ð�1; 0; 1; 0Þ; ma ¼ 1ffiffiffi
2

p ð0; i; 0; 1Þ;

�ma ¼ 1ffiffiffi
2

p ð0;�i; 0; 1Þ; na ¼ 1

2
ð�1; 0;�1; 0Þ:

(58)

Now, in order to compare with the usual expressions for
the lens scalars �, �1, and �2, let us recall that they are
defined via the relation Eq. (2); but since it is a linear
relation, one can relate the deviation vectors by the same
matrix, namely

&is ¼ Ai
j&

j
o; (59)

where f&is; &iog are the spatial vectors associated with
f&s; &og respectively. In this expression, it is necessary to
determine the meaning of the indices ði; jÞ of the two
dimensional space of the images. In order to observe the
natural Cartesian orientation, we identify the first compo-
nent of the two dimensional space with the z one of the
complete system, and the second component of the two
dimensional space with the x one. We need, then, to know
the components of the spatial vectors &ao generated by &o
and similarly by &s in a Cartesian like coordinate system.
In the case of &ao, it is given by

FIG. 2 (color online). An object of typical dimension ds&
a
s it

appears to the observer to have a size ds&
a
o.
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&ao ¼ &o �m
a þ �&om

a ¼ 1ffiffiffi
2

p ð&oð0;�i; 0; 1Þ þ �&oð0; i; 0; 1ÞÞ

¼ 1ffiffiffi
2

p ð0; ið �&o � &oÞ; 0; ð&o þ �&oÞÞ ¼ 2ffiffiffi
2

p ð0; &oI; 0; &oRÞ;
(60)

and a similar expression is obtained for &as .
Therefore, by replacing into Eq. (59), we obtain

&sR ¼ ð1� �� �1Þ&oR � �2&oI; (61)

&sI ¼ ��2&oR þ ð1� �þ �1Þ&oI; (62)

which, by comparing with Eq. (57), implies that

� ¼ 1

ds

Z ds

0
�0ðds � �0Þ�0

00d�
0; (63)

�1 ¼ 1

ds

Z ds

0
�0ðds � �0Þ�0

0Rd�
0; (64)

�2 ¼ 1

ds

Z ds

0
�0ðds � �0Þ�0

0Id�
0: (65)

Let us emphasize that these expressions for the weak field
lens quantities are explicitly gauge invariant, since they are
given in terms of the curvature components, which are
gauge invariant. This is in contrast to the usual treatment
of weak field gravitational lensing found in the literature,
which use, for example, equation (2.17) of reference [13]
as the source for the calculation of the lens scalars.

Note that the last two equations can be written as:

�1 þ i�2 ¼ 1

ds

Z ds

0
�0ðds � �0Þ�0

0d�
0: (66)

As a final comment to this section, it is important to remark
that these expressions are valid for any weak field gravita-
tional lens on a perturbed flat spacetime, without restriction
on the size of the lens compared with the other distances.
However, if we make use of the hypothesis of the thin
lens, these equations can be further simplified, as we will
show below.

III. THE AXIALLY SYMMETRIC
LENS (INCLUDING THE SPHERICALLY

SYMMETRIC CASE)

When one observes an astrophysical system, very often
one needs to extract information out of the bulk of the
matter distribution, which normally involves making
some model assumptions on the nature of the distribution.
So, very often one considers spherically symmetric models
or the less restrictive case of axially symmetric distribu-
tion. In this latter case, the axis coincides with the line
passing through the central region of the distribution and
the observer.

In this section, then, we consider the case of an axially
symmetric gravitational lens without introducing further
assumptions on the extend of the lens. Later, we will
consider thin lenses.
Using the same setting as in the last section, one is

studying the motion of a photon which travels along the
negative y direction, with impact parameter J and angle #
from the z axis. Then, one notes that the component�00 is
a spin zero real quantity, and it only depends on the ðJ; yÞ
coordinates. Meanwhile, the component �0 is a spin two
complex quantity and it has the functional dependence

�0 ¼ j�0je2i#þphase (67)

where the phase is gauge dependent. For reasons that will
become more clear during the study of spherically sym-
metric systems, we define the real quantities c 0ðJ; yÞ from

�0ðJ; y; #Þ ¼ �c 0ðJ; yÞe2i#: (68)

From this, we deduce that the optical scalars have the
following dependence:

�ðJÞ ¼ 1

ds

Z ds

0
�0ðds � �0Þ�00ðJ; �0Þd�0 (69)

and

�1 þ i�2 ¼ � 1

ds
e2i#

Z ds

0
�0ðds � �0Þc 0ðJ; �0Þd�0: (70)

This invites us to also define the real quantity �ðJ; yÞ from
�1 þ i�2 ¼ ��e2i# (71)

so that one simply has

�ðJ; yÞ ¼ 1

ds

Z ds

0
�0ðds � �0Þc 0ðJ; �0Þd�0: (72)

IV. THE THIN LENS APPROXIMATION

A. The general case

Now, we will consider the case of a lens whose size is
small compared with the distances to the source and the
observer. Let there be again a Cartesian coordinate system
such that the lens can be thought to be localized around the
plane y ¼ 0.
Then, as it was indicated in the last section, in the linear

approximation we can replace the actual null geodesic by
one in a flat spacetime. Then, considering a null geodesic
as in the previous section, coming from a source located
at a distance ds from the observer, and at a distance dls
from the lens, coming parallel to the y axis, but in the
negative direction, we will use J to represent the impact
parameter and # to denote the angle of the trajectory as
measured from the z axis in the ðz; xÞ plane. We choose the
scale of the affine parameter � such that the geodesic is
described by
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ðxð�Þ; yð�Þ; zð�ÞÞ ¼ ðx0; �� dl; z0Þ; (73)

i.e., � ¼ 0 indicates the position of the observer, and
� ¼ ds the position of the source.

Then, if we represent generically by C each one of the
scalars f�00;�0g that appears in the expressions for the
lens scalars, we have that by doing an integration by parts
we obtain the relation

Z ds

0
�0ðds � �0ÞCð�0Þd�0

¼ �0ðds � �0Þ ~Cð�0Þjds0 �
Z ds

0
ðds � 2�0Þ ~Cð�0Þd�0

¼ �
Z ds

0
ðds � 2�0Þ ~Cð�0Þd�0 (74)

where

~Cð�0Þ ¼
Z �0

0
Cð�00Þd�00: (75)

Then, if we assume a thin lens, the scalars C will be
sharply peaked around � ¼ dl, where it is located, and
~Cð�Þ can be approximated by

~Cð�0Þ ffi
�
0 8� < dl � �
Ĉ 8� � dl þ �

(76)

where � � dl, � � dls, and � � ds. Therefore, we obtainZ ds

0
ðds � 2�0Þ ~Cð�0Þd�0 ffi Ĉ

Z ds

dl

ðds � 2�0Þd�0

¼ Ĉdlðdl � dsÞ ¼ �Ĉdldls;

(77)

where we have neglected terms of order Oð�dlÞ. Obviously,
all this also holds for the particular case of a delta Dirac
distribution for the curvature components; however, our
relaxed notion of thin lens is entirely expressed by the (76)
behavior.

Finally, we conclude that in the thin lens approximation,
the expressions for the lens scalars are reduced to

� ¼ dldls
ds

�̂00; (78)

�1 þ i�2 ¼ dldls
ds

�̂0; (79)

where

�̂ 00 ¼
Z ds

0
�00d�; �̂0 ¼

Z ds

0
�0d�; (80)

are the projected curvature scalars along the line of sight.
We again emphasize that these expressions for the lens

scalars are explicitly gauge invariants.

B. The axially symmetric case (which includes the
spherically symmetric case)

1. The lens scalars in terms of projected
Ricci and Weyl Scalars

For axially symmetric lens (and in fact spherically sym-
metric lens), the projected curvature scalars are given by

�̂ 00ðJÞ ¼
Z ds

0
�00ð�0Þd�0 (81)

�̂ 0ðJÞ ¼ �e2i# ĉ 0ðJÞ; (82)

where one can see that

ĉ 0ðJÞ ¼ �e�2i#
Z ds

0
�0ð�0Þd�0: (83)

The reason for the minus sign choice is that in many
common astrophysical situations one would find

ĉ 0ðJÞ> 0.
By replacing in Eqs. (78) and (79), we obtain for the

lens scalars

� ¼ dlsdl
ds

�̂00ðJÞ; (84)

�1 ¼ � dlsdl
ds

ĉ 0ðJÞ cosð2#Þ; (85)

�2 ¼ �dlsdl
ds

ĉ 0ðJÞ sinð2#Þ; (86)

which implies that

� ¼ dlsdl
ds

ĉ 0ðJÞ: (87)

These equations can be compared to those of reference [18]
where they use different notations but similar content.

2. Deflection angle in terms of projected
Ricci and Weyl Scalars

We wish now to express the deflection angle in terms of
the curvature scalars.
From Eq. (2), we know that

Ai
j ¼

d�i

d�j
¼ �i

j �
dls
ds

d�i

d�j
¼ �i

j �
dlsdl
ds

d�i

dxj
; (88)

where, in the last equality, we have used that in the thin lens
approximation d

d�i
� dl

d
dxi

.

We define the components of �i ¼ ð�1; �2Þ as

ð�iÞ ¼ �ðJÞ
�
z0
J
;
x0
J

�
(89)

since, as we mentioned above, we are respecting the
Cartesian orientation in the two dimensional space of the
images. We then obtain that the shears and convergence
can be written as
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� ¼ 1

2

dlsdl
ds

�
d�1

dz0
þ d�2

dx0

�
; (90)

�1 ¼ 1

2

dlsdl
ds

�
d�1

dz0
� d�2

dx0

�
; (91)

�2 ¼ dlsdl
ds

d�1

dx0
¼ dlsdl

ds

d�2

dz0
: (92)

Noting that

x0 ¼ J sinð#Þ; z0 ¼ J cosð#Þ; (93)

we obtain

� ¼ 1

2

dlsdl
ds

�
d�

dJ
þ �ðJÞ

J

�
; (94)

�1 ¼ 1

2

dlsdl
ds

cosð2#Þ
�
d�

dJ
� �ðJÞ

J

�
; (95)

�2 ¼ 1

2

dlsdl
ds

sinð2#Þ
�
d�

dJ
� �ðJÞ

J

�
: (96)

It is interesting to note that

�� �1 cosð2#Þ � �2 sinð2#Þ ¼ dldls
ds

�ðJÞ
J

; (97)

from which, using Eqs. (84)–(86), it is deduced that

�ðJÞ ¼ Jð�̂00ðJÞ þ ĉ 0ðJÞÞ: (98)

It is worthwhile to remark that this constitutes an equation
for the bending angle expressed in terms of the gauge
invariant curvature components in a very simple compact
form.We do not have knowledge of a previous presentation
of this equation.

It is also important to emphasize that we have derived
the expression for the deflection angle from the informa-
tion contained in the calculation of the optical scalars,
coming from the geodesic deviation equation.

Note that, at first sight, it seems that if we reconstruct the
lens scalars using Eqs. (94)–(96), from expression (98) for
the deflection angle, we would obtain some condition on
the bending angle when compared with Eqs. (84)–(86);
however, this is only an apparent inconsistency. Let us see
this in more detail. To begin with, by replacing Eq. (98)
into Eqs. (94)–(96), we obtain

� ¼ dlsdl
2ds

�
2ð�̂00ðJÞ þ ĉ 0ðJÞÞ þ J

dð�̂00 þ ĉ 0Þ
dJ

�
; (99)

�1 ¼ dlsdl
2ds

cosð2#ÞJ
�
d�̂00

dJ
þ dĉ 0

dJ

�
; (100)

�2 ¼ dlsdl
2ds

sinð2#ÞJ
�
d�̂00

dJ
þ dĉ 0

dJ

�
: (101)

Proceeding with the calculation, we now use one of the
Bianchi identities, as expressed in the GHP formalism [17],
namely

Þ�1 � ð0�0 þ ð�00 � Þ�01 ¼ 0 (102)

where, in our case, Þ ¼ la@a, ð ¼ ma@a, and ð0 ¼ �ma@a,
i.e.

Þ ¼ � @

@t
þ @

@y
; ð ¼ 1ffiffiffi

2
p

�
i
@

@x
þ @

@z

�
;

ð0 ¼ 1ffiffiffi
2

p
�
�i

@

@x
þ @

@z

�
;

(103)

that is, we are using the flat null tetrad system. The ex-
pression for the edth operator is correct due to the fact that
the intrinsic two dimensional metric in the space ðx; zÞ is
constant, and therefore ð ¼ m.
Let us now change to a polar coordinate system in the

two dimensional subspace, so that

@

@x
¼ @J

@x

@

@J
þ @#

@x

@

@#
;

@

@z
¼ @J

@z

@

@J
þ @#

@z

@

@#
;

(104)

with

@#

@x
¼ cosð#Þ

J
;

@#

@z
¼ � sinð#Þ

J
: (105)

In this case, the metric of the two dimensional space
ðJ; #Þ is not constant, so that in principle the edth operator
acting on a quantity f of type ðp; qÞ should be [17]

ðf ¼ mðfÞ þ ð�p�þ q�0Þf; (106)

but a direct calculation in the ðJ; #Þ frame gives all spin
coefficients zero. Therefore, in this frame we also have
ðf ¼ mðfÞ. Then, we get

ð ¼ 1ffiffiffi
2

p ei#
�
@

@J
þ i

J

@

@#

�
;

ð0 ¼ 1ffiffiffi
2

p e�i#

�
@

@J
� i

J

@

@#

�
:

(107)

If we now project the Bianchi identity on the line of
sight direction, i.e. by integrating along the y-direction,
we obtain

�1jds0 � ð0�̂0 þ ð�̂00 ��01jds0 ¼ 0; (108)

which, assuming �1 � 0 and �01 � 0 far away from the
lens, it implies

ð0ðĉ 0e
2i#Þ ¼ �ðð�̂00Þ: (109)

From this, one finds
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dĉ 0

dJ
þ 2

ĉ 0

J
¼ �d�̂00

dJ
: (110)

Then, by replacing this relation into Eqs. (99)–(101) we
obtain Eqs. (84)–(86), as anticipated.

The Bianchi identities have not been used very often in
the context of gravitational lenses; however, we note that in
references [19,20] they have used them to obtain a Poisson
like equation in order to determine the matter distribution.

For the study of the errors committed in the use of the
thin lens approximation, one can read [21].

V. DETAILED STUDY OF STATIONARY
SPHERICALLY SYMMETRIC LENSES

Up to now, we have presented gauge invariant expres-
sions for the deviation angle and the optical scalars in
terms of the curvature components of the null tetrad
adapted to the motion of the photons. In order to obtain
expressions that use information of the structure of the
sources, one has to work with frames adapted to the
geometry of the matter distribution which forms the gravi-
tational lens. Therefore, in this section we study the case of
stationary spherically symmetric sources.

A. Spacetime geometry in standard coordinate system

The metric

For stationary spherically symmetric spacetime, the line
element can be expressed by

ds2 ¼ aðrÞdt2 � bðrÞdr2 � r2ðd�2 þ sin2�d’2Þ: (111)

It is convenient to define �ðrÞ and MðrÞ from
aðrÞ ¼ e2�ðrÞ; (112)

and

bðrÞ ¼ 1

1� 2MðrÞ
r

: (113)

The more general distribution of energy-momentum
compatible with spherical symmetry is described by an
energy-momentum tensor given by

Ttt ¼ %e2�ðrÞ; (114)

Trr ¼ Pr

ð1� 2MðrÞ
r Þ y; (115)

T�� ¼ Ptr
2; (116)

T’’ ¼ Ptr
2 sinð�Þ2; (117)

where we have introduced the notion of radial component
Pr and tangential component Pt.

The Einstein field equations

Gab ¼ �8Tab; (118)

in terms of the previous variables are

dM

dr
¼ 4r2%; (119)

r2
d�

dr
¼ Mþ 4r3Pr

1� 2MðrÞ
r

; (120)

r3
�
d2�

dr2
þ
�
d�

dr

�
2
��

1� 2M

r

�
þ r2

d�

dr

�
1�M

r
� dM

dr

�

� r
dM

dr
þM ¼ 8r3Pt: (121)

The conservation equation is

dPr

dr
¼ �ð%þ PrÞd�dr � 2

r
ðPr � PtÞ: (122)

B. Geometry with respect to a null system

The tetrad

For our purpose, it is more convenient to use a null
coordinate system to describe the spherically symmetric
geometry. Let us introduce, then, a function

u ¼ t� r�; (123)

where r� is chosen so that u is null. Then, by inspection of
Eq. (111), one can see that

du ¼ dt� dr�

dr
dr ¼ dt�

ffiffiffi
b

a

s
dr; (124)

since then one has

ds2 ¼ adu2 þ 2
ffiffiffiffiffiffi
ab

p
dudr� r2ðd�2 þ sin2�d’2Þ: (125)

It is natural to define the principal null direction ~‘P from

~‘ P ¼ du; (126)

which implies that the vector is

~‘ a
P ¼ gabdub ¼ 1ffiffiffiffiffiffi

ab
p

�
@

@r

�
a

(127)

where we have used that

ðgabÞ ¼ 2ffiffiffiffiffiffi
ab

p @

@u

@

@r
� 1

b

@

@r

@

@r

� 1

r2

�
@

@�

@

@�
þ 1

sin2�

@

@’

@

@’

�
: (128)

Let us define the null tetrad

~‘ P ¼ A
@

@r
; (129)
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~n P ¼ @

@u
þUA

@

@r
; (130)

with the complex null vector

~mP ¼
ffiffiffi
2

p
P0

r

@

@�
(131)

in terms of the stereographic coordinate � .
Therefore, one has

A ¼ 1ffiffiffiffiffiffi
ab

p ; (132)

and

U ¼ � 1

2bA2
¼ � a

2
: (133)

It is worthwhile to note that we have chosen to keep
using r as a coordinate, which measures the surfaces of the
symmetric spheres. Instead, one could have chosen to use

an affine coordinate ~r so that one would have ~‘ ¼ @
@~r ; but

then, the surfaces of the symmetric spheres would be some
function of ~r, different from 4~r2.

C. The spin coefficients scalars
and curvature components

For the spherically symmetric metric, the non vanishing
spin coefficients are

~	 ¼ �A
r
; (134)

~	 0 ¼ �UA
r

; (135)

� ¼ 1ffiffiffi
2

p
r

�
�@P0

@y2
þ i

@P0

@y3

�
; (136)

�0 ¼ 1ffiffiffi
2

p
r

�
�@P0

@y2
� i

@P0

@y3

�
; (137)

~
 0 ¼ 1

2
A
dU
dr

(138)

where we are using for the stereographic coordinate the
decomposition � ¼ 1

2 ðy2 þ iy3Þ.
The curvature components that are different from

zero are:

~� 00 ¼ �A
r

dA
dr

; (139)

~�11 ¼ � 1

4

dA
dr

dU

dr
A� 1

4
r2ðUÞA2 þ 1

2r

dU

dr
A2

þ 1

r2

�
1

2
A2Uþ 1

4

�
; (140)

~� 22 ¼ �AU2

r

dA
dr

; (141)

~� ¼ 1

12

dA
dr

dU

dr
Aþ 1

12
r2ðUÞA2 þ 1

r

�
1

3

dA
dr

AU

þ 1

6

dU

dr
A2

�
þ 1

r2

�
1

6
A2Uþ 1

12

�
; (142)

and

~�2 ¼ � 1

6

dA
dr

dU

dr
A� 1

6
r2ðUÞA2 þ 1

r

�
1

3

dA
dr

AU

þ 2

3

dU

dr
A2

�
þ 1

r2

�
� 1

3
A2U� 1

6

�
: (143)

Note that from (124) and (126) one has that

~‘ P ¼ dt�
ffiffiffi
b

a

s
dr; (144)

and therefore

~‘ a
P ¼ 1

a

�
@

@t

�
a þ

ffiffiffiffiffiffi
1

ab

s �
@

@r

���������a

t
: (145)

Also, let us note that

@

@u
¼ @

@t
; (146)

which then implies that

~n P ¼ 1

2

@

@t
� 1

2

ffiffiffi
a

b

r �
@

@r

���������a

t
: (147)

In these last equations, ð @@rÞjat is meant at constant t, as

opposite to the previous equations in which @
@r was meant at

constant u.

D. Spinor Ricci components in terms
of energy-momentum components

in the nonisotropic case

The spinor Ricci components can be written in terms of
the energy-momentum distribution as

~� 00 ¼ 4

a
ð%þ PrÞ; (148)

~� 11 ¼ ð%� Pr þ 2PtÞ; (149)

~� 22 ¼ að%þ PrÞ; (150)

~� ¼ 

3
ð%� Pr � 2PtÞ: (151)

These expressions are exact for the spherically symmetric
spacetime. If one needs linear expressions around flat
spacetime, one must set a ¼ 1.
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Note that one has

~� 22 ¼ U2 ~�00: (152)

Using the expressions for ~�11 and
~�, one can prove that

~� 11 þ 3~� ¼ A
r

dðUAÞ
dr

þ 1

r2

�
UA2 þ 1

2

�
¼ 2ð%� PrÞ:

(153)

Also, from the relation of the null tetrad components
with the old variables, one can obtain that

UA2 þ 1

2
¼ MðrÞ

r
: (154)

This equation gives U in terms of A and M.

Using this in the expression for ~�00, one obtains

1

A

dA

dr
¼ 4rð%þ PrÞ

ð2Mr � 1Þ : (155)

This is a useful equation only involvingA, which allows its
calculation in terms of the components of the energy-
momentum tensor.

The contracted Bianchi identity (2.37) of [17] for spheri-
cally symmetric metrics is

Þ ~�11 þ Þ0 ~�00 þ 3Þ~� ¼ ð~	0 þ ~�	0Þ ~�00 þ 2ð~	þ ~�	Þ ~�11;

(156)

or, explicitely,

d ~�11

dr
þ AU

d ~�00

dr
þ 2

dU

dr
A ~�00 þ 3

d~�

dr

¼ �2
AU
r

~�00 � 4
A
r
~�11; (157)

which gives the conservation equation in the form

dPr

dr
¼ �ð%þ PrÞ

mgðrÞ
r2

� 2

r
ðPr � PtÞ (158)

where we are using

mgðrÞ ¼ r2

2

d lnU

dr
: (159)

E. Simple relation for Weyl component ~�2

Let us observe that

~� 2 þ 2~� ¼ A
r

dðAUÞ
dr

: (160)

Then, from Eq. (153), one can deduce that

~� 2 ¼ 4

3
ð%� Pr þ PtÞ �M

r3
: (161)

This is a very simple relation for ~�2ðrÞ in terms of the
energy density %ðrÞ, the spacelike components, and the
mass function MðrÞ. Our expression generalizes those of

reference [22] for the case of anisotropic energy-
momentum tensor.

F. The bending angle and lens scalars in terms
of energy-momentum components, curvature

components, and MðrÞ
1. Relation between the scalars curvatures

in the two different tetrads

In order to express the function �ðJÞ in terms of the
curvature scalars defined with the spherically symmetric
tetrad, we need to know how the tetrads transform between
them. To do so, let us recall that at linear order, we
only need the transformation between the flat tetrad
fla; ma; �ma; nag adapted to the null geodesic coming from

the source, and a flat tetrad f~la; ~ma; �~ma; ~nag obtained from

f~laP; ~ma
P; ~�m

a
P; ~n

a
Pg by setting a ¼ b ¼ 1. Then, using stan-

dard spherical coordinates we have

~l a ¼
�
1;
x

r
;
y

r
;
z

r

�
¼ ð1; sinð�Þ cosð�Þ; sinð�Þ sinð�Þ; cosð�ÞÞ; (162)

~n a ¼ ð1;� sinð�Þ cosð�Þ;� sinð�Þ sinð�Þ;� cosð�ÞÞ;
(163)

~ma ¼ ð0ð~laÞ
¼ 1ffiffiffi

2
p ð0;� cosð�Þ cosð�Þ þ i sinð�Þ;

� cosð�Þ sinð�Þ � i cosð�Þ; sinð�ÞÞ; (164)

�~ma ¼ �ð0ð~laÞ
¼ 1ffiffiffi

2
p ð0;� cosð�Þ cosð�Þ � i sinð�Þ;

� cosð�Þ sinð�Þ þ i cosð�Þ; sinð�ÞÞ: (165)

In these expressions, we use the symbols ð0 and �ð0 to
denote the edths operators of the spheres of symmetry,
with unit radius.
The transformation tetrad will be of the form

la ¼ cl~n~l
a � cl �~m ~ma � cl ~m �~ma þ cl~l~n

a; (166)

na ¼ cn~n~l
a � cn �~m ~ma � cn ~m �~ma þ cn~l~n

a; (167)

ma ¼ cm~n
~la � cm �~m ~ma � cm ~m

�~ma þ cm~l~n
a; (168)

�ma ¼ c �m ~n
~la � c �m �~m ~ma � c �m ~m

�~ma þ c �m ~l~n
a; (169)

where the notation is cl~n ¼ la~na, and so on. From these
relations, we can construct the transformation of the Ricci
and Weyl scalars, but it is more convenient and easy to
work with the spinor diad associated to the tetrad. Then,
the transformation of the dyads will be
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oA ¼ A~oA þ B~�A; �A ¼ C~oA þD~�A; (170)

together to the condition that oA, �A conform a spinorial
base, i.e.,

AD� BC ¼ 1; (171)

From the relations given in Appendix A, we get

A ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sinð�Þ sinð�Þ

q
eiðð�þ�0þÞ=2Þ;

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinð�Þ sinð�Þ

q
eiðð�0��þÞ=2Þ;

C ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinð�Þ sinð�Þ

q
eiðð���0þÞ=2Þ;

D ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sinð�Þ sinð�Þ

q
e�iðð�0þ�þÞ=2Þ;

(172)

where � and �0 satisfies

ei� ¼ � cosð�Þ sinð�Þ þ i cosð�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2ð�Þsin2ð�Þp ; (173)

ei�
0 ¼ cosð�Þ þ i sinð�Þ cosð�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sin2ð�Þsin2ð�Þp ¼ zþ ix

J

¼ cosð#Þ þ i sinð#Þ; (174)

and in the last equality, the fact that J ¼
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2ð�Þsin2ð�Þp

, was used (see Appendix A). Note,
then, that, �0 ¼ #.

The general transformation between tetrads induces
the following transformation on the curvature scalar �00

and �0:

�00 ¼ �ABA0B0oAoBoA
0
oB

0

¼ A2 �A2 ~�00 þ 2A2 �A �B ~�01 þ A2 �B2 ~�02

þ 2A �A2B ~�10 þ 4A �AB �B ~�11 þ 2AB �B2 ~�12

þ �A2B2 ~�20 þ 2B2 �B �A ~�21 þ B2 �B2 ~�22; (175)

�0 ¼ �ABCDo
AoBoCoD

¼ A4 ~�0 þ 4A3 ~�1 þ 6A2B2 ~�2 þ 4AB3 ~�3 þ B4 ~�4:

(176)

In the spherically symmetric case, these transformations
simplify considerably and finally, at linear order, one has
~�22 ¼ 1

4
~�00 so that

�0 ¼ 3
J2

r2
~�2ðrÞe2i#; (177)

�00 ¼ 2J2

r2

�
~�11 � 1

4
~�00

�
þ ~�00: (178)

2. The deflection angle in terms of spherically symmetric
components of the curvature

From (98), the function �ðJÞ expressed in terms of the
spherically symmetric null tetrad reads:

�ðJÞ ¼ J
Z dls

�dl

�
�3J2

r2
~�2þ 2J2

r2

�
~�11� 1

4
~�00

�
þ ~�00

�
dy:

(179)

Note that in this case, the integration is on the coordinate y,
instead of using arbitrary affine parameter. Also, note that

r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ y2

p
.

This constitutes an important explicit relation for the
bending angle in terms of the curvature as seen in an
spherically symmetric frame, which is the natural frame
for the sources of the gravitational lens.

3. Expressions for the bending angle in terms
of energy-momentum components and MðrÞ

Using Eqs. (148), (149), (161), and (179) we get an
expression for the bending angle in terms of the mass,
energy density, and spacelike components of the energy-
momentum tensor, namely

�ðJÞ ¼ J
Z dls

�dl

�
3J2

r2

�
MðrÞ
r3

� 4

3
%ðrÞ

�
þ 4ð%ðrÞ þ PrðrÞÞ�dy: (180)

This is a new and useful relation for the deflection angle
in terms of the physical fields which are the sources of the
gravitational lens. It is also worth mentioning that this
expression for the bending angle can also be deduced
from the geodesic equation using standard techniques, as
it is shown in Appendix B.
It is curious that the bending angle does not depend

explicitly on the tangential spacelike components of the
energy-momentum tensor.

4. The optical scalars in terms of spherically symmetric
components of the curvature

From Eq. (84) and (87) one obtains

�ðJÞ ¼ dlsdl
ds

Z dls

�dl

�
2J2

r2

�
~�11 � 1

4
~�00

�
þ ~�00

�
dy; (181)

and

�ðJÞ ¼ �dlsdl
ds

Z dls

�dl

�
3
J2

r2
~�2ðrÞ

�
dy: (182)

These expressions give the optical scalars in terms of
gauge invariant expressions for the curvature components
adapted to the symmetry of the matter distribution, which
is the source of the gravitational lens.
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5. Expressions for the lens scalars in terms
of energy-momentum components and MðrÞ

In a similar way, the lens scalars, in terms of the spheri-
cally symmetric physical fields, are given by

� ¼ 4dldls
ds

Z dls

�dl

�
	þ Pr þ J2

r2
ðPt � PrÞ

�
dy

� ¼ dldls
ds

Z dls

�dl

J2

r2

�
3M

r3
� 4ð	þ Pt � PrÞ

�
dy:

(183)

These new expressions let us see explicitly the contribu-
tions of different components of the energy-momentum
tensor on the optical scalars. One can see that a couple of
terms disappear in the isotropic case, in which Pr ¼ Pt.

Our expressions are valid for generic energy-momentum
distributions, not usually considered in the literature are the
possible implications of non vanishing spacelike compo-
nents of Tab. In future works, we will consider the impli-
cations of models with nontrivial energy-momentum
tensors on observed gravitational lenses.

G. Two simple examples

In order to show the application of our treatment of
gravitational lenses, we will consider next two standard
models that are often used in representing the source of
gravitational lenses.

1. A monopole mass (Schwarzschild)

As a simple example, let there be a monopole distribu-
tion characterized by a mass M; therefore, a simple

computation gives ~�00 ¼ 0, and ~�2 ¼ �M
r3
. Then, by

considering that the observer and the source are far away,
one can replace in the extremes of the integration (as is
usually made) ds ! 1 and dl ! 1, then

�̂ 00 ¼ 0; (184)

ĉ 0 ¼ �2
Z 1

0

3J2

r2
~�2dy ¼ 4M

J2
; (185)

and by replacing into Eqs. (84), (87), and (98), we readily
obtain the well known results

�ðJÞ ¼ 4M

J
; (186)

� ¼ 0; (187)

� ¼ dldls
ds

4M

J2
: (188)

2. The isothermal profile

One simple model of dark matter that is used to explain
the rotation curves of galaxies is the isothermal profile,
which is defined by the density function

	 ¼ v2
c

4r2
; (189)

where vc is the circular velocity.
Since vc � c, the pressures in this model are negligible.

Then we obtain

�̂ 00 ¼
Z 1

�1
v2
c

r2
dy ¼ v2

c

J
; (190)

ĉ 0 ¼
Z 1

�1
2J2v2

c

r4
dy ¼ v2

c

J
: (191)

From these relations follow the well known results:

� ¼ 2v2
c; (192)

� ¼ dldls
ds

v2
c

J
; (193)

� ¼ dldls
ds

v2
c

J
: (194)

VI. FINAL COMMENTS

Several works on gravitational lensing reach up to the
expressions that relate the optical scalars with the curvature
components in terms of the tetrad adapted to the motion of
the photons; we have here also presented expressions for
the bending angle in terms of the curvature components.
Furthermore, we have presented above expressions for the
optical scalars and deflection angle directly in terms of the
matter components of the sources of the gravitational lens,
valid for an extended class of matter distributions. In order
to do that, one has to assume some structure for the source,
so that in this first work on the subject, we have treated the
first natural model of spherical symmetry for the sources.
But in Sec. III, we have presented expressions that are valid
also for spheroidal distributions, since we only required
axissymmetry along the line of sight.
Our expressions circumvent several deficiencies: gauge

dependence, lack of explicit expressions, neglect of space-
like components of the energy-momentum tensor, etc. It is
probably worthwhile to remark that since the function
MðrÞ is determined in terms of the %ðrÞ by Eq. (119), all
our expressions are explicit expressions in terms of the
energy-momentum components of the matter generating
the gravitational lens. As a trivial check of our equations,
we have presented two simple examples for which the
optical scalars and deflection angle are readily obtained.
The extension of this study to sources with different

structure and to the cosmological background will be
presented elsewhere.
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APPENDIX A: TETRAD TRANSFORMATIONS

First, we note that

J2

r2
¼ J2

J2 þ y2
¼ J2

J2 þ r2 sinð�Þ2 sinð�Þ2 ; (A1)

and solving this for J2=r2 we find

J2

r2
¼ 1� sinð�Þ2 sinð�Þ2; (A2)

The complete equations that satisfy the spinorial compo-
nents are given by

A �A ¼ cl~n ¼ 1

2
ð�1þ sinð�Þ sinð�ÞÞ; (A3)

A �B ¼ �cl �~m ¼ � 1ffiffiffi
2

p ðcosð�Þ sinð�Þ � i cosð�ÞÞ; (A4)

B �B ¼ cl~l ¼ ð�1� sinð�Þ sinð�ÞÞ; (A5)

C �C ¼ cn~n ¼ 1

4
ð�1� sinð�Þ sinð�ÞÞ; (A6)

C �D ¼ �cn �~m ¼ 1

2
ffiffiffi
2

p ðcosð�Þ sinð�Þ � i cosð�ÞÞ; (A7)

A �C ¼ cm~n ¼ � 1

2
ffiffiffi
2

p ð� cosð�Þ � i sinð�Þ cosð�ÞÞ; (A8)

A �D ¼ �cm �~m ¼ 1

2
ðsinð�Þ þ sinð�Þ � i cosð�Þ cosð�ÞÞ;

(A9)

B �C ¼ �cm ~m ¼ 1

2
ðsinð�Þ � sinð�Þ � i cosð�Þ cosð�ÞÞ;

(A10)

B �D ¼ cm~l ¼ � 1ffiffiffi
2

p ðcosð�Þ þ i sinð�Þ cosð�ÞÞ; (A11)

D �D ¼ cn~l ¼
1

2
ð�1þ sinð�Þ sinð�ÞÞ; (A12)

and its complex conjugates together to the condition

AD� BC ¼ 1: (A13)

APPENDIX B: DEFLECTION ANGLE IN TERMS
OF Tab FROM GEODESIC EQUATION

The four velocity vector of the particle has modulus

e2�
�
dt

d�

�
2 � 1

1� 2M
r

�
dr

d�

�
2 � r2

�
d’

d�

�
2 ¼ �; (B1)

where � is an affine parameter of the geodesic, and we have
already made use of the symmetry that allows us to study
just the motion in the equatorial plane � ¼ 

2 . The constant

� has values 1 for massive particles and 0 for massless
particles. This choice for � sets the unit for the affine
parameter for the massive particle case; however the unit
for the massless case remains undetermined.
There are also two integrals of motion. J is a constant of

motion associated to the existence of a rotational Killing
vector which can be expressed by

J ¼ r2
d’

d�
; (B2)

E is another constant of motion associated to the existence
of a timelike Killing vector, which can be expressed by

E ¼ e2�
dt

d�
: (B3)

Then Eq. (B1) takes the form

e�2�E2 � 1

1� 2M
r

�
dr

d�

�
2 � J2

r2
¼ �; (B4)

or �
dr

d�

�
2 þ

�
J2

r2
� e�2�E2

��
1� 2M

r

�
¼ ��ð1� 2M

r
Þ;
(B5)

which can also be expressed as:�
dr

d�

�
2 þ J2

r2
� J2

r2
2M

r
� �

2M

r

� E2e�2�

�
1� 2M

r

�
¼ ��: (B6)

It is observed that the choice of the affine parameter � is
related to the definitions of the constants of motion J and
E. Since � tends to zero in the asymptotic region, it is
natural to take � so that E ¼ 1. This is equivalent to say
that in the asymptotic region one has dt ¼ d�.
In this way there is no more freedom in the choice

of units for J. For an incident photon traveling in the
�y direction, with coordinate x ¼ x0, the Newtonian ex-
pression for the angular momentum, for a unit mass
particle gives J ¼ rv sinð’þ 

2Þ ¼ r cosð’Þ ¼ x0; that is

with this choice of affine parameter, J has the meaning of
asymptotic impact parameter x0.
For convenience in the algebraic manipulation, let us

define
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a1ð�Þ � 1� e�2�; (B7)

so that e�2� ¼ 1� a1ð�Þ in the above equation.
Therefore, for a photon, one can express (B6) by�
dr

d�

�
2 þ J2

r2
� J2

2M

r3
þ 2M

r
þ
�
1� 2M

r

�
a1ð�Þ ¼ 1:

(B8)

The corresponding potential for the motion of a
photon is

V‘ ¼ �J2
M

r3
þ a1ð�Þ

2
þM

r
�M

r
a1ð�Þ; (B9)

which, we remark, is an exact expression.
If one considers only linear departures from the flat

metric, one whould replace e�2� � ð1� 2�Þ; and so
one would obtain�
dr

d�

�
2 þ J2

r2
þ 2

�
��M

r
� J2M

r3
þ E2

�
M

r
þ�

��
¼ E2 � �: (B10)

For the massless case, by choosing the parametrization �
so that dt

d� ! 1 for r ! 1 one has E ¼ 1, and therefore,

one defines

V‘ðrÞ ¼ � J2M

r3
þM

r
þ�: (B11)

The motion of a photon can be deduced from the
Lagrangian

L ¼ 1

2

��
dr

d�

�
2 þ r2

�
d’

d�

�
2
�
� V‘ðrÞ

¼ 1

2

��
dx

d�

�
2 þ

�
dy

d�

�
2
�
� V‘ðrÞ; (B12)

where in the last equality we have used Cartesian like

coordinate system with r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. This system obvi-

ously has the integral of motion (B2) with Lagrangian

energy E ¼ E2

2 .

The equations of motion are:

dvx

d�
¼ � x

r

dV‘

dr
; (B13)

dvy

d�
¼ � y

r

dV‘

dr
; (B14)

with the velocity notation vx ¼ dx
d� an dvy ¼ dy

d� .

Let us assume the initial conditions: x ¼ x0, y 	 2M,
vx ¼ 0 and vy ¼ �1. Then, in this case, x0 is the impact

parameter, so that J ¼ x0.
After passing through the gravitational lens, the trajec-

tory will be deflected so that, in the asymptotic region one

would have vxj1 ¼ �v and vyj1 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð�vÞ2p

; since

the photon must travel at the velocity of light. Then the
bending angle can be calculated from

� ¼ � arctan
vxj1
vyj1 � �vxj1

vyj1 � ��v: (B15)

The variation in the velocity can be calculated from

�v ¼ �
Z �f

�o

x

r

dV‘

dr
d� ¼ �

Z dls

�dl

x

r

dV‘

dr
dy; (B16)

where we have taken d� ¼ dy.
The coordinate system has origin at the center of the

spherical symmetry. In the approximation of a lens con-
tained in a plane, the center is in this plane.
To consider the equation of motion of a massless particle

in the more general case, we also use the equations of
motion in the Cartesian like coordinate system, where now
the potential is given by (B11); so that

dV‘

dr
¼ 2

J2

r3
M

r
þ
�
1� J2

r2

��dM
dr

r
�M

r2

�
þ d�

dr

¼ 3
J2M

r4
�M

r2
þ
�
1� J2

r2

�
4r	þMþ 4r3Pr

r2ð1� 2M
r Þ

;

(B17)

and in the linear regime one has

� dV‘

dr
¼ 3J2

r

�
�MðrÞ

r3
þ 4

3
	ðrÞ

�
� 4rð	ðrÞ þ PrðrÞÞ:

(B18)

Finally the deflection angle is given by

� ¼ ��v ¼
Z dls

�dl

x0
r

dV‘

dr
dy

¼
Z dls

�dl

x0
r

�
� 3J2

r

�
�MðrÞ

r3
þ 4

3
	ðrÞ

�

þ 4rð	ðrÞ þ PrðrÞÞ
�
dy; (B19)

where it is understood that r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ y2

q
.

This coincide with expression (180) appearing above.
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