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This paper studies the way in which confinement leads to chiral symmetry breaking (CSB) through a

gap equation. We argue that a combination of entropic effects, related to fluctuations of Wilson loops with

massless constituents, and an Abelian gauge invariance of the confinement action as expressed in terms of

the usual confining effective propagator 8�KF���=k
4, in effect removes infrared singularities coming

from use of this propagator in a standard gap equation (KF is the string tension). Beginning from an

Abelian gauge-invariant description of CSB that differs from this standard gap equation, we show how to

extract a corresponding gap equation that incorporates both entropic effects and Abelian gauge invariance

by replacement of the confining propagator with 8�KF���=ðk2 þm2Þ2. Here the finite mass m turns out

to be� Mð0Þ [Mðp2Þ is the running quark mass], based on an extension of an old calculation of the author.

This massive propagator gives semiquantitatively two critical properties of confinement: (1) a negative

contribution to the confining potential coming from entropy; (2) an infrared cutoff required by Abelian

gauge invariance. Entropic effects lead to a �qq condensate and contribute a negative term �� KF=Mð0Þ,
essential for a massless pion, to the pion Hamiltonian. The resulting gap equation leads toM2ð0Þ � KF=�.

We argue that one-gluon exchange is not strong enough in the IR to drive quark CSB, but in any case is

necessary to get the correct renormalization-group ultraviolet behavior. We find the standard

renormalization-group result with the improvement that the prefactor (related to h �qqi) can be calculated

from the confining solution. Finally, we briefly point out the Minkowski-space virtues of using a principal-

part propagator to describe confinement.
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I. INTRODUCTION

The usual picture of chiral symmetry breaking (CSB) in
QCD is a beautiful and correct one: An isoscalar excitation
receives a vacuum expectation value, and is accompanied
by massless Goldstone pions leading to a running constitu-
ent quark mass Mðp2Þ, with Mð0Þ � 0, and expectation
values such as h �qqi. However, from the viewpoint of QCD
there are still several obscure points, in spite of decades of
work. In this paper we concentrate on the following ques-
tions, for the simplest case of zero temperature and density,
the only case we consider here (for finite temperature and
density, see [1] and references therein):

(1) Is CSB produced by simple one-gluon exchange, as
in the old Johnson-Baker-Willey (JBW) [2] gap
equation and its QCD variants, or is it produced by
confinement?

(2) If, as we argue here, confinement is not only suffi-
cient for CSB (see, e.g., [3,4]) but also necessary,
how does one bypass, in the gap equation, the usual
infrared singularities of confining forces? How does
one enforce an Abelian gauge invariance, stemming
from a standard description of confinement via an
effective vectorial propagator, in the gap equation?

(3) A further confinement issue: If one-gluon exchange
is too weak for CSB and confinement is necessary,
the big terms in the pion Hamiltonian—the kinetic

energy and the confining term—are positive. Where
is the negative term that can yield a massless pion?

(4) How does one connect the infrared-dominated
confinement dynamics to ultraviolet-dominated
renormalization-group (RG) behavior, as correctly
but incompletely described by one-gluon exchange?

Many papers have been written on one or another of
these questions, but the present approach differs from those
known to the author. There are a number of papers [3,5–10]
that make some attempt to model area-law confinement as
it might arise in QCD (as opposed to purely phenomeno-
logical effective propagators, NJL models, and so on); all
of them make one approximation or another, and ours is no
exception. This paper differs from most of the cited papers
by attempting to maintain covariance and avoiding the use
of special gauges, such as Coulomb gauge, within the
context of a Euclidean gap equation with confining forces.
Our answers to the questions we have asked depend on

two major points, one having to do with entropy and the
other with taming infrared (IR) singularities in the confin-
ing potential, as related to a certain Abelian gauge invari-
ance of the effective vectorlike propagator that we use to
describe confinement. [This has nothing to do with the real
gluon propagator, and the gauge invariance has nothing to
do with color-SUð3Þ gauge invariance.] The first point is
that, in the Wilson loops needed for equations describing
CSB, these loops describe small- or zero-mass excitations.
As a consequence the loops have quite substantial space-
time fluctuations, or in other words, large entropy. In these*cornwall@physics.ucla.edu
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Wilson loops large transverse separation of the quark and
antiquark is highly improbable because of the consequent
area-law action penalty; the loops are convoluted and
ramified, looking more like a bush of lines than a well-
defined loop. The entropy is a negative contribution to the
effective action of the loops, which is the basis for the
answer to question 3.

The second point is that the effective action describing
confinement is an (approximate) area-law action, written in
terms of integrals over the closed contours of participating
Wilson loops. Because the loops are closed, there is an
Abelian gauge invariance; because of the Abelian gauge
invariance, we show that there is no IR singularity from
confining forces in amplitudes formed from closed Wilson
loops. The cancelling of would-be IR singularities is an-
other way of saying that large q �q separations are improb-
able. However, a JBW-like gap equation contains only an
open quark line, and is generally both Abelian gauge-
dependent and singular in the IR. We show that one can
nevertheless construct an effectively gauge-invariant gap
equation of JBW form, with a special effective propagator
that both tames IR singularities and incorporates entropic
effects, that reflects the physics of a related closed-loop
amplitude involving both the usual quark and a heavy
quark. The static potential VðrÞ of this confining propaga-
tor is negative for all r, has a negative term at r ¼ 0
reflecting entropic effects, plus a linearly rising term KFr
for r � Mð0Þ�1 that flattens out at larger distances. This
large-distance weakening of the linearly rising potential is
irrelevant, since larger q �q separations are so improbable.

To understand these points we begin with an exposition
of the general structure of the quark gap equation to be
studied in this paper.

A. The gap equation

This gap equation is an approximate and simplified form
of the standard Schwinger-Dyson equation for the Dirac
trace of the inverse quark propagator, as shown pictorially
in Fig. 1. It was first introduced in QED [2] and later
applied many times to CSB in QCD. Although simplified,
it is a suitable arena in which to address all the issues raised
in our list of questions. One important aspect of such a gap
equation, as shown long ago [11], is that a CSB-violating
solution to the gap equation implies a solution to the
homogeneous Bethe-Salpeter equation for a massless
pion; this equation at zero pion momentum is essentially
the same as the gap equation, except for a crucial change of
sign because the pion amplitude has a �5 factor. However,
this relationship between CSB and a massless pion does

not reveal some interesting differences. The pion
Hamiltonian H� needs, as already mentioned, a negative
term to compensate the positive kinetic energy and linearly
rising potential. But the Euclidean quark gap equation
shows no sign of this negative term.
We write the Euclidean inverse propagator for a quark

with zero bare mass as

S�1ðpÞ ¼pAðp2Þ þ Bðp2Þ: (1)

The first approximation, commonly used with gap equa-
tions, is to set Aðp2Þ ¼ 1 and then to rename B as
Mðp2Þ, the running quark mass. If there is no CSB then
Mðp2Þ � 0. CSB corresponds to positive solutions, neces-
sarily vanishing at large p, with Mð0Þ> 0. The generic
JBW equation that we will use, corresponding to Fig. 1, is

Mðp2Þ ¼ 1

ð2�Þ4
Z

d4k��D
eff
��ðp� kÞ��

Mðk2Þ
k2 þM2ðk2Þ ;

(2)

where Deff
��ðp� kÞ can be either a massive-gluon propa-

gator, multiplied by an appropriate running charge, or an
effective propagator for confinement as described in
Sec. IV, or a sum of these (Sec. VI).
As we will soon see this gap equation is both IR singular

and does not have Abelian gauge invariance, for standard
choices of the effective propagator in it. Our goal is to find
a particular Deff

��ðp� kÞ such that gauge-invariant physics

is properly represented in the JBW-like gap equation
above; our technique will be to find an appropriate gap
equation imbedded in a gauge-invariant amplitude that,
precisely because of gauge invariance, has no IR
singularities.

B. An effective propagator approximating an area law

A standard choice for an effective confining propaga-
tor is

Deff
��ðkÞ ¼ 8�KF���

1

k4
; (3)

withKF the string tension. Its space-time Fourier transform
needs IR regulation. We introduce an infinitesimal mass �
to define this Fourier transform:

Deff
��ðxÞ ¼

8�KF���

ð2�Þ4
Z

d4k
eik�x

ðk2 þ �2Þ2

¼ ���

KF lnð�2x2Þ
2�

þ . . . ; (4)

where the omitted terms are irrelevant in the limit � ! 0.
The significance of this particular choice is that the effec-
tive quark action from this propagator is

I ¼ KF

4�

I
dx�

I
dy���� ln½�2ðx� yÞ2�; (5)

FIG. 1. The JBW equation. The line with a cross corresponds
to the Bðp2Þ term in the inverse propagator S�1ðp2Þ ¼ pAðp2Þ þ
Bðp2Þ. See text for details.
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where the integral is over a (sum of) closed quark world
lines. Consider the case of a single quark self-energy, so
that the two contours are the same. If this contour is flat
(i.e., two-dimensional) then the integral

1

4�

I
dx�

I
dy���� ln½�2ðx� yÞ2� (6)

is precisely the area A of the flat surface bounded by the
contour, as one sees by integrating by parts twice and using
h lnx2 ¼ 4��ðxÞ in two dimensions. The action for such a
flat contour, then, is the expected area-law actionKFA. It is
not exactly the area for a nonflat contour, but it has the
properties of confinement needed for our discussion. (See
further discussion in [12].) In any dimension it is indepen-
dent of the cutoff �, because the action has Abelian gauge
invariance, and a change of � is a gauge transformation.

The propagator of Eq. (4) is perfectly valid for use in the
closed-loop equation of Sec. III, in which the IR singular-
ities all cancel. Wewill see applications of this cancellation
in Sec. I C immediately below, and in Sec. III. But our goal
is to construct a JBW-like gap equation with open lines,
which will require another effective propagator.

C. Abelian gauge invariance, its violation,
and infrared singularities

The Abelian gauge invariance associated with the effec-
tive propagator means that in coordinate space any terms
�@=@x�@=@y��ðx� yÞ can be added to the propagator

without changing the action, because the integral over a
closed loop of such a derivative term vanishes. A change of
regulator mass � has �� ðx� yÞ2. Unfortunately, the gap
equation Eq. (2), interpreted naively, does not have this
Abelian gauge invariance; it certainly changes if
ðp� kÞ�ðp� kÞ� terms are added. Not only that, but in a

general covariant gauge it has IR singularities no matter
what the behavior of Mðp2Þ is for small momentum.

There are (at least) two ways to use this Abelian gauge
invariance and to get rid of the IR singularities. One is to
deal only with quantities relevant to closed loops; an
example is the pion wave function and related
Hamiltonian H� (for the sake of brevity we speak in non-
relativistic terms). We begin with the static potential found
from the regulated effective propagator, with the result:

VðrÞ ¼
Z 1

�1
dtDeff

00 ðt; rÞ ¼ �KF

�
þ KFrþOð�rÞ: (7)

This needs regulation because the infinite integral over
time is equivalent to an open quark world line. As we
will review, and extend, in Sec. III it was shown long ago
[3] there is a cancelling divergence in the one-loop quark
self-mass M such that 2Mþ VðrÞ has no divergences and
was claimed to be just the linearly rising potential KFr.
However, it was not noted at the time, as we do note here,
that there is a finite term in the quark self-mass, such that
the sum is actually

2Mþ VðrÞ ¼ KFr� 3KF

�M
: (8)

That this new term is negative is crucial in generating a
zero-mass pion with confining effects. We interpret the
negative sign as a hallmark of entropic effects, as discussed
in Sec. II.
As an aside, the effective quark Hamiltonian Hq that is

more or less equivalent to the gap equation has no negative
term; it looks something like

Hq ¼ 1

r
þ KFr; M ¼ hHqi: (9)

Roughly speaking, the negative entropic term tends to be
cancelled by the quark mass M that should be part of Hq

whose eigenvalue is M. We minimize on r to find that the
two terms in Hq are equal, so thatM� KF‘ where ‘ is the

minimizing value of r. Later we will interpret ‘ as the scale
length for entropic fluctuations.
The second way to reinstate Abelian gauge invariance is

close in spirit to the pinch technique (PT) [13,14], which is
used to extract gauge-invariant off-shell Green’s functions
(such as a quark propagator) from some gauge-invariant
quantity such as the S matrix. Similarly, with the aid of a
fictitious heavy quark called �, with mass M2

� � KF, it is

possible to construct a singularity-free Abelian gauge-
invariant dynamics for quark CSB, as detailed in Sec. III
from the (integrand of) two-loop graphs with one confining
propagator [Eq. (3)] for the Green’s function G�q ¼R
d4x exp½iv � x�hjT½ ��qðxÞ �q�ð0Þ�ji. This Green’s function

is gauge invariant, which as we will see, using techniques
given in [3,15], means that there are no IR singularities.
Even though the sum of these closed-loop graphs is
IR-finite, the goal is to find a JBW-like gap equation that
is also IR-finite. This will require using an effective propa-
gator in the JBW-like gap equation that is cut off with a
physical mass m that is not to be sent to zero:

Deff
��ðkÞ ! 8�KF���=ðk2 þm2Þ2; (10)

withm�M. Using a cutoff propagator in the gap equation
gives very nearly the same physics that would come from
using the standard confining propagator in the closed-loop
Green’s function G�q.

There are actually two distinct physical effects embod-
ied in the finite mass m. The first is to mimic the cutoff
coming from gauge invariance in a closed-loop equation.
The second is that there is a negative term in the static
potential at r ¼ 0 that we identify in Sec. II with entropic
effects.
The bottom line is that using the massive effective

propagator of Eq. (10) in the standard gap equation of
Eq. (2) both represents entropic effects and the cutoff
inherited from a closed-loop gap equation. This gap equa-
tion is solved both semianalytically and numerically in
Sec. V, which yields a running quark mass Mðp2Þ with
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M2ð0Þ � KF=� and vanishing in the UVas 1=p4. This UV
behavior is wrong; it is corrected in Sec. VI by adding one-
gluon exchange (see, e.g., [16]) to the confining gap equa-
tion. In the UVone finds not only the correct RG behavior
Mðp2Þ � ðlnp2Þa=p2 (here a is a constant given in [16]) but
also a specific numerical coefficient determined by confin-
ing effects. (The RG by itself cannot determine this con-
stant.) The constant is, as shown in [17], equivalent to
knowledge of the condensate h �qqi, but we will not pursue
here an accurate determination of this condensate value.

Of course, in the UV the gluon propagator is massless.
But for dealing with the IR effects of gluons we now know
[13,14,18] that the QCD gluon has a dynamical mass that
tames all IR singularities both in the gap equation and in
the QCD running charge. In the IR massive one-gluon
exchange gives a small (� 10%) increase in Mð0Þ. That
Mð0Þ increases is consistent with the old idea that gluon
exchange, if strong enough, could give rise to CSB by
itself; that the increase is not so large suggests that perhaps
it is not strong enough. We argue in Sec. IV that one-gluon
exchange, interpreted in light of present-day knowledge of
the massive-gluon propagator and running charge in the IR,
is not strong enough by itself to give CSB for quarks, but
almost certainly is strong enough to give it for adjoint
fermions, coupled more strongly in QCD by a factor 9=4
than quarks are; the argument, based on [19], is given in
Sec. IV. Lattice simulations confirm [20] that adjoint fer-
mions undergo CSB without confinement, and thus pre-
sumably the mechanism is gluon exchange. Other authors
claim that one-gluon exchange can drive CSB for quarks
(see, for example, a very recent study of the full
Schwinger-Dyson equation for the Landau-gauge quark
propagator [21]), but just barely. It is likely that the ques-
tion of whether or not one-gluon exchange can drive CSB
will be resolved by careful studies of how CSB behaves
near the deconfinement transition temperature, which is
known from lattice studies to be close to the CSB-
restoration temperature [22]. [See, however, a recent pre-
print [23] claiming that in SUð3Þ removal of confining
center vortices does not restore chiral symmetry, as it is
known to do for SUð2Þ [4].]

D. A Minkowski-space formulation

Throughout this paper we use a Euclidean formulation
of CSB. It is, of course, of interest to know how to under-
stand CSB in Minkowski space. This is not completely
obvious, since one runs into issues such as continuing �ðx2Þ
from Minkoski space to Euclidean space. We will not
explore this in any detail here, but simply point out that
it is inappropriate to use a Feynman propagator in the area-
law action I of Eq. (5). This action must be real or it is hard
to see how to interpret it as referring to a geometrical area.
We suggest using instead the principal-part propagator,
used long ago by Wheeler and Feynman in a version of
QED. Not only is this real, but it is finite at x� ¼ 0, unlike

the Feynman propagator that has a logarithmic singularity.
This feature cures certain singularities in the gap equation
in somewhat the same way that our Euclidean cutoff m
does. A more complete discussion of the principal-part
propagator approach will be given separately.

II. ENTROPY

We argue that entropic effects (embodied in large space-
time fluctuations in worldlines of pions that are composites
of massless quarks) may well be a major source of negative
terms necessary for a massless pion with area-law confine-
ment (see [3] for an early description of entropic contribu-
tions). These entropic effects come from the masslessness
of the quarks and of the (Goldstone) pion, with the con-
sequence that a pionic q �q Wilson loop with a large longi-
tudinal separation between initial and final points is highly
ramified or branched. Anywhere along the perimeter, the
large transverse separation of q from �q is exponentially
disfavored because of the consequent large area-law action
penalty; separation of more than about Mð0Þ�1 practically
never occurs. A linearly rising potential is irrelevant for
larger separations. Because the long, twisting, and narrow
branches are made of massless constituents having a mass-
less bound state, their action per unit length is too small to
overcome entropy. These branches signal the formation of
a h �qqi condensate. (Formation of the condensate as
branches of a q �q Wilson loop may have something to do
with the light-cone interpretation [24] of condensates as
objects localized with respect to hadrons; we take
no position on this possibility.) On general grounds
we show that the entropic effects should contribute a
term �� KF=Mð0Þ to the pion mass, and that if only
kinetic energy and linearly rising potential terms are
kept, masslessness of the pion is assured if Mð0Þ has a

specific value�K1=2
F . That this entropic term is negative is

crucial, since other negative terms, such as one-gluon
exchange or hyperfine structure, may not be large enough
to give the pion a zero mass (or in other words, to yield
CSB). (We have nothing new to say about the rho meson,
whose mass we attribute in the standard way to chromo-
magnetic hyperfine splitting.)
It is rather easy to understand the basic properties of

area-law dynamics for heavy quarks �, where heavy means
that the quark mass M� obeys M2

� � KF. (We assume

these quarks are quenched and that there are no other
matter fields.) Such quarks move in essentially classical
paths, nearly straight lines, even for times T that can be
large compared to the QCD time scale, so that the spatial
separation R of a � �� pair can be specified in advance with
small changes coming from the quark dynamics. An area
law simply means that the expectation value of the R	 T
Wilson loop describing this configuration is about
exp½�KFRT�. There is no question of a condensate of
these quarks, since their paths (in Minkowski space) have
essentially no backward moving segments, necessary for a
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h ���i condensate. Moreover, the entropy of the flux sheets
confining these quarks is not large compared to the action
(or else the ’t Hooft criterion would be violated, yielding
both confinement and dual confinement).

For light quarks q, with (current) mass obeying
M2

q 
 KF, things can be very different. (Again assume

the quenched case, with no other matter fields; string
breaking is impossible.) Supposewe fix the time T between
the initial and final q �q configurations, each for simplicity
taken to be at the spatial origin. What kind of paths
occur in the path integral for a quantity such as

hT½ �q�5qð0Þ �q�5qðT; ~0Þ�i, and what kinds of areas do these
paths have?

The answer is that the paths are highly ramified
(branched), as shown in Fig. 2. (For clarity we do not
show the fine-scale movement of the quarks about each
other, which is sketched in Fig. 3.) We can no longer
specify the average spatial separation, now called ‘, of
these light quarks, which must be calculated. Recall from
the discussion around Eq. (9) that ‘�M=KF (see also [12]
for further discussion and references). An average Wilson
loop resembles a highly branched polymer, with most of
the branches representing pions with mass proportional to
Mq. Note that going backwards in time is not at all hin-

dered, so that there is no bar to forming a nonzero value of
h �qqi. A typical configuration will have an overall length

L� T2=‘, but any particular branch will have a separation
between the q line and the �q line of Oð‘Þ. Here the
correlation length ‘ is related to the CSB-generated con-
stituent quark mass M by KF‘ ’ M (see, for example, an
elementary discussion in [12]). So the area of the Wilson-
loop is OðL‘Þ. In terms of the overall length L, this looks
like a perimeter law, although the actual area can be large
because of ramification.
The upshot of this discussion is that when KF � M2

q,

pionicWilson-loop configurations that look sheet-like (that
is, for some q �q separation R that is large compared to

K�1=2
F ) are highly suppressed. This is because the available

configurational entropy of the flux sheets cannot overcome
the action penalty in the exponentially small area-law
contribution to the Wilson-loop vacuum expectation value.
But because the action penalty for forming pions from light
quarks is small, entropy can dominate. Roughly speaking,
the entropic term to be added to the area-law term gives a
result of the form:

hWi � exp

�
�KFT

2 þ T2

‘2
lnð2d� 1Þ

�
(11)

in space-time dimension d. Since the overall length L
scales as T2=‘ this can also be written:

(0,0)

(R,T)

FIG. 2. A schematic of a Wilson loop for a pion characteristic
of light-quark dynamics; the thick line symbolizes the original
q �q loop, and the thin lines symbolize pions. Because the loops
are narrow we do not show their individual q and �q lines. A �5 is
understood at each end point and every three-vertex.

t

x

FIG. 3. A schematic closeup of the q �q Wilson loop in
Minkowski space, showing the propagation of massless particles
along their light cones under the influence of a confining force
(after [3]). Very massive quarks would only propagate in the
forward timelike direction, but light quarks can have spacelike
legs, signifying the formation of a condensate. The length scale
in this figure is the entropy scale length ‘.
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hWi � exp

�
�KFL‘þ L

‘
lnð2d� 1Þ

�
: (12)

(We use a standard approximation for the entropy, as
counting the ways links of length ‘ can extend themselves
on a hypercubic lattice with no backtracking. There are
other terms in the action coming from quark-pion vertex
effects, and other terms in the entropy coming from count-
ing the ways the Wilson loop is ramified; we do not discuss
them here.) With ‘�M=KF the entropic term contributes
a term �� KF=M to the action density, or energy. The
Wilson loop will ramify until the two terms are approach-
ing equality, at which point other physical effects take over.

Even though rho mesons (for example) are made of
virtually massless quarks, they are heavy in part because
of QCD hyperfine interactions to the point that their fluc-
tuation entropy cannot overcome their action. A standard
estimate of hyperfine splitting is

M	 �M� � 32�
sð0Þ
9M2

jc ð0Þj2; (13)

which is about 700 MeV for parameters that we use in this
paper.

III. ABELIAN GAUGE INVARIANCE, INFRARED
CUTOFFS, AND ENTROPY

A. Extracting a JBW gap equation from a
gauge-invariant Green’s function

Here is a sketch of how to extract, from a closed-loop
gauge-invariant amplitude, a JBW gap equation that is
nonsingular and that has all the physical effects (entropy,
IR cutoff) represented with reasonable quantitative accu-
racy. This extraction is in somewhat the spirit of the pinch
technique [13,14], in which (color-) gauge-invariant
Green’s functions are extracted from some gauge-invariant
object such as the S matrix. The PT is used to enforce
gauge invariance in off-shell Green’s functions for non-
Abelian gauge theories. After many a long calculation the
pinch technique turns out to be entirely equivalent to
calculating the off-shell Green’s functions in the back-
ground field Feynman gauge. We use the fictitious
heavy quark � specifying that it is a chiral singlet,
coupled to ordinary quarks by an interaction such as
�½ ��ðSþ i�5PÞqþ H:c:�, where the fictitious color-singlet
scalar S and pseudoscalar P transform inversely to q under
chiral transformations [ðSþ i�5PÞ ! expð�i
�5Þ	
ðSþ i�5PÞ]. With the help of these fictitious particles we
construct Green’s functions involving only closed fermion
loops, hence showing Abelian gauge invariance.

Consider a gauge-invariant heavy-light Green’s function
such as the S proper self-energy (irrelevant factors omit-
ted):

G�qðvÞ ¼ h0j
Z

d4xeiv�xTð ��qð0Þ �q�ðxÞÞj0i: (14)

The quark gap equation will be extracted from equating
integrands in the expression for G�q having no confining

propagator to that with one confining propagator. Of
course, to equate integrands of equal integrals is far from
unique, but we find a gap equation whose satisfaction
assures the satisfaction of CSB as described with Abelian
gauge invariance. The one-loop graph G�q;1 (with no con-

fining propagator) has the form:

G�q;1 ¼
Z

d4pTrSqðpÞS�ðvþ pÞ; (15)

where S�;q is, respectively, the �, q propagator. The gauge-

invariant description of CSB is simply to equate the inte-
grand of G�q;1 at one loop to the integrand of the same

Green’s function G�q;2 at two loops, as shown in Fig. 4, at

the same time going to the limit of large M�. As appro-

priate for an effective propagator, we keep only graphs
with a single confining propagator line. Because of Abelian
gauge invariance this can be the usual massless confining
propagator of Eq. (3). In both expressions for G�q we wish

to isolate the term linear inMðp2Þ, the quark running mass,
in the quark propagator SqðpÞ in the integrand of the p

integration, in the limit of heavy � massM�. We write this

amplitude as (up to an irrelevant factor)

G�q;2ðvÞ¼
Z
d4p

Z
d4k

T��ðp;k;vÞ8�KF½���þ�k�k��
k4

;

(16)

where T��ðp; k; vÞ is the sum of graphs in Fig. 4 with the

gluon lines (one of momentum k and the other of momen-
tum�k) opened. The terms�k�k� come from a choice of

gauge. One can show either by direct calculation of graphs
or by using the techniques of [15] that T�� is conserved and

so the gauge terms must all cancel: k�T�� ¼ 0. (It is

helpful but not essential to set v ¼ 0 in the graphical
demonstration.) A mass gap, which is implied for the light
quark because we seek CSB, plus conservation imply that
T�� must vanish at least quadratically at k ¼ 0, and so

there is no IR singularity in the sum of graphs. After Dirac-
matrix traces, a possible form for T�� is

p

k

p+v

FIG. 4. Two-loop graphs whose sum has Abelian gauge invari-
ance for the confining propagator. The thick line is the � field;
the thin line is a quark of momentum p; the curly line is the area-
law propagator of momentum k.
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T��ðp; k; qÞ ¼ ½k2��� � k�k��T1

þ ½k2p�p� � k � pðk�p� þ k�p�Þ
þ ���ðp � kÞ2�T2 þ . . . : (17)

The omitted terms may have v
 factors in the numerator,
but these are irrelevant. A good way to ignore them is to
evaluate G�q;2ðvÞ at zero momentum.

Given the decomposition of Eq. (17) it is straightforward
but lengthy to isolate the terms not dependent on the � field
in the scalars Ti in the heavy M� limit. (We do not go into

the details of the calculation, which is roughly equivalent
to evaluating the two-loop photon propagator in QED.) The
result of dropping �-related terms is a gap equation that is
rather similar to the original one of Eq. (2), except that
there is a factor quadratic in k, as in the decomposition of
Eq. (17), not present in the original JBW gap equation that
would come from combining Eqs. (2) and (3). There
should be a compensating quadratic term in k in a denomi-
nator, so that the UV behavior in k is unchanged. The
simplest form for such a factor, after taking angular
averages, is to multiply the confining propagator by
k2=ðk2 þm2

0Þ, where m0 �Mð0Þ. The result is a new

propagator, called Deff;1
�� ðkÞ, that gives a nonsingular gap

equation:

Deff;1
�� ðkÞ ! 8�KF���

1

k2ðk2 þm2
0Þ
: (18)

Purely to simplify certain technical details, explained
below, we choose instead the massive propagator of
Eq. (10) in the new gap equation. The technical reason
for preferring this propagator is that we can construct
certain features of the gap equation using this propagator
from that of a massive-gluon propagator (which we invoke
in Sec. IV below) by differentiation with respect to m.
For convenience we repeat the confining propagator of
Eq. (10):

Deff
��ðkÞ ¼ 8�KF���=ðk2 þm2Þ2: (19)

By setting m0 ¼ 2m one finds that the static potentials
associated with Eqs. (18) and (19) are very nearly equal
for relatively small mr, with the first two terms in a power
series expansion being exactly equal. The static potential
for the propagator in Eq. (18) is

Vð1ÞðrÞ ¼ �KF

2m2r
ð1� e�2mrÞ � �KF

m
þ KFrþ . . . ; (20)

and for the propagator of Eq. (19) it is

VðrÞ ¼ �KF

m
e�mr � �KF

m
þ KFrþ . . . : (21)

At any distance, including mr � 1, the two potentials
differ by less than 10% of KF=m. Note that without regard
to any of the detailed considerations of this section one
could invoke propagators and potentials of this general

class simply on the grounds that they yield the entropic
effects of Sec. II, as exemplified in the negative terms,
while respecting the arguments there that the q �q separation
is limited. Of course the second term is the standard
linearly rising potential. The r dependence at distances
� 1=m should not matter much because separation of the
q and the �q beyond this distance is improbable.

B. An estimate of the entropic term

We will estimate m from the negative term found in a
simple one-loop calculation of the quark self-mass with the
regulated effective propagator first introduced as describ-
ing confinement, in Eq. (4). The result was already stated in
Eq. (8). Evaluate this one-loop self-mass from the integral:

Mðp ¼ iMÞ
¼ 8�KF

ð2�Þ4
Z

d4k
½4M� 2iðp� k�

ðk2 þ�2Þ2½ðp� kÞ2 þM2�
��������p¼iM

! KF

2�
� 3KF

2�M
þOð�Þ: (22)

In the sum 2Mþ VðrÞ we equate the negative term to the
negative term at r ¼ 0 in the static potential of Eq. (21) and
find

m ¼ �M

3
� M: (23)

In effect, although the �KF=m term in VðrÞ cancels, it
reappears in finite form as �3KF=ð�MÞ. At first it may
seem odd that the mass operator gives a negative term to
the sum 2Mþ VðrÞ, but something must do so, or it will be
impossible to find a zero-mass pion (in the present crude
approximation). It might also seem odd that entropic ef-
fects are found in Feynman graphs, but this is a standard
feature of the description of polymer condensates in con-
densed matter physics (see [25] and earlier references
therein), in which the configurational entropy of the poly-
mers becomes a negative ðmassÞ2 term in a conventional
scalar field theory.

C. How can the pion be massless with confinement?

We can now propose an answer to one of the questions
raised in the introduction: How can a pion be massless with
confining forces? [For purposes of the following heuristic
discussion, we assume that one-gluon effects are too weak
to produce CSB by themselves, and omit writing them.]
Look at the relativistic pseudo-Hamiltonian

H� ¼ pþ 2Mþ VðrÞ ! pþ KFr� 3KF

�M
: (24)

Substitute p ! 1=r and minimize on r to find a variational
approximation

hH�i ¼ 2K1=2
F � 3KF

�M
: (25)
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There is a zero-mass bound state when M ¼ 3K1=2
F =ð2�Þ,

or about 220 MeV. Of course the estimate coming from
Eq. (25) is only qualitative, and in the real world there are
other negative terms to be included, including gluon ex-
change and hyperfine structure, but these are not the domi-
nant negative contributions. (If they were, the one-gluon
JBW equation would have yielded CSB, but it is perhaps
plausible that it does not.)

The approximation m � M is not necessarily highly
accurate, so in the Euclidean confining gap equation using
the massive effective propagator of Eq. (36) we set
m ¼ 
M for a range of 
 � 1. But first, both to set the
stage for a Euclidean phenomenology of confinement CSB
and to illustrate the argument that one-gluon exchange may
not be enough for quark CSB, we briefly review the argu-
ments of [19] concerning one-gluon exchange.

IV. GLUON EXCHANGE IN THE JBW EQUATION

In addition to these studies of confinement we briefly
explore the usual Euclidean JBW equation for one-gluon
exchange, but with a massive-gluon [19]. One reason to do
this is to set the stage for techniques used in the confining
JBW equation. Another is that within the general frame-
work of the gap equation we use for confinement, but with
a one-gluon propagator and running charge rather than the
effective confining propagator, it appears that one-dressed-
gluon exchange does not yield CSB for quarks [19], but
would do so for adjoint fermions (coupled more strongly
by a factor of 9=4 in QCD), as shown in lattice simulations
[20]. This one-gluon result is based on the nonperturbative
generation of a dynamical gluon mass [13,14] mg of about

2�where� � 300 MeV is the QCDmass scale. The main
effect of the dynamical mass is to reduce the zero-
momentum strong coupling 
sð0Þ to about 0.4–0.5 (with
no quarks). The conclusion that one-gluon CSB does not
give CSB is far from unassailable, because of approxima-
tions in the gap equation itself and possible inaccuracies in
the claimed dynamical mass and running charge. Indeed, a
preprint that came out as this paper was being written up
[21], based on an extensive and complicated study of the
gap equation in the Landau gauge and using Landau-gauge
form factors from lattice simulations as input, claims that
inclusion of rather subtle ghost effects does lead to gluonic
CSB without confinement. As these authors acknowledge,
the CSB mechanism they find is not very strong, and they
also confirm that CSB is absent within the approximations
of Ref. [19], which has no explicit quark-gluon vertex
corrections or ghost contributions.

In our opinion the fate of gluonic CSB remains to be
determined. There are lattice simulations [4] claiming that
in SUð2Þ lattice-gauge theory, confinement by center vor-
tices is both necessary and sufficient for CSB, suggesting
that standard gluonic effects are not the CSB driving
mechanism. There are also simulations (for example,
[22]) showing that the CSB phase transition temperature

is quite close (not necessarily identical) to the deconfine-
ment phase transition temperature. Another recent preprint
[23] muddies the waters further, claiming that in SUð3Þ
lattice-gauge simulations removal of center vortices re-
moves confinement but not CSB, contradicting the SUð2Þ
simulation results of [4]. We do not know how this puzzle
will be resolved.
Long ago the author argued that the infrared singular-

ities of QCD, coming from asysmptotic freedom, had to be
cured by the generation of a dynamical gluon mass [13].
A one-dressed-loop PT approximation showed that
‘‘wrong-sign’’ asymptotic freedom problems were cured
by the generation of a dynamical gluon mass of about
600–700 MeV or so. In recent years such a dynamical
mass has been abundantly confirmed by lattice simulations
and more sophisticated PT treatments; see [14]. As for the
running charge, [13] gives the following approximation for
Euclidean (spacelike) momenta:

�g2ðk2Þ ¼ 1

b ln½ðk2 þ 4m2
gÞ=�2� ;


sð0Þ ¼ 1

4�b lnð4m2
g=�

2Þ ;
(26)

where mg is the dynamical gluon mass, � the QCD mass

scale, and, for gauge group SUðNÞ with Nf flavors, b is the

one-loop coefficient in the beta-function:

b ¼ 11N � 2Nf

48�2
: (27)

(We use this running charge only for spacelike momenta,
so the singularity for timelike momentum is irrelevant.
There is a more complicated modified form [26] that is
free of singularities in the timelike regime, and it agrees
rather well with the above form for spacelike momenta.) In
this paper we use, consistent with lattice determinations,
phenomenology, and more sophisticated treatments of
the PT Schwinger-Dyson equations [14], mg ¼ 2� �
600 MeV.
Let us accept these PT results, although the final word

has yet to be said on their quantitative accuracy, and ask
what they have to say about one-gluon CSB. The linearized
massive-gluon JBW equation is, in Landau gauge,

Mðp2Þ ¼ C2

ð2�Þ4
Z

d4k
3 �g2MðkÞ

½ðp� kÞ2 þm2
g�k2

; (28)

where C2 is the quark Casimir eigenvalue [4=3 in SUð3Þ]
and mg the gluon mass. It turns out that accounting for a

gluon mass does two things: (1) It makes the gap equation
finite at zero-momentum; (2) and more important, it
bounds the IR running coupling. If the mass is too small,
the running charge gets unacceptably large, as judged by
phenomenology and solutions to the PT Schwinger-Dyson
equations.
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In the IR we can replace the running charge �g2 by its zero-momentum value, which we call simply g2, and then
integrate over angles, with the result:

Z
d�k

1

ðp� kÞ2 þm2
g

� Kðk;pÞ ¼ 4�2

p2 þ k2 þm2
g þ ½ðp2 þ k2 þm2

gÞ2 � 4p2k2�1=2 : (29)

However, this kernel does not yield a simple differential
equation. Earlier, it was proposed [19,26] to approximate
the angular integral by

Kðk;pÞ � 2�2

�
�ðp2 � k2Þ
p2 þm2

g

þ �ðk2 � p2Þ
k2 þm2

g

�
� ~Kðk; pÞ:

(30)

Numerically the approximate kernel ~K is, on the average,
about 20–30% larger than the true kernel for IR momenta
(� mg), but it approaches the true kernel in the UV. We
ignore this IR discrepancy, because it is in the direction to
reinforce our conclusion that one-gluon exchange is too
weak for CSB, and because the primary use of the one-
gluon JBW equation will be for large momenta. Using the
approximate kernel ~K and the appropriate arguments for
the running charge yields an integral equation:

Mðp2Þ¼3C2g
2

16�2

Z
dk2

k2Mðk2Þ
k2þM2ðk2Þ

�
�ðp2�k2Þ
p2þm2

g

þðk$pÞ
�
:

(31)

There is a corresponding differential equation:

M00ðp2Þ þ 2M0ðp2Þ
p2 þm2

g

þ �Mðp2Þ
ðp2 þm2

gÞ2
¼ 0; � ¼ 3C2g

2

16�2
:

(32)

This is nothing but the original JBW equation, with the
variable p2 þm2

g in place of p
2. It has power-law solutions

Mðp2Þ¼ constðp2þm2
gÞ�� ; ��¼ 1

2f�1�½1�4��1=2�:
(33)

If the zero-momentum coupling is too small, there is no
CSB. The standard analysis is that the critical coupling is
the point at which the square root in Eq. (33) turns imagi-
nary, and that there is CSB for couplings larger than this
critical value. Then one-gluon CSB, in this approximation,
requires


sð0Þ � g2

4�
� �

3C2

: (34)

With C2 ¼ 4=3 this yields 
sð0Þ � 0:8, approximately,
somewhat greater than the value 0.5 given by Eq. (26).
Taking account of the difference between the true massive
kernel and the approximate kernel would change the critical
value of 
sð0Þ to about one. It seems likely, then, that one-
gluon exchange is not strong enough to drive CSB.

There are two results of this subsection: First, the sug-
gestion that ordinary one-gluon exchange is too small to
drive CSB for quarks (but likely large enough for adjoing
fermions, where the critical coupling is only 4=9 as large,
because of the Casimir eigenvalue [19]). Second, one can
derive our confining gap equation by differentiating with
respect to m2

g, and replacing the coupling g2 by �8�KF.

V. THE CONFINING GAP EQUATION

For convenience we repeat the gap equation of Eq. (2):

Mðp2Þ ¼ 1

ð2�Þ4
Z

d4k��D
eff
����ðp� kÞ Mðk2Þ

k2 þM2ðk2Þ ;
(35)

and the massive effective confining propagator (having
nothing to do with the true QCD gluon propagator):

DeffðkÞ�� � ���DeffðkÞ; DeffðkÞ ¼ 8�KF

ðk2 þm2Þ2 ;
(36)

with a finite value of m.
Clearly, we can find the S-wave projection of the gap

equation by differentiating the massive kernel of Eq. (29)
with respect to the gluon mass. But (as with the one-gluon
equation) the resulting gap equation can only be studied
numerically. As we did with the massive one-gluon ex-
change in Sec. IV immediately above, we will instead
differentiate the approximate massive one-gluon S-wave
kernel ~K of Eq. (30) with respect to m2

g, replace the gluon

massmg bym, and make some other obvious changes. The

accuracy of this procedure relative to the direct use of
Eq. (29) is perhaps 20–30%. This yields a Euclidean gap
equation:

Mðp2Þ ¼ 2KF

�ðp2 þm2Þ2
Z p2

0
dk2

k2Mðk2Þ
k2 þM2ðk2Þ

þ 2KF

�

Z 1

p2
dk2

k2Mðk2Þ
ðk2 þm2Þ2ðk2 þM2ðk2ÞÞ

¼ J>ðp2Þ þ J<ðp2Þ; (37)

where J>ðp2Þ is the integral from 0 to p2. The correspond-
ing differential equation is

Mðp2Þ00 þ3Mðp2Þ0
p2þm2

þ4KF

�

�
p2Mðp2Þ

ðp2þm2Þ3½p2þM2ðp2Þ�
�
¼0:

(38)
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This is really a family of differential equations, as we see
by writing them in nondimensional form. We write

Mðp2Þ ¼ Mfðu � p2=M2Þ;
M � Mðp2 ¼ 0Þ;
m � 
M;

(39)

to find

f00ðuÞ þ 3f0ðuÞ
uþ 
2

þ 4KF

�M2

�
ufðuÞ

ðuþ 
2Þ3½uþ f2ðuÞ�
�
¼ 0:

(40)

The boundary conditions are fð0Þ ¼ 1, f0ð0Þ ¼ 0. From
Eq. (23) we expect 
 � 1. Suppose for the sake of argu-
ment that 
 is fixed even if M changes; this is reasonable,
given that m is not an externally imposed quantity but one
which actually should scale with M. Then note that the
dimensionless coupling parameterKF=M

2 appearing in the
differential equation is not known if only the differential
equation is available. It has to be determined from the
integral equation at zero momentum:

M2 ¼ 2KF

�

Z 1

0
du

ufðuÞ
ðuþ 
2Þ2½uþ f2ðuÞ� �

2KF

�
Ið
Þ:

(41)

Either the integral or the differential equation yields a
large-momentum falloff Mðp2Þ � 1=p4. That the UV fall-
off is faster than what is expected from the OPE and the
renormalization group is not a problem; the required be-
havior Mðp2Þ � ðlnp2Þa=p2 [16] follows from one-gluon
exchange, which we take up in the next section. While
there is no need for an area law to give the actual UV
behavior, it is necessary that the area-law UV behavior be
no slower than prescribed by the OPE and the renormal-
ization group. The correct RG behavior will be reinstated
by adding the one-gluon terms of Eq. (28).

For small momentum one finds

fðuÞ ¼
�
1� 2KF

3�M2

�
u3


6

�
þ . . .

�
(42)

showing that the running mass changes but little near zero
momentum.

It remains to determineM, a quantity that comes entirely
from J<. Given the family of solutions to the differential
equation, we can now estimate the mass by imposing the
integral condition of Eq. (41). It turns out numerically that
M does not change very rapidly with m in the vicinity of
m ¼ M. Calculations for the range 0:8<
< 1 yield mass
values in the range M2 ¼ ð0:6� 1ÞKF=�, with smaller 

corresponding to largerM. [The limit 
 or m ¼ 0 givesM
diverging like lnð1=mÞ]. We show the case 
 ¼ 0:9, for

which M � 0:9
ffiffiffiffiffiffiffiffiffiffiffiffiffi
KF=�

p � 230 MeV, in Fig. 5. Note that
p2=M2 � 15 corresponds to p2 � 1 GeV2.

As we have seen, at fixed 
 the only dimensionless
strength parameter in this zero-temperature, zero-density
problem is KF=M

2. Unlike the dimensionless coupling
constant of one-gluon exchange, this parameter cannot be
tuned, since M ultimately is determined by an integral
equation. So there can be no phase transition between
CSB and not-CSB at some finite value of this parameter.
If one tries to find a phase with no CSB, so that M some-
how approaches zero, the dimensionless strength parame-
ter becomes infinitely strong, and there surely must be
CSB.

VI. A GAP EQUATION WITH BOTH AREA LAW
AND ONE-GLUON TERMS

One-gluon exchange determines the UV asymptotic be-
havior through the running charge, so we reinstate �g2

instead of the zero-momentum value g2 in the one-gluon
equation. Then the area-law plus one-gluon integral equa-
tion is

Mðp2Þ ¼
Z p2

0
dk2

k2Mðk2Þ
k2 þM2ðk2Þ

�
2KF

�ðp2 þM2Þ2

þ 3C2 �gðp2Þ2
16�2ðp2 þm2

gÞ
�
þ

Z 1

p2
dk2

k2Mðk2Þ
ðk2 þM2ðk2ÞÞ

	
�

2KF

�ðk2 þM2Þ2 þ
3C2 �gðk2Þ2

16�2ðk2 þm2
gÞ
�

� J>ðp2Þ þ J<ðp2Þ þ K>ðp2Þ þ K<ðp2Þ; (43)

where J>, J< are defined as before [see Eq. (37)] and K>,
K< refer, respectively, to the integrals from 0 to p2 and
from p2 to infinity of the one-gluon kernel. Note that for
QCD the one-gluon term begins to dominate the confining
term at a momentum p2 of order 2KF=
sð0Þ.
One-gluon corrections to confinement are of two types.

The first correction is in the IR; at zero momentum it comes
entirely from K<. Let us now call the mass coming solely

0 5 10 15 20
u

0.2

0.4

0.6

0.8

1.0

1.2

1.4
f u

FIG. 5 (color online). Numerical calculation of the running
quark mass fðuÞ vs. u, for M2 ¼ 0:8Kf=� and 
 ¼ 0:9.
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from confining effects Mc. The correction to Mc is
approximately

M ¼ Mc

1

½1� aI1� ;

I1 ¼
Z 1

0
du

ufðuÞ
ðuþ �Þðuþ f2ðuÞÞ ln½�ðuþ 4�Þ� ;

(44)

where � ¼ M2=�2, � ¼ m2
g=M

2, and a is the Lane con-

stant

a ¼ 3C2

16�2b
¼ 9C2

11N � 2Nf

: (45)

As expected, one-gluon corrections increaseM, since one-
gluon effects work in the direction of producing CSB. For
the case shown in Fig. 5, plus � � 0:7, �� ¼ 4, we find
I1 � 0:22, and with ([for no quarks, SUð3Þ] a ¼ 4=11 the
mass is increased by a factor of 1.1, approximately, or to

about
ffiffiffiffiffiffiffiffiffiffiffiffiffi
KF=�

p � 250 MeV.
The second, and more important to us, is the UV cor-

rection, where the one-gluon term dominates. There is one
useful simplification: The term K< [last term on the right
of Eq. (43)] is nonleading by one power of lnp2 in the UV,
and we will drop it. Define Mcðp2Þ as the solution to the
pure confinement equation (37) with a kernel Jcðp; kÞ:

Mcðp2Þ¼
Z
Jcðp;kÞMcðk2Þ;

Jcðp;kÞ¼2KFk
2

�

�
�ðp2�k2Þ

	 1

ðp2þm2Þ2½k2þM2
cðk2Þ�2

þðk$pÞ
�
; (46)

where

Z
�

Z 1

0
dk2: (47)

We write the solution to Eq. (43), without the K< term, as
Mðp2Þ ¼ Mcðp2Þ þQðp2Þ. We are only interested in the
UV behavior of this equation, which then can be linearized
in Q, and takes the form:

Mcðp2Þ þQðp2Þ ¼
Z

Jcðp; kÞ½Mcðk2Þ þQðk2Þ�

þ
Z

K>ðp; kÞ½Mcðk2Þ þQðk2Þ�; (48)

where the running mass in the denominator of K> is
Mcðk2Þ:

K>ðp;kÞ¼ak2�ðp2�k2Þ
p2þm2

g

�
ln

�
p2þ4m2

g

�2

�
½k2þM2

cðk2Þ�
��1

:

(49)

In Eq. (48) theMc on the left cancels against the JcMc term
on the right, leaving

Q ¼ JcQþ K>ðMc þQÞ (50)

using a streamlined matrix notation, with momentum argu-
ments and the integral sign suppressed [this should not lead
to confusion of Mc as we now use it with the mass as
defined in Eq. (46)]. Wewill solve this in the UVas a power
series in K>. It will turn out thatQðp2Þ � ðlnp2Þa�1Þ=p2 in
the UV, and it is straightforward to see that the term JcQ
vanishes more rapidly than this, by a power of p2. So we
drop the JcQ term in Eq. (50). This leaves

Q ¼ K>Mc þ K>Q ¼ 1

1� K>

K>Mc

¼ ð1þ K> þ ðK>Þ2 þ . . .ÞK>Mc: (51)

Defining the inverse ð1� K>Þ�1 is slightly subtle, be-
cause the integral of K> over a function depends on how
rapidly the function vanishes in the UV. In particular, the
confining solutionMc vanishes like 1=p

4 in the UV, which
means that the function K>Mc vanishes like 1=p

2 lnp2

K>Mcðp2Þ ¼ a

½p2 þm2
g� ln½p

2þ4m2
g

�2 �

	
Z p2

0
dk2k2Mcðk2Þ½k2 þM2

cðk2Þ��1: (52)

Because of the rapid vanishing ofMCðk2Þ in the UV we can
take the upper limit in the integral from p2 to infinity. Then

K>Mcðp2Þ � aIc

½p2 þm2
g� ln½p

2þ4m2
g

�2 �
(53)

with

Ic ¼
Z 1

0
dk2k2Mcðk2Þ½k2 þM2

cðk2Þ��1: (54)

But for any function Fðp2Þ that behaves like 1=p2 lnp2 at
infinity the integral K>F behaves like ðln lnp2Þ=p2 lnp2,
and for functions F going like ðln lnp2ÞN=p2, K>F be-
haves like ðln lnp2ÞNþ1=Np2 lnp2. One can then define the
inverse ð1� K>Þ�1 by the pedestrian means of summing
the series in Eq. (51), with the result (valid in the UV):

Qðp2Þ¼ aIc
p2 lnp2

exp½aln lnp2�¼ aIc
p2 lnp2

½lnp2�a: (55)

It is clear that the meaning of ln lnp2 in the UV is

ln lnp2 ! ln

�
g2

�g2ðp2Þ
�

(56)

in view of

g2

�g2ðp2Þ ¼ 1þ bg2 ln

�
1þ p2

4m2
g

�
; (57)

which follows from Eq. (26). Then the result for the UV
behavior coming from combining confinement and one-
gluon terms is
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Mðp2Þ ! 3C2 �g
2ðp2ÞIc

16�2p2

�
g2

�g2ðp2Þ
�
a
: (58)

This UV behavior is what the RG dictates, and by adding in
confinement effects we are able to give the prefactor aIc.
From the work of [17] this allows an estimate of the h �qqi
condensate, although we will not pursue that further here
because of various complications (see, for example, [27]).
Finally, we can change Mcðp2Þ to M1cðp2Þ, which is
Mcðp2Þ modified by the IR one-gluon corrections
[cf. Eq. (44)] to incorporate the IR corrections from one-
gluon exchange.

VII. SUMMARY

We suggest that when chiral symmetry is broken, lead-
ing to a running quark mass Mðp2Þ, the ensuing massless
Goldstone bosons contribute to an entropy-driven conden-
sate such as h �qqi by ramifying a large number of branches
from a basic ‘‘trunk’’ Wilson loop that itself shows large
fluctuations. Even if the Wilson loop represents quenched
quarks, and so is incapable of breaking, configurations with
the q and the �q far apart are quite improbable compared to
ramified configurations where they are only separated by a

distance of order Mð0Þ�1 � K�1=2
F , because the associated

area-law action is large compared to the entropy. This
means that in a linearly rising potential KFr, separations

with r rather larger than K�1=2
F are not probed, and the

potential at such large distances is irrelevant. This is the
physical interpretation of the effects of a cutoff in Green’s
functions that have an Abelian gauge invariance associated
with the confining propagator. From such a Green’s func-
tion we formulate a nonsingular confining gap equation of
JBW-type, with a mass m in the confining effective propa-
gator treated not as a regulator to be set to zero, but as a
finite mass �Mð0Þ that can be estimated from processes

that respect the Abelian gauge invariance. The static po-
tential coming from the confining effective propagator
rises linearly only out to a finite distance, and has a
negative term at the origin that we identify with entropic
effects. We estimate m � Mð0Þ through comparison with
an extension of an old calculation (having Abelian gauge
invariance) in which m could be properly treated as a
regulator mass, to be sent to zero after cancellations. The
extended calculation replaces the regulator by a specific
and physical mass, whose dynamical effects are equivalent
to keeping m as finite and of this value in the JBW
equation.
We also studied one-gluon effects within the same

framework, thereby finding the correct large-momentum
behavior of QCD as known from the RG, but with a
calculable prefactor. The final result, including IR one-
gluon enhancements, is a quark mass Mð0Þ � 250 MeV.
This is somewhat smaller than the commonly quoted value
of 300 MeV, which is largely based, not on true dynamical
estimates, but on assuming that the sum of quark masses
represents most of the mass of the hadron in question. Our
mass has a different interpretation, given its entropic
underpinnings.
Much remains to be done, both in formulating and

solving more elaborate (and more accurate) forms of the
gap equation, including in Minkowski space, where it is
appropriate to use a principal-part confining propagator,
relating these to pion dynamics, and perhaps making some
progress in understanding entropic effects quantitatively.
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