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Quantum fields in compact stars can be amplified due to a semiclassical instability, which may affect

the structure of relativistic stars. We show that a classical counterpart to this instability occurs in exactly

the same region of the parameter space. For negative coupling parameter �, the instability is related to the

well-known ‘‘spontaneous scalarization’’ effect. The plausible end state is a static, asymptotically flat

configuration with a nonzero scalar field, which is compatible with weak-field experiments and energeti-

cally favored over stellar solutions in general relativity. For � > 0 the new configurations are energetically

disfavored, and the end state of the instability remains an open issue. The vacuum instability may lead to

new experimental opportunities to probe the nature of vacuum energy via astrophysical observations of

compact stars.
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One of the great achievements of quantum field theory in
curved spacetime is Hawking’s semiclassical prediction of
black hole evaporation. This process is made possible by
the special nature of the vacuum in quantum field theory,
but it is extremely feeble by any astrophysical standards. It
was recently shown that the vacuum in strongly curved
spacetimes might play an important role even in the ab-
sence of horizons [1,2], so that the formation and evolution
of relativistic stars could be affected by semiclassical
effects.

In particular, Lima, Matsas and Vanzella (henceforth
LMV) [1] showed that the vacuum expectation value of
nonminimally coupled scalar fields can grow exponentially
in relativistic stars. An understanding of the final state of
the LMV instability is important: if this final state supports
nonvanishing scalar fields, the semiclassical amplification
of vacuum energy could have cosmological and astrophys-
ical implications.

In this paper we show that, for certain values of the
coupling parameter, the most likely end state of the
instability is an asymptotically flat stellar solution with
nonvanishing scalar field, which is compatible with gravi-
tational experiments in the weak-field regime. We also
point out that these new solutions correspond to the well-
known ‘‘spontaneous scalarization’’ phenomenon [3,4],
and that they are energetically favored over stellar solu-
tions in general relativity (GR). Our findings support the
relevance of vacuum amplification scenarios. Vacuum

amplification should be investigated carefully when devis-
ing strong-field tests of GR, for example, in the context of
gravitational collapse and gravitational-wave emission.

I. SETUP: STATIC SOLUTIONS

We look for static, spherically symmetric equilibrium
solutions of the field equations admitting a nonzero scalar
field with metric

ds2 ¼ �fðrÞdt2 þ ð1� 2mðrÞ=rÞ�1dr2 þ r2d�2

þ r2sin2�d�2:

Following LMV [1], we study a nonminimally coupled
scalar field in the presence of a perfect-fluid star in GR. We
consider the action

S ¼ 1

16�G

Z
d4x

ffiffiffiffiffiffiffi�g
p

Rþ
Z

d4x
ffiffiffiffiffiffiffi�g

p
Lm; (1)

where Lm ¼ Lscalar þLperfectfluid. The Lagrangian for a

scalar field with conformal coupling � is given by

L scalar ¼ ��R�2 � g���;��;� ��2�2; (2)

where � denotes the scalar field mass. Here we set � ¼ 0;
we will consider the massive case in a follow-up paper. For
� ¼ 1=6, � ¼ 0 the action is invariant under conformal
transformations (g�� ! �2g��;� ! ��1�). For � ¼ 0,

� ¼ 0 one recovers the usual minimally-coupled massless
scalar. The above Lagrangian corresponds to a viable
theory of gravity, passing all weak-field tests [5,6].
The theory can be recast as a scalar-tensor theory of

gravity in the Einstein frame [3] via the transformation
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g�� ! ð1� 8���2Þg��;

d� !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8��ð1� 6�Þ�2

p
1� 8���2

d�:

In this form, both the classical counterpart of the
LMV instability and its final state have been thoroughly
studied [3,4,7].

We can explicitly construct static, asymptotically
flat, spherically symmetric solutions to the theory (1)
with a nonzero scalar field and verify that our solutions
match those found in [3,4,7], as follows. The equations of
motion following from the Lagrangian are (hereafter we set
c ¼ G ¼ 1)

G�� ¼ 8�T��; (3)

r�r�� ¼ ð�2 þ �RÞ�; (4)

where

T�� ¼ ð2�;��;� � g��g
���;��;� ��2g���

2

� 2��2
;�;� þ 2�g���

2
;�;�g

�� þ T
perfectfluid
�� Þ

� ð1� 16���2Þ�1: (5)

We consider perfect-fluid, spherically symmetric stars
with energy density 	ðrÞ and pressure PðrÞ such that

T
��
perfect fluid ¼ ð	þ PÞu�u� þ g��P, where the fluid four-

velocity u� ¼ ð1= ffiffiffi
f

p
; 0; 0; 0Þ. We specify some equation

of state (EOS) P ¼ Pð	Þ and we impose regularity con-
ditions at the center of the star, i.e.

mð0Þ ¼ 0; 	ð0Þ ¼ 	c; �ð0Þ ¼�c; �0ð0Þ ¼ 0:

(6)

We also require continuity at the stellar radius Rs, defined
by the condition PðRsÞ ¼ 0. We focus on two different
stellar models: (i) the constant-density stars (	 ¼ const)
studied by LMV, and (ii) the polytropic model 	 ¼
nmb þ Kn0mbð�� 1Þ�1ðn=n0Þ�, P ¼ Kn0mbðn=n0Þ�,
with � ¼ 2:34, K ¼ 0:0195, mb ¼ 1:66� 10�24g and
n0 ¼ 0:1 fm�3 (this is the model that was considered in
Ref. [3] in the context of spontaneous scalarization). We
have checked that nuclear-physics based EOS models
would yield qualitatively similar results.
Relativistic stellar configurations in GR correspond to

�c ¼ 0, so that � ¼ 0 everywhere. For each central den-
sity 	c, we used a shooting method to search for nonzero
values of �c such that �ðrÞ ! 0 as r ! 1.
For constant-density configurations, we find solutions

with a nonzero scalar field in the shaded regions of the
ð�;M=RsÞ diagram shown in the left panel of Fig. 1. The
right panel of Fig. 1 shows that the qualitative features of
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FIG. 1 (color online). Left panel: Existence diagram for constant-density stars, showing the values of the ratio M=Rs of uniform-
density compact objects which support a dynamical scalar field. The dash-dotted line (red in the online version) corresponds to the
analytical prediction in the Newtonian limit, Eq. (7). The vertical dashed line indicates the conformal-coupling value � ¼ 1=6. We
present this plot in ‘‘standard’’ geometrical units so that the compactness of our models can be easily compared to the maximum
compactness for constant-density stars in GR:M=Rs � 4=9 ’ 0:444 (Buchdahl’s limit). Modulo this trivial unit conversion, the shaded
regions in the left panel match exactly the shaded regions in LMV’s Fig. 1 (see main text). In the upper-right region of the diagram,
different critical lines correspond to ‘‘excited’’ equilibrium configurations and the integers refer to the number N of nodes in�ðrÞ (see
the main text). Right panel: Same for stars with a polytropic EOS. The dashed line (orange online) through the negative-� region marks
the configuration with maximum mass (i.e., the radial stability limit) for each �.
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the existence diagram are the same for a polytropic EOS.
These diagrams effectively reproduce previous results ob-
tained many years ago in the context of spontaneous scala-
rization (see e.g. [4]). It is remarkable that static solutions
exist in the same region where the LMV instability oper-
ates (cf. Figure 1 in LMV). This provides strong evidence
that these solutions (when they are stable) represent a
plausible final state of the instability.

In fact, the exact overlap between our own Fig. 1 and
Fig. 1 of LMV can be proved analytically. Focus for
simplicity on constant-density stars and massless scalar
fields (but our reasoning applies in general). The critical
lines in Fig. 1 of LMV represent the curves where margin-
ally stable modes exist. These modes are zero-frequency
solutions of Eq. (4) in LMV, where the potential is given by
their Eq. (6). On the other hand, the critical lines in our
Fig. 1 represent the boundary of regions where spherically
symmetric, static solutions with nontrivial scalar field pro-
files cease to exist. These are solutions of the Einstein-
Klein-Gordon equations with� ¼ 0. As� ! 0 the space-
time becomes arbitrarily close to that of a constant-density
star and the Klein-Gordon equation reduces to Eq. (4) in
LMV, with potential given by their Eq. (6). Furthermore,
the same boundary conditions apply in both cases. Thus,
the critical lines are obtained from the very same equations
and they are indeed coincident, not just similar.

Quite interestingly, the LMV instability threshold can be
found analytically in the Newtonian limitM=Rs � 1 (i.e.,
in the bottom left corner of Fig. 1). The instability line
defines the existence of static solutions with a small but

nonvanishing massless scalar field. The relevant equation
in this limit is �00 � 8��ð	� 3PÞ� ¼ 0, where a prime
denotes a derivative with respect to r, and we use the ansatz
for the scalar field � ¼ ð�=rÞe�i!t (i.e., we consider an s
wave). Assuming that 	 is constant in the stellar interior
(this assumption holds exactly for uniform-density stars
and is a good approximation for most EOSs), a regular
solution at the origin and at infinity that is also continuous
at Rs corresponds to

24M� ¼ ��2Rs: (7)

As shown in Fig. 1, this prediction is in very good agree-
ment with the LMV results. The basic features of the
instability in compact stars were understood by Ford
(who studied unstable scalar fields as a possible mecha-
nism to damp the effective value of the cosmological
constant) as early as 1987 [8]; see also [4].

II. MASS AND BINDING ENERGY

The orbits of bodies far away from the star depend on the
star’s gravitational mass M, shown as a function of the
central baryonic density 	c ¼ mbnð0Þ in the left panel of
Fig. 2. In GR, maxima of this curve correspond to margin-
ally stable equilibrium configurations, and all solutions
after the first maximum are unstable to radial perturbations
in the polytropic case (see e.g. [9]). The baryonic mass of
the configuration,

�m ¼ mb

Z
d3x

ffiffiffiffiffiffiffi�g
p

u0nðrÞ; (8)
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FIG. 2 (color online). Left: Gravitational mass as a function of the central baryonic density 	c=	0, where 	0 ¼ 8� 1014 g=cm3 is a
typical central density for neutron stars. The inset shows the (normalized) binding energy as a function of 	c=	0. Right: Gravitational
mass as a function of the radius for different values of the coupling.
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corresponds to the energy that the system would have if all
baryons were dispersed to infinity. The normalized binding
energy Eb=M ¼ �m=M� 1 is plotted in the inset of the left
panel in Fig. 2. For bound (not necessarily stable) configu-
rations, Eb > 0.

A. Negative �

When � & �2, in the shaded region of Fig. 1 we found
only a single solution coupled to a nontrivial scalar field.
As shown in the left panel of Fig. 2, the critical central
density for these solutions is roughly the same as in GR,
but they have larger maximummass than their GR counter-
parts ( � 10% larger for � & �5). Similar arguments to
GR indicate that models after the first maximum in Mð	cÞ
(lying above the dashed line in the negative-� region of the
right panel of Fig. 1) are unstable.

The inset of the left panel in Fig. 2 shows that similar
deviations occur also for the binding energy. For a given �m,
the binding energy is higher than in GR, so these configu-
rations are energetically favored over stellar solutions in
GR. As shown in the right panel of Fig. 2, for a fixed EOS
the scalar field can sensibly modify the mass-radius rela-
tion. These modifications depend on �, but they can be of
order 10% or more, and as such they could be observable.
Present neutron star observations give constraints on the
mass-radius relationship (e.g. [10,11]), and electromag-
netic observations of binaries containing X-ray pulsars
could in principle constrain the binding energy as well
[12,13]. A recent high-mass neutron star observation [14]
also rules out many EOS models in GR. If astrophysical
measurements are not compatible with any realistic EOS in
pure GR, we may be able to constrain the coupling constant
� and to probe the occurrence of vacuum instabilities in
astrophysical environments.

B. Positive �

For � > 1=6 the situation is more complicated.
Depending on the compactness M=Rs and on the coupling
constant �, we have found a hierarchy of new solutions,
which can be labeled by the number N of radial nodes of
the scalar field. In general, the larger N, the lower the
binding energy, so high-N solutions can be thought of as
‘‘excitations’’ of the (energetically favored) ground-state
configuration. Critical curves bounding the shaded exis-
tence region of these solutions are plotted in the upper-
right corner of the two panels of Fig. 1.

The inset of Fig. 2 shows that ground-state con-
figurations actually have a negative binding energy for
	c > 	crit � 6� 1015 g=cm3. When 	c < 	crit, we only
found solutions with binding energy lower than in GR, so
GR solutions are energetically favored in this region of
parameter space. The fact that negative-� solutions are
more stable than positive-� solutions is consistent with
the interpretation of � as an ‘‘effective gravitational

constant’’ proposed by van der Bij and Gleiser [15] in their
study of boson stars with nonminimal coupling.
It is reasonable to conjecture that the top-right region of

Fig. 1 does not correspond to stable ‘‘stars’’ with non-
vanishing scalar field. The final state of the instability in
this case is an interesting topic for numerical simulations
[7] (see also [16] and references therein). Note that no-hair
theorems for positive � (in particular � � 1=2) have been
proven years ago [17,18] and supported by numerical
searches [19]. This may imply that either stars with
� > 1=6 evolve to a black hole solution in pure GR, or
that they shed enough mass to leave the forbidden region
and become a star in pure GR again.

III. EXTENSIONS

The LMV mechanism, like other strong-field effects in
scalar-tensor theories [3,20], relies on a specific coupling
of the scalar field with matter. We found that an instability
is not present for ‘‘minimally-coupled’’ Weyl fermions or
Maxwell fields, independently of the EOS.1

We have not explicitly shown that the equilibrium con-
figurations reported here arise as a result of nonlinear time
evolutions of GR solutions with a ‘‘seed’’ scalar field;
however, strong indications that this should be the case
come from numerical studies by Novak in the context of
spontaneous scalarization [7]. It would be interesting to
perform similar simulations for � > 1=6. Other possible
extensions of our work concern the investigation of slowly
and rapidly rotating stellar models and of their oscillation
frequencies (see e.g. [23]).

IV. CONCLUSIONS

We have reconsidered a generic class of theories where a
scalar field is nonminimally coupled to the Ricci scalar,
that were recently shown to give rise to a semiclassical
instability. We have pointed out an interesting relation
between the semiclassical instability and the spontaneous
scalarization effect in classical scalar-tensor theories. For
certain values of the coupling parameter the scalar field
can leave observable imprints on the equilibrium proper-
ties of relativistic stars. Our main finding is that the
LMV instability may provide a ‘‘natural’’ seed mechanism
to produce spontaneous scalarization, reinforcing the
relevance of previous studies of compact stars in

1The electromagnetic case can be treated as described in
Ref. [21]. This leads to an equation of the form d2�=dr2� þð!2 � VÞ� ¼ 0 for both polarization states, where we defined
dr=dr� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð1� 2m=rÞp

, and V ¼ flðlþ 1Þ=r2. Massless neu-
trino fields yield a similar equation with potential V ¼ ð2r2Þ�1 �
½2kfðrÞðkþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m=r
p Þ � kr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m=r

p
f0	, where k is a sepa-

ration constant [22]. The potential for Maxwell perturbations is
positive-definite, and therefore no instabilities can arise. For
neutrinos we were not able to prove stability in general, but
we did verify that the two specific models for the EOS discussed
in this paper lead to positive-definite potentials.
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scalar-tensor or fðRÞ theories of gravitation (see e.g.
[3,20,24]).

We stress that corrections to GR due to scalar fields are a
generic feature of a large class of unification theories. Our
work suggests that strong-field modifications to GR com-
patible with weak-field tests may be astrophysically viable,
with potentially observable consequences in the structure
of compact stars. It will be important to explore the im-
plications of vacuum amplification mechanisms for tests of
strong-field gravity in compact objects (see e.g. [25] and
references therein).
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