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A new approach to building models of generalized parton distributions (GPDs) is discussed that is

based on the factorized DD (double distribution) ansatz within the single-DD formalism. The latter was

not used before, because reconstructing GPDs from the forward limit one should start in this case with a

very singular function fð�Þ=� rather than with the usual parton density fð�Þ. This results in a

nonintegrable singularity at � ¼ 0 exaggerated by the fact that fð�Þ’s, on their own, have a singular

��a Regge behavior for small �. It is shown that the singularity is regulated within the GPD model of

Szczepaniak et al., in which the Regge behavior is implanted through a subtracted dispersion relation for

the hadron-parton scattering amplitude. It is demonstrated that using proper softening of the quark-hadron

vertices in the regions of large parton virtualities results in model GPDs Hðx; �Þ that are finite and

continuous at the ‘‘border point’’ x ¼ �. Using a simple input forward distribution, we illustrate

implementation of the new approach for explicit construction of model GPDs. As a further development,

a more general method of regulating the � ¼ 0 singularities is proposed that is based on the separation of

the initial single DD fð�;�Þ into the ‘‘plus’’ part ½fð�;�Þ�þ and the D term. It is demonstrated that the

‘‘DD+D’’ separation method allows one to (re)derive GPD sum rules that relate the difference between the

forward distribution fðxÞ ¼ Hðx; 0Þ and the border function Hðx; xÞ with the D-term function Dð�Þ.
DOI: 10.1103/PhysRevD.83.076006 PACS numbers: 11.10.�z, 12.38.�t, 13.60.Fz

I. INTRODUCTION

The ongoing and future experimental studies of gener-
alized parton distributions (GPDs) [1–4] require theoretical
models for GPDs which satisfy several nontrivial require-
ments, such as polynomiality [5], positivity [6–8], hermi-
ticity [1], time reversal invariance [5], etc., following from
the most general principles of quantum field theory. In
particular, the polynomiality requirement, which states
that the xn moment of a GPD Hðx; �; tÞ is a polynomial
in � of the order not higher than nþ 1, is a consequence of
the Lorentz invariance. The polynomiality condition is
automatically satisfied when GPDs are constructed from
double distributions (DDs) [1,3,8,9], (see also [10]), thus
the problem of constructing a model for a GPD converts
into a problem of building a model for the relevant DD
Fð�;�; tÞ.

Since a DD Fð�;�; tÞ has hybrid properties (it behaves
like a usual parton distribution function (PDF) with respect
to �, as a meson distribution amplitude (DA) with respect
to �, and as a form factor with respect to the invariant
momentum transfer t), it was proposed [8,17] (in the
simplified formal t ¼ 0 limit) to build a model DD
Fð�;�Þ as a product of the usual PDF fð�Þ and a profile
function hð�;�Þ that has an � shape of a meson DA. This
construction allows one to get an intuitive feeling about the
shape of GPDs and their change with the change of the
skewness parameter �. It was noticed [18], however, that in
the case of isosinglet GPDs, such a factorized DD ansatz
(FDDA) does not produce the highest, ðnþ 1Þst power of �

in the xn moment ofHðx; �Þ. To cure this problem, a ‘‘two-
DD’’ parametrization was proposed [18], with the second
DD Gð�;�Þ capable of generating, among others, the
required �nþ1 power. It was also proposed [18] to use a
‘‘DD plus D’’ parametrization in which the second DD
Gð�;�Þ is reduced to a function Dð�Þ of one variable,
the D term, that is solely responsible for the �nþ1 contri-
bution. The importance of the D term and its physical
interpretation was studied in further works (see Ref. [19]
and references therein).
Later, it was found that it is still possible to write a

‘‘single-DD’’ parametrization [20] that incorporates just
one function, but produces all the required powers up to
�nþ1. This representation also has a remarkable property
that it allows, in principle, to invert the GPD/DD relation,
i.e., to obtain DD if GPD is known. So far, however, the
single-DD representation was not used for building models
for GPDs using the factorized DD ansatz. The reason is
that one should use much more singular function fð�Þ=�
rather than just the usual PDF fð�Þ for the GPD recon-
struction from the forward limit. The combination fð�Þ=�,
being an even function in the singlet case, has a nonintegr-
able singularity at � ¼ 0, even if fð�Þ is finite at � ¼ 0.
Furthermore, the fact that PDFs fð�Þ have a singular ��a

Regge behavior makes the problem even worse.
In an independent development [21], an attempt was

made to implant the Regge behavior into a GPD model
constructed in the spirit of the covariant parton model [22],
with the hadron-parton transition amplitude written in the
dispersion relation representation capable of generating the
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desired sa Regge behavior through an appropriately chosen
spectral density. To handle a > 0, the subtracted dispersion
relation was used. The outcome was the claim [21] that the
GPDs Hðx; �Þ in this model have a singular ðx� �Þ�a

behavior in the vicinity of the ‘‘border’’ point x ¼ �,
which, if true, would ruin the applicability of the perturba-
tive QCD formalism employing GPDs, since the latter
works only when the GPDs are finite and continuous across
the border point x ¼ �.

Our starting goal was to examine the model of Ref. [21]
and to pinpoint the physical assumptions that resulted in
the prediction of the singular ðx� �Þ�a behavior (for an
earlier analysis, see Ref. [23]). As our analysis shows, the
singularity follows from the use of the pointlike approxi-
mation for the hadron-parton vertices. For bound states,
however, one expects that the hadron wave function would
generate an additional powerlike (or even exponential)
suppression in the regions where the parton virtuality k2

is large. We found that, if such a suppression is properly
included in the model, the resulting GPDs are finite and
continuous for x ¼ �.

In our study, we also observed that the expression for
GPDs derived from the model of Ref. [21] corresponds to a
single-DD representation. Moreover, it has the structure of
a factorized DD ansatz, but with the singularity at � ¼ 0
regularized by the subtraction made in the dispersion rela-
tion for the quark-hadron scattering amplitude. Thus, the
model of Ref. [21] (corrected for an appropriate softening
of the hadron-parton vertices) gives a framework for build-
ing GPD models within the single-DD scheme. Using a
simple, but rather realistic model for the input forward
distribution (i.e., usual PDF), we illustrate, step by step,
how to use this framework for the construction of GPDs.

In particular, we found that the model produces aD-term
contribution, despite the fact that it uses only the forward
distribution as an input. The formal reason is that the
subtraction introduced in the dispersion relation differs
from the subtraction that converts the original
DD fð�;�Þ into a (mathematical) ‘‘plus’’ distribution
½fð�;�Þ�þ, which, by definition, cannot generate a D
term. This observation raises the questions of a general
nature about the separation of the D term from the initial
DD fð�;�Þ of the single-DD formalism.

We found that the separation of fð�;�Þ into the plus part
½fð�;�Þ�þ and the D term can be used to rederive the sum
rule [24–28] related to the dispersion relation for the real
part of the deeply virtual Compton scattering (DVCS)
amplitude [24–28], and we also gave the derivation of
another sum rule [25] proposed as the � ! 0 limit of that
generic sum rule, and which relates the difference between
the forward distribution fðxÞ ¼ Hðx; 0Þ and the border
function Hðx; xÞ with the D-term function Dð�Þ.

The paper is organized as follows. To make it self-
contained, we start, in Sec. II, with a short review of the
basic facts about DDs andGPDs. In Sec. III, we describe the

model [21] with implanted Regge behavior, and give our
derivation of expressions for GPDs and DDs that follow
from thismodel.We stress the necessity of a profile function
that eliminates the singularities for x ¼ � and present ex-
plicit results for models with two simplest nonflat profiles.
In Sec. IV, we perform a model-independent study of GPD
sum rules, using the procedure of separating the initial DD
into its plus part and the D term. We emphasize that
Hðx; 0Þ=x andHðx; xÞ=x, due to their singular nature, should
be treated as (mathematical) distributions rather than func-
tions. Finally, we summarize the paper.

II. PRELIMINARIES

A. Double distributions

Generalized parton distributions (GPDs) [1–4] naturally
appear in the perturbative QCD description of the DVCS
[3,29] (for reviews, see [5,19,30–33]), the process in which
a highly virtual photon with momentum q, upon scattering
on a hadron, converts into a real photon with momentum
q0 ¼ qþ r. Basic features of GPD construction, in fact, are
not specific to QCD, and may be illustrated on examples of
simpler theories [34]. In a toy scalar model (scalar quarks c
interacting with a scalar photon � through c c� vertex),
the lowest-order (handbag) diagram (see Fig. 1) may be
written, in the coordinate representation, as

Cðq;P;rÞ¼
Z
DðzÞe�iðqzÞ=2�iðq0zÞ=2

�hP�r=2jc ðz=2Þc ð�z=2ÞjPþr=2id4z; (1)

where z is the separation between the ‘‘photon’’ vertices,
and P ¼ ðpþ p0Þ=2 is the average of the initial p and the
finalp0 momenta of the struck hadron, andDðzÞ is the quark
propagator.
The matrix element may depend on the coordinate dif-

ference z through invariants ðPzÞ; ðrzÞ and z2 only. For
large Q2 ¼ �q2, the higher terms of the z2 expansion
have 1=Q2 suppression, thus the leading power term is
generated from the matrix element taken at z2 ¼ 0. The
extraction of the z2 ¼ 0 part of the matrix element may be
performed in the standard way: through Taylor expansion
in z followed by taking only the symmetric-traceless part
(denoted by fg)

FIG. 1 (color online). Structure of the handbag diagram for
deeply virtual Compton scattering.
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of the resulting local operators. For a scalar target, one may
write

hPþ r=2jc ð0Þf@$�1
. . . @

$
�n
gc ð0ÞjP� r=2i

¼ X1
n¼0

�Xn�1

l¼0

AnlfP�1
. . .P�n�l

r�n�lþ1
. . . r�n

g

þ Annfr�1
. . . r�n

g
�
: (2)

In the momentum representation, the derivative @
$
�n

con-

verts into the average �k� ¼ ðk� þ k0�Þ=2 of the initial k

and final k0 quark momenta. After integration over k, ð �kÞn
should produce the P and r factors in the right-hand side
(rhs) of the equation above. In this sense, one may treat ð �kÞn
as ð�Pþ �r=2Þn and define the double distribution (DD)
[1,3,8,9]

n!

ðn� lÞ!l!2l
Z
�
Fð�;�Þ�n�l�ld�d� ¼ Anl (3)

as a function whose �n�l�l moments are proportional to
the coefficients Anl. It can be shown [1,3,17] that the
support region � is given by the rhombus j�j þ j�j � 1.
These definitions result in the ‘‘DD parametrization’’

hP� r=2jc ð�z=2Þc ðz=2ÞjPþ r=2i
¼

Z
�
Fð�;�Þe�i�ðPzÞ�i�ðrzÞ=2d�d�þOðz2Þ (4)

of the matrix element.

B. Generalized parton distributions

Substituting the DD parametrization of the matrix ele-
ment into the expression for the Compton amplitude, one
obtains

Cðq;P;rÞ¼
Z
�
Fð�;�ÞD

�
qþ�Pþ1þ�

2
r

�
d�d�; (5)

where D½l� is the quark propagator in the momentum
representation. Thus, the leading-twist term corresponds
to a parton picture in which the initial quark carries
momentum �Pþ ð1þ �Þr=2. Neglecting P2; ðPrÞ and
r2, we get

ðqþ �Pþ ð1þ �Þr=2Þ2
¼ �Q2 þ 2�ðPq0Þ þ ð1þ �Þðrq0Þ;

i.e., � and � appear in the propagator in the combination
�ðPq0Þ þ �ðrq0Þ=2 only. The latter may be written as
xðPq0Þ, with x ¼ �þ ��, where � ¼ ðrq0Þ=2ðPq0Þ. This
redefinition leads to the parton picture in which the initial
quark carries momentum ðxþ �ÞP, see Fig. 2. Introducing
the generalized parton distribution (GPD) [1,2,9]

Hðx; �Þ ¼
Z
�
Fð�;�Þ�ðx� �� ��Þd�d�; (6)

one can write the handbag contribution as

Tðq; P; rÞ ¼
Z 1

�1
Hðx; �ÞDðqþ ðxþ �ÞPÞdx: (7)

One may try to define GPDs directly:

hPþ r=2jc ð�z=2Þc ðz=2ÞjP� r=2i
¼

Z 1

�1
e�ixðPzÞHðx; �ÞdxþOðz2Þ: (8)

However, an immediate question is what is the skewness �
in this definition? It cannot be treated as the ratio of ðrzÞ=2
and ðPzÞ, since the ratio ðrzÞ=2ðPzÞ cannot be the same for
all points z. Hence, it is impossible to straightforwardly use
such a definition in the expression (1) involving a four-
dimensional integration over z. But, if one uses the DD
parametrization and integrates over z, then the scalar prod-
ucts ðPzÞ and ðrzÞ convert into the scalar products ðPq0Þ and
ðrq0Þ, respectively, since all other invariants, P2, r2, ðPrÞ,
are neglected when they appear in the ratios with ðPq0Þ,
ðrq0Þ, or Q2 [35]. In this sense, only the q0 part of z is
visible in the final result, and one may define GPDs by the
formula (8) in which z is substituted by a lightlike vector n
proportional to q0, say, by n� ¼ q0�=2ðPq0Þ.
Still, the appearance of process-dependent quantities

like ðrq0Þ and ðPq0Þ in the definition of GPDs confronts
the basic idea of the factorization approach that the parton
distributions are process-independent functions. The stan-
dard ‘‘escape’’ is that ðrq0Þ=ðPq0Þ in the GPD definitions is
substituted by an apparently ‘‘process-neutral’’ ratio
rþ=Pþ, supplied by information that P basically defines
the ‘‘plus direction’’ and that some vector n defines the
‘‘minus direction’’ (for DVCS, n� q0). But this procedure
creates a wrong impression that the definition of GPDs
requires a reference to a particular frame. As shown above,
one can define GPDs Hðx; �Þ through formulas (4) and (6),
which do not refer to any particular frame or process, and �

FIG. 2 (color online). Parton picture in terms of DDs and in
terms of GPDs.
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is just some parameter. Of course, for each particular
process, � should be adjusted to the kinematics of the
process, e.g., � ¼ ðrq0Þ=2ðPq0Þ for DVCS. Also, the parton
interpretation of GPDs has the most natural form in the
frame, where P for a massless hadron (and t ¼ 0) defines
the plus direction.

C. D term

1. Scalar quarks

Parametrizing the matrix element (2), one may wish to
separate the Ann terms that are accompanied by tensors
built from the momentum transfer vector r only (and, thus,
invisible in the forward r ¼ 0 limit), and introduce the D
term [18]

Z 1

�1
Dð�Þð�=2Þnd� ¼ Ann (9)

as a function whose ð�=2Þn moments give Ann. Within the
DD parametrization, the separation of the D term can be

made by simply using e�i�ðPzÞ ¼ ½e�i�ðPzÞ � 1� þ 1. The
D term is then given by

Dð�Þ ¼
Z 1�j�j

�1þj�j
Fð�;�Þd�; (10)

and the DD parametrization converts into a ‘‘DD plus D’’
parametrization

hP� r=2jc ð�z=2Þc ðz=2ÞjPþ r=2i
¼

Z
�
½Fð�;�Þ�þe�i�ðPzÞ�i�ðrzÞ=2d�d�

þ
Z 1

�1
Dð�Þe�i�ðrzÞ=2d�þOðz2Þ; (11)

where

½Fð�;�Þ�þ ¼ Fð�;�Þ � �ð�Þ
Z 1�j�j

�1þj�j
Fð�;�Þd� (12)

is the DD with subtracted D term. Mathematically,
½Fð�;�Þ�þ is a ‘‘plus distribution’’ with respect to �. It
satisfies the condition

Z 1�j�j

�1þj�j
½Fð�;�Þ�þd� ¼ 0; (13)

guaranteeing that no D term can be constructed from
½Fð�;�Þ�þ.

2. Spin-1=2 quarks: two-DD representation

In the simple model with scalar quarks discussed above,
one may just use the original DD Fð�;�Þ without splitting
it into the plus part and the D term. In models with
spin-1=2 quarks, it is more difficult to avoid an explicit
introduction of extra functions producing a D term. The
basic reason [18] is that the matrix element of the bilocal
operator in that case [36] should have two parts:

hP� r=2j �c ð�z=2Þ��c ðz=2ÞjPþ r=2ijtwist -2
¼ 2P�fððPzÞ; ðrzÞ; z2Þ þ r�gððPzÞ; ðrzÞ; z2Þ: (14)

This suggests to introduce a parametrization with two DDs
corresponding to f and g functions [18]. For the matrix
element (14) multiplied by z�—which is exactly what one
obtains doing the leading-twist factorization for the
Compton amplitude [37]—this gives

z�hP� r=2j �c ð�z=2Þ��c ðz=2ÞjPþ r=2i
¼

Z
�
e�i�ðPzÞ�i�ðrzÞ=2½2ðPzÞFð�;�Þ

þ ðrzÞGð�;�Þ�d�d�þOðz2Þ: (15)

The separation into F andG parts in this case is not unique:
expanding the exponential in powers of ðPzÞ and ðrzÞ, one
may obtain the same ðPzÞmðrzÞl term both from the F-type
and G-type parts. This leads to possibility of ‘‘gauge
transformations’’ [38]: one can change

Fð�;�Þ ! Fð�;�Þ þ @�ð�;�Þ=@�; (16)

Gð�;�Þ ! Gð�;�Þ � @�ð�;�Þ=@�; (17)

using a gauge function �ð�;�Þ that is odd in �. Still, the
terms ðPzÞ0ðrzÞl cannot be produced from the F-type con-
tribution. The maximum of what can be done is to absorb
all m � 0 contributions into the F-type term. As a result,
Eq. (15) is converted into a ‘‘DD plus D’’ parametrization
[18] in which the term in the square brackets is substituted
by the

2ðPzÞFDð�;�Þ þ ðrzÞ�ð�ÞDð�Þ (18)

combination, withDð�Þ given by the � integral ofGð�;�Þ
and FDð�;�Þ related to the original DDs through the gauge
transformation with

�Dð�;�Þ¼1

2

�Z �

��
Gð�;�Þd��

Z 1�j�j

�1þj�j
Gð�;�Þd�

�
(19)

(cf. [38,39]).

3. Spin-1=2 quarks: Single-DD representation

In fact, since the Dirac index � is symmetrized in the

local twist-two operators �c f��@
$
�1

. . . @
$
�n
gc with the �i

indices related to the derivatives, one may expect that it
also produces the factor �P� þ �r�=2. As shown by the

authors of Ref. [20], this is precisely what happens. In their
construction, not only the exponential produces the z de-
pendence in the combination �ðPzÞ þ �ðrzÞ=2, but also
the preexponential terms come in the �ðPzÞ þ �ðrzÞ=2
combination, i.e., the result is a representation in which

2ðPzÞFð�;�Þ þ ðrzÞGð�;�Þ ¼ ½2�ðPzÞ þ �ðrzÞ�fð�;�Þ;
(20)
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that corresponds to Fð�;�Þ ¼ �fð�;�Þ and Gð�;�Þ ¼
�fð�;�Þ. Thus, formally, one deals with just one DD
fð�;�Þ. In principle, though, this single function may
be a sum of several components, e.g., �ð�Þfð�Þ=�þ
�ð�ÞDð�Þ=� (the result of the pioneering D-term paper
[18] for the pion DD in an effective chiral model corre-
sponds to fI¼0ð�;�Þ ¼ �ð�Þ=j�j � �ð�Þ=j�j).

In the two-DD approach, GPDs are introduced through

Hðx; �Þ ¼
Z
�
½Fð�;�Þ þ �Gð�;�Þ��ðx� �� ��Þd�d�;

(21)

which converts into

Hðx; �Þ ¼
Z
�
ð�þ ��Þfð�;�Þ�ðx� �� ��Þd�d�

¼ x
Z
�
fð�;�Þ�ðx� �� ��Þd�d� (22)

in the single-DD formulation. TheD term in the single-DD
case is given by

Dð�Þ ¼ �
Z 1�j�j

�1þj�j
fð�;�Þd�; (23)

and one may write fð�;�Þ as a sum

fð�;�Þ ¼ ½fð�;�Þ�þ þ �ð�ÞDð�Þ
�

(24)

of its plus part

½fð�;�Þ�þ ¼ fð�;�Þ � �ð�Þ
Z 1�j�j

�1þj�j
fð�;�Þd� (25)

and D-term part �ð�ÞDð�Þ=�.
Despite the fact that the plus part and the D term are

obtained from the sameDDfð�;�Þ, they are independent in
the sense that the plus part does not contribute in Eq. (23),
and the D-term contribution drops from Eq. (25).

4. Getting GPDs from DDs

The forward limit r ¼ 0 corresponds to � ¼ 0, and GPD
Hðx; �Þ converts into the usual parton distribution fðxÞ.
Using DDs, we may write

fðxÞ ¼
Z 1�jxj

�1þjxj
Fðx; �Þd� ¼ x

Z 1�jxj

�1þjxj
fðx; �Þd�: (26)

Thus, the forward distributions fðxÞ are obtained by inte-
grating DDs over vertical lines � ¼ x in the ð�;�Þ plane.
For nonzero �, GPDs are obtained from DDs through
integrating them along the lines � ¼ x� �� having 1=�
slope, i.e. the family of Hðx; �Þ functions for different
values of � is obtained by ‘‘scanning’’ the same DD at
different angles (see Fig. 3).

For x > � > 0, the integration lines lie completely in-
side the right half of the rhombus. The line producing GPD
at the border point x ¼ � starts at its upper corner, while

the lines corresponding to jxj< � cross the line � ¼ 0.
Thus, one deals with the ‘‘outer’’ regions x > � and
x <�� (in this case, the whole line is in the left half of
the rhombus) and the central region �� < x < �, when
the integration lines in the ð�;�Þ plane lie in both halves of
the rhombus and intersect the � ¼ 0 line.
In GPD variables ðx; �Þ, the momentum fraction x� �

carried by the final quark is positive for the right outer
region, and negative for the central region, i.e., in the latter
case it should be interpreted as an outgoing antiquark
rather than incoming quark [3], i.e. GPD in the central
region describes emission of a quark-antiquark pair with
total plus momentum rþ shared in fractions ð1þ x=�Þ=2
and ð1� x=�Þ=2, like in a meson distribution amplitude.
From this physical interpretation, one may expect that

the behavior of a GPD Hðx; �Þ in the central region is
unrelated to that in the outer region. But, since the GPD
in both regions is obtained from the same DD, one may
expect, to the contrary, that the set of GPDs for all outer x’s
and all �’s contains the same information as the set of
GPDs for all central x’s and all �’s. This ‘‘holographic’’
picture (cf. [26,40]) may be violated by terms contributing
to GPDs in the central region and not contributing to GPDs
in the outer regions: the terms with support on the � ¼ 0
line, i.e., those proportional to �ð�Þ (and, in principle, its
derivatives), in particular, the D term. For this reason, the
usual approach is to build separate models for the D term
and for the remaining part of DD.

5. Factorized DD ansatz

The reduction formula (26) suggests a model

fð�;�Þ ¼ fð�Þ
�

hð�;�Þ; (27)

where fð�Þ is the forward distribution, while hð�;�Þ
determines DD profile in the � direction and satisfies the
normalization condition

FIG. 3 (color online). Support region for double distributions
and lines producing fðxÞ; Hðx; �Þ (for x > � and x < �), Hð�; �Þ,
and Hð��; �Þ.
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Z 1�j�j

�1þj�j
hð�;�Þd� ¼ 1: (28)

Since the plus component of the momentum transfer r is
shared between the quarks in fractions ð1þ �Þ=2 and
ð1� �Þ=2, like in a meson distribution amplitude, it
was proposed [8,17] to model the shape of the profile
function by

hNð�;�Þ � ½ð1� j�jÞ2 � �2�N
ð1� j�jÞ2Nþ1

; (29)

with N being a parameter governing the width of the
profile.

Such a factorized DD ansatz (FDDA) was originally
[8,17] applied to an analog of the Fð�;�Þ function of the
two-DD formalism, which corresponds to a model
Fð�;�Þ ¼ fð�Þhð�;�Þ and Gð�;�Þ ¼ 0. Later, it was
corrected by addition of the D term [18], which formally
corresponds to the ‘‘gauge’’ (19) in which Gð�;�Þ !
GDð�;�Þ ¼ �ð�ÞDð�Þ, and Fð�;�Þ ! FDð�;�Þ. Note
that if F ¼ �f and G ¼ �f, the model FDð�;�Þ ¼
fð�Þhð�;�Þ does not coincide with the model fð�;�Þ ¼
fð�Þhð�;�Þ=�, since the gauge function �Dð�;�Þ [see
Eq. (16)] is nontrivial.

Thus, there is a question whether the FDDA should be
applied to FDð�;�Þ (as it was done so far) or to the DD
fð�;�Þ of the single-DD formulation. It should be con-
fessed that no enthusiasm has been observed to use FDDA
in the form of the single-DD formula (27). This observa-
tion has a simple explanation: the function fð�Þ=� is not
integrable for � ¼ 0, even if fð�Þ is finite for � ¼ 0. The
reason is that the DVCS amplitude contains singlet GPDs,
which are odd functions of �. Hence, fð�Þ=� should be an
even function, and the principal value prescription does not
work. Moreover, for small � one would expect that the
forward distribution fð�Þ has a singular fð�Þ � 1=�a

Regge behavior, which makes the problem even worse.

III. GPD MODELWITH IMPLANTED
REGGE BEHAVIOR

A. Formulation

The assumptions used in the factorized DD ansatz are
based on the experience with calculating DDs for triangle
diagrams [34] and form factors in the light-front formalism
models with power-law dependence of the wave function
on transverse momentum [41] (see also [42]).

The simplest triangle diagram (see Fig. 4) in the scalar
model corresponding to Eq. (2) may be used as an example
of a model for GPD:

Hðx; �Þ �
Z d4k�ðx� ðknÞ=ðPnÞÞ

ðm2
1 � k21Þðm2

2 � k22Þðm2
3 � ðP� kÞ2Þ : (30)

Though the � dependence is not immediately visible here,
it appears after integration over k through the ðrnÞ=2ðPnÞ

ratio. The DD Fð�;�Þ generated by this diagram is just
a constant [43], which corresponds to a flat N ¼ 0
profile h0ð�;�Þ � 1=ð1� �Þ and fð�Þ � 1� � forward
distribution.
The calculation [41] of overlap integrals for light-front

wave functions with a power-law behavior c ðx; k?Þ �
1=ðk2?Þ1þ	 resulted in expressions equivalent to using

DDs with N ¼ 	 profile in Eq. (29) and forward distribu-
tions behaving like ð1� �Þ2	þ1. The same profile arises
[41] if one differentiates a scalar triangle diagram 	 times
with respect to masses (squared) of each active quark.
The triangle diagrams, however, do not generate the

Regge fð�Þ � 1=�a behavior for small �. The latter may
be obtained, in particular, by infinite summation of higher-
order t-channel ladder diagrams (see, e.g., [44]). A simpler
way was proposed in Ref. [21], where the spectator
propagator was substituted by a parton-hadron scattering
amplitude TðP; r; kÞ (see Fig. 5) written in the dispersion
relation representation. To avoid divergencies generated by
the Regge behavior, the subtracted dispersion relation

TðP;r; kÞ ! TððP� kÞ2Þ

¼ T0 þ
Z 1

0
d
�ð
Þ

�
1


�ðP� kÞ2 �
1




�
(31)

was used. The spectral function �ð
Þ here should be
adjusted to produce a desired Regge-type behavior with
respect to s ¼ ðP� kÞ2 [45].
In the light-front formalism, the starting contribution

corresponds to a triangle diagram in which the hadron-
quark vertices are substituted by the light-front wave func-
tions c ðx; k?Þ that bring in an extra falloff of the integrand
at large transverse momenta k?. The authors of Ref. [21]

FIG. 4 (color online). Triangle diagram model for GPD.

FIG. 5 (color online). Hadron-quark scattering amplitude.
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intended to reflect this physics in their covariant model. To
introduce form factors bringing in a faster falloff of the k
integrand with respect to quark virtualities k21 and k

2
2, it was

proposed to use higher powers of 1=ðm2
i � k2i Þ instead of

perturbative propagators, which may be achieved by differ-
entiating the triangle diagram with respect to m2

i .
The model of Ref. [21] assumes spin-1=2 quarks. It was

argued that the Dirac structure of the hadron-parton scat-
tering amplitude in this case should be given by k, which
provides EM gauge invariance of the DVCS amplitude.
Summarizing, the model scattering amplitude has the fol-
lowing structure:

kTððP� kÞ2Þ
ðm2

1 � k21ÞN1þ1ðm2
2 � k22ÞN2þ1

: (32)

To treat the two quarks on equal footing, it makes sense to
take m1 ¼ m2, but we will keep them different for a while,
to separate effects produced by nonzero N1 and N2.

After k is contracted with the n factor from the operator
vertex, one gets ðknÞ, and the model GPD that will be
analyzed below is given by

Hðx; �Þ ¼ 1

�2

N1!N2!

ðN1 þ N2Þ!
Z ðknÞ

ðPnÞ

� d4k�ðx� ðknÞ=ðPnÞÞ
½m2

1 � ðkþ rÞ2�N1þ1½m2
2 � ðk� rÞ2�N2þ1

�
�
T0 þ

Z 1

0
d
�ð
Þ

�
1


� ðP� kÞ2 �
1




��
:

(33)

The overall factors were introduced here for future conve-
nience. Using the � representation,

N!

ðm2 � k2ÞNþ1
¼

Z i1

0
e�ðk2�m2Þ�Nd�;

1



¼

Z i1

0
e��3
d�3

(34)

for propagators and also for the 1=
 subtraction term gives

x

ðN1þN2Þ!
Z 1

0
d
�ð
Þ

Z i1

0
�N1

1 d�1�
N2

2 d�2d�3

�
�
�

�
x��3þð�2��1ÞðrnÞ=2ðPnÞ

�1þ�2þ�3

�
1

ð�1þ�2þ�3Þ2

��

�
x�ð�2��1ÞðrnÞ=ðPnÞ

�1þ�2

�

� 1

ð�1þ�2Þ2
�
e��3
��1m

2
1��2m

2
2 (35)

for the terms involved in the dispersion integral. The
second delta function corresponds to the 1=
 subtraction
term of the dispersion representation. It is accompanied
by the 1=ð�1 þ �2Þ2 factor because 1=
 does not have
k dependence. Introducing the skewness variable

� � ðrnÞ=2ðPnÞ, changing �i � xi
, and integrating over

 we obtain

x
Z 1

0
d
�ð
Þ

Z 1

0

xN1

1 dx1x
N2

2 dx2dx3�ð1�x1�x2�x3Þ
ðx3
þx1m

2
1þx2m

2
2ÞN1þN2þ1

�
�
�ðx�x3�ðx2�x1Þ�Þ��ðx�ðx2�x1Þ�Þ

ðx1þx2Þ2
�
: (36)

Taking equal masses m1 ¼ m2 � m, using x1 þ x2 ¼
ð1� x3Þ and introducing z through x1 ¼ ð1� x3Þz
results in

x
Z 1

0
d
�ð
Þ

Z 1

0
dx3dz

ð1�x3ÞN1þN2þ1zN1ð1�zÞN2

½x3
þð1�x3Þm2�N1þN2þ1

�
�
�ðx�x3�ðx2�x1Þ�Þ��ðx�ðx2�x1Þ�Þ

ð1�x3Þ2
�
: (37)

The T0 subtraction term gives theD-term-type contribution

D0ðx=�Þ ¼ T0

2N1þN2ðN1 þ N2Þ
�
x

j�j
��

1� x

�

�
N1

�
�
1þ x

�

�
N2

�

���������
x

�

��������<1

�
(38)

that vanishes outside the central region and, hence, is
invisible in the forward limit. In what follows, we will
concentrate on the terms generated by the dispersion in-
tegral, but one should remember that the D0 term can
always be added to GPD Hðx; �Þ, i.e., in all formulas
below, one should be ready to changeHðx; �Þ ! Hðx; �Þ þ
D0ðx=�Þ.

B. Forward case

The case � ¼ 0 corresponds to the forward distribution

Hðx; � ¼ 0Þ ¼ x
Z 1

0
d
�ð
Þ

�
Z 1

0
dx3dz

ð1� x3ÞN1þN2þ1zN1ð1� zÞN2

½x3
þ ð1� x3Þm2�N1þN2þ1

�
�
�ðx� x3Þ � �ðxÞ

ð1� x3Þ2
�
: (39)

Taking x�ðxÞ ¼ 0 for x � 0 gives

Hðx; � ¼ 0Þ ¼ N1!N2!

ðN1 þ N2 þ 1Þ! xð1� xÞN1þN2þ1

�
Z 1

0

d
�ð
Þ
ðx
þ ð1� xÞm2ÞN1þN2þ1

� fðxÞ:
(40)

Formally, we may also write

Hðx; � ¼ 0Þ
x

¼ fðxÞ
x

� �ðxÞ
Z 1

0
dx3

fðx3Þ
x3ð1� x3Þ2

: (41)
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The second term provides the subtraction regularizing the
function fðxÞ=x at its singular point x ¼ 0.

C. DD description

In the double distribution representation, we have
x ¼ �þ ��. So, turning back to Eq. (36) and changing
there 1� x1 � x2 � �, x2 � x1 � �, we obtain that

x1 ¼ 1
2ð1� �� �Þ; x2 ¼ 1

2ð1� �þ �Þ; (42)

which gives for equal masses

x

2N1þN2þ1

Z 1

0
d
�ð
Þ

�
Z 1

0
d�

Z 1��

�1þ�
d�

ð1� �� �ÞN1ð1� �þ �ÞN2

ð�
þ ð1� �Þm2ÞN1þN2þ1

�
�
�ðx� �� ��Þ � �ðx� ��Þ

ð1� �Þ2
�
: (43)

Thus, a faster decrease of the k integrand with respect to
the quark virtualities k21 or k

2
2 results in a suppression of the

DD behavior by powers of ð1� �� �Þ or ð1� �þ �Þ
when � approaches the support boundary j�j ¼ 1� �.
For equal N1 ¼ N2 ¼ N, we obtain

x

22Nþ1

Z 1

0
d
�ð
Þ

�
Z 1

0
d�

Z 1��

�1þ�
d�

½ð1� �Þ2 � �2�N
ð�
þ ð1� �Þm2Þ2Nþ1

�
�
�ðx� �� ��Þ � �ðx� ��Þ

ð1� �Þ2
�
: (44)

Using Eq. (40), one can substitute the 
 integral through
forward distribution to get

Hðx; �Þ ¼ x

22Nþ1

ð2N þ 1Þ!
ðN!Þ2

�
Z 1

0
d�

Z 1��

�1þ�
d�

½ð1� �Þ2 � �2�N
ð1� �Þ2Nþ1

fð�Þ
�

�
�
�ðx� �� ��Þ � �ðx� ��Þ

ð1� �Þ2
�
: (45)

This trick allows one to bypass the question about the
specific form of the spectral density �ð
Þ.

It is easy to notice that the factor

hNð�;�Þ � 1

22Nþ1

ð2N þ 1Þ!
ðN!Þ2

½ð1� �Þ2 � �2�N
ð1� �Þ2Nþ1

(46)

is precisely a normalized profile satisfying

Z 1��

�1þ�
hNð�;�Þd� ¼ 1: (47)

Since x1 þ x2 � 1 for the Feynman parameters x1, x2, we
have � � 0 in the expressions above. The � � 0 part
of DD comes from the crossed diagram, in which the

dispersion relation is written for TððPþ kÞ2Þ. For the sin-
glet case, the full DD fð�;�Þ should be symmetric with
respect to interchange� ! �� (and also symmetric under
� ! ��), which results in GPD Hðx; �Þ that is an odd
function of x. For this reason, we will proceed with the
� � 0 case, keeping in mind to antisymmetrize the result-
ing Hðx; �Þ at the very end.
Thus, we can rewrite Eq. (45) as

Hðx; �Þ
x

¼
Z 1

0
d�

Z 1��

�1þ�
d�

fð�Þ
�

hNð�;�Þ

�
�
�ðx� �� ��Þ � �ðx� ��Þ

ð1� �Þ2
�
: (48)

The first term,

Hð1Þðx;�Þ
x

¼
Z 1

0
d�

Z 1��

�1þ�
d�

fð�Þ
�

hNð�;�Þ�ðx�����Þ;

(49)

coincides with the factorized DD ansatz for Hðx; �Þ=x in
which it is reconstructed from its forward limit fðxÞ=x.
The relevant double distribution is given by fð�;�Þ ¼
hNð�;�Þfð�Þ=�. The second term may be rewritten as

Hð2Þðx; �Þ
x

¼ �
Z 1

0
d�

Z 1��

�1þ�
d��ðx� �� ��Þ�ð�Þ

�
Z 1�j�j

0
d�

fð�;�Þ
ð1� �Þ2 ; (50)

and it provides a regularization of the� integral in Eq. (45).
The total contribution is given by

Hðx; �Þ
x

¼
Z 1

0
d�

Z 1��

�1þ�
d��ðx� �� ��Þ

�
�
fð�;�Þ � �ð�Þ

Z 1�j�j

0
d�

fð�;�Þ
ð1� �Þ2

�
: (51)

Thus, the model of Ref. [21], first, corresponds to the
single-DD representation (22), and, second, it has the
structure of the factorized DD ansatz (27). Furthermore,
due to the subtraction in the dispersion relation (31), one
deals with the regularized double distribution:

fregð�;�Þ ¼ fð�;�Þ � �ð�Þ
Z 1�j�j

0
d�

fð�;�Þ
ð1� �Þ2 : (52)

Returning back to Eq. (48) and calculating the integral
over �, we formally obtain
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Hðx;�Þ ¼ x

�
�ðx>�Þ

Z �2

�1

d�
fð�Þ
�

hð�; ðx��Þ=�Þ

þ x

�
�ðjxj<�Þ

Z �2

0
d�

fð�Þ
�

hð�; ðx��Þ=�Þ

� x

�
�ðjxj<�Þ

Z 1�jxj=�

0
d�

fð�Þ
�ð1��Þ2 hð�;x=�Þ;

(53)

where (see Fig. 6)

�1 ¼ x� �

1� �
; �2 ¼ xþ �

1þ �
: (54)

One should realize, however, that the second and the
third integrals diverge and should be combined together to
regularize their singularity at � ¼ 0. This may be achieved
by rewriting the jxj< � part in the form

Hðx;�Þjjx<�¼ x

�

Z �2

0
d�

fð�Þ
�

½hð�;ðx��Þ=�Þ�hð�;x=�Þ�

þ x

�

Z �2

0
d�

fð�Þ
�

hð�;x=�Þ
�
1� 1

ð1��Þ2
�

� x

�

Z 1�jxj=�

�2

d�
fð�Þ

�ð1��Þ2hð�;x=�Þ (55)

explicitly showing the compensation of the 1=� factor.

D. Results

1. N ¼ 1 profile

For the model forward distribution

fað�Þ ¼ ð1� �Þ3=�a (56)

and the profile function

h1ð�;�Þ ¼ 3

4

ð1� �Þ2 � �2

ð1� �Þ3 ; (57)

we obtain, for x > �,

Hðx;�Þjx>�¼3

4

x

�

Z �2

�1

d�

�aþ1

�
ð1��Þ2�

�
x��

�

�
2
�
: (58)

CalculatingHð�; �Þ, i.e., theGPD at the border point x ¼ �,
one gets here the ½ð1� �Þ2 � ð1� �=�Þ2� � � factor from
the profile function, and this factor changes the strength of
singularity for � ¼ 0. As a result, the integral over �
converges as far as a < 1. This outcome is a consequence
of using a profile function that linearly vanishes at the sides
of the support rhombus. In its turn, the N ¼ 1 profile is
generated by the assumed 1=ðk21k22Þ2 dependence of the k
integrand for large parton virtualities. If one takes the
N ¼ 0 profile, the factor in the curly brackets should be
substituted by 1=ð1� �Þ), and the integral producing
Hð�; �Þ diverges. For small, but nonzero x� �, one obtains
the behavior proportional to 1=�a

1 � ðx� �Þ�a. This result
is similar to that obtained in Ref. [21]. However, since its
authors explicitly declared that they are going to soften the
hadron-quark vertices by differentiating the diagram over
the quark masses, one may wonder, how did it happen that
they obtained a singular result?
The subtlety is that they took equal quark masses

m1 ¼ m2 ¼ m from the very beginning, and used differ-
entiation with respect to this commonm2. Here it should be
noted that, because

�
d

dm2

�
2 1

ðm2 � k21Þðm2 � k22Þ
¼ 1

ðm2 � k21Þ3ðm2 � k22Þ
þ 2

ðm2 � k21Þ2ðm2 � k22Þ2

þ 1

ðm2 � k21Þðm2 � k22Þ3
; (59)

the first and the third term on the rhs are not softened with
respect to one of the virtualities, i.e., one of the hadron-
parton vertices remains pointlike. As we have seen above,
imposing the 1=ðk21ÞN1þ1ðk22ÞN2þ1 dependence on virtual-
ities, one would obtain the ð1� �� �ÞN1ð1� �þ �ÞN2=
2N1þN2 factor, i.e., every differentiation with respect to m2

1

gives ð1� �� �Þ=2, while every differentiation with re-
spect to m2

2 gives the ð1� �þ �Þ=2 factor, both resulting
in a nontrivial profile in the � direction. On the other hand,
each differentiation with respect to the common m2 gives
the ð1� �� �Þ=2þ ð1� �þ �Þ=2 ¼ ð1� �Þ factor
that has no dependence on �. This kind of softening only
increases the power of ð1� �Þ, but DD remains flat in the
� direction.
Note that the use of 1=ðk21ÞNþ1ðk22ÞNþ1 dependence in

the model D0-term contribution (38) results in the
ð1� x2=�2ÞN factor, which gives D0ð1Þ ¼ 0 for the
N > 0 case. This vanishing of D0ð�Þ at the end points
� ¼ �1 has the same nature as the vanishing of the DDs
at the sides of the support rhombus: both result from a

FIG. 6 (color online). Support region and integration lines
producing Hðx; �Þ for x > � and x < � from a double distribu-
tion that is nonzero for �> 0 only.
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faster-than-perturbative decrease of the k integrand at large
quark virtualities.

Turning now to the jxj< � region, we use Eq. (55) to
represent the relevant term for the N ¼ 1 profile as

Hðx;�Þjjxj<� ¼ 3

4

x

�

�
1

�2

Z �2

0

d�

�a ð2x��Þ

þ
Z �2

0

d�

�a

�
1� x2

�2ð1��Þ2
�
ð�� 2Þ

�
Z 1�jxj=�

�2

d�

�aþ1

�
1� x2

�2ð1��Þ2
��
: (60)

Note that, as far as jxj is strictly less than �, the profile
function does not vanish at the singularity point � ¼ 0.
The mechanism of softening singularity to 1=�a strength is
now provided by the 1=
 subtraction term of the original
dispersion relation.

To get a model for singlet GPDs, one should take the
antisymmetric combination

HSðx; �Þ ¼ Hðx; �Þ �Hð�x; �Þ: (61)

The resulting GPDs are shown in Fig. 7. For positive x, they
are peaking at x ¼ �. The functions HSðx; �Þ in this model
are continuous at x ¼ ��, but the derivative dHSðx; �Þ=dx
is discontinuous at these points.

2. N ¼ 2 profile

Let us now take the N ¼ 2 profile function

h2ð�;�Þ ¼ 15

16

½ð1� �Þ2 � �2�2
ð1� �Þ5 (62)

and the same model forward distribution

fað�Þ ¼ ð1� �Þ3
�a : (63)

For x > � this gives

Hðx; �Þjx>� ¼ 15

16

x

�

Z x2

x1

d�

�aþ1ð1� �Þ2

�
�
ð1� �Þ2 �

�
x� �

�

�
2
�
2
: (64)

Evidently, the N ¼ 2 profile gives a ��2 suppression, and
Hð�; �Þ is finite as far as a < 2.
Again, using Eq. (55), the jxj< � term can be repre-

sented in the form

Hðx;�Þjjxj<�¼15

16

x

�5

Z x2

0

d�

�a ð2x��Þ
�
x2þðx��Þ2
ð1��Þ2 �2�2

�

þ15

16

x

�

Z x2

0

d�

�a

�
1� x2

�2ð1��Þ2
�
2ð��2Þ

�15

16

x

�

Z 1�jxj=�

x2

d�

�aþ1

�
1� x2

�2ð1��Þ2
�
2

(65)

explicitly showing the cancellation of the 1=�aþ1

singularity.
The resulting GPDs are shown in Fig. 8. For positive x,

they are peaking at points close to x ¼ �. In the model with
a N ¼ 2 profile, both the functions HSðx; �Þ and their
derivatives dHSðx; �Þ=dx are continuous at x ¼ ��.

E. D term

The �ð�Þ subtraction term in the regularized DD
(extended now onto the whole support rhombus)

fregð�;�Þ ¼ fð�;�Þ � �ð�Þ
Z 1�j�j

�1þj�j
d�

fð�;�Þ
ð1� �Þ2 (66)

softens the singularity of fð�;�Þ for � ¼ 0, but it does not
convert fð�;�Þ into a ‘‘plus distribution’’ ½fð�;�Þ�þ
whose integral over � vanishes. Thus, fregð�;�Þ contains
a nonzero D-term contribution

FIG. 8 (color online). Model singlet GPD Hðx; �Þ with N ¼ 2
profile for a ¼ 0:5 and � ¼ 0:1; 0:3; 0:5; 0:7; 0:9.

FIG. 7 (color online). Model singlet GPD HSðx; �Þ with N ¼ 1
DD profile for a ¼ 0:5 and � ¼ 0:05; 0:1; 0:15; 0:2; 0:25.
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Dð�Þ ¼ �
Z 1�j�j

�1þj�j
fregð�;�Þd�

¼ �
Z 1�j�j

�1þj�j
d�

fð�Þ
�

hð�;�Þ
�
1� 1

ð1� j�jÞ2
�

¼ 2�
Z 1�j�j

0
d�fð�Þhð�;�Þ �� 2

ð1� �Þ2 : (67)

Taking the same model forward distribution fð�Þ ¼
ð1� �Þ3=�a and N ¼ 1 profile function gives

DfN¼1gð�Þ ¼ 3

2
�
Z 1�j�j

0

d�

�a

�
1� �2

ð1� �Þ2
�
ð�� 2Þ: (68)

A similar expression for the D term is obtained in the
N ¼ 2 profile model:

DfN¼2gð�Þ ¼ 15

8
�
Z 1�j�j

0

d�

�a

�
1� �2

ð1� �Þ2
�
2ð�� 2Þ:

(69)

As one can see in Fig. 9, the two curves are rather close to
each other.

The comparison of the total GPDHðx; �Þ and itsD-term
part is shown in Fig. 10.

The difference between GPD Hðx; �Þ and D-term
Dðx=�Þ corresponds to the term Hþðx; �Þ obtained from
the plus part ½fð�;�Þ�þ of DD. The shape of the difference

for � ¼ 0:5 is shown in Fig. 11. Note that, despite the fact
that the forward distribution in this model is positive, there
is a region, where the contribution to Hðx; �Þ coming from
½fð�;�Þ�þ is negative. This is due to the �ð�Þ subtraction
term contained in ½fð�;�Þ�þ. Also shown is the ratio
Hþðx; �Þ=x. Looking at the figure, one may suspect that
the x integral of Hþðx; �Þ=x vanishes. In the next section,
we show that this, indeed, is the case.

IV. GPD SUM RULES

A. Formulation

The D term determines the subtraction constant in the
dispersion relation for the DVCS amplitude [24–28]. In
particular, it was shown [25] that the original expression
for the real part of the DVCS amplitude involving Hðx; �Þ
and the dispersion integral involving Hðx; xÞ differ by a
constant � given by the integral of the D-term function
Dð�Þ:

P
Z 1

�1

Hðx;xÞ�Hðx;�Þ
x��

dx¼��
Z 1

�1

Dð�Þ
1��

d�: (70)

Here, P denotes the principal value prescription. In
Ref. [25], this relation was derived using polynomiality
properties of GPDs. It was also pointed out there that it can
be obtained by incorporating representation of GPDs in the
two-DD formalism (which is basically again the use of the
polynomiality).
Taking � ¼ 0, one formally arrives at the sum rule,

Z 1

�1

Hðx; xÞ �Hðx; 0Þ
x

dx ¼
Z 1

�1

Dð�Þ
1� �

d�: (71)

Since bothHðx; 0Þ=x andHðx; xÞ=x are even functions of x,
their singularities for x ¼ 0 cannot be regularized by the
principle value prescription. Moreover, there are no indi-
cations that singularities of these two functions may cancel
each other. On the contrary, as emphasized in Ref. [11],
there are arguments that the ratio Hðx; xÞ=Hðx; 0Þ does not
tend to 1 for small x.

FIG. 9 (color online). TheD terms in N ¼ 1 and N ¼ 2 profile
models for a ¼ 0:5.

FIG. 10 (color online). GPD Hðx; �Þ and D-term Dðx=�Þ for
� ¼ 0:5 and positive x.

FIG. 11 (color online). Difference between GPD Hðx; �Þ and
D-term Dðx=�Þ in the case of the N ¼ 1 profile for � ¼ 0:5 and
positive x. The same function divided by x is also shown.
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The solution given in Refs. [12,26,40] is based on the
analytic regularization of the x integral. Namely, it is
assumed that the positive Mellin moments (or conformal
moments, see, e.g., [46])

�ðjÞ �
Z 1

�1
xj½Hðx; xÞ �Hðx; 0Þ�dx (72)

can be analytically continued to the point j ¼ �1. The
result of such a procedure is equivalent to analytic regu-
larization of the x integral. However, the required analy-
ticity properties of �ðjÞ may be violated by singular or
‘‘invisible’’ terms (cf. [26]) in the integrand of Eq. (72)
[e.g., x�ðxÞ gives a nonanalytic �j;�1 contribution into

�ðjÞ]. In the model construction described above, singular
terms explicitly appear as a result of subtractions in the
dispersion relation, so our intention is to develop a less
restrictive approach to this problem.

Below, we give a derivation of the sum rule (71)) based
on separation (25) of the DDs into the plus part and the D
term. No assumptions about smoothness will be made. In
fact, the key element of the derivation is that Hðx; xÞ=x
should be treated as a (mathematical) distribution at the
point x ¼ 0 rather than a function. The same applies to
Hðx; 0Þ=x.

B. Ingredients

To begin with, we remind the basic formulas: the
expression

Hðx; �Þ
x

¼
Z
�
fð�;�Þ�ðx� �� ��Þd�d� (73)

producing GPDs from DDs and the decomposition of DD

fð�;�Þ ¼ ½fð�;�Þ�þ þ �ð�ÞDð�Þ
�

(74)

into the plus part given by

½fð�;�Þ�þ ¼ fð�;�Þ � �ð�Þ
Z 1�j�j

�1þj�j
fð�;�Þd� (75)

and the D-term part �ð�ÞDð�Þ=�.
Correspondingly, we split GPD into the part coming

from the plus part of DD

Hþðx;�Þ
x

�
Z
�
fð�;�Þ½�ðx�����Þ��ðx���Þ�d�d�

(76)

and that generated by the D term

HDðx; �Þ
x

�
Z 1

�1

Dð�Þ
�

�ðx� ��Þd�: (77)

The latter integral gives an explicit expression

HDðx; �Þ ¼ signð�Þ�ðjxj< j�jÞDðx=�Þ; (78)

but, as we will see, it is instructive to use the integral
representation as well. Another important relation

HDðx; 0Þ
x

¼ �ðxÞ
Z 1

�1

Dð�Þ
�

d� (79)

is obtained by taking � ¼ 0.
Note that, if we take x ¼ �, Eq. (78) gives

HDðx; xÞ ¼ signðxÞDð1Þ: (80)

If Dð1Þ � 0, then the integral for � in (70) diverges.
However, as argued in the previous section, Dð1Þ ¼ 0 for
models with a faster-than-perturbative decrease of the
hadron-parton amplitude at large quark virtualities. Thus,
we assume thatDð1Þ ¼ 0, and furthermore that the integral
of Dð�Þ=ð1� �Þ converges. Then Eq. (77) gives

HDðx; xÞ
x

¼ �ðxÞ
Z 1

�1

Dð�Þ
�ð1� �Þd�: (81)

The important point is that if we would use this formula to
write an expression for HDðx; xÞ itself, we would get x�ðxÞ
on the rhs, which should be treated as zero for integration
with functions finite for x ¼ 0, since the coefficient given
by the � integral is also finite. Thus, the scenario with
Dð1Þ ¼ 0 is self-consistent.
Note that both HDðx; 0Þ=x and HDðx; xÞ=x are propor-

tional to �ðxÞ, with the coefficients given by integrals of
Dð�Þ. This means that, unlike the functions Hðx; 0Þ and
Hðx; xÞ, which, for x � 0, are insensitive to changes of
Dð�Þ in the �ð�ÞDð�Þ=� term, the (mathematical) distri-
butions Hðx; 0Þ=x and Hðx; xÞ=x contain information about
such a D term.
Our next step is to study contributions from different

parts of the GPDs involved in the sum rule (71).

C. ‘‘Secondary’’ sum rule

1. Plus part

a. Forward function—One can easily see from Eq. (76)
that

Z 1

�1

Hþðx; �Þ
x

dx ¼ 0 (82)

for any �, including � ¼ 0. Since the integrand is an even
function of x, the vanishing of this integral means that we
also have

Z 1

0

Hþðx; �Þ
x

dx ¼ 0: (83)

Thus, Hþðx; �Þ should be negative in some part of the
central region, and this negative contribution should ex-
actly compensate the contribution from the regions, where
Hþðx; �Þ is positive. In other words, on the ð0; 1Þ interval,
Hþðx; �Þ=x has the same property as a ‘‘plus distribution’’
with respect to x. Note that this does not mean that
Hþðx; �Þ=x necessarily contains singular functions like
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�ðxÞ. For finite �, the function Hþðx; �Þ=x is pretty regular
for all x values (see Fig. 12). The negative �ðxÞ function
appears only in the � ¼ 0 limit, i.e.

Hþðx; 0Þ
x

¼ fðxÞ
x

� �ðxÞ
Z 1

�1

fðyÞ
y

dy �
�
fðxÞ
x

�
þ
: (84)

[Here, it was taken into account that Hþðx; 0Þ coincides
with the forward distribution fðxÞ for x � 0.]

b. Border function—For the integral involving the border
function, we get

Z 1

�1

Hþðx;xÞ
x

dx¼
Z 1

�1
dx

Z
�
d�d�fð�;�Þ½�ðxð1��Þ��Þ

��ðxð1��ÞÞ�: (85)

Noting that the equation � ¼ 1 is satisfied in one point on
the support region � only, namely, in the upper corner of
the rhombus, we may treat �ðxð1� �ÞÞ as �ðxÞ=ð1� �Þ
to get

Z 1

�1

Hþðx; xÞ
x

dx ¼
Z 1

�1
dx

Z
�
d�d�

fð�;�Þ
1� �

�
�
�

�
x� �

1� �

�
� �ðxÞ

�
: (86)

Since j�=ð1� �Þj � 1, the first � function always works.
As a result, the integrals coming from the two delta func-
tions cancel each other, and we have

Z 1

�1

Hþðx; xÞ
x

dx ¼ 0; (87)

just like for Hþðx; �Þ=x. Unlike Hþðx; �Þ, however, the
combination Hþðx; xÞ=x explicitly contains the �ðxÞ sub-
traction term, i.e. it is a genuine ‘‘plus distribution’’ with
respect to x:

Hþðx; xÞ
x

¼ Hðx; xÞ
x

� �ðxÞ
Z 1

�1

Hðy; yÞ
y

dy �
�
Hðx; xÞ

x

�
þ
:

(88)

Summarizing, the plus parts of both functions entering
into the sum rule (71) separately produce vanishing con-
tributions into the x integral. Furthermore, these zero

contributions are due to the fact that Hþðx; 0Þ=x and
Hþðx; xÞ=x are ‘‘plus distributions,’’ which results in zero
integrals irrespectively of the form of the forward distri-
bution fðxÞ and the border function Hðx; xÞ.

2. D part

Let us now turn to the D parts. First, we have

Z 1

�1

HDðx; �Þ
x

dx ¼
Z 1

�1

Dð�Þ
�

d� (89)

for any fixed �, including � ¼ 0. This result may be
obtained by integrating over x the �ðx� ��Þ factor in
the integral representation (77). For nonvanising �, one
can also use Eq. (78) in the x integral and then change the
integration variable through x ¼ ��.
For the integral involving the border function, we use

Eq. (81), which gives

Z 1

�1

HDðx; xÞ
x

dx ¼
Z 1

�1

Dð�Þ
�ð1� �Þd�: (90)

As a result,

Z 1

�1

HDðx;xÞ
x

dx�
Z 1

�1

HDðx;0Þ
x

dx¼
Z 1

�1

Dð�Þ
1��

d�: (91)

Combining this outcome with zero contributions from the
plus parts, one obtains the sum rule (71).
Thus, our construction confirms the sum rule. But our

derivation shows that the plus parts of both terms simply do
not contribute to the sum rule whatever the shapes of fðxÞ
and Hðx; xÞ are. Only the D parts contribute, so there is no
surprise that the net result can be expressed in terms of
Dð�Þ.
An essential point is that both HDðx; 0Þ=x and

HDðx; xÞ=x are proportional to the �ðxÞ function, with the
coefficients given by integrals of the D-term function
Dð�Þ. In this sense,Hðx; 0Þ=x andHðx; xÞ=x ‘‘know’’ about
the D term.
A simple consequence is that all xj moments ofHDðx; 0Þ

and HDðx; xÞ with j � 0 vanish and one cannot get the D
part of the sum rule (71) by an analytic continuation of the
xj moments ofHDðx; 0Þ andHDðx; xÞ to j ¼ �1, i.e., using
the procedure of Refs. [12,26,40]. In fact, xj moments of
HDðx; 0Þ and HDðx; xÞ are proportional to the Kronecker
delta function �j;�1.

3. Formal derivation and need for renormalization

Since Hðx; 0Þ=x is given by integrating the DD fð�;�Þ
over � along vertical lines � ¼ x, a subsequent integration
over all x gives DD fð�;�Þ integrated over the whole
rhombus:

FIG. 12 (color online). Function Hþðx; �Þ=x in the model with
the N ¼ 1 profile for � ¼ 0:2; 0:3; 0:5 and positive x.
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Z 1

�1

Hðx; 0Þ
x

dx ¼
Z 1

�1
dx

Z
�
d�d�fð�;�Þ�ðx� �Þ

¼
Z
�
fð�;�Þd�d� ¼

Z 1

�1

Dð�Þ
�

d�:

(92)

On the last step, we used that the � integral of fð�;�Þ
formally gives Dð�Þ=�. However, if fð�;�Þ � 1=�1þa,
being even in �, one needs a regularization for the �
integral. The ‘‘DD+D’’ separation (73), as we have seen,
provides such a regularization. It works like a renormal-
ization: the divergent integral formally giving theD term is
subtracted from the ‘‘bare’’ DD, and substituted by a finite
‘‘observable’’ function Dð�Þ=�.

In a similar way, we can treat the second integral:

Z 1

�1

Hðx; xÞ
x

dx ¼
Z 1

�1
dx

Z
�
d�d�fð�;�Þ�ðx� �� x�Þ

¼
Z
�

fð�;�Þ
1� �

d�d� ¼
Z 1

�1

Dð�Þ
�ð1� �Þ d�:

(93)

Again, the last step requires a subtraction of the infinite
part of the � integral.

The advantage of using the DD+D separation as a re-
normalization prescription is that it is applied directly to
the DD. Hence, it is universal, and may be used for other
integrals involving fð�;�Þ.

4. Comparison of the plus prescription
and analytic regularization

Another possibility to renormalize the � integral for a
singular DD is to use the analytic regularization employed
in Refs. [12,26,40]. It works as follows. If we need to
integrate a function like 
ðxÞ=xaþ1 with 
ðxÞ being finite
and nonzero for x ¼ 0, we subtract from 
ðxÞ as many
terms of its Taylor expansion as needed to remove the
divergence:

Z y

ð0Þ

ðxÞ
xaþ1

dx¼
Z y

0
dx


ðxÞ�
ð0Þ�x
0ð0Þ�			
xaþ1

þ
ð0Þ
Z y

ð0Þ
dx

xaþ1
þ
0ð0Þ

Z y

ð0Þ
dx

xa
þ			 ; (94)

and then treat the compensating integrals of xn=xaþ1 as
convergent, substituting them by yn�a=ðn� aÞ.

So, let us consider again a DD which is nonzero for
positive � only and has the form

fð�;�Þ ¼ 
ð�;�Þ
�aþ1

�ð�þ j�j � 1Þ�ð� � 0Þ

with a < 1. Then the analytic regularization of its integral
with some reference function �ð�Þ is defined by

Z 1�j�j

ð0Þ
�ð�Þ
ð�;�Þ

�aþ1
d�

¼
Z 1�j�j

0

�ð�Þ
ð�;�Þ ��ð0Þ
ð0; �Þ
�aþ1

d���ð0Þ
ð0; �Þ
að1� j�jÞa ;

(95)

which may be rewritten as

Z 1�j�j

ð0Þ
�ð�Þ
ð�;�Þ

�aþ1
d�

¼
Z 1�j�j

0
½�ð�Þ��ð0Þ�
ð�;�Þ

�aþ1
d�þ�ð0Þ

�
�Z 1�j�j

0


ð�;�Þ�
ð0;�Þ
�aþ1

d�� 
ð0;�Þ
að1�j�jÞa

�
: (96)

Now, the first contribution on the rhs is generated by the
plus part of the DD, while the second one comes from a D
term. After adding the �< 0 part of the DD, the D term
Dð�Þ=� corresponding to the analytic regularization is
given by

Dð�Þ
�

¼ 2

�Z 1�j�j

0


ð�;�Þ � 
ð0; �Þ
�aþ1

d�� 
ð0; �Þ
að1� j�jÞa

�
:

(97)

Thus, the analytic regularization prescription unambigu-
ously fixes theD term, and in this sense it may be called the
‘‘analytic renormalization.’’
In the model considered in the previous section, we also

obtained a concrete result for the D term. But the specific
D-term contribution we obtained there came only from the

-integral part of the dispersion relation for the hadron-
parton scattering amplitude subtracted at ðP� kÞ2 ¼ 0. As
we pointed out, one should be always ready to add to it the
D0 term coming from the T0 constant in the dispersion
relation (31). In principle, we had no reasons to require that
T0 ¼ 0. In this sense, theD term in that model is not fixed.
On the other hand, the statement that xj moments of

Hðx; �Þ are analytic functions of j does not explicitly
mention fixing any subtraction constants: it sounds like a
general principle, and may create an impression that there
are no ambiguities in the subtraction of the � ¼ 0 singu-
larity. However, the analyticity assumption was not shown
so far to be a consequence of general principles of quantum
field theory. Moreover, as mentioned in Ref. [13], it is not
satisfied in the nonlocal chiral soliton model. Still, one may
hope that it is valid in QCD.
To see if the T0 ¼ 0model of the previous section agrees

with the analyticity assumption, we should just check
whether its D term is different from that obtained via
analytic renormalization. In particular, for the N ¼ 1
model, we have


ð�;�Þ ¼ 3

4
½ð1� �Þ2 � �2�; (98)
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and, hence,

Dð�Þ
�

¼ 3

2

�ð1� j�jÞ2�a

2� a
� 2

ð1� j�jÞ1�a

1� a
� 1��2

að1� j�jÞa
�
:

(99)

In Fig. 13, we compare this result (for a ¼ 0:5) with the
result obtained by single subtraction in the dispersion
relation (31) with T0 ¼ 0.

Our main point is that, representing Hðx; �Þ as the sum
Hþðx; �Þ þHDðx; �Þ, one can derive the GPD sum rule
(71) without using the analyticity assumption. But since
our derivation, so to say, works for any D term, it also
works for the D term following from the analyticity
assumption.

D. Generic sum rule

Finally, let us apply the DD+D separation to the generic
relation (70).

1. Plus part

Representing

1

x� �
¼ 1

x
þ �

ðx� �Þx (100)

and using Eqs. (83) and (87), we have

P
Z 1

�1

Hþðx; xÞ
x� �

dx

¼ P
Z 1

�1
�

dx

x� �

Z
�
fð�;�Þd�d�½�ðxð1� �Þ � �Þ

� �ðxð1� �ÞÞ�
¼ P

Z
�
fð�;�Þd�d�

�
�

�� �ð1� �Þ þ
1

ð1� �Þ
�
; (101)

and

P
Z 1

�1

Hþðx;�Þ
x��

dx

¼P
Z 1

�1
�

dx

x��

Z
�
fð�;�Þd�d�½�ðx�����Þ

��ðx���Þ�
¼P

Z
�
fð�;�Þd�d�

�
�

���ð1��Þþ
1

ð1��Þ
�
: (102)

Thus, seemingly different delta functions have converted
1=ðx� �Þ into identical expressions (cf. Ref. [27], where a
similar result was obtained for the FD part of the two-DD
representation). As a result,

P
Z 1

�1

Hþðx; xÞ
x� �

dx� P
Z 1

�1

Hþðx; �Þ
x� �

dx ¼ 0: (103)

In this case, we deal with the situation when the difference
of two integrals vanishes, but each integral does not nec-
essarily vanish.

2. ‘‘D’’ part

For the integral involving the border function, we have

P
Z 1

�1

HDðx; xÞ
x� �

dx ¼ P
Z 1

�1

HDðx; xÞ
x

x

x� �
dx

¼ P
Z 1

�1
dx

x

x� �
�ðxÞ

�
Z 1

�1

Dð�Þ
�ð1� �Þ d� ¼ 0: (104)

In simple words, the starting integrand in (104) vanishes
for x � 0 since then HDðx; xÞ ¼ 0, while for x ¼ 0 it is
given by the x�ðxÞ distribution which produces zero after
integration with a function that is finite for x ¼ 0, which is
the case if � � 0. Comparing this result with Eq. (90), we
see that the nonzero value given by the latter cannot be
obtained by taking � ¼ 0 in the final result of Eq. (104)
above.
The second piece is given by

P
Z 1

�1

HDðx; �Þ
x� �

dx ¼ P
Z 1

�1

HDðx; �Þ
x

x

x� �
dx

¼ P
Z 1

�1

xdx

x� �

Z 1

�1

Dð�Þ
�

�ðx� ��Þd�

¼
Z 1

�1

��

��� �

Dð�Þ
�

d�

¼ �
Z 1

�1

Dð�Þ
1� �

d�: (105)

Again, the result above may be obtained by simply
usingHDðx; �Þ ¼ signð�Þ�ðjxj< j�jÞDðx=�Þ and rescaling
x ¼ ��. Also, though the final result of Eq. (105) does not
depend on �, it does not coincide with the result of the
counterpart relation (89).

FIG. 13 (color online). The D terms in the model with N ¼ 1
profile and a ¼ 0:5: Dð�Þ was obtained using analytic regulari-
zation, and Dð�Þ was obtained for T0 ¼ 0 in the model of the
previous section.
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However, for the difference of the two integrals we
obtain

P
Z 1

�1

HDðx; xÞ
x� �

dx� P
Z 1

�1

HDðx; �Þ
x� �

dx ¼
Z 1

�1

Dð�Þ
1� �

d�;

(106)

the same result as in Eq. (91). Combining the results for the
plus and D parts gives Eq. (70).

3. Some conclusions

Thus, our calculation confirms the generic GPD sum
rule (70) derived in Refs. [25,27]. We were also able to
derive the � ¼ 0 sum rule (71) suggested in Ref. [25]. It
should be emphasized that the integrals present in the
generic sum rule have a singularity for x ¼ �, which is
inside the region of integration, so the integrals may be
taken using the principal value prescription. Since
Hðx; 0Þ=x and Hðx; xÞ=x are even functions of x, the
� ¼ 0 sum rule may be written through an integral from
0 to 1, and its 1=x singularity is at the end point of the
integration region, which means that the P prescription
cannot regulate it. Just because of this fact alone, the
sum rule (71) cannot be a straightforward consequence of
the generic sum rule (70).

In our derivation, we managed to obtain finite expres-
sions for each term involved. In particular, we established
that, though HDðx; xÞ and HDðx; �Þ contributions to the
generic sum rule (70) are � independent, they do not
coincide with their counterparts from the secondary sum
rule (71), i.e., the latter cannot be obtained by formally
continuing to � ¼ 0 the �-independent results for each
term of the generic GPD sum rule.

In our derivation, we did not make an assumption about
analyticity of the Mellin moments of GPDs. We have
obtained GPD sum rules as a consequence of the polyno-
miality of GPDs that follows from Lorentz invariance and
is encoded in the DD representation. The analyticity is a
much stronger restriction. One may try to find out whether
it can be tested experimentally and it is also worth trying to
prove it in QCD.

V. SUMMARY

In this paper, we discussed some basic aspects of build-
ing models for GPDs using the factorized DD ansatz
(FDDA) within the single-DD formulation. The main dif-
ficulty in the implementation of such a construction is the
necessity to deal with projection onto a more singular
function fð�Þ=� [rather than just onto fð�Þ] in the forward
limit. This leads to two problems. First, one encounters
nonintegrable singularities for � ¼ 0 in the integrals pro-
ducing GPDs in the central region jxj< j�j. The difficulty
is exaggerated by necessity to consider forward distribu-
tions fð�Þ that have a singular ��a Regge behavior at
small �. Second, if there are no factors suppressing

the �� 0 region for the integration line corresponding to
x ¼ �, the combined 1=�1þa singularity leads to a singular
ðx� �Þ�a behavior for GPDs in the outer region x > �
near the border point x ¼ �. Such a behavior was found in
the model of Ref. [21].
In our analysis, we found that this model gives the

single-DD-type representation for the model GPD, and
thus the above reasoning is applicable to it. But we argued
that a proper softening of the hadron-quark vertices pro-
duces a profile function hNð�;�Þ that results, for x ¼ �, in
the Oð�NÞ suppression factor securing a finite value of the
GPD Hðx; �Þ at the border point.
However, the profile factor has no impact on the com-

bined 1=�1þa singularity on the � ¼ 0 line inside the
support rhombus, which one faces when calculating
GPDs in the jxj< j�j region. The advantage of the model
of Ref. [21] is that it implants the Regge behavior through a
subtracted dispersion relation for the hadron-quark
scattering amplitude. We found that the subtraction pro-
vides the regularization necessary for the calculation of
GPDs in the central region, and illustrated the behavior of
resulting GPDs in models with N ¼ 1 and N ¼ 2
profiles.
We also observed that this model produces a D-term

contribution, despite the fact that it uses only the forward
distribution as an input. This D-term contribution appears
because the subtraction generated by the dispersion rela-
tion differs from the subtraction that converts the original
DD into a plus distribution ½fð�;�Þ�þ. The latter, by
definition, cannot generate a D term. We have shown that
the GPD Hþðx; �Þ generated by the ½fð�;�Þ�þ part of the
original DD (i.e., GPD Hðx; �Þ with the D-term contribu-
tion Dðx=�Þ subtracted) has a remarkable property that the
integral of Hþðx; �Þ=x over positive values 0 � x � 1
vanishes. As a result, Hþðx; �Þ must be negative in some
part of the central region, a feature that is absent in pre-
vious FDDA models based on two-DD formulation.
Within the single-DD formalism, it is very natural to

separate the relevant DD fð�;�Þ into the plus part
½fð�;�Þ�þ and the D term. We demonstrated that this
separation can be used to rederive the GPD sum rule
related to the dispersion relation for the real part of the
DVCS amplitude, and we also gave a derivation of another
sum rule proposed as the � ! 0 limit of that generic sum
rule. Our derivation shows that this secondary sum rule is
not a straightforward consequence of the generic one. In
particular, the principal value prescription used in the
generic sum rule needs to be substituted by another pre-
scription, like the plus prescription. The plus prescription,
in fact, is automatically generated by the separation of DDs
into the plus part and the D term. We also demonstrated
that the contributions into the two sum rules generated by
the same functions are not in a one-to-one correspondence.
Summarizing, using (intentionally) simplified models,

we developed the basic tools that can be used in building
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realistic GPD models based on the factorized DD ansatz
within the single-DD formalism. Future developments in
this direction should include the extension of the presented
methods onto the cases with a > 1 Regge behavior, which
would require an extra subtraction in the dispersion rela-
tion, and building models for nucleons and other targets
with a nonzero spin.
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