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José R. Espinosa1 and Benjamı́n Grinstein2
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The Lee-Wick (LW) standard model (SM) offers a new solution to the hierarchy problem. We discuss,

using effective potential techniques, its peculiar UV behavior. We show how quadratic divergences in the

Higgs mass Mh cancel as a result of the unusual dependence of LW fields on the Higgs background (in a

manner reminiscent of little Higgses). We then extract from the effective potential the renormalization

group evolution of the Higgs quartic coupling � above the LW scale. After clarifying an apparent

discrepancy with previous results for the LWAbelian Higgs model, we focus on the LWSM. In contrast

with the SM case, for any Mh, � grows monotonically and hits a Landau pole at a fixed trans-Planckian

scale (never turning negative in the UV). Then, the perturbativity and stability bounds on Mh disappear.

We identify a cutoff �1016 GeV for the LWSM due to the hypercharge gauge coupling hitting a Landau

pole. Finally, we also discuss briefly the possible impact of the UV properties of the LW models on their

behavior at finite temperature, in particular, regarding symmetry nonrestoration.
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I. INTRODUCTION

In an effort to tame the divergences of quantum field
theory, Dirac proposed a formulation of quantum mechan-
ics with indefinite metric in the Hilbert space [1]. Pauli
further studied Dirac’s proposal and found it to be effective
in eliminating certain divergences but failed to give a
consistent interpretation of the theory [2]. Pauli and
Villars showed that Lagrangians with derivatives higher
than of the second order are equivalent to negative metric
theories without higher derivatives [3]. They introduced
the now famous regulator procedure in which the negative
metric states are rendered arbitrarily heavy at the end of the
computation. Two decades later, motivated by their desire
to eliminate infinities in QED, Lee and Wick (LW) pro-
posed a solution to the question of interpretation of nega-
tive metric quantization [4]. They argued that, under
certain conditions, a theory of this kind has a unitary S
matrix. Physically, their proposal is that states that, in the
absence of interactions, are of negative metric may well be
unstable when interactions are present and sufficiently
strong. Since unstable states are not asymptotic, only the
subspace of the Hilbert space corresponding to positive
metric contributes to the S matrix.

The work of ’t Hooft and Veltman on renormalization of
gauge theories shelved the LW proposal for a decade, but it
was dusted with growing interest in quantizing gravity. In
particular, it was shown that a higher-derivative version of
Einstein’s theory of relativity is renormalizable [5] and
asymptotically free [6]. Jansen, Kuti, and Liu studied in
the lattice a higher-derivative version of the Higgs model
and discussed the triviality problem and the unusual physi-
cal behavior associated with the presence of negative met-
ric resonances [7,8]. More recently, it was realized that the

Higgs mass in higher-derivative versions of the standard
model (SM) of electroweak interactions does not suffer
from a quadratic divergence [9]. Instead, there is only
logarithmic sensitivity to the cutoff, and the shift in the
Higgs mass is of orderM2=16�2, whereM is the scale that
characterizes the higher derivatives. The result remains
valid even if the model is extended to incorporate right-
handed neutrinos with masses much large than M, that
generate light Majorana masses via the seesaw mechanism
[10].
This ‘‘Lee-Wick standard model’’ (LWSM) is consistent

with electroweak precision data [11] and with flavor
physics constraints, provided M is at least a few TeV
[12]. The electroweak data favors a light Higgs, mh �
100–200 GeV, which remarkably requires little if any
fine-tuning for M of a few TeV. Such low values for M
have observable effects in collider experiments. At the
LHC, one would expect to see resonances [13] associated
with would-be negative metric states, roughly one per SM
particle.
While this successful yet natural phenomenology is

encouraging, there remain many questions of principle
with regard to the Lee-Wick proposal. Whether the LW
proposal yields a unitary theory is unknown, in general.1

Cutkosky, Landshoff, Olive, and Polkinghorne sharpened
the (so-called CLOP) prescription of Lee and Wick and
showed that large classes of diagrams in perturbation the-
ory satisfy the cutting relations needed for perturbative

1In this work, we assume M is kept fixed as the momentum
cutoff � ! 1. IfM=� is kept finite as � ! 1, one recovers the
normal model, and no new problems with unitarity arise. The
behavior of a Euclidean higher-derivative OðNÞ scalar model at
finite cutoff was studied in [7].
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unitarity [14]. Yet, for some specific models, unitarity can
be shown to hold explicitly to all orders [15,16]. Boulware
and Gross have identified difficulties with a path integral
formulation of the theory [17], but van Tonder has recently
proposed a nonperturbative definition for the theory [18].
And, already known to Lee and Wick, their quantization
procedure gives nonlocal correlations that are readily in-
terpreted as noncausal effects.

This noncausality is readily seen as time advancement in
certain scattering processes. To be sure, in the LWSM, with
the scale M of the order of a few TeV, these time advance-
ments are unmeasurably short, at present. A question im-
mediately arises as to whether a macroscopic sequence of
noncausal effects could be contrived to produce macro-
scopic violations of cause and effect, rendering these theo-
ries inconsistent. Coleman argued that this is not possible,
but gave no detailed argument [19]. An attempt to address
this question indirectly was made in Ref. [20], where the
behavior of LW models at high temperature was studied.
The speed of sound was found to increase with temperature
but never to exceed the speed of light. However, a some-
what surprising and discouraging effect was discovered.
The energy density of a LW gas of fermions was deter-
mined to decrease without bound as the temperature is
increased.

Intending to throw some light into this problem, we
propose as a first step to investigate the effective potential
of LW theories with scalars, fermions, and gauge bosons.
In Sec. II, we examine the UV behavior of the Coleman-
Weinberg effective potential in such generic LW theories,
using for simplicity the higher-derivative formulation and
Landau gauge (discussing, in turn, the contributions to the
potential of generic bosonic and fermionic degrees of free-
dom). In order to show the cancellation of some UV
divergences, we find it convenient to regularize the poten-
tial using a momentum cutoff. Similarities between Lee-
Wick and little Higgs theories show up most clearly in this
language. We also investigate the finite part of the potential
and ask, for example, under what conditions it may have
runaway directions.

As a by-product, from the effective potential, we are able
to determine some renormalization group equations
(RGEs) in specific models: making use of the
renormalization-scale independence of the effective poten-
tial (and the knowledge of the scalar anomalous dimen-
sion), it is possible to extract from the one-loop effective
potential the RGEs of the parameters of the tree-level
potential (mass terms and quartic coupling). RGEs for
Yang-Mills LW models with fermions and scalars were
determined in Ref. [21]. The models did not include scalar
self-couplings, and the calculations were performed in
Landau gauge. The LWAbelian Higgs model for arbitrary
� gauge, including a scalar self-coupling, was computed in
Ref. [22] with the surprising result that the beta function of
the scalar self-coupling vanishes. Our computation of the

effective potential gives results at odds with Ref. [22]. In
particular, we find that the quartic self-coupling does run.
To fully clarify and settle this issue, we present four
independent calculations of the RGEs of the model, to
wit, by computing Green functions diagrammatically
(Sec. III) or by computing the effective potential
(Sec. IV), and, in both cases, in the higher-derivative and
auxiliary-field formulations. To show explicitly that calcu-
lations in different formulations agree requires matching
correctly the parameters of both formulations and dealing
with a subtlety in the treatment of anomalous dimensions
in the auxiliary-field formulation of the model. In the end,
the discrepancy with [22] is only apparent and due to a
different renormalization prescription.
Finally, Sec. V discusses the implications of the softer

UV behavior of the LW scalar sector in the context of the
LW standard model. First, we derive in Sec. VA the RGEs
of the parameters of the Higgs sector in the LWSM, with
particular attention to the Higgs quartic coupling. We find
that the running of this coupling is better UV-behaved than
in the normal SM: it does not get driven to negative values
at high energy if the Higgs mass is low, nor does it blow up
below the Planck mass if the Higgs mass is large. As a
result, in the LWSM, the lower stability bound and the
perturbativity bound on the Higgs mass disappear.
Nevertheless, the RG evolution of gauge couplings above
the LW mass scale M is also modified [21], and we find
a Landau pole for the Uð1ÞY gauge coupling at a scale
�0 � 1016 GeV (for M� 1 TeV). This implies that the
pure LWSM cannot be extrapolated up to the Planck scale,
and new physics should appear at or below �0.
At finite temperature (Sec. VB), there is another reason

why the ultraviolet behavior of the LW effective potential
is of interest. In little Higgs models, electroweak symmetry
can remain broken at high temperature. More generally,
symmetry nonrestoration can occur in models for which
quadratic divergences in the Higgs mass cancel among
states with same statistics [23]. Heuristically, this is be-
cause T2m2 corrections to the finite temperature effective
potential, which are responsible for symmetry restoration,
are directly related to quadratic divergences to the Higgs
mass at zero temperature. Since, in LW theories, cancella-
tion of divergences is among states with same statistics, we
should then find that electroweak symmetry might not get
restored at high temperature. However, it is not immedi-
ately obvious how to extend the standard calculation of the
finite temperature effective potential to LWmodels. At any
rate, the above argument indicates that the fate of symme-
try at high temperature is determined by the sensitivity of
the effective potential to the ultraviolet.

II. STRUCTURE OF THE LW
EFFECTIVE POTENTIAL

In order to compute the effective potential in LW theo-
ries, we choose to do the computation using a simple
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momentum cutoff to regularize divergent integrals. This
makes the UV behavior—in particular, the absence of
quadratic divergences—more readily apparent.

A. UV behavior of the effective potential

As preparation for the computation in LW theories, let us
begin by revisiting the normal (non-LW) case. Consider a
theory of a single self-interacting scalar,

L ¼ 1
2ð@��Þ2 � V0; (1)

with a SM-like Higgs sector with tree-level potential

V0 ¼ 1
2�

2�2 þ 1
4��

4: (2)

In the presence of a uniform background, �ðxÞ ¼
vþ hðxÞ, the one-loop vacuum diagrams are each
infrared-divergent. The divergence is, however, an artifact
of perturbation theory, and the IR finite sum gives the
effective potential

V1 ¼ 1

32�2

Z �2

0
p2
Edp

2
E logðp2

E þm2Þ: (3)

Here, m2 � d2V0=d�
2j�¼v is the mass in the nonvanish-

ing uniform background. The result is readily generalized
to theories of many fields, including scalars, fermions, and
gauge bosons:

V1 ¼ 1

32�2

X
�

N�

Z �2

0
p2
Edp

2
E logðp2

E þm2
�Þ; (4)

where the sum is over particle species �, with N� degrees
of freedom (negative for fermions) and mass m� (depen-
dent, in general, on the Higgs field background), and pE is
the Euclidian momentum.

Although one could integrate (3) exactly, we can readily
extract the dominant UV behavior simply by taking the
derivative of V1 with respect to m2

�, doing the momentum
integral and then integrating in m2

�. In this way, one gets

V1 ¼ 1

32�2

X
�

N�

�
�2m2

� � 1

2
m4

� log�
2 þ . . .

�

� 1

32�2

�
�2 StrM2 � 1

2
StrM4 log�2 þ . . .

�
; (5)

where the dots stand for finite terms or terms suppressed by
inverse powers of the cutoff. We have used the supertrace
(Str) to denote the trace of a matrix weighted by the
number of degrees of freedom, and M stands for a matrix
of masses of all fields in the background of the Higgs fields.
As usual, the logarithmic dependence on the cutoff tracks
the RG evolution of the parameters of the model. In
Sec. IV, we will use effective potential expressions like
these to derive RGEs in LW models.

B. Bosonic contributions to the LW effective potential

We now turn to the case of LW theories. Take for
definiteness the case of scalar fields. The Lagrangian is
now

L ¼ 1

2
ð@���Þ2 � 1

2M2
ð@2��Þ2 � V0: (6)

The Feynman rules now have quadratic polynomials in p2

in propagator denominators. Repeating the steps that lead
to Eq. (3), one finds instead

V1 ¼ 1

32�2

X
�

N�

Z �2

0
p2
Edp

2
E logðp2

E þm2
� þ p4

E=M
2Þ:

(7)

The Wick rotation to Euclidean momentum is justified by
the Lee-Wick prescription for the contour of integration in
the complex energy plane. That is, first, in the theory with
interactions switched off, take the usual Feynman contour,
just above or below the real axis as determined by the i�
prescription. Then, deform it to avoid crossing the poles
that migrate into the complex energy plane as the inter-
actions in the LW model are switched on.
This generic form is also applicable to gauge bosons in

Landau gauge. In LW theory, for each gauge field, supple-
ment the Lagrangian with a term 1

2M2 ½ðD�F��Þa�2. In a

later section, we discuss the more general case with a
renormalizable gauge-fixing. The main points presented
in this section are not affected by sticking to the simpler
Landau gauge.
Just as above, the integral is most easily performed by

differentiating and integrating with respect to masses. One
gets the following UV behavior:

V1 ¼ 1

32�2

X
�

N�½m2
�M

2 log�2 þ . . .�: (8)

Comparing with (5), we immediately see striking dissim-
ilarities: there is no quadratic divergence, and the structure
of the logarithmic divergence is quite different. The latter
has the structure of the quadratic divergence of the normal
case if M were the cutoff. This is expected, since, in a
scalar theory, the higher derivatives could be used as a
regulator.
In order to better understand this result, it is useful to

look at the LW theory in terms of new auxiliary LW
degrees of freedom added to a standard theory. In this
formulation, terms higher than quadratic in derivatives
are absent from the Lagrangian. Instead, these extra LW
fields are responsible for the additional poles of the modi-
fied propagator. That is, the masses of the normal and
auxiliary LW fields correspond to the solutions of the
pole equation

p4 � p2M2 þM2m2
� ¼ 0; (9)
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and the LW field is identified by the pole with negative
residue. This corresponds to a wrong sign kinetic energy
term in the Lagrangian. Alternatively, one can make the
sign of the kinetic term of the auxiliary LW field standard
by rescaling the field by i. Then, the structure of these pole
masses can also be obtained as coming from a non-
Hermitian mass matrix of the form

M 2
B� ¼ m2

� �im2
�

�im2
� M2 �m2

�

� �
: (10)

The two solutions of the pole equation (9), or, equivalently,
the two eingenvalues of the mass matrix (10), are

M2
B�1;2 ¼

M2

2

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

�

M2

s 1
A: (11)

These two masses are real if m2
� <M2=4. This holds for

the usual choice of parameters in applications of LW
theory to the hierarchy problem, since m� are of electro-
weak size, while M is taken in the several-TeV range.
When calculating the one-loop effective potential for val-
ues of the Higgs field background for which m2

� >M2=4,
the two masses (11) are complex conjugate pairs, their sum
giving a real contribution to the potential (see below).
Expanding the masses (11) in powers of m2

�=M
2, we find

M2
B�1 ¼ m2

� þOðm4
�=M

2Þ;
M2

B�2 ¼ M2 �m2
� �m4

�=M
2 þOðm6

�=M
4Þ: (12)

Figure 1 shows the squared masses for bosons through-
out both low and high Higgs background regions as a
function of the ratio m�=M. The two complex masses in
the high region are represented by plotting their real
part, M2=2, as a solid line, while the dashed lines give

M2ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

�=M
2 � 1

p Þ=2 as a convenient way of plotting
the information on the imaginary parts.
In summary, for each standard bosonic degree of free-

dom with mass squared m2
� (up to corrections suppressed

by M), there is a new LW degree of freedom with mass
squared M2 �m2

� þ . . . completing a ‘‘LW multiplet.’’
Using the standard formula (5) for these degrees of free-
dom and keeping a unique label � for each LWSM pair, we
reproduce the UV behavior of (8), up to an irrelevant
background-field–independent constant. One sees explic-
itly that this is the result of cancellations between the
normal and LW contributions. We can also see this can-
cellation as occurring through Tr½M2

B�� and Tr½M4
B��

directly without any power expansion, which is one of
the uses of writing down the mass matrix M2

B� in (10).
One can also see the two contributions arising directly
from the integral (7) by factoring the argument of the
logarithm

V1¼ 1

32�2

X
�

N�

Z �2

0
p2
Edp

2
E log½ðp2

EþM2
B�1Þðp2

EþM2
B�2Þ�:

(13)

Explicitly, the contribution to the one-loop potential reads

	�V1 ¼ N�

64�2

X
i¼1;2

M4
B�i

�
log

M2
B�i

Q2
� C�

�
; (14)

where we have merely used the standard Coleman-
Weinberg expression in Landau gauge. Here, C� ¼ 5=6
for gauge bosons, C� ¼ 3=2 for scalars, and Q is the
renormalization scale.
In the low-field region, for which m2

� <M2=4, the
potential above takes the form

	�V1 ¼ N�

64�2
M4

��
1� 2m2

�

M2

��
log

Mm�

Q2
� C�

�

� 1

2

� log

1� 
�
1þ 
�

�
; (15)

with


� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

�

M2

s
: (16)

By contrast, in the high-field region, for which m2
� >

M2=4, the potential above takes the form2

	�V1 ¼ N�

64�2
M4

��
1� 2m2

�

M2

��
log

Mm�

Q2
� C�

�

� �� arctan��

�
; (17)

with

0 0.5 1

0

1

m  /M

M
  
/M

b2
2

α

FIG. 1 (color online). Squared masses of a bosonic ‘‘LW
multiplet’’ as a function of the ratio m�=M. See text for
explanations.

2Note that (15) is simply the analytic continuation of (17) into

� ¼ i�� < 1.
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�� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

�

M2
� 1

s
: (18)

We can see from this result that the bosonic contribu-
tions to the one-loop effective potential now grow only like
v2 logðv2Þ for high v � M (to be compared with the v4

growth in the normal case). Therefore, in that region of
field space, the tree-level term ð�=4Þv4 will dominate.

C. Fermionic contributions to the LW
effective potential

We consider next the contributions of fermions to the
effective potential in a theory with higher derivatives. The
terms in the Lagrangian with derivatives on fermions are

L ¼ �c �i6@ð1� @2=M2Þc : (19)

The fermionic contributions to the effective potential in
LW theories can be obtained through an analysis similar to
the one for bosons above. Instead of (3), for fermions in
LW theories, one has

V1 ¼ 1

32�2

X
�

N�

Z �2

0
p2
Edp

2
E log½p2

Eð1þ p2
E=M

2Þ2 þm2
��;

(20)

where, we remind the reader, we have included a minus
sign in N�. By applying the same procedure as above, one
finds that fermions do not contribute to the potential a field-
dependent UV divergence, not even logarithmic.

Again, we can understand this result in terms of new
auxiliary LW fermionic degrees of freedom. Now, the
equation giving the propagator poles reads

p2ðp2 �M2Þ2 �m2
�M

4 ¼ 0; (21)

where m� is the mass of the standard fermionic degree of
freedom. This pole equation admits now two additional
solutions, corresponding to two additional LW degrees of
freedom. The structure of these pole masses can be ob-
tained in an equivalent manner as coming from a non-
Hermitian mass-squared matrix of the form3

M 2
F� ¼

M2 �im�M m�M
�im�M 0 0
m�M 0 M2

2
4

3
5; (22)

which is what one would obtain by rescaling the auxiliary
LW fields c by c ! ic and �c ! i �c , which gives a
standard sign for their kinetic term.

The eigenvalues of this matrix, or the solutions to the
pole equation, Eq. (21), are

M2
F�1 ¼

M2

3
½2� 2 cosð��=3Þ�;

M2
F�2 ¼

M2

3
½2þ cosð��=3Þ �

ffiffiffi
3

p
sinð��=3Þ�;

M2
F�3 ¼

M2

3
½2þ cosð��=3Þ þ

ffiffiffi
3

p
sinð��=3Þ�;

where the angle �� is given by

cos�� ¼ 1� 27

2

m2
�

M2
: (23)

We assume here thatm2
� < 4M2=27, which guarantees real

masses. An expansion in powers of m2
�=M

2 gives

M2
F�1 ¼ m2

� þOðm4
�=M

2Þ;

M2
F�2 ¼ M2 �Mm� � 1

2
m2

� � 5m3
�

8M
�m4

�

M2
þOðm6

�=M
4Þ;

M2
F�3 ¼ M2 þMm� � 1

2
m2

� þ 5m3
�

8M
�m4

�

M2
þOðm6

�=M
4Þ:

(24)

Therefore, each standard fermionic degree of freedom is
accompanied by two quasidegenerate heavy LW fields,
completing a fermionic ‘‘LW multiplet.’’
Using the standard formula (5) for the contribution of

these degrees of freedom to the one-loop potential and
keeping a unique label � for each standard LW fermionic
multiplet, we reproduce (up to a field-independent con-
stant) the UV finiteness of Eq. (20) as a result of standard
LW cancellations. The same cancellations can be seen as
operating directly in Tr½M2

�� and Tr½M4
�� for the fermi-

onic mass matrix (22). At the level of the integral (20), the
three separate contributions to the effective potential fol-
low simply from writing the argument of the logarithm in
factorized form:

V1 ¼ 1

32�2

X
�

N�

Z �2

0
p2
Edp

2
E log½�i¼1;...;3ðp2

E þM2
F�iÞ�:

(25)

The explicit expression for the potential is

	�V1 ¼ N�

64�2

X
i¼1;2;3

M4
�i

�
log

M2
�i

Q2
� C�

�
; (26)

where now C� ¼ 3=2. In fact, the only dependence on Q
that appears in (26) affects the renormalization of a
background-field–independent term. For the purpose of
studying the shape of the background-field–dependent po-
tential, we can, therefore, simply dropQ and C� altogether
in that expression.

3We are assuming that both LW fields appear with the same
heavy mass M for simplicity, but this is not necessary. In the
most general case, the LW mass in the 33 entry in (22) can be
different from the other LW mass.
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In the high-field region, for whichm2
� > 4M2=27, one of

the three mass eigenvalues is still real, while the other two
form a complex conjugate pair. They are

M2
F�1 ¼

M2

2

�
4

3
� fþ

�
m�

M

�
� f�

�
m�

M

�

þ i
ffiffiffi
3

p �
fþ
�
m�

M

�
� f�

�
m�

M

���
;

M2
F�2 ¼

M2

2

�
4

3
� fþ

�
m�

M

�
� f�

�
m�

M

�

� i
ffiffiffi
3

p �
fþ
�
m�

M

�
� f�

�
m�

M

���
;

M2
F�3 ¼ M2

�
2

3
þ fþ

�
m�

M

�
þ f�

�
m�

M

��
;

(27)

where we have used the functions

f�ðxÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2
� 1

27
� x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

4
� 1

27

s
3

vuut
: (28)

For later use, we quote the useful relation fþðxÞf�ðxÞ ¼
1=9.

In the high-field region, m2
� > 4M2=27, the effective

potential takes the form:

	�V1 ¼ N�

64�2
½M4

F�3 logðM2
F�3Þ þ 2ðM4

F� ��4
F�Þ

� logð�2
F�Þ � 4M2

F��
2
F��F��; (29)

where

M2
F� � M2

2

�
4

3
� fþ

�
m�

M

�
� f�

�
m�

M

��
;

�2
F� � M2

2

ffiffiffi
3

p �
fþ
�
m�

M

�
� f�

�
m�

M

��
;

�4
F� � M4

F� þ �4
F�;

�F� � arctan
�2

F�

M2
F�

;

(30)

that is, M2
F�1;2 ¼ M2

F� � i�2
F� ¼ �2

F� expði�F�Þ.
Different fermionic contributions in Eq. (29) grow at

high v � M as v4=3 logðv2Þ and v4=3. There is a cancella-

tion of the dominant v4=3 logðv2Þ terms, leaving a total

result that grows only as v4=3. These contributions are,
therefore, subdominant compared with the tree-level
quartic.
Figure 2 shows the squared masses for fermions

throughout both low and high background-field regions
as a function of the ratio m�=M. The complex masses in
the high region are represented by plotting M2

F� as a solid
line and M2

F� � �2
F� as dashed lines.

III. RGES IN THE LWABELIAN HIGGS MODEL:
DIAGRAMMATIC APPROACH

As a warm-up for the LWSM case, in this section, we
calculate the RGEs of the scalar sector parameters in the
Lee-Wick Abelian Higgs model. We do this by computing
directly the one-loop counterterms needed to renormalize
Green functions. We compute them first, in Sec. III A,
using the higher-derivative formulation of the model, and
then we calculate them again, in Sec. III B, using the
auxiliary-field formulation. We find agreement between
both approaches, once the parameters in the two formula-
tions are appropriately matched to each other. These results
will be used as the benchmark against which the effective
potential calculation of the RGEs (Sec. IV) can be com-
pared. This model already captures the main features and
subtleties of the LWSM calculation (which we present in
Sec. V) with the advantage of being simpler.

A. Diagrammatic approach in
the higher-derivative formulation

The Lagrangian of the LWAbelian Higgs model in the
higher-derivative formulation (indicated by hatted fields
and parameters) reads

LHD ¼�1

4
F̂2
��þ 1

2M̂2
A

ð@�F̂��Þ2� 1

2�
ð@�Â�Þ2

þjD̂��̂j2� 1

M̂2
jD̂2�̂j2� m̂2j�̂j2� �̂j�̂j4; (31)

where D̂��̂ � @��̂þ igÂ��̂, and we show explicitly the

gauge-fixing term. With this gauge-fixing, the gauge-boson
propagator is

0 0.2 0.4 0.6

0

0.5

1

1.5

2

m  /M

M
  

/M
f2

2

α

FIG. 2 (color online). Squared masses of a fermionic ‘‘LW
multiplet’’ as a function of the ratiom�=M. The complex masses
in the high region are represented by plottingM2

F� as a solid line
and M2

F� � �2
F� as dashed lines; see Eqs. (27) and (29).
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P��ðpÞ ¼ �M̂2
A

p2ðp2 � M̂2
AÞ
�
g�� �

p�p�

p2

�
þ �

p�p�

p4
: (32)

The scalar propagator can be written as

PðpÞ ¼ 1

m̂2 � p2 þ p4=M̂2
¼ M̂2

ðp2 �m2
1Þðp2 �m2

2Þ
; (33)

with m2
1 þm2

2 ¼ M̂2 and m2
1m

2
2 ¼ m̂2M̂2.

We are interested in calculating the RGEs of the pa-
rameters in the scalar sector of the theory—that is, the beta

functions of m̂2, M̂2, �̂, and the anomalous dimension of �̂.
A straightforward one-loop diagrammatic calculation us-
ing dimensional regularization gives the following result
for the divergent piece of the scalar two-point function:

16�2�ðpÞUV ¼ g2CUV

�
��

p4

M̂2
þ
�
6
M̂2

A

M̂2
þ �

�
p2

� 3M̂2
A � �m̂2

�
� 4�̂CUVM̂

2; (34)

where

CUV � 1

�
� E þ logð4�Þ; (35)

with � ¼ ð4� dÞ=2 and E the Euler constant. From
Eq. (34), we can extract in the standard way the following
RGEs:

�̂ � d�̂

d logQ
¼ � g2

16�2

�
6
M̂2

A

M̂2
þ �

�
; (36)

�M̂2 � dM̂2

d logQ
¼ � g2

16�2
12M̂2

A; (37)

�m̂2 � dm̂2

d logQ
¼� 6g2

16�2
M̂2

A

�
1� 2

m̂2

M̂2

�
� 8�̂

16�2
M̂2: (38)

At � ¼ 0 and �̂ ¼ 0, these results are in accord with
Ref. [21].

In order to get the RGE for the scalar quartic coupling �̂,
we need the divergent part of the four-point scalar function.
In the limit of vanishing external momenta tending to zero,
it reads

16�2L̂UV
0 ¼ �2��̂g2CUV; (39)

where L̂0 is normalized as �̂. Note that there are no con-

tributions of order �̂2 (the corresponding diagrams are
finite) or g4 (UV divergences of separate diagrams cancel
out). From Eq. (39) and the previous result on the scalar
anomalous dimension, Eq. (36), we obtain

��̂ � d�̂

d logQ
¼ 24

g2�̂

16�2

M̂2
A

M̂2
: (40)

This completes our task. As expected on general grounds

[24], the one-loop beta functions for m̂2, M̂2, and �̂ are
gauge-independent, and only the scalar anomalous dimen-
sion depends on the gauge-fixing parameter �.

B. Diagrammatic approach in
the auxiliary-field formulation

We now turn to the calculation of the RGEs in the
auxiliary-field formulation, with derivatives at most of
second order. We need an auxiliary-field Lagrangian
equivalent to the higher-derivative one in Eq. (31), which
we can get by adding auxiliary fields through

L ¼ LHD � 1

2
M̂2

A

�
~A� � 1

M̂2
A

@�F̂��

�
2

þ M̂2

�������� ~�0 � 1

M̂2
D̂2�̂

��������2

; (41)

where LHD is the higher-derivative Lagrangian in

Eq. (31). Replacing the field �̂ through the change of

variables �̂ ¼ �0 � ~�0 and performing a symplectic
rotation

�0
~�0

� �
¼ cosh� sinh�

sinh� cosh�

� �
�
~�

� �
; (42)

with

e4� ¼ 1� 4
m̂2

M̂2
; (43)

we obtain

L ¼ � 1

4
F2
�� þ 1

4
~F2
�� � 1

2
M2

A
~A�

~A�

� 1

2�
ð@�A� � @� ~A�Þ2 þ jD��j2 � jD�

~�j2

þM2j ~�j2 �m2j�j2 � �j�� ~�j4
þ g2 ~A�

~A�ðj�j2 � j ~�j2Þ
þ ig ~A�½ ~�ðD�

~�Þ	 ��ðD��Þ	 � h:c:�; (44)

where now D� ¼ @� þ igA�.

The dictionary between the new parametersM2
A,M

2,m2,
and � appearing in Eq. (44) and the original parameters in
LHD is the following:

m2 ¼ 1

2
M̂2½1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m̂2=M̂2

q
�;

M2 ¼ 1

2
M̂2½1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m̂2=M̂2

q
�;

� ¼ �̂

1� 4m̂2=M̂2
;

(45)
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and the trivial equalityM2
A ¼ M̂2

A. The inverse relations are

M̂2 ¼M2 þm2;

m̂2 ¼ m2M2

M2 þm2
;

�̂¼ �
ðM2 �m2Þ2
ðM2 þm2Þ2 :

(46)

Note thatm2 andM2 correspond to the pole massesm2
1 and

m2
2 of the higher-derivative scalar propagator, as given by

Eq. (33).
Before we compute directly the RGE for the parameters

of this model (M2, m2, and �), we can obtain them indi-
rectly by differentiating relations (45) and using the corre-
sponding RGEs for the hatted parameters, calculated in the
preceding subsection, and then use the relations (46) to
express the results in terms of unhatted parameters. In this
way, one arrives at

�M2 � dM2

d logQ
¼ � 1

16�2
½6g2M2

A � 8�ðM2 �m2Þ�; (47)

�m2 � dm2

d logQ
¼ � 1

16�2
½6g2M2

A þ 8�ðM2 �m2Þ�; (48)

�� � d�

d logQ
¼ � 1

16�2
32�2: (49)

We now proceed to verify that these results follow from
direct diagrammatic calculation in the auxiliary-field for-
mulation. Explicitly, the divergent parts of the two-point
functions are

16�2�ðpÞUV�� ¼ �g2CUV½3M2
A þ �ðm2 � p2Þ�

� 4�CUVðM2 �m2Þ;
16�2�ðpÞUV~� ~�

¼ g2CUV½3M2
A þ �ðM2 � p2Þ�

� 4�CUVðM2 �m2Þ;
16�2�ðpÞUV

� ~�
¼ 4�CUVðM2 �m2Þ:

(50)

These divergences can be compensated by counterterms in
the usual way. Although the renormalization of the kinetic
terms is invariant under an SOð1; 1Þ rotation among the

fields � and ~�, as explained in [22], such rotation intro-
duces mixed mass terms. For this reason, we can absorb the

nonzero �ðpÞUV
� ~�

, which requires a mixed �� ~� counter-

term, through an off-diagonal anomalous dimension (even
if the divergence is momentum-independent).4 More ex-
plicitly, we obtain

d

d logQ

�
~�

� �
� �� � ~�

 ~��  ~� ~�

 !
�
~�

� �

¼ � 1

16�2

�g2 8�
8� �g2

� �
�
~�

� �
: (51)

These anomalous dimensions reproduce d�̂=d logQ of

Eq. (36), as can be easily checked simply by writing �̂

in terms of � and ~�. With the use of these anomalous
dimensions, we can also obtain the RGEs for M2 and m2

from Eqs. (50), obtaining precisely the results anticipated
by Eqs. (47) and (48).
In order to get the one-loop RGE for �, it is enough to

compute the divergent part of the one-loop four-point
function for �. In the limit of vanishing external momen-
tum, we obtain

16�2LUV
0 ¼ �2��g2CUV; (52)

where L0 is normalized as �. The divergent pieces

of mixed �� ~� four-point functions are such that

j�� ~�j4 is the divergent operator in the one-loop effective
action, so that a single counterterm for � can absorb that
divergence. Making use of the scalar anomalous dimen-
sions as given by Eqs. (51), one obtains a beta function for
� that reproduces the result given in Eq. (49).
In Ref. [22], a different result is found, namely �� ¼ 0.

This is the result of renormalizing differently the scalar
mass terms and wave functions, along the lines of foot-
note 4. Using such a prescription implies, in particular, that
the Higgs quartic coupling in [22] differs from ours by an
overall factor (that depends on the field-mixing radiatively
induced) and, therefore, runs differently. While the pre-
scription in [22] is simpler in the sense of having a non-
running �, it requires the introduction of an additional
mass parameter, which is absent in our prescription.
Needless to say, all physical predictions of the theory
should be prescription-independent.

IV. RGES IN THE LWABELIAN HIGGS MODEL:
EFFECTIVE POTENTIAL APPROACH

In this section, we will rederive the RGEs for the pa-
rameters of the scalar sector in the LW Abelian Higgs
model via the Coleman-Weinberg potential and the scalar
anomalous dimensions of the scalar field(s). The tech-
nique, based on the scale independence of the effective
potential, is well-known [25]. Consider a model with SM-
like tree-level potential

V0 ¼ 1
2�

2h2 þ 1
4�h

4: (53)

The one-loop Coleman-Weinberg correction is

V1 ¼ 1

64�2

X
�

N�M
4
�ðhÞ

�
log

M2
�ðhÞ
Q2

� C�

�
; (54)

4Alternatively, one could introduce a new mass term in the
potential, �2ð�	 ~�þ ~�	�Þ, but this can always be rotated away
by a field redefinition. Our prescription can be reinterpreted in
terms of a renormalization of the mixing angle �.
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where the sum runs over species �with h-dependent mass-
squaredM2

�ðhÞ and N� degrees of freedom (taken negative
for fermions); Q is the renormalization scale, and C� ¼
5=6ð3=2Þ for gauge bosons (scalars or fermions). Imposing
one-loop RG invariance of V0 þ V1, one obtains the
relations

��2 þ 2�2 ¼ 1

16�2

�
@

@h2
StrM4

���������h¼0

� 1

16�2

X
�

N�

@M4
�

@h2

��������h¼0
; (55)

�� þ 4� ¼ 1

16�2

�
@2

ð@h2Þ2 StrM4

���������h¼0

� 1

16�2

X
�

N�

@2M4
�

ð@h2Þ2
��������h¼0

; (56)

where �x � dx=d logQ and  � d logh=d logQ, as usual.
For masses of the generic form M2

� ¼ �2
� þ ��h

2, one
then obtains

��2 þ 2�2 ¼ 1

8�2

X
�

N����
2
�; (57)

�� þ 4� ¼ 1

8�2

X
�

N��
2
�: (58)

This procedure can be generalized trivially to cases with
mass mixing and/or several scalar fields.

In order to determine the beta functions, it is necessary
to calculate the anomalous dimension(s) separately. For the
case of the Abelian Higgs model, we will take them from
the previous section. (In Sec. IVB, we will discuss the
subtleties that arise due to mixing of the anomalous di-
mensions of normal and LW scalars in the auxiliary-field
formalism.)

For the purpose of calculating these beta functions in a
given model, we do not need to calculate explicitly the
M�’s because the scale dependence of V1 only involves
StrM4; see (55) and (56). In general, the M�’s in each
sector of the theory are solutions, p2 ¼ M2

�, of polynomial
secular equations of the general form:

ðp2Þn þ ðp2Þn�1a1 þ ðp2Þn�2a2 þ . . . an ¼ 0; (59)

where the ai are functions of the background-field h.
Writing formally this equation as

�n
�¼1ðp2 �M2

�Þ ¼ 0; (60)

we immediately get

TrM2 � X
�

M2
� ¼ �a1;

TrM4 � X
�

M4
� ¼ a21 � 2a2:

(61)

Wewill use these equations in what follows, applying them
sector-by-sector, to compute the separate contributions to
the supertrace StrM4.
Before embarking into that detailed calculation for the

Abelian Higgs Model, we can apply this technique to a
general LW theory in the simple Landau gauge, assuming a
unique LW mass M (the case considered in our previous
analysis of LW effective potential contributions). Bosonic
LW multiplets, with a pole equation as in (9), will contrib-
ute to StrM4 the piece

ð	� StrM4ÞB ¼ M4
B�1 þM4

B�2 ¼ M4 � 2m2
�M

2; (62)

while fermionic LW multiplets, with a pole equation as in
(21), will give the h-independent piece

ð	� StrM4ÞF ¼ �X3
i¼1

M4
F�i ¼ �2M4: (63)

If we input these results in the general formulas (55) and
(56) and use m2

� ¼ �2
� þ ��h

2, we get, instead of the
standard RGEs given in Eqs. (57) and (58),

��2 þ 2�2 ¼ � 1

8�2
M2

X
�

0N���; (64)

�� þ 4� ¼ 0; (65)

where the primed sum indicates that only bosons contribute
and � labels LWmultiplets. In general, the Lee-Wick mass
M can be different for different scalar fields, in which case
the above formula (64) should be generalized in a straight-
forward way.

A. Effective potential approach in
the higher-derivative formulation

We give a nonzero background value v to the complex

scalar field �̂ and write

�̂ ¼ 1ffiffiffi
2

p ð’̂þ v� iâÞ; (66)

and then proceed to derive the (inverse) propagators in that
background. The zeros of such inverse propagators will
occur at the squared masses M2

�ðvÞ. For the scalar field ’̂,
we find the secular equation

P�1
’̂ ðpÞ ¼ p2 � m̂2

’ � p4

M̂2
¼ 0; (67)

with m̂2
’ � m̂2 þ 3�̂v2. The inverse propagator for the

pseudoscalar field â is similarly obtained with m̂2
’ ! m̂2

a �
m̂2 þ �̂v2, but, with the gauge-fixing as in Eq. (31), there is

also mixing between â and @�Â
�. The inverse propagator

for the â� Â� sector is the matrix
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�
p2 �m2

A � p4

M2
A

�
g�� þ

�
�1þ 1

� þ p2

M2
A

þ m2
A

M̂2

�
p�p� imAp�

�
1� p2

M̂2

�

�imAp�

�
1� p2

M̂2

�
m̂2

a � p2 þ p4

M̂2

2
6664

3
7775; (68)

where mAðvÞ � gv. Equating the determinant of this ma-
trix to zero, we get the secular equation

ðp4 � p2M2
A þm2

AM̂
2Þ3½p6 � p4M̂2 þ p2m̂2

aðM̂2 þ �m2
AÞ

� �m̂2
am

2
AM̂

2� ¼ 0 (69)

for the pole masses in this sector. We see that this equation
splits into two separate equations, of which one gives pole
mass solutions with multiplicity 3, corresponding to the
different polarizations of a massive gauge boson. Applying
to the secular equations (67) and (68) the prescription in
Eq. (61), we immediately obtain

Tr ½M2� ¼ ðM̂2Þ’̂ þ 3ðM2
AÞÂ�

þ ðM̂2Þâ; (70)

where the labels indicate (with some abuse of notation) the
origin of each contribution. This trace is independent of v,
as it should be to cancel quadratic divergences in the scalar
mass (see discussion in Sec. II B). We also obtain

Tr½M4�¼ ðM̂4�2M̂2m̂2
’Þ’̂þ3ðM4

A�2m2
AM

2
AÞÂ�

þ½M̂4�2m̂2
aðM̂2þ�m2

AÞ�â
¼ðv-indep.termsÞ�2ð3g2M2

Aþ�g2m̂2þ4�̂M̂2Þv2

�2��̂g2v4: (71)

It follows that

16�2ð�m̂2 þ 2�̂m̂
2Þ ¼ �2ð3g2M2

A þ �g2m̂2 þ 4�̂M̂2Þ;
(72)

16�2ð��̂ þ 4�̂�̂Þ ¼ �4�̂�g2; (73)

in perfect agreement with the results in Sec. III A,
Eqs. (36)–(38). One can also check that, in Landau gauge
(� ¼ 0) and for M2

A ¼ M̂2 ¼ M2, these equations are in
agreement with the general formulas (64) and (65).

B. Effective potential approach in
the auxiliary-field formulation

In this formulation, we give� a background value v and
write

� ¼ 1ffiffiffi
2

p ð’þ v� iaÞ; (74)

while

~� ¼ 1ffiffiffi
2

p ð~’� i~aÞ; (75)

and then proceed to derive the secular equations for the
pole masses M2

�ðvÞ in the same way as before.
There is mixing among the CP-even scalars ’ and ~’,

and their inverse propagator is the 2� 2 matrix

p2 �m2
’ 3�v2

3�v2 M2 � p2 � 3�v2

� �
; (76)

where m2
’ðhÞ � m2 þ 3�v2. Equating the determinant of

this matrix to zero, we obtain the secular equation

p4�p2ðM2þm2ÞþM2m2þ3�v2ðM2�m2Þ¼0: (77)

The fields A�, a, ~A�, and ~a get all mixed in the v

background, and their inverse propagator is the matrix

P�1
��ðpÞ imAp� m2

Ag�� � 1
� p�p� 0

�imAp� m2
a � p2 imAp� ��v2

m2
Ag�� � 1

� p�p� �imAp�
~P�1
��ðpÞ 0

0 ��v2 0 p2 �M2 þ �v2

2
6666664

3
7777775; (78)

where

P�1
��ðpÞ � ðp2 �m2

AÞg�� þ
�
�1þ 1

�

�
p�p�; (79)

~P�1
��ðpÞ � ð�p2 þM2

A �m2
AÞg�� þ

�
1þ 1

�

�
p�p�; (80)

which leads to the secular equations

0 ¼ ðp4 � p2M2
A þm2

AM
2
AÞ3;

0 ¼ p6 � p4ðM2 þm2Þ þ p2½m4 þm2
aðM2 �m2Þ

þ �m2
am

2
A� � �m2

A½m4 þ ðM2 �m2Þm2
a�:

(81)

Applying again to the secular equations (77) and (81) the
prescription in Eq. (61), we immediately obtain

Tr½M2� ¼ ðM2 þm2Þ’�~’ þ 3ðM2
AÞA�� ~A�

þðM2 þm2Þa�~a;

(82)
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where the labels indicate (again with some abuse of notation) the origin of each contribution. This trace is independent of
v, as it should be if the quadratic divergences in the scalar mass are to cancel (see discussion in Sec. II B). We also obtain

Tr½M4� ¼ ½M4 þm4 � 6�v2ðM2 �m2Þ�’� ~’ þ 3ðM4
A � 2m2

AM
2
AÞA�� ~A�

þ ½M4 � 2�v2M2 þ 2m2ðm2 þ �v2Þ � 2�m2
Aðm2 þ �v2Þ�a�~a

¼ ðv-indep.Þ � 2½3g2M2
A þ �g2m2 þ 4�ðM2 �m2Þ�v2 � 2��g2v4: (83)

There is now a subtlety when using the scale independence
of the effective potential due to the fact that, even if the
field ~� has no background expectation value, its derivative
with the renormalization scale, d ~�=d logQ, will have a
nonzero background value that arises from mixing with the
field �. That is, from the tree-level potential

V0 ¼ m2j�j2 �M2j ~�j2 þ �j�� ~�j4; (84)

we obtain

dV0

d logQ
¼ 1

2
ð�m2 þ 2��m

2Þv2

þ 1

4
½�� þ 4�ð�� � � ~�Þ�v4; (85)

where �� and � ~� can be read off Eq. (51). Using the
previous result for Tr½M4�, Eq. (83), which determines
the scale dependence of the one-loop Coleman-Weinberg
correction, we arrive at

16�2ð�m2 þ 2��m
2Þ

¼ �2½3g2M2
A þ �g2m2 þ 4�ðM2 �m2Þ�; (86)

16�2½�� þ 4�ð�� �  ~��Þ� ¼ �4��g2; (87)

in perfect agreement with the results presented in
Eqs. (47)–(49).

V. SOME IMPLICATIONS OF THE UV BEHAVIOR
OF THE LW STANDARD MODEL

A. Implications at zero temperature

We have seen that the LW effective potential is softer
than in standard theories: on the one hand, the bosonic part
of the effective potential, Eq. (8), does not contain a
m4

� log�
2 term, while, on the other hand, the fermionic

part, Eq. (20), is finite. The softer UV behavior has direct
implications for the RGEs of the LW theory above the
threshold M. Using (57) and (58), the RGEs in the SM,
using Landau gauge, satisfy

16�2ð�SM
�2 þ 2SM�2Þ ¼ 12��2; (88)

16�2ð�SM
� þ 4SM�Þ ¼ 24�2 � 6h4t þ 3

4g
4 þ 3

8ðg2 þ g02Þ2;
(89)

with the normalization of �2 and � as in (2); g and g0 are
the SUð2ÞL and Uð1ÞY gauge couplings, and ht is the top
Yukawa coupling. The Higgs anomalous dimension is

16�2SM ¼ �3h2t þ 3
4ð3g2 þ g02Þ: (90)

Below the scale M associated with the new LW degrees of
freedom, these SM RGEs will still be valid.
Above that scale, the full LWSM RGEs should be used.

In Landau gauge, we can use the same procedure that leads
to (64) and (65) to get

16�2ð��̂2 þ 2̂�̂2Þ ¼ �
�
12�̂M̂2 þ 3

2ð3g2M̂2
A þ g02M̂02

A Þ
�
;

(91)

��̂ þ 4̂ �̂ ¼ 0: (92)

The different Lee-Wick masses are the following: M̂ is

associated with the Higgs, M̂A with the SUð2ÞL gauge

boson, and M̂0
A with the Uð1ÞY gauge boson. Much as in

supersymmetry theories, we see that ��̂ is dictated by

wave-function renormalization only. In particular, the SM
top-quark vertex contribution �� h4t to this beta function
[see Eq. (89)] is absent.
We can easily extend the result for the scalar anomalous

dimension in the LW Abelian Higgs model found in a
previous section to the Higgs field in the LWSM and its
non-Abelian gauge structure, simply replacing g2M2

A in
(36) by

P
A g

2
T

A
ðÞT

A
ðÞM

2
AðÞ, where the sum runs over

the different gauge groups (labeled by ) and group gen-
erators (labeled by A), with gauge coupling constant g;

the TA
ðÞ are the group generator matrices in the representa-

tion of the Higgs field. We keep explicit the dependence on
the different Lee-Wick masses MAðÞ. In contrast with the

SM case, this anomalous dimension only gets contributions
from gauge loops (and not from fermions). In Landau
gauge, it reads:

16�2̂ ¼ � 3

2M̂2
ð3g2M̂2

A þ g02M̂02
A Þ: (93)

In these formulas, for the LWSM RGEs, we are implicitly
adopting the higher-derivative formulation. Even if one is

interested in a simplified case with M̂ ¼ M̂A ¼ M̂0
A � M,

this condition is not stable under RG evolution. The RGEs
for the Lee-Wick masses are simple to obtain. Following
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the results of [21], we know that the combinations g2M̂2
A

and g02M̂02
A are scale-invariant in Landau gauge. Therefore,

the running of the gauge Lee-Wick masses is governed by
the evolution of the corresponding gauge couplings, which
are given explicitly by [21]

8�2�g2 ¼ �2g4; 8�2�g02 ¼ 61
3 g

04: (94)

For the RGE of M̂, we can generalize the Abelian Higgs
case in (37) to

�M̂2 ¼ � 3

16�2
ð3g2M̂2

A þ g02M̂02
A Þ; (95)

which can be readily integrated.
Focusing on the evolution of the Higgs quartic coupling,

we find that its scale running in the LWSM above the LW
mass is governed by the RGE

8�2��̂ ¼ 3
�̂

M̂2
ð3g2M̂2

A þ g02M̂02
A Þ: (96)

In leading-log approximation,5 it is straightforward to
integrate this RGE to obtain

�̂ðQ>MÞ

¼ �̂ðMÞ
�

M2

M2 � 3
16�2 ð3g2M̂2

A þ g02M̂02
A Þ logðQ=MÞ

�
2
;

(97)

where M is the common Lee-Wick mass (at the scale M).
One consequence of this scale dependence is that

�̂ðQÞ 
 �̂ðMÞ and that the Higgs effective potential in
the LWSM (in contrast with the SM case) will not develop
pathologies at high scales.

This is shown in Fig. 3, which plots the running �̂ðQÞ
(for several Higgs mass choices) in the LW standard model
(blue solid lines), departing above a Lee-Wick mass
M ¼ 1 TeV from the running in the SM (red dashed lines).
The plot shows the well-known fact that, in the pure SM, if
the Higgs is too light, the running �ðQÞ turns negative at
high energies, triggering an instability in the effective
potential. Alternatively, if the Higgs is too heavy, � runs
into a Landau pole below the Planck scale. For the most
updated study on this UV fate of the SM and references to
the literature, see [26]. In the LW standard model, in
contrast, the light Higgs instability does not take place
(provided the LW mass is below the SM instability scale)

because ��̂ is proportional to �̂ itself. On the other hand,

the heavy Higgs nonperturbative regime is pushed toward
higher masses because ��̂ does not grow quadratically

with �̂ as it does in the SM. In fact, the explicit solution

(97) tells us that �̂ hits a Landau pole at

� ¼ M Exp

�
16M2�2

3ð3g2M̂2
A þ g02M̂02

A Þ
�
; (98)

independently of the Higgs mass value. This means, in
particular, that there is no perturbativity bound on the
Higgs mass in the LWSM: one could always require

�̂ðQ � MPlÞ � 2�, but the obtained bound would not be
competitive with the usual unitarity bound, and we do not

calculate it.6 Inspection of the beta function for M̂, (95),

also shows that M̂ ! 0 at the same scale �, which would
also be a pathological behavior. At any rate, the numerical
value of this cutoff scale is higher than the Planck mass and
is no cause of concern.

In the previous discussion, we have used the coupling �̂
from the higher-derivative formulation, but similar conclu-
sions follow if we use the auxiliary formulation instead. In
that formulation, the RGE for the quartic coupling � is now

�� ¼ � 48

16�2
�2; (99)

corresponding to a well-behaved, asymptotically free cou-
pling. In agreement with the previous results, one cannot
obtain lower or upper bounds on the Higgs mass on the
basis of this running behavior. Nevertheless, the cutoff
scale � reappears in this formulation when looking at the
running of M2 þ�2, which goes to zero at that scale.

2 4 6 8 10 12 14

0

0.5

1

1.5

2

log   (Q/M)10

λ(
Q

)

FIG. 3 (color online). Higgs quartic coupling �̂ running with
the renormalization scale Q in the LW standard model (blue
solid lines) as compared to the SM (red dashed lines) for several
values of the Higgs mass. The Lee-Wick mass is M ¼ 1 TeV
(note the kink in the RG evolution at that threshold).

5In fact, following [21], we expect that these beta functions
will not receive further contributions beyond one loop, with the
exception of ̂, which will still be corrected at two-loop order.

6Lattice studies of such a bound in similar models, with a
higher-derivative kinetic term as regulator, exist [7] and show a
large increase of the bound with respect to the standard case.
However, the studied cases use a �@6�=M4 term, which is of a
higher order than ours, and do not include gauge fields, prevent-
ing a direct comparison.
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On the other hand, theUð1ÞY gauge coupling g0 now runs
faster than in the SM—see (94)—and can become non-
perturbative below the Planck mass. The Landau pole for
this gauge coupling occurs at

�0 � M Exp

�
24�2

61g02ðMÞ
�
: (100)

For M ¼ 1 TeV, one gets �0 � 1016 GeV. This indicates
that new physics beyond the LWSM should appear below
MPl. Alternatively, this Landau pole could be pushed be-
yond the Planck mass if the Lee-Wick mass is higher, but
the required value, of order M� 108 GeV, is orders of
magnitude too high to solve the hierarchy problem.

B. Implications at finite temperature

As discussed in the introduction, one possible way of
probing the acausal nature of LW theories in search of a
macroscopic effect or some pathological behavior is to
study them at finite temperature. The behavior of a LW
gas in thermal equilibrium was studied in Ref. [20]. It was
found there that the contribution to the free-energy
ð��ÞLW of each LW state—that is, of the narrow reso-
nances that would be states of negative metric in the limit
that interactions are switched off—is the negative of the
contribution of a normal state of the same mass:

ð��ÞLW=VT ¼
8><
>:
�R d3p

ð2�Þ3 logð1� e�E=TÞ; for bosons;R d3p
ð2�Þ3 logð1þ e�E=TÞ; for fermions:

(101)

Here, E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
, and V and T denote volume and

temperature. Consider the energy density � at high tem-
perature. For each normal scalar degree of freedom
(labeled �), giving a normal contribution with mass
MB�1, there is a LW contribution of mass MB�2,
cf. Eq. (11). A high-temperature expansion shows that
each bosonic LW multiplet gives a contribution to the
energy density

�B
� ¼

�
�2T4

30
�M2

B�1T
2

24
þ�� �

�
�
�
�2T4

30
�M2

B�2T
2

24
þ�� �

�

¼ ðM2 � 2m2
�ÞT2

24
þ�� � ; (102)

where we have assumed m� < 2M and used the mass
expansions of Eq. (12) in the last step. Although the
normally leading term T4 is missing, the energy density
is positive and increases with temperature.

By contrast, the contribution to the energy density of a
fermionic LW multiplet includes a normal contribution
with mass MF�1 and two additional contributions from
LW modes of masses MF�2;3, cf. Eq. (24), with the oppo-

site sign. The energy density at high temperature is domi-
nated by the T4 term and is given by

�F
� ¼

�
7�2T4

240
�M2

B�1T
2

48
þ � � �

�

�X3
i¼2

�
7�2T4

240
�M2

B�iT
2

48
þ � � �

�

¼ � 7�2T4

240
þ ðM2 �m2

�ÞT2

24
þ � � � : (103)

The energy density decreases with temperature and, at high
enough temperatures, turns negative. This peculiar behav-
ior suggests that either interesting phenomena are taking
place in the LW fermionic gas at high temperature or the
result (101) is not correct; see below.
We have not computed the effective potential for the

scalar field in a plasma at finite temperature. But, there is
a well-known correspondence between the zero-
temperature self-energy diagrams that exhibit quadratic
divergences and the diagrams responsible for a scalar ther-
mal mass [27]. If � is a straight momentum cutoff, qua-
dratic divergences in the scalar mass arising from bosonic
excitations, �m2 ¼ ��2=ð16�2Þ, translate into a thermal
mass correction �m2 ¼ �T2=12. Similarly, for fermionic
excitations, �m2 ¼ ���2=ð16�2Þ translate into �m2 ¼
�T2=24. Therefore, in models that solve the hierarchy
problem by cancellations of the quadratic divergence in
the Higgs mass arising from intermediate states of the
same spin, one expects a corresponding cancellation in
the thermal mass [23].
The cancellation of quadratically-divergent contribu-

tions to the scalar potential was shown explicitly in
Secs. II B and II C for the bosonic and fermionic cases,
respectively. Consider first the bosonic case. The effective
potential, given in Eq. (13), is the sum of two same
‘‘normal’’ sign contributions. The mass shift can be ob-
tained by differentiation

�m2 ¼ 2
@V1

@v2

��������0

¼ X
�

N�

16�2

Z �2

0
p2
Edp

2
E

�
1

p2
E þM2

B�1

@M2
B�1

@v2

þ 1

p2
E þM2

B�2

@M2
B�2

@v2

���������0
; (104)

where the 0 subscript indicates evaluation at v ¼ 0. Since
M2

B�1 þM2
B�2 ¼ M2, and M is independent of the back-

ground field, one has

�m2 ¼ X
�

N�

16�2

Z �2

0
p2
Edp

2
E

�
1

p2
E þM2

B�1

� 1

p2
E þM2 �M2

B�1

�
@M2

B�1

@v2

��������0
; (105)

which shows explicitly the cancellation of quadratic diver-
gences. Rather than performing the angular momentum
integral that gives Eq. (13), one can do first the integral
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over the time component of momentum, yielding

V1 ¼
X
�

N�

16�3

Z
d3pðEB�1 þ EB�2Þ; (106)

where EB�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

B�i

q
. The connection with the finite

temperature potential is made, at least in the normal case,
by replacing the energy integral by a sum over Matsubara
modes. Doing this for the LW model, disregarding any
subtleties that may arise from the LW and CLOP prescrip-
tions, the finite temperature potential is

VT
1 ¼ X

�

N�

16�3

Z
d3pfðEB�1 þ EB�2Þ

þ T½logð1� e�EB�1=TÞ þ logð1� e�EB�2=TÞ�g: (107)
Taking a derivative, we obtain the mass shift

�m2 ¼X
�

N�

16�3

Z
d3p

@M2
B�1

@v2

��
1

EB�1

� 1

EB�2

�

þ
�

1

EB�1

1

eEB�1=T � 1
� 1

EB�2

1

eEB�2=T � 1

����������0
:

(108)

Whilst this expression is not fully justified, it does produce
the expected results: namely, the cutoff independence that
takes place as a cancellation of the T ¼ 0 terms, as well as
the absence of the thermal T2 mass shift. But, remarkably,
it was obtained from an effective potential in which the
normal and LW modes enter with normal signs. This is in
contrast with the computation of the free energy in
Ref. [20], in which the LW modes appear with negative

sign. However, we have not been able to find any problem
with the derivation in [20] and, at present, we do not know
which one of these two results, if either, is correct. LW
theory is remarkably intricate, and it is possible that missed
subtleties have rendered one or the other calculations, or
both, incorrect.
The result carries over to the fermionic case. Although

there are two LW modes for one normal mode, the sum
rule

P
3
i¼1 M

2
F�i ¼ 2M2 produces the cancellations that are

associated with the non-normal signs, even though the
potential is the sum of normal sign contributions.
Therefore, if, contrary to the findings of Ref. [20], LW
fields contribute to the thermal free energy with normal
signs, one would avoid the problem with a negative fermi-
onic contribution to the energy density discussed before.
We postpone investigation of the properties of this ther-

mal potential until a future time when we understand how
to better justify the calculation.
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