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We propose a novel diagrammatic method for computing transport coefficients in relativistic quantum

field theory. The self-consistent equation for summing the diagrams with pinch singularities has the form

of a linearized kinetic equation as usual, but our formalism enables us to incorporate higher-order

corrections of the coupling systematically for the first time. Furthermore, it is clarified that the higher-

order corrections are nicely summarized into that of the vertex function, spectral function, and collision

term. We identify the diagrams up to the next-to-next-leading-order corrections in the weak coupling

expansion of �4 theory, which is a difficult task in kinetic approaches and other diagrammatic methods.
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I. INTRODUCTION

The experimental results of heavy ion collisions at the
Relativistic Heavy Ion Collider (RHIC) brought remark-
able results [1–4]. Among others, the elliptic flow in pe-
ripheral collisions suggests that the ratio of the shear
viscosity to the entropy, �=s, is smaller than those ever
observed in other systems [4,5]. Transport coefficients
such as the shear � and the bulk � viscosities reflect
dynamical properties slightly away from the thermal equi-
librium, while pressure, entropy, susceptibility, etc., reflect
static properties. In the kinetic theory, the shear viscosity is
proportional to the mean free path of quasiparticles of a
long life; a short mean free path corresponds to strongly
interacting matter [6], which is the reason why the quark-
gluon plasma at the RHIC is called a strongly coupled
quark-gluon plasma [2]. In any event, the RHIC experi-
ments and the subsequent analyses prompted a great inter-
est in the relativistic quantum field theory for the transport
coefficients or nonequilibrium dynamics, in general.

Formally, the transport coefficients are expressed by the
so-called Kubo formula [7] in the framework of linear
response theory even for the relativistic system; e.g., the
shear and the bulk viscosities are given by

� ¼ 1

10
lim
!!0

1

!
Im

Z
d4xei!ti�ðtÞh½�ijðxÞ; �ijð0Þ�i; (1)

� ¼ lim
!!0

1

!
Im

Z
d4xei!ti�ðtÞh½P ðxÞ;P ð0Þ�i; (2)

respectively, where P ðxÞ ¼ �Ti
iðxÞ=3 and �ijðxÞ ¼

TijðxÞ þ gijP ðxÞ. T��ðxÞ is the energy-momentum tensor.

We work in Minkowski space with a metric, g�� ¼
diagð1;�1;�1;�1Þ. Although concisely expressed by
the Kubo formula, the computation of the transport coef-
ficients is not a simple task in practice.

Lattice QCD simulation, in principle, provides us with a
powerful nonperturbative method, and it is natural that
there are attempts to apply it to calculate transport

coefficients at a vanishing chemical potential [8–10].
However, one must notice that the calculation of the
energy-momentum tensor on the lattice is not, by far,
straightforward, because a more careful analysis would
be necessary of the low-frequency structure of the spectral
function and the relevant relaxation time scales which are
to be extracted from the imaginary-time correlation func-
tion, as warned in [9].
Recently, calculations relying on gauge/gravity corre-

spondence have become popular, in which the retarded
correlation function can be calculated as the absorbed cross
section of the black hole [11,12]. One of the most impor-
tant results from such an approach is that the ratio of the
shear viscosity to the entropy density in N ¼ 4 super-
symmetric gauge theories is as small as 1=4� with an
infinite number of colors and strong coupling, and this
value is conjectured to be a universal lower bound [11,12].
Even with the recent development of the fancy methods

for calculating the transport coefficients, the most reliable
method with the sound basis in the relativistic quantum
field theory would be a diagrammatic one based on the
loop expansion. One of the most important and difficult
parts of such a method is, however, how to implement a
systematic way to deal with the so-called ‘‘pinch singular-
ity,’’ which would make naive perturbation theory based on
the loop expansion break down. In fact, this difficulty could
be overcome by a resummation of specific ladder dia-
grams. Although restricted to the leading order of a cou-
pling constant or large N expansion, several methods for
such a resummation have been proposed [13–17], and their
outcome has been shown to be equivalent to the results
obtained using the relativistic kinetic or Boltzmann equa-
tion within the leading order of a coupling constant
[13,17]. We here remark that direct applications of relativ-
istic kinetic theories are also done to compute the transport
coefficients in the hadronic [18], quark-gluon plasma
[19,20], and the ‘‘semiquark-gluon plasma’’ phases [21].
The merit of the diagrammatic methods based on the

loop expansion over the direct use of the Boltzmann
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equation is the potential ability to take into account the
higher-order effects of the coupling constant systemati-
cally, in principle. As far as we know, there were, however,
only a few works which were able to examine the next
leading order for a relativistic system, still being confined
to a scalar theory [22,23]. The major technical difficulty for
going beyond the leading order of the coupling constant is
to classify diagrams order-by-order in the coupling con-
stant, because the loop expansion no longer corresponds to
the coupling expansion at finite temperature and/or density.

The purpose of this paper is to give a formulation for a
novel resummation method in which transport coefficients
can be calculated systematically for any order of the cou-
pling constant beyond the leading order for a relativistic
system. Our method is motivated by the Eliashberg theory
for a nonrelativistic system [24] like a Fermi liquid,
although it relies on a cumbersome analytic continuation
inherent in the imaginary-time formalism adopted by
Eliashberg. We extend and reformulate the resummation
method developed by Eliashberg to relativistic quantum
field theory at high temperature. One of our ideas is to
employ the real-time formalism to avoid the complicated
analytical continuation and thus make the calculational
procedure transparent. The real-time formalism is also
found convenient for identifying diagrams corresponding
to the pinch singularity, as will be discussed in Sec. IV.

The paper is organized as follows: In Sec. II, we briefly
review why the difficulty arises when computing the trans-
port coefficients. In Sec. III, we review the real-time for-
malism in the R=A basis that is useful for identifying the
dominant diagrams in the Green function corresponding to
the transport coefficient. In Sec. IV, the computation
method for transport coefficients is discussed, and we
show that the resummation equation has a form similar to
a linearized Boltzmann equation. In Sec. V, we will con-
clude the paper with some outlook.

II. PINCH SINGULARITYAND QUASIPARTICLES

The difficulty in computing transport coefficients in
Eqs. (1) and (2) arises from the infrared limit, ! ! 0, of
the Green function corresponding to a long time scale. In
such long time scales, a lot of microscopic scatterings
occur. In a diagrammatic method, such scatterings are
expressed by multiple loop diagrams. The question is,
what kind of diagrams are dominating and should be
resummed? A particle excitation of a long life is called a
quasiparticle, and, as long as the quasiparticle description
is valid for the system under consideration, thermal exci-
tations of the system will be well-described solely by the
quasiparticle excitations. Such an excitation is expressed
by a product of the retarded and advanced Green functions
of the quasiparticles, which product is found to become
divergent in the infinite lifetime limit. This divergence or
singularity is nothing but the pinch singularity that we
mentioned in the Introduction.

To see this more concretely, let us take the �4 theory, in
which the one-particle retarded and advanced propagator
reads

DRðkÞ¼ �1

k2�m2�Re�RðkÞ� iIm�RðkÞ
¼DA� ðkÞ; (3)

where m is the mass of the scalar particle, and�RðkÞ is the
retarded self-energy. These propagators can be approxi-
mated by a sum of poles corresponding to quasiparticle
excitations, and thus we have

DRðkÞ ’X
n

�znðkÞ
k0 � 	nðkÞ þ i
nðkÞ

; (4)

DAðkÞ ’ X
n

�z�nðkÞ
k0 � 	nðkÞ � i
nðkÞ

; (5)

where 	nðkÞ is the energy of the quasiparticle, znðkÞ the
renormalization function, and 
nðkÞ> 0 the damping rate.
At weak coupling and high temperature (m � �T),

	nðkÞ ’ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

T

q
, with the thermal mass defined in Eq.

(89) below, and znðkÞ ’ 1=ð2j	nðkÞjÞ. The damping rate
owing to 2 ! 2 scattering is of order �2T. In the naive
perturbation theory, one would encounter a product of the
retarded and the advanced propagators, DRðpþ kÞDAðkÞ,
which has the following anomalous behavior at small p
under the quasiparticle approximation

DRðpþ kÞDAðkÞ ’ 2�i
X
n

jznðkÞj2
p0 � vn � pþ 2i
nðkÞ

� �ðk0 � 	nðkÞÞ; (6)

where vn ¼ d	nðkÞ=dk is the velocity of the quasiparticle.
Equation (6) shows that, when the damping rate vanishes,
i.e., 
nðkÞ ¼ 0, the product diverges at p ¼ 0; this is the
pinch singularity as mentioned above. And one sees that
the product of the retarded and the advanced propagators
with the common momentum must be summed over to
have a sensible result.
The need for resummation can be seen even apart from

the quasiparticle approximation. The product of the propa-
gators at p ¼ 0 exactly becomes

lim
p!0

DRðpþ kÞDAðkÞ ¼ ðkÞ
�2 Im�RðkÞ ; (7)

where ðkÞ is the spectral function defined by

ðkÞ � 2 ImDRðkÞ

¼ �2 Im�RðkÞ
ðk2 �m2 � Re�RðkÞÞ2 þ ðIm�RðkÞÞ2

: (8)

One sees that Eq. (7) diverges when the imaginary part of
the self-energy vanishes. Therefore, we have to employ the
dressed propagator, Eq. (3), to avoid the singularity.
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III. REAL-TIME FORMALISM

In this section, we briefly review the real-time formalism
[25]. For simplicity, we consider the �4 theory. The
Lagrangian has the form

L ¼ 1

2
ð@��Þ2 �m2

2
�2 � �

4!
�4: (9)

The real-time formalism is formulated on a complex-time
path, shown in Fig. 1. The fields onC1 andC2 are called the
type-1 field, �1, and the type-2 field, �2, respectively. The
partition function is

Z12 ¼
Z

D�1D�2 exp

�
�1

2

Z
d4xd4x0�aðxÞ

�D�1
F;abðx;x0Þ�bðx0Þ � i

Z
d4xðV ð�1Þ�V ð�2ÞÞ

�
:

(10)

Although there are contributions from the paths C3 and C4,
in general, they are factorized in the limit of ti, tf ! 1,

and are irrelevant as long as correlation functions are
concerned [25]. The free propagators in momentum space
read

D11
F ¼ ð1þ nðk0ÞÞDFðkÞ þ nðk0ÞD�

FðkÞ;
D12

F ¼ e�k
0ðnðk0Þ þ �ð�k0ÞÞðDFðkÞ þD�

FðkÞÞ;
D21

F ¼ e��k0ðnðk0Þ þ �ðk0ÞÞðDFðkÞ þD�
FðkÞÞ;

D22
F ¼ ð1þ nðk0ÞÞD�

FðkÞ þ nðk0ÞDFðkÞ;
(11)

where the � is the parameter characterizing the time path
in Fig. 1, DFðkÞ is the free Feynman propagator defined by

DFðkÞ ¼ i

k2 �m2 þ i	
; (12)

and nðk0Þ is the Bose-Einstein distribution function,

nðk0Þ ¼ 1

e�jk0j � 1
; (13)

with inverse temperature � ¼ 1=T. We note that any
physical observable is independent of the choice of the
path, i.e., �.

For later convenience, let us rewrite Eq. (11) in terms of
the retarded and advanced propagators,

D11
F ðkÞ ¼ ð1þ fðk0ÞÞð�iDR

FðkÞÞ þ fðk0ÞðiDA
FðkÞÞ;

D12
F ðkÞ ¼ e�k

0
fðk0Þð�iDR

FðkÞ þ iDA
FðkÞÞ;

D21
F ðkÞ ¼ e��k0ð1þ fðk0ÞÞð�iDR

FðkÞ þ iDA
FðkÞÞ;

D22
F ðkÞ ¼ fðk0Þð�iDR

FðkÞÞ þ ð1þ fðk0ÞÞðiDA
FðkÞÞ;

(14)

where the free retarded and advanced propagators are
defined by

DR
FðkÞ �

�1

k2 �m2 þ i	k0
; (15)

DA
FðkÞ �

�1

k2 �m2 � i	k0
; (16)

and fðk0Þ is defined as

fðk0Þ � 1

e�k
0 � 1

: (17)

These propagators satisfy DR
Fð�kÞ ¼ DR�

F ðkÞ ¼ DA
FðkÞ,

which relation also holds for the full propagators (see
Appendix A). The relation between the Bose-Einstein
distribution function and fðk0Þ is nðk0Þ ¼ fðjk0jÞ.

R=A basis

In this subsection, we introduce a useful basis called the
‘‘R=A basis’’ for computing transport coefficients [26,27].
In the original representation introduced by Aurenche and
Becherrawy [26], the propagators are diagonal, and the
diagonal components are the retarded and advanced propa-
gators. In the present work, rather, we employ the repre-
sentation in which the diagonal components are zero while
the off-diagonal components are not [27], instead of the
original R=A basis (we also refer this as the R=A basis in
this paper). We find that this basis is useful not only for a
comparison of the real-time correlation function obtained
in the real-time formalism with that in the imaginary time
but also for the identification of pinch singularities.
Let us define a rotation matrix for converting the basis

Eq. (11) (we refer to this basis as the ‘‘standard basis’’) to
the R=A basis in momentum space as

��ðkÞ ¼ U�
aðkÞ�aðkÞ; (18)

where the Greek index denotes R or A, and the Latin index
denotes 1 or 2. We use Einstein notation, i.e., if an index
appears twice in a single term, once as a superscript and
once as subscript, a summation is assumed over all of its
possible values. We also define the metric for the standard
basis as gab ¼ gab � diagð1;�1Þ; then, the metric in the
R=A basis is given by g�� ¼ gabU

a
�ðkÞUb

�ð�kÞ, of

which the explicit form is given below. The inverse matrix
Ub

�ðkÞ is defined by �b
a ¼ Ub

�ðkÞU�
aðkÞ. An n-point

function transforms as a tensor:
FIG. 1 (color online). A complex-time path in the real-time
formalism.
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� �����ðk1; k2; � � �Þ ¼ �ab���ðk1; k2; � � �ÞUa
�ðk1ÞUb

�ðk2Þ � � � ;
(19)

D�����ðk1; k2; � � �Þ ¼Dab���ðk1; k2; � � �ÞU�
aðk1ÞU�

bðk2Þ � � � :
(20)

In particular, the propagator or two-point function trans-
forms as

DabðkÞ ¼ Ua
�ðkÞUb

�ð�kÞD��ðkÞ: (21)

In the R=A basis,D��ðkÞ is chosen so that the diagonal part
vanishes:

D��ðkÞ ¼ DRRðkÞ DRAðkÞ
DARðkÞ DAAðkÞ

� �

¼ 0 �iDRðkÞ
�iDAðkÞ 0

� �
: (22)

The most general form of Ua
�ðkÞ satisfying Eq. (22) is

obtained through comparison with Eq. (14):

Ua
�ðkÞ ¼ U1

RðkÞ U1
AðkÞ

U2
RðkÞ U2

AðkÞ
� �

¼ fðk0Þe�k0cðkÞ eð���Þk0=cð�kÞ
fðk0ÞcðkÞ 1=cð�kÞ

 !
; (23)

where cðkÞ is an arbitrary function. Here, we simply fix
cðkÞ to be constant, cðkÞ ¼ 1, while the � is kept to be a
free parameter. Then,

Ua
�ðkÞ ¼ fðk0Þe�k0 eð���Þk0

fðk0Þ 1

 !
; (24)

and the inverse is

U�
aðkÞ ¼ UR

1ðkÞ UR
2ðkÞ

UA
1ðkÞ UA

2ðkÞ
� �

¼ eð���Þk0 �1
�ð1þ fðk0ÞÞe��k0 ð1þ fðk0ÞÞ

 !
: (25)

The metric in the R=A basis is

g�� ¼ gabU
a
�ðkÞUb

�ð�kÞ ¼ 0 1
1 0

� �
¼ g��; (26)

which is independent of�. The propagator can be rewritten
by using the metric g��:

D��ðkÞ ¼ �ig��D�ðkÞ; (27)

with no sum over �. Here, we define the Feynman rule for
the propagators with arrows:

The propagator is identified with DRðkÞ or DAðkÞ, if the
arrow is parallel or antiparallel to the momentum k, re-
spectively. The four-point vertex transforms as

���
�ðk1; k2; k3; k4Þ ¼ �abcdU
a
�ðk1ÞUb

�ðk2Þ
�Uc


ðk3ÞUd
�ðk4Þ; (30)

where �abcd ¼ þ� if a ¼ b ¼ c ¼ d ¼ 1, and �abcd ¼
�� if a ¼ b ¼ c ¼ d ¼ 2; otherwise, �abcd ¼ 0. The
vertex satisfies the energy-momentum conservation,
k1þk2þk3þk4¼0. After simple calculations, one finds

���
�ðk1; k2; k3; k4Þ
¼ �½ð1þ fðk01ÞÞ��Rð1þ fðk02ÞÞ��R

� ð1þ fðk03ÞÞ�
Rð1þ fðk04ÞÞ��R

� ðfðk01ÞÞ��Rðfðk02ÞÞ��Rðfðk03ÞÞ�
Rðfðk04ÞÞ��R�: (31)

The first and second terms in the right-hand side (rhs)
correspond to the loss and the gain terms, respectively.
The four-point vertex generally contains 16 combinations;
however, thanks to the symmetry of the �4 theory, they
reduce to the following five vertices:
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At the tree level, vertices with all the same indices vanish,
i.e, �RRRR ¼ �AAAA ¼ 0. This relation is satisfied in full
n-point vertex functions; see Appendix A for the deriva-
tion. We should note, however, that this vanishment will no
longer be maintained for the system out of equilibrium,
where the Kubo-Martin-Schwinger condition is not satis-
fied [28].

IV. COMPUTATION METHOD FOR
TRANSPORT COEFFICIENTS

In this section, we discuss the computational procedure
for transport coefficients in the R=A basis and derive a self-
consistent equation, which turns out to be an extension of
the linearized Boltzmann equation. We shall see that the
R=A basis can naturally lead to a decomposition of dia-
grams into the dominant diagrams, including pinch poles
and others.

A. One-loop analysis

We shall start with the one-loop diagram of a retarded
function. Here, we employ the dressed propagators, DRðkÞ
and DAðkÞ, which do not have a pinch singularity. We
assume that the relevant operator OðxÞ to the transport
coefficient is a quadratic one. The retarded Green function
of it reads

G O
R ðpÞ ¼

Z
d4xeip�xi�ðtÞh½OðxÞ;Oð0Þ�i: (37)

At one-loop level,

GO
R ðpÞ ¼

i

2

Z d4k

ð2�Þ4 �
ð0Þ
A�1�1

ð�p;�k; pþ kÞ

�D�1�2ðpþ kÞD�1�2ð�kÞ�ð0Þ
R�2�2

ðp;�p� k; kÞ;
(38)

where the overall of 1=2 is a symmetric factor, and the

Feynman diagram for the vertex function, �ð0Þ
��
ðk1; k2; k3Þ,

corresponding to OðxÞ, is given by

and �ð0Þ
RRRðk1; k2; k3Þ ¼ �ð0Þ

AAAðk1; k2; k3Þ ¼ 0. For example,

�ð0Þðk1; k2; k3Þ ¼ ki2k
j
3 þ ki3k

j
2 � 2�ijk2 � k3=3, for the

shear viscosity, whereOðxÞ / �ijðxÞ. There are, in general,
four diagrams shown in Fig. 2 contributing to the
retarded Green function. Part (4) of the diagram vanishes

because the vertex functions are �ð0Þ
RRRðk1;k2;k3Þ¼

�ð0Þ
AAAðk1;k2;k3Þ¼0. Part (1) of the diagram is expressed as

GOð1Þ
R ðpÞ ¼ i

2
ð�iÞ2

Z d4k

ð2�Þ4 ð1þ fðp0Þ þ fðk0ÞÞ

� �ð0Þð�p;�k; pþ kÞDRðkÞDRðpþ kÞ
� �ð0Þðp;�p� k; kÞ

¼ � i

2

Z d4k

ð2�Þ4 fðk
0Þ�ð0Þð�p;�k; pþ kÞ

� �ð0Þðp;�p� k; kÞDRðkÞDRðpþ kÞ; (41)

where we have dropped the term proportional to 1þ fðp0Þ
that does not contain poles in the complex k0 plane, since
the vertex and the retarded propagator have no poles in the
upper complex k0 plane; the k0 integral becomes zero.
For a transport coefficient, we need the soft-momentum
limit as

�ð1Þ � lim
p0!0

lim
p!0

1

p0
ImGOð1Þ

R ðpÞ

¼ 1

4

Z d4k

ð2�Þ4
@

@k0
fðk0Þ

� ð�ð0Þð0; k;�kÞÞ2 ReðDRðkÞÞ2: (42)

For the contribution GOð2Þ
R ðpÞ from part (2) of the diagram,

one finds �ð2Þ ¼ �ð1Þ. The contribution GOð3Þ
R ðpÞ from

part (3) of the diagram includes a product of the retarded
and advanced propagators:

GOð3Þ
R ðpÞ ¼ i

2
ð�iÞ2

Z d4k

ð2�Þ4 ð1þ fð�k0Þ þ fðp0 þ k0ÞÞ

�DAðkÞDRðpþ kÞ�ð0Þð�p;�k; pþ kÞ
� �ð0Þðp;�p� k; kÞ

¼ � i

2

Z d4k

ð2�Þ4 ðfðp
0 þ k0Þ � fðk0ÞÞ

�DAðkÞDRðpþ kÞ�ð0Þð�p;�k; pþ kÞ
� �ð0Þðp;�p� k; kÞ: (43)

FIG. 2 (color online). One-loop diagram for a retarded Green
function. The red (light gray) line corresponds to the product of
the retarded and advanced propagators.
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Then, the transport coefficient �ð3Þ, due to GOð3Þ
R ðpÞ,

becomes

�ð3Þ � lim
p0!0

lim
p!0

1

p0
ImGOð3Þ

R ðpÞ

¼�1

2

Z d4k

ð2�Þ4
@

@k0
fðk0Þ ðkÞ

�2Im�RðkÞð�
ð0Þð0;k;�kÞÞ2:

(44)

If one uses the quasiparticle approximation, ðkÞ ¼
2�	ðk0Þ�ððk0Þ2 � E2

kÞ and 
k ¼ �Im�RðEk; kÞ=ð2EkÞ,
�ð3Þ becomes

�ð3Þ ’ 1

T

Z d3k

ð2�Þ3 fðEkÞð1þ fðEkÞÞ 1

2
k

�
�ð0Þð0; k;�kÞ

2Ek

�
2
;

(45)

while �ð1Þ and �ð2Þ vanish in this limit. At weak coupling,

the decay width is proportional to �2, so that �ð3Þ 	 1=�2.
This gives the correct coupling dependence, but not the
coefficient. The higher-order diagram contributes to the
transport coefficient in the same order as the one-loop
diagram.

Since the Bose-Einstein distribution function diverges at

k0 ¼ 0, each GOðiÞ
R ðpÞ includes divergence, although the

sum of GOðiÞ
R ðpÞ’s is finite. In order to avoid such an

artificial divergence, we introduce an infrared (IR) cutoff
�. Bosons with very soft momenta can no longer be
regarded as particles, so we have to treat them, rather, as
waves. This IR cutoff � separates the scale between
the particle and the wave. Thus, we take the IR scale to
be � � m. If one applies the quasiparticle approximation,
the�RðkÞ become independent of �, because k0 
 m � �
at the on shell of the quasiparticle. We note that a fermion

has no such a divergence because of the Fermi-Dirac
distribution function.
The merit of the R=A basis is that it enables us to identify

the diagrams with large contribution to GOð3Þ
R ðpÞ. Although

such an identification and decomposition are not obvious in
the imaginary-time formalism before the analytical con-
tinuation, the decomposition plays an important role for the
full analysis of the retarded Green function, as is discussed
in the next subsection.

B. Relativistic Eliashberg decomposition in
real-time formalism

In the previous section, we showed within the one-loop
level that the product of the retarded and advanced propa-
gators with the common momentum gives a large contri-
bution to transport coefficients. Such a product of the
propagators also appears in higher-order diagrams, which
must also be summed over. The Eliashberg method [24] is
one such resummation method for nonrelativistic systems
and has been applied to a Fermi liquid at low temperature
in the imaginary-time formalism. In this method, the four-
point function is first analytically continued to the real-
time domain. Each external leg can be the retarded or
advanced legs, so the four-point function has a matrix
form. After the analytic continuation, the diagrams for
the four-point function are decomposed into a set that
connects with pinching diagrams and a set that does not
connect with them. The pinching diagrams are summed
over by a self-consistent equation, which is found to cor-
respond to a kinetic equation. In this section, we extend the
Eliashberg method to a relativistic case, using the real-time
formalism in the R=A basis, and thus derive the corre-
sponding relativistic kinetic equation.
The retarded Green function shown diagrammatically in

Fig. 3 is expressed in the momentum space as

G O
R ðpÞ ¼

Z
d4xeip�xi�ðtÞh½OðxÞ;Oð0Þ�i

¼ i

2

Z d4k

ð2�Þ4
Z d4k0

ð2�Þ4 �
ð0Þ
A�1�1

ð�p;�k; pþ kÞD�1�2ðpþ kÞD�1�2ð�kÞ½ð2�Þ4�ð4Þðk� k0Þ��2

�4��2

�4

þ ð�iÞT �2�2�3�3
ð�p� k; k;�k0; pþ k0ÞD�3�4ðpþ k0ÞD�3�4ð�k0Þ��ð0Þ

R�4�4
ðp;�p� k0; k0Þ; (46)

where T �2�2�3�3
ð�p� k; k;�k0; pþ k0Þ denotes the con-

nected four-point function. The first diagram in the rhs of
Fig. 3 is the one discussed in the previous subsection.
Owing to Eq. (27), the product of two propagators appear-
ing in Eq. (46) is written as

D�1�2ðpþ kÞD�1�2ð�kÞ
¼ ð�iÞ2g�1�2g�1�2D�1ðpþ kÞD�1ð�kÞ
� �g�1�2g�1�2G�1�1ðp; kÞ: (47)

Thus, we have

GO
R ðpÞ ¼ � i

2

Z d4k

ð2�Þ4
Z d4k0

ð2�Þ4 �
ð0Þ
A�1�1

ð�p;�k; pþ kÞ

�G�1�1ðp; kÞ½ð2�Þ4�ð4Þðk� k0Þ��1
�2
��1

�2

þ iT �1�1
�2�2

ð�p� k; k;�k0; pþ k0Þ
�G�2�2ðp; k0Þ��ð0Þ�2�2

R ðp;�p� k0; k0Þ: (48)
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The indices appear in pairs of � and � in Eq. (48), so it is
useful to introduce an index l as the pairs of R and/or A,
i.e., l ¼ ð�;�Þ ¼ ðRAÞ, ðARÞ, ðRRÞ, and ðAAÞ; then,

G O
R ðpÞ ¼ � i

2

Z d4k

ð2�Þ4
Z d4k0

ð2�Þ4 �
ð0Þ
Al ðp; kÞGlðp; kÞ

� ½ð2�Þ4�ð4Þðk� k0Þ�l
m

þ iT l
mðp; k; k0ÞGmðp; k0Þ��ð0Þm

R ðp; k0Þ; (49)

where the three-point functions are

and �ð0Þ
R4ðp; kÞ ¼ �ð0Þ

A4ðp; kÞ ¼ 0. At the tree level, the three-
point function satisfies

� ð0Þ
A3ðp; kÞ ¼ ðfðp0 þ k0Þ � fðk0ÞÞ�ð0Þ

R3ð�p;�kÞ: (55)

This relation is generalized to the full vertex function as

� A3ðp; kÞ ¼ ðfðp0 þ k0Þ � fðk0ÞÞ��
R3ð�p;�kÞ; (56)

the proof to which is given in Appendix A.
As discussed in the previous section, G3ðp; kÞ contains

pinch singularities at weak coupling limit. Therefore, we
treat G3ðp; kÞ separately from other Giðp; kÞ, with i � 3 in

the four-point function. Suppose that T ðAÞl
mðp; k; k0Þ is the

four-point function that does not include a pair of lines of
the type Glðp; k00Þ. Then, the four-point function obeys the
following equation:

T l
mðp; k; k0Þ ¼ T ðAÞl

mðp; k; k0Þ

þ ð�iÞ3
Z d4k00

ð2�Þ4 T
ðAÞl

nðp; k; k00Þ
�Gnðp; k00ÞT n

mðp; k00; k0Þ: (57)

In order to pick G3ðp; kÞ up, we also defineT ðBÞl
mðp; k; k0Þ

as a four-point function that does not include
G3ðpþ k00; k00Þ. The full four-point function T 3

3ðp; k; k0Þ
obeys the following self-consistent equation:

T 3
3ðp; k; k0Þ ¼ T ðBÞ3

3ðp; k; k0Þ

þ ð�iÞ3
Z d4k00

ð2�Þ4 T
ðBÞ3

3ðp; k; k00Þ
�G3ðp; k00ÞT 3

3ðp; k00; k0Þ: (58)

Other full four-point functions satisfy

FIG. 3 (color online). A retarded Green function correspond-
ing to a transport coefficient. The dark (blue) square denotes the
connected four-point function. The lines without arrows denote
lines that can be the retarded or the advanced arrow lines.
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T i
jðp; k; k0Þ ¼ T ðBÞi

jðp; k; k0Þ

þ ð�iÞ3
Z d4k00

ð2�Þ4 T
ðBÞi

3ðp; k; k00Þ

�G3ðp; k00ÞT ðBÞ3
jðp; k00; k0Þ

þ ð�iÞ6
Z d4k00

ð2�Þ4
Z d4k000

ð2�Þ4 T
ðBÞi

3ðp; k0; k00Þ
�G3ðp; k00ÞT 3

3ðp; k00; k000Þ
�G3ðp; k000ÞT ðBÞ3

jðp; k000; k0Þ; (59)

T i
3ðp; k; k0Þ ¼ T ðBÞi

3ðp; k; k0Þ

þ ð�iÞ3
Z d4k00

ð2�Þ4 T
ðBÞi

3ðp; k; k00Þ
�G3ðp; k00ÞT 3

3ðp; k00; k0Þ; (60)

T 3
jðp; k; k0Þ ¼ T ðBÞ3

jðp; k; k0Þ

þ ð�iÞ3
Z d4k00

ð2�Þ4 T
3
3ðp; k; k00Þ

�G3ðp; k00ÞT ðBÞ3
jðp; k00; k0Þ: (61)

The diagrams corresponding to Eqs. (58)–(61) are shown
in Fig. 4. Inserting Eqs. (58)–(61) into Eq. (49), we arrive at
a simple form:

GO
R ðpÞ ¼

i

2

Z d4k

ð2�Þ4
Z d4k0

ð2�Þ4
���ð�p;�kÞðfðk0Þ

� fðp0 þ k0ÞÞG3ðp; kÞ½ð2�Þ4�ð4Þðk� k0Þ
þ iT 3

3ðp; k; k0ÞG3ðp; k0Þ� ��ðp; k0Þ þKðpÞ;
(62)

where

KðpÞ � � i

2

X2
i;j¼1

Z d4k

ð2�Þ4
Z d4k0

ð2�Þ4 �
ð0Þ
Ai ðp; kÞGiðp; kÞ

� ½ð2�Þ4�ð4Þðk� k0Þ�i
j

þ iT ðBÞi
jðp; k; k0ÞGjðp; k0Þ��ð0Þj

R ðp; k0Þ; (63)

which does not include G3ðp; kÞ, so that KðpÞ is not
enhanced at small p. We have also introduced the effective
vertex function shown diagrammatically in Fig. 5, which is
expressed as

��ðp; kÞ � �ð0Þðp; kÞ þ ð�iÞ3X2
i¼1

Z d4k0

ð2�Þ4 T
ðBÞ3

iðp; k; k0Þ

�Giðp; k0Þ�ð0Þi
R ðp; k0Þ: (64)

This effective vertex function includes vertex corrections
which can be evaluated by loop expansions, as long as
further infrared singularities do not appear, and contains
both quantum and medium effects; these corrections are in
the same order in coupling at high temperature. We em-
phasize that this vertex correction is not included in the
usual kinetic theory, and hence the vertex correction de-
rived here describes an effect beyond the kinetic theory.
Now, the transport coefficient � is given by the retarded

Green function at the p ! 0 limit,

� � lim
p0!0

lim
p!0

1

p0
ImGRðpÞ � �B þ �K: (65)

Note that these limits, p0 ! 0 and p ! 0, do not ex-
change, in general. We have decomposed the transport
coefficient into two parts, �B þ �K, the explicit forms
of which will be given shortly.
Let us discuss the two terms one-by-one. The first term

is expressed as

�B � 1

2

Z d4k

ð2�Þ4
Z d4k0

ð2�Þ4
���ð�kÞ

�
� @

@k0
fðk0Þ

�

� ðkÞ
�2 Im�RðkÞ

�
ð2�Þ4�ð4Þðk� k0Þ

� ImT 3
3ðk; k0Þ

ðk0Þ
�2 Im�Rðk0Þ

�
��ðk0Þ; (66)

where we have used the relation

G3ð0; kÞ ¼ DRðkÞDAðkÞ ¼ ðkÞ
�2 Im�RðkÞ ; (67)

FIG. 4 (color online). Self-consistent equation for the four-
point functions T 3

3ðp; k; k0Þ, T 1
2ðp; k; k0Þ, and T 1

3ðp; k; k0Þ,
respectively. The blue (dark gray) squares denote T i

jðp; k; k0Þ,
and the green (light gray) squares denote T ðBÞi

jðp; k; k0Þ.
FIG. 5 (color online). Vertex corrections to ��ðp; kÞ. The green
squares correspond to T ðBÞ3

iðp; k; k0Þ.
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in accordance with Eq. (7). We have also introduced
abbreviated notations:

T 3
3ðk; k0Þ ¼ T 3

3ð0; k; k0Þ; (68)

��ðk0Þ ¼ ��ð0; k0Þ; (69)

�� �ðkÞ ¼ ���ð0; kÞ: (70)

The second term of the rhs in Eq. (66) is defined by

�K � lim
p0!0

lim
p!0

1

p0
ImKðpÞ: (71)

As will be clarified in the next subsection, the physics
content of the �B can be nicely given in terms of a
Boltzmann equation. At the weak coupling, �B becomes
much larger than �K because of the pinch singularity. In
the following, we focus on �B.

Let us introduce the full vertex function, �ðkÞ, by

� ðkÞ ¼ ��ðkÞ �
Z d4k0

ð2�Þ4 ImT 3
3ðk; k0Þ

� ðk0Þ
�2 Im�Rðk0Þ

��ðk0Þ; (72)

which is found to obey the following self-consistent equa-
tion on account of Eq. (58):

� ðkÞ ¼ ��ðkÞ �
Z d4k0

ð2�Þ4 ImT ðBÞ3
3ðk; k0Þ

� ðk0Þ
�2 Im�Rðk0Þ�ðk

0Þ: (73)

The diagrammatic representation of this integral equation
is given in Fig. 6.

Now, T ðBÞ3
3ðp; k; k0Þ consists of two parts:

T ðAÞ3
3ðp; k; k0Þ, which does not include Giðp; kÞ, and the

others. The latter part contains T ðAÞi
3ðp; k; k0Þ, which is

proportional to fðp0 þ k00Þ � fðk00Þ, so that it vanishes as

p0 ! 0. Therefore, T ðBÞ3
3ðk; k0Þ ¼ T ðAÞ3

3ðk; k0Þ. The
dominant transport coefficient �B is now expressed as

�B ¼ 1

2T

Z d4k

ð2�Þ4
ðkÞ

�2Im�RðkÞfðk
0Þð1þ fðk0ÞÞ ���ðkÞ�ðkÞ;

(74)

where we have used the relation ���ðkÞ ¼ ���ð�kÞ.
Equations (64), (73), and (74) are our main result. What

we have done is rewriting diagrams in a useful and physical
form. This is just a rewriting of diagrams, so that there is no
approximation in the sense of the diagrammatic expansion
(although nonperturbative contributions such as instantons

are not included). The�RðkÞ,T ðAÞ3
3ðk; k0Þ, and ��ðkÞ can be

expanded by loops, as far as further infrared singularities
appear. The spectral function is obtained through �RðkÞ.
One has to choose the loop diagrams for �RðkÞ and

T ðAÞ3
3ðk; k0Þ, so as to satisfy the symmetries of the action,

i.e., the Ward-Takahashi identity, as is discussed in
Appendix C 2.
Let us estimate the order of �B at weak coupling. The

leading contribution comes from the peak of the spectral
function. The residue of the pole corresponding to the peak
is of order 1, and Im�RðkÞ is of order �2 at the pole, so the
first part in Eq. (74) gives a contribution of order 1=�2. The

four-point function, ImT ðAÞ3
3ðk; k0Þ, in Eq. (73), is related

to the squared scattering amplitude, which is of order �2

from 2 ! 2 scattering. This is the same order as the
imaginary part of the self-energy, so the full vertex �ðkÞ
is of the same order as ��ðkÞ. As we will see in the next

subsection, ImT ðAÞ3
3ðk; k0Þ and Im�RðkÞ are related to the

collision term of a Boltzmann equation, which has the
same order of the coupling constant. As a result, the �B

is estimated as of order 1=�2 at weak coupling. This is
consistent with the result in kinetic theory where the shear
viscosity is proportional to the inverse of the transport
cross section of order �2. We note that the �B diverges at
the zero cutoff limit, � ¼ 0, for bosons, because fðkÞ has
the pole at k0 ¼ 0, while fermions do not. The divergence
will be cancelled by adding �K.

C. Linearized Boltzmann equation

Here, we discuss the relation between our diagrammatic
method and the linearized Boltzmann equation. We will
show that Eq. (73) has the form of a linearized Boltzmann
equation. In the leading order of the coupling constant, it
is known that the linear equation, Eq. (73), with the
quasiparticle approximation is reduced to a linearized
Boltzmann equation in scalar theory [13] and QED [17].
Beyond the leading order, nothing has been known about
the relation between the diagrammatic method for the
Kubo formula and the kinetic equation. Although the
Boltzmann equation is the equation for the on-shell (quasi)
particles, the spectral function includes not only the qua-
siparticle peak but also a multiparticle-state spectrum. If
one wants to derive the Boltzmann-like equation, which
contains the scattering process of the quasiparticles, one

FIG. 6 (color online). The self-consistent equation for the
vertex function. The blue and green blobs correspond to the
full and renormalized vertex function. The green square corre-
sponds to the collision term.
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needs to decompose the spectrum function into the quasi-
particle part with a distinct peak and continuum parts for
rewriting the equation in terms of the quasiparticles. In this
paper, we shall not do such a decomposition; nevertheless,
we shall show that the linear equation has a similar prop-
erty to that of the linearized Boltzmann equation. To derive
a linearized collision operator in our formalism, we define
’ðkÞ by

’ðkÞ � �ðkÞ
�2 Im�RðkÞ ; (75)

following [13]. Then, Eq. (73) is cast into the following
form:

1

2k0
��ðkÞ ¼ L’ðkÞ; (76)

where L is defined by

L’ðkÞ � �2
1

2k0
Im�RðkÞ’ðkÞ þ 1

2k0

�
Z d4k0

ð2�Þ4 ðk
0Þ ImT ðAÞ3

3ðk; k0Þ’ðk0Þ: (77)

We note that ’ðkÞ is an odd (even) function under k $ �k,
if �ðkÞ is an even (odd) function, since Im�RðkÞ is an odd
function. Equation (76) has the same form as the linearized
Boltzmann equation [29]. In fact, L can be identified with
the linearized collision operator: The equivalence between
Eq. (76) and the linearized Boltzmann equation in the
leading order of the coupling constant is shown in
Appendix B.

Here, we introduce an inner product as

h’1; ’2i �
Z d4k

ð2�Þ4 WðkÞ’�
1ðkÞ’2ðkÞ; (78)

where WðkÞ � k0ð1þ fðk0ÞÞfðk0ÞðkÞ> 0 is the weight
function, and ’1 and ’2 are arbitrary functions of k�.
We note that WðkÞ at k0 ¼ 0 is finite, although fðk0Þ has
a singularity at k0 ¼ 0. Using this inner product, we can
rewrite the transport coefficient, Eq. (74), as

�B ¼ 1

T
hS;L�1Si; (79)

where S � ��=ð2k0Þ. Note that S must be orthogonal to the
eigenvectors of L with zero eigenvalues corresponding to
conserved charges; otherwise, L�1 is not well-defined.

The inverse of the collision operator can be expressed as

L�1 ¼
Z 1

0
dte�tL; (80)

where we have assumed that the eigenvalues of L are
nonnegative. This is necessary for the stability of the
system. Using Eq. (80), Eq. (79) is rewritten as a Kubo
formula for the quasiparticle

�B ¼ 1

T

Z 1

0
dthSð0Þ;SðtÞi; (81)

where SðtÞ ¼ expð�tLÞSð0Þ. We rewrite a Kubo formula
in field theory to that for relevant quasiparticles.
Equation (81) is a semiclassical formula, i.e., no field
operator is present in Eq. (81). The collision operator and
the effective vertex are calculated in thermal field theory.
We note that the thermal weight WðkÞ does not contain
fðk0Þ but fðk0Þð1þ fðk0ÞÞ, because the thermal average is
taken for a two-point correlation function. If the S is an
eigenstate of L with an eigenvalue 1=�,

�B ¼ �

T
hSð0Þ;Sð0Þi: (82)

The inverse of the eigenvalue � can be identified as a
relaxation time.
Let us estimate the shear viscosity using Eq. (82) in the

quasiparticle limit, where the thermal weight function
becomes

WðkÞ ’ 2�½�ðk0 � jkjÞ þ �ðk0 þ jkjÞ�fðjkjÞð1þ fðjkjÞÞ;
(83)

and the vertex function for the shear viscosity �ij in the
leading order is

�ij ¼ 1

k0

�
kikj � �ij k

2

3

�
: (84)

Then, the shear viscosity is evaluated as

� ¼ �

10T
h�ij; �iji ¼ �sT

5
; (85)

where s ¼ 2�2T3=45 is the entropy density in the free
theory. Using P ¼ 4s for free massless particles in the
leading order, we obtain the relaxation time as

� ¼ 5

4

�

P
: (86)

This is 25% larger than that obtained in Ref. [30], although
Eq. (85) is a parametrically similar equation to that given in
Ref. [30]. The difference comes from the semiclassical
calculation in our formalism and the field theoretical cal-
culation in Ref. [30].

D. Leading and higher orders

In this subsection, we show how the contributions of the
higher- as well as leading-order terms to the transport
coefficient appear in our formalism. The transport coeffi-
cient �B in Eq. (79) consists of the vertex function S, the
collision term L, and the inner product that contains the
spectral function ðkÞ. The contribution of the leading- and
higher-order terms is nicely summarized into these terms.
The merit of our formalism is that the contributions of each
term can be systematically estimated using loop expan-
sions. To show the details of this statement, let us consider
the shear viscosity as an example. We will find the shear
viscosity is expanded by the coupling constant � as
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�

�0
¼ 1þ c1

ffiffiffiffi
�

p þ ðc02 ln1=�þ c2Þ�þ � � � : (87)

Here, the numerical calculation in the leading order gives
�0 ’ 3033:54T3=�2 [13,22].

First, let us begin with clarifying how the ��2 depen-
dence of �0 is obtained in the leading order within our
formalism, although a brief discussion on this matter was
given in the end of Subsec. IVB. The diagram of

T ðAÞ3
3ðk; k0Þ in the leading order is shown in Fig. 7, which

corresponds to the 2 ! 2 scattering. Then, the squared
scattering amplitude is proportional to �2, and thus the

collision term is estimated as L	T ðAÞ3
3ðk; k0Þ 	 �2. In

this calculation, the quasiparticle approximation with a
vanishing mass is employed in the spectral function,
ðkÞ ¼ ð2�Þsgnðk0Þ�ðk2Þ, because hard momenta of order
k	 T contribute to the leading order, where the mass can
be neglected. Formally, the diagram in the left-hand side of
Fig. 7 also contains 1 ! 3 decay and 3 ! 1 fusion pro-
cesses; however, they are found to be higher orders of the
coupling because of the phase space restricted by the
energy-momentum conservation. The contribution of S is
of order one. As a result, we have �0 	 S2=L	 1=�2,
which coincides with the result given by the Boltzmann
equation. In fact, the equivalence between the diagram-
matic method in the leading order and the linearized
Boltzmann equation generally holds, as is proven in
Appendix B.

Next, let us estimate the contribution of the next leading
order (NLO) to the shear viscosity in Eq. (87), in which
contributions are found to come from the correction to
ðkÞ, while the loop corrections to S and L, at least of
order �, are higher-order corrections. The spectral func-
tions are characterized by the thermal mass, width, and
height of the peak of the quasiparticle. In the NLO, the
thermal-mass correction gives the contribution of orderffiffiffiffi
�

p
, which is nonanalytic in � [22]. The nonanalytic term

is obtained from a phase space integral with an infrared
enhancement of the Bose-Einstein distribution function
fðEÞ ’ T=E at small E. Since ðkÞ appears with fðkÞ in
L, S, and the inner product [see, e.g., Eq. (B11)], consider
the following integral to see the nonanalyticity of �:

Z d4p

ð2�Þ4ðpÞfðpÞ¼
T2

12

�
1þa1

mT

2�T
þ
�
a02 ln

�
mT

2�T

�
2þa2

�

�
�
mT

2�T

�
2þ���

�
; (88)

where a1 ¼ 6, a2 ¼ 3� 6
E þ 6 ln2, and a02 ¼ 3, with
the Euler constant 
E ¼ 0:577216. We have assumed
that the spectral function has a form ðkÞ ¼
ð2�Þsgnðk0Þ�ðk2 �m2

TÞ to obtain Eq. (88). The nonana-
lytic term mT appears in the rhs of Eq. (88), although the
integrant is a function of m2

T , which is obtained as [31]

m2
T ¼ �T2

24

�
1� 3

�
�

24�2

�ð1=2Þ þ � � �
�
: (89)

The thermal masses in the leading (	�) and the next

leading (	�3=2) orders are given by the one-loop diagram
and the ring diagram resummation, respectively.
Therefore, the contribution of the phase space integral in

the NLO gives that of order
ffiffiffiffi
�

p
, and the coefficient is

estimated as c1 ’ 0:104 [22]. We note that this term also
contains the next-to-next-leading-order (NNLO) correc-
tions of orders � ln1=� and � to the shear viscosity from
Eqs. (88) and (89). One might worry about corrections
from the thermal width of the spectral function; however,
this is in even higher orders because the width is of order
�2T, which is smaller than �T.
Finally, we identify diagrams contributing to the shear

viscosity in the NNLO corrections. To our knowledge, this
is the first identification of the diagrams contributing to
the NNLO corrections. As noted above, the thermal-mass
correction to ðkÞ is one of them. The corrections in the
NLO to S and L can generally contribute to the transport
coefficient in the NNLO. However, for the shear viscosity,
the correction to S does not contribute in the NNLO. The
reason is as follows: The diagrams which contribute to the
vertex corrections of up to order �2 are shown in Fig. 8.
The second and third diagrams corresponding to the NLO
corrections to S are ring diagrams, which do not depend on
the external momentum k. However, the contributions of
the ring diagrams vanish because the vertex function S for
the shear viscosity is a second rank tensor and proportional
to kikj � �ijk2. Thus, the corrections to S start from those
of order �2 that are higher orders of the coupling. The
diagrams of the leading-order and NLO corrections to

T ðAÞ3
3ðk; k0Þ are shown in Fig. 9. These corrections corre-

spond to quantum and thermal loop corrections of order �3

to the squared scattering amplitude of the 2 ! 2 process,
which do not include multiple scattering such as 3 ! 3 and
2 ! 4. A typical diagram corresponding to the 3 ! 3
process is shown in Fig. 10, whose process contributes to
the next-to-next-to-next leading order, since the squared
amplitude is proportional to �4. In summary of the NNLO
correction to the shear viscosity, the corrections of the

FIG. 7 (color online). The diagram contributing toT ðAÞ3
3ðk;k0Þ

in the leading order, which corresponds to 2 ! 2 scattering. FIG. 8 (color online). Vertex corrections up to of order �2.
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thermal mass of up to order �3=2 and the squared scattering
amplitude of order �3 contribute to the NNLO, while the
corrections to S do not.

V. CONCLUSION AND OUTLOOK

We have given a formulation of a resummation method
for computing transport coefficients in relativistic quantum
field theory, using the �4 theory as an example. We sepa-
rated the diagrams in the dominant part from the other
diagrams and reformulated them in a way which makes the
included physics instructive, by adapting the Eliashberg
method to a relativistic case in the real-time formalism.
Our results are summarized in Eqs. (64), (73), and (74).
The self-consistent equation of the vertex, Eq. (73), has the
meaning of a kinetic equation, and has a form similar to the
linearized Boltzmann equation. In the leading order of the
coupling constant, we recover the kinetic equation of pre-
vious works [13] (see Appendix B). The higher-order
corrections beyond the leading order are systematically
incorporated in the formalism for the first time and found
to be nicely summarized as the renormalization of the
vertex correction, Eq. (64); the spectral function, ðkÞ;
and the collision term through ImT ðAÞ3

3ðk; k0Þ and
Im�RðkÞ. In the higher orders of the collision term, both
effects of multiple scattering and quantum loops are ex-
pressed in a power of the coupling constant. Their effects
also appear in the vertex correction. The higher-order
correction is important to see the convergence of the
perturbation theory at finite temperature.

We have identified the diagrams up to the next-to-
next-leading-order corrections in the weak coupling ex-
pansion of �4 theory. The detailed calculation for the
higher-order corrections will be discussed in our future
work [32]. We emphasize that the advantage of our dia-
grammatic method is to enable us to identify diagrams
contributing to the higher-order corrections, which is a
difficult task in kinetic approaches and other diagrammatic
methods.

Although the formalism is developed using the �4 the-
ory in the present work, the generalization of it to fermi-
onic theories is straightforward: The Bose-Einstein
distribution function in the self-consistent equation is sim-
ply replaced by the Fermi-Dirac distribution function. The
spinor structure is introduced into the vertex function and
the collision term. Since the Fermi-Dirac distribution func-
tion nFðEÞ does not diverge at E ¼ 0, the infrared cutoff
introduced in Sec. IVA is not necessary.
Gauge theory is more complicated. Resummation of

collinear divergences, in addition to the ladder diagrams,
is necessary to obtain the correct result in certain orders of
the coupling constant, which is called the Landau-
Pomeranchuk-Migdal effect [33]. The self-consistent
equation summing the collinear singularities over has the
form of the Boltzmann equation with the collision term in
1 ! 2 and 2 ! 1 processes [17,20,34].
It is also interesting to apply the diagram method to

critical phenomena, where the hydrodynamic mode and
the fluctuation of the order parameter play an important
role. We have to take into account these modes in addition
to quasiparticle modes.
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APPENDIX A: SEVERAL IDENTITIES IN THE
REAL-TIME FORMALISM

In this Appendix, we show several useful identities in the
R=A basis [27]. We start with the standard basis. The
largest and smallest time equation showsX

fikg
�i1i2���inðp1; p2; � � � ; pnÞ

Y
ik¼2

e��p0
k ¼ 0; (A1)

and the Kubo-Martin-Schwinger relation showsX
fikg

�i1i2���inðp1; p2; � � � ; pnÞ
Y
ik¼2

eð���Þp0
k ¼ 0: (A2)

By diagrammatic analysis, one finds [27]

��
i1i2���inðp1; p2; � � � ; pnÞ
¼ �� �i1 �i2����inðp1; p2; � � � ; pnÞ

Y
ik¼2

e�ð��2�Þp0
k : (A3)

Equations (A1)–(A3) are basic identities in the real-time
formalism [35]. In the R=A basis, Eq. (A1) becomes

FIG. 9 (color online). Diagrams of order �3 contributing to
T ðAÞ3

3ðk; k0Þ.

FIG. 10 (color online). Collision term at the leading order
corresponding to 3 ! 3 scattering.
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X
fikg

Yn
m¼1

U�m
im
ðpmÞ

Y
ik¼2

e��p0
k��1�2����n

ðp1; p2; � � � ; pnÞ

¼ Yn
m¼1

½U�m
1ðpmÞ þU�m

2ðpmÞe��p0
m�

� ��1�2����n
ðp1; p2; � � � ; pnÞ

¼ �RR���Rðp1; p2; � � � ; pnÞ
Yn
m¼1

ðe�p0
m � 1Þ ¼ 0: (A4)

Since e�p
0
m � 1 � 0,

� RR���Rðp1; p2; � � � ; pnÞ ¼ 0: (A5)

Similarly, Eq. (A2) becomes, in this basis,

� AA���Aðp1; p2; � � � ; pnÞ ¼ 0: (A6)

Therefore, the vertex function vanishes when all indices
are the same. This means particles are neither produced
from the thermal equilibrium system nor absorbed into the
system, similar to the vacuum at zero temperature and zero
density.

Equation (A3) is reduced to

��
�1�2����n

ðp1;p2;��� ;pnÞ

¼��
i1i2���inðp1;p2;��� ;pnÞ

Yn
m¼1

Uim
�m
ðpmÞ

¼�� ��1 ��2��� ��n
ðp1;p2;��� ;pnÞ

Y
�m¼R

fðp0
mÞ

Y
�m¼A

1

�fð�p0
mÞ

:

(A7)

For a two-point function,

� �
ARð�k; kÞ ¼ �RAð�k; kÞ; (A8)

implying DRðkÞ ¼ DA� ðkÞ. For a three-point function,

��
RAAðp; q; kÞ ¼ ��ARRðp; q; kÞ 1

fðpþ kÞ � fðkÞ : (A9)

Therefore,

� ðfðpþ kÞ � fðkÞÞ��
RAAðp; q; kÞ ¼ �ARRðp; q; kÞ:

(A10)

For a four-point function,

T �
AARRðp1; p2; p3; p4Þ ¼ �T RRAAðp1; p2; p3; p4Þ

� fðp0
3Þfðp0

4Þ
fð�p0

1Þfð�p0
2Þ
: (A11)

APPENDIX B: RELATION BETWEEN
BOLTZMANN EQUATION AND KUBO
FORMULA IN THE LEADING ORDER

Here, we explicitly show that Eq. (77) is equivalent to a
linearized Boltzmann equation in the leading order. This
was shown in Ref. [13] in a different formalism. Let us start
with a Boltzmann equation,

2k�@�fðx; kÞ ¼ �C½f�; (B1)

where fðx; kÞ denotes the distribution function, and C½f� is
the collision term. In the leading order, the collision term
has the form of a 2 ! 2 collision,

C½f� ¼ 1

2

Z d3k0

ð2�Þ3
1

2Ek0

Z d3q

ð2�Þ3
1

2Eq

Z d3q0

ð2�Þ3
1

2Eq0

� jMj2ð2�Þ4�ð4Þðkþ q� k0 � q0Þ
� ½fkfqð1þ fk0 Þð1þ fq0 Þ
� ð1þ fkÞð1þ fqÞfk0fq0 �; (B2)

where M is the scattering amplitude, and M ¼ i� for �4

theory in the leading order. At (local) thermal equilibrium,
the distribution function has the form

f0ðx; kÞ ¼ 1

expð�ðxÞu�ðxÞk�Þ � 1
; (B3)

where u�ðxÞ is the local velocity, k� is the four-momentum

at on shell, and k2 ¼ m2 with mass m. Here, we consider
the shear flow; then, the left-hand side of Eq. (B1) becomes

2k�@�f0ðx; pÞ ¼ ��f0ðx; pÞð1þ f0ðx; pÞÞ�ijðkÞ 1
2
�ijðxÞ;
(B4)

where �ijðkÞ ¼ 2kikj � 2�ijk2=3, and

�ij ¼ @iujðxÞ þ @juiðxÞ � 2

3
�ij@kuk: (B5)

We have considered the local rest frame, u� ¼ ð1; 0Þ. Note
that, at the local rest frame, @iujðxÞ is nonzero, although
uiðxÞ ¼ 0. By linearizing the Boltzmann equation around
the thermal equilibrium fðx; kÞ ¼ f0ðx; kÞ þ �fðx; kÞ, one
finds

C½f� ’ �ð1þ f0ðEkÞÞ�
2

2

Z d3kq

ð2�Þ3
1

2Eq

ð1þ f0ðEqÞÞ

�
Z d3k0

ð2�Þ3
1

2Ek0
f0ðEk0 Þ

Z d3kq0

ð2�Þ3
1

2Eq0
f0ðEq0 Þ

� ð2�Þ4�ð4Þðkþ q� k0 � q0Þ
� ½’ijðkÞ þ ’ijðqÞ � ’ijðk0Þ � ’ijðq0Þ� 1

2
�ij

� 2Ek�f0ðEkÞð1þ f0ðEkÞÞLBoltz’
ij 1

2
�ij; (B6)
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where f0ðEqÞ � f0ðx; kÞ at the local rest frame, LBoltz is

the linearized collision operator, and we choose �fðx; kÞ ¼
�f0ðEkÞð1þ f0ðEkÞÞ’ijðkÞ�ij=2. Then, the linearized

equation reads

�ijðkÞ
2Ek

¼ LBoltz’
ijðkÞ: (B7)

This is the same form as Eq. (76). Let us checkL ¼ LBoltz

at weak coupling. For this purpose, let us estimate the four-

point function, ImT ðAÞ3
3ðk; k0Þ, and Im�two-loop

R ðkÞ. Using
the Feynman rule, Eqs. (28)–(36), we find

ImT ðAÞ3
3ðk; k0Þ

¼ � 1

2
�2ðe�k0 � 1Þfðk00Þ

Z d4q

ð2�Þ4 ð1þ fðq0ÞÞðqÞ

�
Z d4q0

ð2�Þ4 fðq
00Þðq0Þð2�Þð4Þ�ðkþ q� k0 � q0Þ;

(B8)

and

Im�two-loop
R ðkÞ

¼ �ðe�k0 � 1Þ�
2

12

Z d4q

ð2�Þ4 ð1þ fðq0ÞÞðqÞ

�
Z d4q0

ð2�Þ4 fðq
00Þðq0Þ

Z d4k0

ð2�Þ4 fðk
00Þðk0Þ

� ð2�Þ4�ð4Þðkþ q� k0 � q0Þ: (B9)

Comparing Eqs. (B8) and (B9), we find

Im�
two-loop
R ðkÞ ¼ 1

6

Z d4k0

ð2�Þ4 ðk
0Þ ImT ðAÞ3

3ðk; k0Þ:
(B10)

The collision term becomes

L’ijðkÞ ¼ �2
1

2k0
Im�two-loop

R ðkÞ’ijðkÞ þ 1

2k0

Z d4k0

ð2�Þ4 ðk
0Þ ImT ðAÞ3

3ðk; k0Þ’ijðk0Þ

¼ f�1ðk0Þ
2k0

�2

6

Z d4k0

ð2�Þ4 fðk
00Þðk0Þ

Z d4q

ð2�Þ4 ð1þ fðq0ÞÞðqÞ

�
Z d4q0

ð2�Þ4 fðq
00Þðq0Þð2�Þ4�ð4Þðkþ q� k0 � q0Þ½’ijðkÞ � ’ijðk0Þ þ ’ijðqÞ � ’ijðq0Þ�: (B11)

Here, we have used the relation ’ijð�kÞ ¼ �’ijðkÞ, de-
rived from Eq. (75), to obtain the third line. Equation (B11)
includes positive and negative energies, while Eq. (B6)
includes only the positive energy. This collision term con-
tains three processes: 1 ! 3, 2 ! 2, and 3 ! 1 scatterings.
1 ! 3 and 3 ! 1 collisions can be neglected in the leading
order because the on-shell condition of quasiparticle does
not satisfy. Then, the collision term for the positive energy
state, k0 > 0, becomes

L’ijðkÞ ¼ f�1ðk0Þ
2k0

�2

2

Z d4k0

ð2�Þ4 fðk
00Þðk0Þ�ðk00Þ

�
Z d4q

ð2�Þ4 ð1þ fðq0ÞÞðqÞ�ðq0Þ

�
Z d4q0

ð2�Þ4 fðq
00Þðq0Þ�ðq00Þð2�Þ4

� �ð4Þðkþ q� k0 � q0Þ
� ½’ijðkÞ � ’ijðk0Þ þ ’ijðqÞ � ’ijðq0Þ�:

(B12)

By using the quasiparticle approximation,

ðkÞ�ðk0Þ ¼ 1

2Ek

ð2�Þ�ðk0 � EkÞ; (B13)

with Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

T

q
, we obtain the collision operator as

L’ijðkÞ¼f�1ðEkÞ
2Ek

�2

2

Z d3k0

ð2�Þ3
1

2Ek0
fðEk0 Þ

�
Z d3q

ð2�Þ3
1

2Eq

ð1þfðEqÞÞ

�
Z d3q0

ð2�Þ3
1

2Eq0
fðEq0 Þð2�Þ4�ð4Þðkþq�k0 �q0Þ

�½’ijðkÞ�’ijðk0Þþ’ijðqÞ�’ijðq0Þ�: (B14)

Thus, the collision operator in the Boltzmann equation is
equivalent to that in the diagrammatic method in the lead-
ing order, L ¼ LBoltz. In the neutral scalar theory, the
negative energy state is identical to the positive energy
state, so that the collision term for the negative energy state
is the same as that for the positive energy state.

APPENDIX C: SOME PROPERTIES OF THE
COLLISION OPERATOR

The collision operator of the linearized Boltzmann equa-
tion has some basic properties: semipositive definiteness,
self-adjointness, and the conserved charges being the col-
lision invariants. Here, we focus on the self-adjointness and
the conserved charges being the collision invariants,
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although the semipositive definiteness of the collision op-
erator is necessary to ensure the stability of the thermal
equilibrium.

1. Self-adjointness of the collision operator

In order to show the self-adjointness, we write the
linearized collision operator as

L’ðkÞ ¼
Z d4k0

ð2�Þ4 Wðk0ÞLðk; k0Þ’ðk0Þ; (C1)

where

L ðk; k0Þ ¼ �1

k0
Im�RðkÞW�1ðk0Þ�ðk� k0Þ

þ 1

2k0
ImT ðAÞ3

3ðk; k0ÞW�1ðk0Þðk0Þ: (C2)

This is the momentum representation of the linearized
collision operator. The Hermitian conjugate is defined as

h’1;L’2i ¼ hLy’1; ’2i; (C3)

which means that

h’1;L’2i ¼
Z d4k

ð2�Þ4 WðkÞ’�
1ðkÞ

�
�Z d4k0

ð2�Þ4 Wðk0ÞLðk; k0Þ’2ðk0Þ
�

¼
Z d4k0

ð2�Þ4 Wðk0Þ

�
�Z d4k

ð2�Þ4 WðkÞL�ðk; k0Þ’1ðkÞ
��
’2ðk0Þ;

(C4)

hLy’1; ’2i ¼
Z d4k0

ð2�Þ4 Wðk0Þ

�
�Z d4k

ð2�Þ4 WðkÞLyðk0; kÞ’1ðkÞ
��
’2ðk0Þ;

(C5)

or

L yðk0; kÞ ¼ L�ðk; k0Þ: (C6)

Let us check the self-adjointness or Hermiticity, Ly ¼ L.
The first term of the rhs in Eq. (C2) is obviously symmetric

under k $ k0. The four-point function, T ðAÞ3
3ðk; k0Þ, in

Eq. (C2) has a symmetry,

T ðAÞ�3
3ðk; k0Þ ¼ �T ðAÞ3

3ðk0; kÞ
fðk0Þð1þ fðk0ÞÞ
fðkÞð1þ fðkÞÞ ; (C7)

from Eq. (A11). Thus, the second term of the rhs in
Eq. (C2) is symmetric:

ImT ðAÞ3
3ðk; k0Þf�1ðk00Þð1þ fðk00ÞÞ�1

¼ ImT ðAÞ3
3ðk0; kÞf�1ðk0Þð1þ fðk0ÞÞ�1: (C8)

Therefore, the collision operator is Hermitian, Ly ¼ L.
More precisely, the collision operator is symmetric be-
cause Eq. (C2) is a real function.

2. Collision invariant and Ward-Takahashi identity

In this subsection, we derive the Ward-Takahashi (WT)
identity in the R=A basis and show that the WT identity
implies that the conserved charges are zero modes of the
collision operator, Eq. (77). In the imaginary-time formal-
ism, the WT identity is derived in Refs. [17,36,37]. The
WT identity is useful to constrain diagrams in order to keep
symmetries in the resummed perturbation theory [17].
Conversely, to obtain the correct result in a certain order
of perturbation theory, the collision term must satisfy the
WT identity.
The conserved current in �4 theory is an energy-

momentum current, defined by

j�� ¼ T�
� ¼ @��@��� ��

�L: (C9)

In particular, the charge density of the momentum current
is the bilinear operator,

j0i ¼ @i�@0�: (C10)

This bilinear form is important to relate the WT identity
and collision term, as we will see later. In order to derive
the WT identity in a thermal bath, consider the following
correlation function:

hTCj
�
i ðzÞ�ðxÞ�ðyÞi; (C11)

where TC denotes a complex-time-path ordering, shown in
Fig. 1. Taking @z�, we obtain

@z�hTCj
�
i ðzÞ�ðxÞ�ðyÞi

¼ �Cðz0 � x0ÞhTC½j0i ðzÞ; �ðxÞ��ðyÞi
þ �Cðz0 � y0ÞhTC�ðxÞ½j0i ðzÞ; �ðyÞ�i; (C12)

where we used the conservation law @�j
�
i ¼ 0. Noting that

the equal-time commutation relation gives an infinitesimal
translation,

½j0i ðzÞ; �ðxÞ� ¼ �i�ð3Þðz� xÞ@i�ðxÞ; (C13)

we obtain

@z�hTCj
�
i ðzÞ�ðxÞ�ðyÞi ¼ �i�ð4Þ

C ðz� xÞhTC@i�ðxÞ�ðyÞi
� i�ð4Þ

C ðz� yÞhTC�ðxÞ@i�ðyÞi:
(C14)

This is the WT identity in the coordinate space on the
complex-time path. In the real-time formalism, the com-
plex path is decomposed into four parts, as shown in Fig. 1.
In the standard basis, Eq. (C14) becomes
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@z�hTCj
�
i;cðzÞ�aðxÞ�bðyÞi

¼ �iXcd
a�ð4Þðz� xÞhT@zi�dðzÞ�bðyÞi

� iXc
b
d�

ð4Þðz� yÞhT�aðxÞ@zi�dðzÞi; (C15)

where j0i;cðxÞ ¼ Xcde@i�
dðxÞ@0�eðxÞ with Xcde ¼ �cdgde.

Using the propagator and the three-point vertex
��ðz; w;w0Þ, we obtain

@z�
Z

d4w
Z

d4w0��
i;cdeðz; w;w0ÞDdaðw; xÞDebðw0; yÞ

¼ �iXcd
a�ð4Þðz� xÞ@ziDdbðz; yÞ

� iXc
b
d�

ð4Þðz� yÞ@ziDdaðz; xÞ: (C16)

In momentum space, this becomes

ip��
�
i;cdeðp; q; kÞDdaðqÞDebðkÞ

¼ �kiXcd
aDdbðkÞ � qiXc

b
dD

daðqÞ; (C17)

where p, k, and q are not independent but satisfy pþ kþ
q ¼ 0. Multiplying both sides of Eq. (C17) by
D�1

aa0 ðqÞD�1
bb0 ðkÞ, we find

ip��
�
i;ca0b0 ðp; q; kÞ ¼ �kiXcb0

dD�1
da0 ðqÞ � qiXc

d
a0D

�1
db0 ðkÞ:
(C18)

At tree level, this is reduced to

ip��
�
ð0Þi;cabðp; q; kÞ ¼ �kiXcb

dD�1
F;daðqÞ � qiXc

d
aD

�1
F;cbðkÞ;
(C19)

where �
�
ð0Þi;cabðp; q; kÞ is the tree-level vertex,

��
ð0Þi;cabðp;q;kÞ ¼ Xcabð�ðqik� þ kiq

�Þþ��
i ðk �qþm2ÞÞ;

(C20)

and Dab
F ðkÞ is the free propagator. Here, we decompose the

full vertex function into that at tree level and its correction,
���

i;abc:

�
�
i;abcðp; q; kÞ � �

�
ð0Þi;abcðp; q; kÞ þ ��

�
i;abcðp; q; kÞ:

(C21)

Then, the correction to the vertex satisfies

ip���
�
i;cabðp; q; kÞ ¼ �ikiXcb

d�daðqÞ � iqiXc
d
a�dbðkÞ:

(C22)

In the vacuum, Eq. (C22) gives the relation between the
charge and wave function renormalization factors. In ad-
dition to that, at finite temperature, we will show that
conserved charges are the collision invariants of the colli-
sion operator. To see this, we first take the limit p ! 0,

ip0��
0
i;cabðp; q; kÞ ¼ �ikiðXcb

d�daðqÞ � Xc
d
a�dbðkÞÞ

� Fi;cabðk; p0Þ: (C23)

As we mentioned above, j0i is a bilinear operator, so that
the three-point vertex can be written by using the four-
point vertex T abcd as

��0
i;cabðp; q; kÞ ¼

Z d4k0

ð2�Þ4 ð�iÞT abdeðq; k;�k0;�q0Þ

�Dfdðk0ÞDgeðq0Þ�0
ð0Þi;cgfðp; q0; k0Þ;

(C24)

so that Fi;cabðk; p0Þ becomes

Fi;cabðk; p0Þ

¼ �i
Z d4k0

ð2�Þ4 T abdeðq; k;�k0;�q0Þk0iðXc
d
gD

geðq0Þ
� Xcf

eDfdðk0Þ �Dfdðk0ÞDgeðk0ÞFi;cgfðk0; p0ÞÞ:(C25)

Let us define T ðAÞ
abdeðq; k;�k0;�q0Þ by

T abdeðq; k;�k0;�q0Þ
¼ T ðAÞ

abdeðq; k;�k0;�q0Þ

þ
Z d4k00

ð2�Þ4 ð�iÞT abd0e0 ðq; k;�k00;�q00Þ

�Db0d0 ðk00ÞDa0e0 ðq00ÞT ðAÞ
a0b0deðq00; k00;�k0;�q0Þ:

(C26)

This is equivalent to Eq. (57) but in the standard basis.
Comparing Eq. (C26) with Eq. (C25), we find

Fi;cabðk; p0Þ ¼ �i
Z d4k0

ð2�Þ4 k
0
iT

ðAÞ
abdeðq; k;�k0;�q0Þ

� ðXc
d
gD

geðq0Þ � Xcf
eDfdðk0ÞÞ: (C27)

We have derived Eq. (C27) in the standard basis; however,
this is independent of a choice of basis. Now, let us apply it
to the R=A basis. We take the case a ¼ b ¼ A and c ¼ R:

XRA
Rðp; q; kÞ ¼ 1; (C28)

XRA
Aðp; q; kÞ ¼ 1þ fðp0Þ þ fðk0Þ; (C29)

XRR
Rðp; q; kÞ ¼ 1þ fðp0Þ þ fðq0Þ; (C30)

XRR
Aðp; q; kÞ ¼ 0: (C31)

Therefore, Fi;RAA becomes
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Fi;RAAðk; p0Þ ¼ �i
Z d4k0

ð2�Þ4 k
0
i½T ðAÞ

AARRð�p� k; k;�k0; pþ k0Þð�iÞðDRðpþ k0Þ �DAðk0ÞÞ

þT ðAÞ
AARAð�p� k; k;�k0; pþ k0Þfðk0Þð�iÞðDAðpþ k0Þ �DAðk0ÞÞ

�T ðAÞ
AAARð�p� k; k;�k0; pþ k0Þfðk0 þ p0Þð�iÞðDRðpþ k0Þ �DRðk0ÞÞ�; (C32)

where we have omitted 1þ fðp0Þ in the second (third)
term because there is no pole in the lower (upper) complex
k00 plane. Taking the limit p0 ! 0, we find

lim
p0!0

Fi;RAAðk;p0Þ

¼�i
Z d4k0

ð2�Þ4k
0
iT

ðAÞ
AARRð�k;k;�k0;k0Þðk0Þ: (C33)

On the other side, from Eq. (C23),

Fi;RAAðk; p0Þ ¼ �ikiðXRA
Rðp; q; kÞ�RAðqÞ

� XR
R
Aðp; q; kÞ�RAðkÞÞ

¼ �ikið�AðqÞ ��AðkÞÞ: (C34)

Taking p0 ! 0, we find

lim
p0!0

Fi;RAAðk; p0Þ ¼ 2 Im�RðkÞki: (C35)

Inserting Eq. (C35) into Eq. (C33), we find

� 2 Im�RðkÞki þ
Z d4k0

ð2�Þ4 ImT ðAÞ3
3ðk; k0Þðk0Þk0i ¼ 0;

(C36)

where ImT ðAÞ3
3ðk; k0Þ ¼ ImT ðAÞ

AARRð�k; k;�k0; k0Þ is
used. Using the collision operator, Eq. (77), we find

L ki ¼ 0: (C37)

Therefore, the conserved charge ki is the zero mode of the
collision operator.
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