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The Laser Interferometer Space Antenna (LISA) is designed to detect gravitational wave signals from

astrophysical sources, including those from coalescing binary systems of compact objects such as black

holes. Colliding galaxies have central black holes that sink to the center of the merged galaxy and begin to

orbit one another and emit gravitational waves. Some galaxy evolution models predict that the binary

black hole system will enter the LISA band with significant orbital eccentricity, while other models

suggest that the orbits will already have circularized. Using a full 17 parameter waveform model that

includes the effects of orbital eccentricity, spin precession, and higher harmonics, we investigate how well

the source parameters can be inferred from simulated LISA data. Defining the reference eccentricity as the

value one year before merger, we find that for typical LISA sources, it will be possible to measure the

eccentricity to an accuracy of parts in a thousand. The accuracy with which the eccentricity can be

measured depends only very weakly on the eccentricity, making it possible to distinguish circular orbits

from those with very small eccentricities. LISA measurements of the orbital eccentricity can help

constraints theories of galaxy mergers in the early universe. Failing to account for the eccentricity in

the waveform modeling can lead to a loss of signal power and bias the estimation of parameters such as the

black hole masses and spins.
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I. INTRODUCTION

Binary systems of compact objects will be ubiquitous
sources for the Laser Interferometer Space Antenna
(LISA) [1,2]. Observations have shown that today there
are massive black holes in the center of nearly all galaxies
[3–5]. When galaxies collide their central black holes sink
to the center of the merged galaxy and begin to orbit one
another, losing energy and angular momentum in the form
of gravitational waves [6]. Gravitational wave (GW) emis-
sion rapidly erases any initial eccentricity [7,8], so it has
long been thought that eccentricity could be ignored when
modeling the signals from massive black hole binaries [9].
More recently, however, it has been shown that the mecha-
nisms that may harden the binary to the point where the
gravitational wave emission takes over all tend to drive up
the eccentricity [10–19]. The question then is whether
significant eccentricity survives until the final year or so
before merger. Figure 1 shows the eccentricity evolution as
a function of orbital frequency for systems that enter the
gravitational wave dominated evolution stage at frequency
fgw with eccentricities of egw ¼ 0:95 and egw ¼ 0:5. The

tracks are computed using the leading-order Peters and
Matthews [8] evolution equations. These equations predict
that once the eccentricity drops below e� 0:3, it decays as

e� f�19=18—in other words, roughly a factor of 10 in
eccentricity is lost per decade of frequency. The rate of
decay is slower for systems with very high eccentricities,
allowing them to maintain significant eccentricity for lon-
ger. For typical LISA black hole binaries, the GW decay
time drops below the Hubble time when the systems are 3
to 5 decades in frequency from the LISA band, so unless

egw is very close to unity, a purely GW driven orbital

evolution results in nearly circular orbits in the LISA
band. On the other hand, if the hardening mechanism
(e.g., gas dynamics or stellar scattering) continues to domi-
nate the dynamics until the system is close to the LISA
band, then interesting eccentricities can be maintained. In a
recent study [20], Sesana has shown that stellar scattering
produces LISA sources with eccentricities in the range
e0 ¼ 10�3 ! 0:2. Moreover, as shown in Fig. 8 of
Ref. [20], the distribution of eccentricities depends on the
component masses in a particular way, so measuring this
distribution can help constrain black hole merger models.
While the distribution of component masses and spins as a
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FIG. 1. The gravitational wave driven eccentricity evolution as
a function of orbital frequency is shown.
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function of luminosity distance will likely play a more
important role in studying galaxy-black hole coevolution
[21–23], the eccentricity distribution may provide useful
additional constraints. These considerations suggest that it
is desirable to include the effects of eccentricity in the
gravitational waveform, bringing the total number of pa-
rameters needed to describe a black hole inspiral to 17: the
redshifted black hole masses ðm1; m2Þ, the distance to the
source (DL), the initial radial eccentricity and semimajor
axis ðe0; a0Þ, the dimensionless spin parameters for the two
black holes ð�1; �2Þ, the source sky location ðcos�;�Þ, the
initial orientation of the angular momentum and spin vec-
tors ðcos�L;�LÞ, ðcos�S1 ; �S1Þ, ðcos�S2 ; �S2Þ, and two ini-

tial phase parameters ðn0; �0Þ. Failing to include the
eccentricity in the waveform model will lead to a loss of
signal-to-noise [24,25] and to biases in the recovery of the
other parameters [26,27].

The instantaneous gravitational waveforms describing
the inspiral of a black hole binary with arbitrary spins,
masses, and orbital eccentricity were calculated by Kidder
[28] to second post-Newtonian order (2 PN, or order v4=c4

in the relative velocity), and extended to 2.5 PN order by
Faye, Blanchet, and Buonanno [29,30]. Majár and Vasúth
[31] later introduced a convenient framework for express-
ing the waveforms in a form amenable to producing detec-
tion templates. Together with a solution to the conservative
equations of motion, adiabatically advanced with the an-
gular momentum and energy dissipation equations [28], we
can build the time dependent gravitational waveforms for a
general binary black hole system with the full 17 parame-
ters necessary to describe the system. LISA observations of
binary black hole inspirals can be compared to these wave-
forms to produce posterior distributions for the model
parameters. These observations will allow us to constrain
galaxy merger scenarios [21–23], and allow us to test
general relativity in the dynamical strong field regime
[32]. Left unaccounted for, the effects of orbital eccentric-
ity may be mistaken for a departure from general relativity
(in particular, even small eccentricities that produce negli-
gible power in higher harmonics can lead to easily detect-
able changes in the phase evolution of the signal).

Black hole binary systems in eccentric orbits may also
be detected by ground based gravitational wave detectors
such as the Laser Interferometer Gravitational Wave
Observatory (LIGO) and Virgo [33]. Some models even
predict that inspiral signals may enter the LIGO band with
e > 0:9 and that eccentric templates will be necessary to
detect such sources [34]. Current LIGO data analysis uses
circular templates and may need to be generalized to
include eccentricity.

We have previously described a method for combining
the instantaneous gravitational waveforms for eccentric
binary systems with a post-Keplerian solution to the equa-
tions of motion that is adiabatically advanced using the
orbit-averaged dissipation and spin precession equations to

build ready-to-use gravitational waveforms for the general
case of a spinning black hole binary system in an eccentric
orbit [35]. Here we present the results of a parameter
estimation study for spinning eccentric binary black hole
sources for the LISA mission. This is an extension of the
Lang and Hughes LISA parameter estimation study of
spinning binary black holes in circular orbits [36] and is
the first to include the full 17 parameters that describe a
general black hole binary inspiral.

II. WAVEFORM MODEL

The equations needed to numerically calculate time
dependent gravitational waveforms for binary black hole
systems have been computed to 2.5 PN order in the ampli-
tude and phase [28–31]. The resulting system of equations
could be numerically evolved to produce waveforms for
our study, but the computational cost of resolving the
motion of the black holes on the orbital timescale is too
large for the parameter estimation study we wish to per-
form. Taking advantage of the separation of time scales in
the waveform model we have developed an efficient wave-
form generator at 1.5 PN order in the amplitude and phase
[35]. These waveforms include the effects of periastron
precession, the precession of the orbital plane due to spin-
orbit coupling, and higher harmonics from the higher order
mass and current multipole moments. Our waveform
model does not include the effects of spin-spin coupling
which enter at 2 PN order. In future work we plan to extend
the waveform model and our parameter estimation study to
higher post-Newtonian order.
The fastest time scale for the system is the orbital time

scale, which to leading order is given by Kepler’s law:

Torb � 2�a3=2M�ð1=2Þ; (1)

where M ¼ m1 þm2 is the total mass of the system and a
is the semimajor axis. Periastron advance enters at 1 PN
order, with a fractional advance per orbit of k ¼
3M2�2=L2, where � ¼ m1m2=M is the reduced mass of

the system, L ’ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aMð1� e2Þp

is the orbital angular mo-
mentum, and e is the eccentricity of the orbit. The ratio of
the periastron precession timescale to the orbital timescale
is given by

Tperi

Torb

¼ 2�

k
’ a

M
: (2)

The orbital angular momentum L precesses with angu-
lar velocity !prec ¼ Seff=r

3 [35], where

S eff ¼ 2

�
1þ 3m2

4m1

�
S1 þ 2

�
1þ 3m1

4m2

�
S2: (3)

The effective spin vector has magnitude Seff �M2 since
the magnitude of the individual spins is given by
Si ¼ �im

2
i where the dimensionless spin parameter
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0 � �i � 1. The ratio of the precession time scale and the
orbital timescale is given by

Tprec

Torb

�
�
a

M

�
3=2

: (4)

We see that the precession of the orbital plane enters at
1.5 PN order relative to the orbital time scale. The pre-
cession of the orbital angular momentum due to spin-orbit
coupling results in a modulation of the amplitude of the
gravitational waveform at the solar system barycenter.

The rate at which the binary black hole system loses
energy and angular momentum due to gravitational wave
emission defines the decay time scale

Tdecay � E
_E
� L

_L
(5)

and the ratio

Tdecay

Torb

�M

�

�
a

M

�
5=2

: (6)

The loss of energy and angular momentum results in the
decay of the semimajor axis and the radial eccentricity of
the system. Orbit-averaged expression for these decay rates
can be found in Ref. [35]. The effects of spin-orbit induced
precession of the orbital plane and the overall sweep up in
frequency and amplitude as the system inspirals over the
course of a year are apparent in Fig. 2 for a system with
e0 ¼ 0:3 and other source parameters given in Table II for
Source 1.

At times well before the merger of the system M=a is
small and we find that

Tdecay > Tprec > Tperi > Torb: (7)

We take advantage of this separation of the relevant time
scales to make our waveform calculations more efficient.
Since the decay and precession timescales are much longer
than the orbital timescale we can start with a solution to the
orbital equations of motion that neglects dissipation. This
allows us to use Nyquist sampling of just a couple of
samples per orbit for the quantities that depend on the
dissipation and precession equations and saves consider-
able computational cost. Considering only times early in
the evolution of the system we have a clean separation of
time scales and the different processes can be treated
differently in the calculations. This simplifies the problem
by allowing an adiabatic treatment where the dissipation is
assumed to be small over the course of an orbit and the
eccentricity and semimajor axis are treated as constant
while calculating an individual orbit.
The approximations involved in exploiting the separa-

tion of timescales introduce small errors in the waveforms.
The largest of these comes from using the orbit-averaged
spin precession equations, which neglects small periodic
changes in the spin orientations that occur on the orbital
timescale, but these changes are effectively 2.5 PN order
contributions to the higher harmonics. The averaging also
introduces small errors in the long term secular evolution
that scale as the ratio of the averaging time scale (in our
case the orbital timescale) and the timescale of the terms
being averaged (such as the spin precession timescale).
These errors are multiplicative, and so represent higher
PN order terms that can be discarded at 1.5 PN order.
As the system approaches merger the various time scales

become comparable and our waveform model breaks
down. We adopt the termination condition 2�Mforb ¼
0:01, which corresponds to an expansion parameter
M=a � 0:05. Denoting the time when this condition is
met as ts, and the orbital frequency at this time as fs, we
taper the waveform smoothly to zero by multiplying the
waveform with a half-Hann filter:

wðtÞ ¼
�
1; if t � tH
cos2ð�ðt� tHÞfs=3Þ; if t > tH

(8)

with tH ¼ ts � 3=ð2fsÞ.
Our termination condition is conservative in terms of the

signal-to-noise ratio (SNR) LISA will be able to extract
from this type of source. Most of the SNR comes from
times near merger, so the extension of the validity of the
waveform closer to merger results in a big increase in SNR.
Our study here is thus a pessimistic estimate of how well
LISAwill be able to determine the various source parame-
ters. In the case of the radial eccentricity parameter, how-
ever, the circularization of the waveform toward merger
means that most of the eccentricity information is encoded
at times well before merger. While increased SNR would
improve the determination of the other source parameters,
we find that the eccentricity is not highly correlated with
the other parameters (see Fig. 13). Our choice for when to
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FIG. 2. The time dependent gravitational waveform hþðtÞ at
the solar system barycenter for a binary black hole system with
e0 ¼ 0:3 (Source 1 in Table II) during the final year before
merger is shown.
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truncate the waveform thus should not have much of an
effect on our study of how well LISA will be able to
determine the eccentricity of black hole binary systems.

We have tested our waveform generator in various limits
against other codes. In the circular limit, and with dissipa-
tion turned off, we found precise agreement with the
1.5 PN limit of the spinning black hole code developed
by Cornish, Hughes, Lang, and Nissanke that is described
in Ref. [37]. We do not expect, and nor do we find, precise
agreement when dissipation is included. This is because
our eccentric waveform generator evolves the semimajor
axis, while the circular orbit code evolves the orbital
frequency, which leads to numerical differences at 2 PN
order. In the 0-PN limit (hence no spin effects and no
higher harmonics) we find precise agreement with the
Peters and Matthews waveforms [7].

III. LISA RESPONSE

We simulate the LISA response to a gravitational wave
signal plus instrument noise and confusion noise due to
galactic binary sources of gravitational waves. We adopt
the standard ecliptic coordinate system with origin at the
barycenter. The individual data streams from the six LISA
phase meters can be combined to cancel out the laser phase
noise and form time delay interferometry variables [38].
The Michelson style time delay interferometry variables
fX; Y; Zg can be used to construct three noise orthogonal
data streams that are similar to the fA; E; Tg variables
described in Ref. [39].

Processing the gravitational waveform through the LISA
response function imparts additional amplitude and fre-
quency modulations on the 1 yr timescale of the LISA
orbits. These effects can be seen in Fig. 3, which shows the

A-channel response to the Barycenter signal shown previ-
ously in Fig. 2.
The one-sided noise spectral density of the detector in

the A and E channels is given by [40]

SinstðfÞ ¼ 4

3

�
ð2þ cosuÞSpnðfÞ

þ 4ð1þ cosuþ cos2uÞ SanðfÞ
ð2�fÞ4

�
; (9)

where u ¼ 2�f=L, Spn ðfÞ is the position noise and SanðfÞ is
acceleration noise, and we have taken the limit of sym-
metric noise in the detector. The confusion noise due to
gravitational wave sources in the Galaxy has been esti-
mated by direct simulation of the LISA response [41] to a
synthetic galaxy [42], followed by the removal of resolv-
able systems [43]. An approximate fit to the resulting
confusion noise estimate is given by

SconfðfÞ¼

8>>>>>>>>><
>>>>>>>>>:

10�44:8f�2:4 10�4<f<4:5�10�4

10�47:15f�3:1 4:5�10�4<f<1:1�10�3

10�51f�4:4 1:1�10�3<f<1:7�10�3

10�74:7f�13 1:7�10�3<f<2:5�10�3

10�59:15f�7 2:5�10�3<f<4�10�3

:

(10)

The total noise is then taken to be the sum of the two
contributions: SnðfÞ ¼ SinstðfÞ þ SconfðfÞ.

IV. PARAMETER ESTIMATION

The goal of a parameter estimation study is to find how
accurately we can determine the values of the source
parameters for a given signal. We take a Bayesian approach
and use the Markov Chain Monte Carlo (MCMC) tech-
nique to compute the posterior distribution function pð ~xjsÞ
describing the model parameters ~x that we infer from data
s. Our results establish how well the various source pa-
rameters will be able to be determined by the LISA mis-
sion, including the orbital eccentricity.
The use of MCMC techniques in gravitational wave data

analysis is now a familiar technique for parameter estima-
tion in gravitational wave astronomy [44–49]. The result of
a well constructed MCMC is a set of samples from the
posterior distribution. The number of samples from a par-
ticular region of parameter space is proportional to the
posterior weight contained in that region. The uncertainty
in each parameter is given by quantiles of the marginalized
posterior distribution (e.g., the half-width of the 90th per-
centile equates to a 2-� error if the distributions are
Gaussian).
By Bayes theorem, the posterior distribution is given

by the product of the prior distribution pðxÞ and like-
lihood pðsjxÞ, normalized by the evidence pðsÞ ¼R
pðxÞpðxjsÞdx. For Gaussian noise, the likelihood of the
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FIG. 3. The AðtÞ channel response to the spinning binary black
hole system shown in Fig. 2. The amplitude modulation is due to
a combination of the antenna pattern sweeping around as LISA
orbits the Sun, and the spin induced precession of the orbital
plane. The overall gravitational wave amplitude grows as the
system spirals in and nears merger.
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data s having being generated by a gravitational wave
signal hðxÞ is given by

pðsjxÞ ¼ Ce�ð1=2Þðs�hðxÞjs�hðxÞÞ; (11)

where C is a normalization constant that does not depend
on the signal or the template. Here we have used the noise
weighted inner product

ðajbÞ ¼ 2
Z 1

0

a�ðfÞbðfÞ þ aðfÞb�ðfÞ
SnðfÞ df; (12)

where SnðfÞ is the one-sided noise spectral density. The
prior probability density for x reflects our knowledge of the
source parameter, however ill-formed, before we analyze
the data. For example, we assume a uniform prior for
angular parameters such as the sky location and the initial
orientation of the angular momentum vector, such that the
cosine of the colatitude is uniformly distributed in the
range ½�1:1� and the azimuth is uniformly distributed in
the range ½0:2��.

The primary mode of the posterior distribution yields the
best fit values for the source parameters, according to the
current data and our prior knowledge. In many instances
the posterior distribution is multimodal, and the quantiles
used to estimate the parameter uncertainties may cover
disjoint regions in parameter space. Even when the bulk
of the posterior weight lies in a single, contiguous region,
the posterior distribution may not be well approximated by
a Gaussian distribution. Nonetheless, a Gaussian approxi-
mation to the posterior distribution often provides a rea-
sonable estimate of the parameter estimation errors, which
can be efficiently computed using the Fisher information
matrix �ij, which measures the expectation value of the

curvature of the posterior distribution about the mode:

�ij ¼ �h@i@j lnpðxjsÞijmode: (13)

We employ a parallel tempered [50] Metropolis-
Hastings [51,52] MCMC routine to explore the PDF. The
Markov chain starts at parameter values x and transitions
to y with probability

H ¼ min

�
pðyÞpðsjyÞqðxjyÞ
pðxÞpðsjxÞqðyjxÞ ; 1

�
: (14)

Here qðxjyÞ is the proposal distribution, which is the
function that generates proposals for moves from x to y.
The performance of an MCMC algorithm is quite sensitive
to the choice of proposal distribution, and care must be
taken to ensure that the chains do not get stuck on local
maxima of the PDF. We employed several techniques to
ensure rapid exploration of the full parameter space: local
coordinate transformations to uncouple the parameters,
moves that exploit symmetries of the likelihood surface
to encourage jumps between local maxima, and parallel
tempering to encourage wide exploration of the posterior
[49,53,54]. The number of iterations spent at each

parameter value is proportional to the posterior density,
and histograms of the parameters visited by the chain
provide an estimate of the posterior distribution.
We have found that drawing from a variety of proposal

distributions provides a set of jump proposals that tend to
produce an MCMC that efficiently maps out the desired
posterior distribution function (PDF) and provides accurate
parameter uncertainties even for very large search spaces.
Our parameter estimation study thus uses several proposal
distributions, including parallel tempering and Fisher ma-
trix proposals. In this high dimensional parameter space we
found it advantageous to use the Fisher matrix approxima-
tion to the posterior to propose jumps along single eigen
directions as part of the mixture of jump proposals.

V. PARAMETER ESTIMATION WITH LISA

We can use our time dependent gravitational waveforms
[35] and established MCMC techniques to study how well
LISAwill be able to measure the full set of 17 parameters
necessary to describe a spinning binary black hole system
in an eccentric orbit. We are especially interested in de-
termining when eccentric orbits can be distinguished from
circular orbits.
We chose to study signals in their final year prior to

merger, with an observation time that extends just beyond
the merger. In order to choose initial parameter values for a
system that will merge in 1 yr, we need to calculate an
initial semimajor axis based on the lifetime estimate for a
system with some given initial radial eccentricity. We use
the leading order, 0 PN expression for a0 [8]

a0 ¼ 4

�
�M2

5
Tc

�
1=4

�
1þ 157

172
e20 þ

579 997 7

733 683 2
e40

þ 188 817 576 3

252 387 020 8
e60

�
; (15)

as an initial guess, and apply a bisection routine to the full
numerical orbital evolution to find the value of a0 that
yields a merger time Tc of 1 yr.
We use parameter ranges consistent with typical LISA

sources, given in Table I. The masses are given in terms of
the mass of the Sun, M� ¼ 1:9891� 1030 kg, and the
luminosity distance DL is given in units of gigaparsecs.
The dimensionless spin parameters �1 and �2 combine
with the black hole masses to give the magnitudes of
the spins, Si ¼ �im

2
i . There are initial orientation parame-

ters for the orbital angular momentum vector L !
ðcos�L;�LÞ, as well as the spin vectors Si !
ðcos�Si ; �SiÞ. The final two parameters, n0 and �0, are

initial phases related to the mean motion and orbital phase.
In the circular limit these parameters are degenerate, but
for eccentric orbits we have to specify the initial periastron
position. In the present study we have ignored the possi-
bility that gas dynamics may partially aligned the spins
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with the orbital angular momentum [55], which would
restrict the prior ranges and reduce the degree of orbital
precession. The impact of this partial alignment on pa-
rameter estimation has been considered for circular orbits
[56], and it would be interesting to extend this study to
include eccentricity.

Here we study several representative cases to establish
the parameter recovery errors and to study correlations
between the parameters. The high dimension of the pa-
rameter space makes it difficult to perform a comprehen-
sive study—if we were to choose just two values of each
parameter we would need to perform 217 � 105 parameter
estimation studies. Each MCMC run involves �100 000
iterations with �8 parallel chains, and takes about a week
to run on a single 2.66 GHz Intel processor, so we are
limited in the number of examples we can consider. We
perform MCMC parameter estimation studies of several
representative examples, varying the mass ratio, sky loca-
tion, distance, eccentricity, and dimensionless spin pa-
rameters. We only looked at a few initial spin and orbital
orientations since we do not expect these to have a signifi-
cant effect on the results—unless the initial orientations are
very special the system will explore a wide range of
orientations during the orbital evolution. To be able to
explore the parameter space more widely would take a
faster code. One possibility is to use the Fisher information
matrix approximation to the posterior, which is many
orders of magnitude faster than a full MCMC study. In
preparation for such a study we compare the Fisher matrix
approximation to the MCMC derived posterior distribu-
tions and find that the approximation is fairly reliable so
long as the initial eccentricity exceeds e0 � 0:01.

Our first study focuses on determining when the eccen-
tricity 1 yr before merger is distinguishable from zero. We

studied two systems that only differed in sky location (and
hence in SNR), and considered initial eccentricities in the
range e0 2 ½0:001; 0:2�, see Table II for a list of the other
source parameters. Marginalized posterior distributions for
e0 are shown in Fig. 4 for Source 1, and Fig. 5 for Source 2.
We see that the error in the measured value of e0 gets
smaller as e0 gets larger, but the dependence on e0 is fairly

TABLE II. Injected parameter values for two sets of sources
studied with a range of values for e0 are shown. The results of the
parameter estimation study for Source 1 are given in Fig. 4 and
the results for Source 2 are given in Fig. 5.

Parameter Source 1 Source 2

m1 2� 106M� 2� 106M�
m2 1� 106M� 1� 106M�
DL 6.36167 Gpc 6.36167 Gpc

�1 0.5 0.5

�2 0.8 0.8

cos� 0.2 0.4

cos�L �0:5 �0:5
cos�S1 �0:8 �0:8
cos�S2 0.6 0.6

� 1.2 2.0

�L 2.6 2.6

�S1 0.4 0.4

�S2 1.7 1.7

n0 0.2 0.2

�0 1.65 1.65

TABLE I. Parameter ranges for our study of spinning black
hole binary systems in eccentric orbits are shown.

Parameter Minimum Maximum

m1 105M� 107M�
m2 105M� 107M�
DL 1 Gpc 100 Gpc

e0 0 1

a0 20 M 1000 M

�1 0 1

�2 0 1

cos� �1 1

cos�L �1 1

cos�S1 �1 1

cos�S2 �1 1

� 0 2�
�L 0 2�
�S1 0 2�
�S2 0 2�
n0 0 2�
�0 0 2�

 0.099  0.1  0.101

e0

 0.009  0.01  0.011  0.012

e0

 0.002  0.004  0.006  0.008

e0

 0  0.001  0.002  0.003  0.004

e0

FIG. 4. The marginalized posterior distribution for the initial
radial eccentricity for sources with the same parameter values
except for different initial eccentricities and semimajor axes is
shown. The boxed histograms are derived from the Markov
chains, while the solid lines are the Fisher matrix predictions
computed at the MAP values of the parameters (which are
pushed off the true values by the instrument noise). Top left:
e0 ¼ 0:1, a0 ¼ 69:96M, SNR ¼ 231; top right: e0 ¼ 0:01, a0 ¼
68:33M, SNR ¼ 237; bottom left: e0 ¼ 0:005, a0 ¼ 69:3M,
SNR ¼ 237; bottom right: e0 ¼ 0:002, a0 ¼ 69:3M, SNR ¼
237. The other parameter values correspond to Source 1 in
Table II.
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weak, and never larger than �e0 � 0:001. Our criteria for
deciding if the eccentricity is distinguishable from zero is
to see if their is any weight in the posterior distribution at
e0 ¼ 0 (this test is motivated by the Savage-Dicke density
ratio estimate for the model evidence [41]). For Source 1
we see that the examples with e0 	 0:005 are clearly
distinguishable from circular, while the e0 ¼ 0:002 case
is on the margin of detectability. For Source 2, which has
higher SNR due to a more favorable sky location, the
e0 ¼ 0:002 case is clearly distinguishable from circular.
The Fisher matrix approximation to the posterior distribu-
tion is computed at the maximum a posteriori probability
(MAP) value of the parameters, and is found to work well
for eccentricities e0 > 0:05, but breaks down for small
eccentricities. The MCMC derived posterior distributions
are much flatter than a Gaussian distribution, and we
attribute the failure of our Fisher matrix estimates to only
including the leading-order, quadratic curvature terms in
the Fisher matrix calculation.

This study suggests that LISA observations of eccentric
black hole binary systems will be able to measure the
eccentricity of the system and distinguish eccentric sys-
tems from circular systems to parts in a thousand. A similar
study was performed by Porter and Sesana [27] for non-
spinning eccentric binary black hole systems. Their results
suggest that LISA will be able to measure the eccentricity
to parts in 10�4 for such sources.

We find that the other source parameters are also
measured quite well, as illustrated in Fig. 6 and 7.
Marginalized posterior distributions are shown for the

chirp mass Mc ¼ ðm1m2Þ3=5=ðm1 þm2Þ1=5 and reduced
mass � ¼ m1m2=ðm1 þm2Þ, the distance to the source,
the initial radial eccentricity, and the two sky location
parameters. We compare the Fisher matrix approximation
to the marginalized posterior distributions computed from
the MCMC runs and find excellent agreement for all the
parameters (except for the eccentricity in Fig. 6).

As a start to exploring the large parameter space of
eccentric binary black hole systems we consider a few
representative examples below. We find that in general
physical parameters are well constrained by LISA obser-
vations and that the Fisher matrix makes fair estimates of
the parameter errors. In addition to the examples below
with varied spin and distance parameters we also studied
systems with a range of mass ratios m1=m2 2 ½1; 5� and
total masses M 2 ½105M�; 107M�� with similar results.

 14.0116  14.0116  14.0117  14.0117

ln(Mc)

 13.4095  13.4098  13.4101

ln(µ)

 1.82707  1.84553  1.86399  1.88245

ln(DL/Gpc)

 0.000146989 0.00139639  0.00264579  0.00389519

e0

0.192008  0.200016  0.208024  0.216031

cos(θ)

 1.19059  1.19617  1.20175  1.20733

φ

FIG. 6. The marginalized posterior distribution for several
source parameters, including the initial radial eccentricity with
injected value e0 ¼ 0:002, a0 ¼ 69:3M, and SNR ¼ 237, is
shown. The other injected source parameters are those of
Source 1 in Table II. The solid lines are the Fisher matrix
predictions computed at the MAP values of the parameters.

 0

 1000

 2000

 3000

 4000

 0.0996  0.0998  0.1  0.1002  0.1004

e0

 0

 400

 800

 1200

 0.001  0.002  0.003

e0

FIG. 5. The marginalized posterior distribution for the initial
radial eccentricity for sources with the same parameter values
except for different initial eccentricities and semimajor axes is
shown. On the left: e0 ¼ 0:1, a0 ¼ 68:94M, SNR ¼ 557; on the
right: e0 ¼ 0:002, a0 ¼ 68:32M, SNR ¼ 559. For this source,
e0 ¼ 0:002 is distinguishable from the circular case. A vertical
line marks the injected e0 value in each plot. The other parameter
values are given in Table II, Source 2.

 14.0116  14.0116  14.0117  14.0118

ln(Mc)

 13.4098  13.41  13.4101  13.4103

ln(µ)

 1.83072  1.84227  1.85383  1.86538

ln(DL/Gpc)

 0.0995662  0.0998871  0.100208  0.100529

e0

 0.381348  0.392921  0.404493  0.416066

cos(θ)

 1.98049  1.9913  2.00211  2.01293

φ

FIG. 7. The marginalized posterior distribution for several
source parameters, including the initial radial eccentricity with
injected value e0 ¼ 0:1, a0 ¼ 68:94M, and SNR ¼ 558, is
shown. The other injected source parameters are those of
Source 2 in Table II. The solid lines are the Fisher matrix
predictions computed at the MAP values of the parameters.
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We also compared the parameter estimation errors with
those obtained when the eccentricity is held fixed at zero,
and saw only small (less than 50%) changes in the error
estimates.

The dimensionless spin parameters �1 and �2 are varied
in Table III to study the cases of large and small spin
parameters. The magnitude of the spin vectors is related
to the mass of the black hole Si ¼ �im

2
i . The posterior

distribution for several of the source parameters for these
cases are given in Figs. 8 and 9. The Fisher approximation

is a reasonable prediction of the width of the posterior
distribution for the spin of the more massive body, but
does a poor job for the less massive body. This discrepancy
was seen in many other examples that we looked at. The
cause of the discrepancy is currently not understood. Two
lower SNR examples are shown in Fig. 10 and 11, and we
see good agreement with the Fisher matrix estimates.
We do not expect the eccentricity to be highly correlated

with the other source parameters since the higher harmon-
ics introduced in the waveform due to eccentricity cannot

TABLE III. Source 3 gives the injected parameter values for
Fig. 8 with large spin values. Source 4 gives the injected
parameter values for Fig. 9 with small spin values.

Parameter Source 3 Source 4

m1 2� 106M� 2� 106M�
m2 1� 106M� 1� 106M�
DL 6.36167 Gpc 6.36167 Gpc

e0 0.1 0.1

a0 68.96 M 68.91 M

�1 0.8 0.1

�2 0.9 0.11

cos� 0.2 0.2

cos�L �0:5 �0:5
cos�S1 �0:8 �0:8
cos�S2 0.6 0.6

� 1.2 1.2

�L 2.6 2.6

�S1 0.4 0.4

�S2 1.7 1.7

n0 0.2 0.2

�0 1.65 1.65

SNR 250 197

 14.0115  14.0116  14.0117  14.0118

ln(Mc)

 13.4097  13.41  13.4103  13.4105

ln(µ)

 0.795638  0.802617  0.809595  0.816574

χ1

 0.867984  0.895003  0.922022  0.949041

χ2

 0.192361  0.197012  0.201662  0.206313

cos(θ)

 1.18817  1.19238  1.19658  1.20079

φ

FIG. 8. The marginalized posterior distribution for several
source parameters for Source 3 in Table III is shown. The solid
lines are the Fisher matrix predictions computed at the MAP
values of the parameters.

 14.0115  14.0116  14.0118  14.0119

ln(Mc)

 13.4094  13.4098  13.4101  13.4105

ln(µ)

 0.0755431  0.0879182  0.100293  0.112668

χ1

 0.0993269  0.105033  0.110739  0.116444

χ2

 0.166536  0.187678  0.20882  0.229961

cos(θ)

 1.19147  1.19737  1.20327  1.20917

φ

FIG. 9. The marginalized posterior distribution for several
source parameters for Source 4 in Table III is shown. The solid
lines are the Fisher matrix predictions computed at the MAP
values of the parameters.

TABLE IV. Source 5 gives the injected parameter values for
Fig. 10 with redshift z� 1:5. Source 6 gives the injected
parameter values for Fig. 11 with redshift z� 2.

Parameter Source 5 Source 6

m1 2� 106M� 2� 106M�
m2 1� 106M� 1� 106M�
DL 11.008 Gpc 15.733 Gpc

e0 0.1 0.1

a0 68.94 M 68.94 M

�1 0.5 0.8

�2 0.5 0.8

cos� 0.2 0.2

cos�L �0:5 �0:5
cos�S1 �0:8 �0:8
cos�S2 0.6 0.6

� 1.2 1.2

�L 2.6 2.6

�S1 0.4 0.4

�S2 1.7 1.7

n0 0.2 0.2

�0 1.65 1.65

SNR 132 92
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be simulated by changes in other parameters or their
combinations. We indeed find that the initial eccentricity
is not correlated with the other parameters. Compare the
distribution of values for the two masses in Fig. 12 to the
distribution of mass and eccentricity values in Fig. 13.
The two masses are highly correlated since it is the total
mass of the system and the ratio of the masses that appear
in the waveform. The distribution of eccentricity versus the
other source parameters is similar to that seen in Fig. 13.

VI. CONCLUSION

Our studies of the response of the LISA detector to the
gravitational wave signal from spinning binary black hole
systems in eccentric orbits show that the eccentricity
should not be neglected for LISA data analysis and pa-
rameter estimation. We find that LISA can determine the
eccentricity of the system 1 yr before merger to parts in a
thousand. This result depends only weakly on the initial
value of the eccentricity, indicating that LISAwill be able
to distinguish between eccentric and circular orbits at the
same level (e0 � 10�3).

 14.0111  14.0114  14.0117  14.012

ln(Mc)

 13.409  13.4098  13.4105

ln(µ)

 2.72976  2.76318  2.7966  2.83002

ln(DL/Gpc)

 0.0984195  0.0998153  0.101211  0.102607

e0

0.162017  0.184954  0.207892  0.230829

cos(θ)

 1.17681  1.19042  1.20403  1.21764

φ

FIG. 11. The marginalized posterior distribution for several
parameters for a source with z� 2, e0 ¼ 0:1, and SNR ¼ 92
(Table IV, Source 6) is shown. The solid lines are the Fisher
matrix predictions computed at the MAP values of the
parameters.

FIG. 12. Two dimensional posterior distribution scatter plots
showing the correlation between pairs of parameters for a source
with initial radial eccentricity e0 ¼ 0:002 and SNR ¼ 237
(Table II, Source 1) are shown. Upper left: m1 and m2, upper
right: m1 and a0, bottom left: cos�S2 and �S2 , bottom right: n0
and �0.

FIG. 13. Two dimensional posterior distribution scatter plots
for a source with initial radial eccentricity e0 ¼ 0:002 and
SNR ¼ 237 (Table II, Source 1) are shown. Upper left: m1

and e0, upper right: a0 and e0, bottom left: cos� and e0, bottom
right: �1 and e0.

 14.0114  14.0116  14.0119  14.0121

ln(Mc)

 13.409  13.4097  13.4104

ln(µ)

 2.37793  2.40825  2.43857  2.4689

ln(DL/Gpc)

 0.0979112  0.0989763  0.100041  0.101107

e0

0.189715  0.203912  0.218109  0.232306

cos(θ)

 1.18766  1.19726  1.20687  1.21647

φ

FIG. 10. The marginalized posterior distribution for several
parameters for a source with z� 1:5 e0 ¼ 0:1, and SNR ¼
132 (Table IV, Source 5) is shown. The solid lines are the
Fisher matrix predictions computed at the MAP values of the
parameters.
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The construction of the gravitational waveforms for
spinning binary black hole systems in eccentric orbits to
1.5 PN order in [35] establishes the framework for the
extension of this work to higher post-Newtonian order.
Binary black hole waveforms that include eccentricity
will be necessary for several of the LISA science goals
including constraining galaxy merger scenarios and testing
general relativity in the strong field regime near super-
massive black holes.

This work builds the foundation for further studies in-
cluding a comprehensive exploration of the parameter
space including source sky location, distance, spins,
masses, and mass ratios. For sources with initial radial
eccentricity greater than e0 � 0:02 the Fisher matrix is a
good approximation to the posterior distribution. The very
large parameter space could be studied quickly using the
Fisher approximation, although it is not as useful for the
low initial eccentricity cases.

The equations of motion and instantaneous gravitational
waveforms have been calculated to the next post-
Newtonian order and these pieces can be included in a
future parameter estimation study. The 2 PN effects include
the spin-spin coupling of the two black holes and thus
corrections to the precession and evolution of the system.
These waveforms can be also be used to study how well

the Advanced LIGO-Virgo network and proposed Einstein
Telescope will be able to measure eccentricity and what
level of bias could be expected from using circular tem-
plates for parameter estimation.
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