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We propose a scheme that allows to analytically determine the three elementary cross sections and

connect the solutions to the relative sign between the proton and the neutron spin scattering amplitudes

once the measurements of total event rate from three appropriate targets become available. In this way it is

thus possible to extract the maximum information on the supersymmetric parameter space obtainable from

direct detection experiments, in the case that the dark matter particle is the lightest neutralino. Our scheme

is based on suitably normalized forms of the isospin momentum dependent structure functions entering in

the spin-dependent elastic neutralino-nucleus cross section. We compare these functions with the

commonly used ones and discuss their advantages: in particular, these allow in the spin-dependent cross

section to factorize the particle physics degrees of freedom from the momentum transfer dependent nuclear

structure functions as it happens in the spin-independent cross section with the nuclear form factor.
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I. INTRODUCTION

Dark matter (DM) is the dominant matter component
in the Universe. Its nature, however, remains elusive. To
settle this point is an issue central to both particle
physics and astrophysics. If the dark matter halo sur-
rounding our galaxy is composed of weakly interacting
massive particles (WIMP), one expects them to interact
at some level with terrestrial detectors [1], depositing a
tiny amount of energy on the recoiling nucleus. From
such experiments one hopes to extract the elementary
WIMP-nucleon cross sections which should provide in-
formation about the nature of the DM particle. Many
experiments, currently running or planned, aim at
achieving this goal.

One of the most studied WIMP candidates is the lightest
neutralino in the minimal supersymmetric standard model
(MSSM) with R-parity conservation [2–4]. Neutralino
scattering with nucleons [5–8] arises at the elementary
level from its interactions with quarks. Diagrams with the
exchange of scalar particles, neutral CP-even Higgs bo-
sons and squarks, give a scalar interaction that in the non-
relativistic limit results in a spin-independent (SI)
interaction. The WIMP-proton and the WIMP-neutron SI
cross sections are almost equal, thus the scattering with the
nucleus is coherent, i.e. the SI cross section is proportional
to A2, A being the atomic mass number. Furthermore, the
interaction mediated by the Z boson and squarks induces a
spin-dependent (SD) WIMP-nucleon scattering and a SD
interaction with the whole nucleus.

Assuming that the above nucleon cross sections are of
the same order, the SD event rate is expected to be much
smaller than the SI rate, even in the case of a fairly light
nuclei, due to the aforementioned A2 dependence of the SI
cross section [9]. Given that the SD cross sections carry
fundamental information regarding the underlying theory,

the natural question is, then, whether direct detection ex-
periments can measure them.
The fact that the elementary quantities discussed above

are all that can be constrained or extracted from direct
detection experiments, using three types of nuclear targets
for any fixed WIMP mass was argued in Ref. [10] (see also
Ref. [11]).
In this paper we propose a scheme that allows to analyti-

cally determine the three elementary cross sections and
connect the solutions to the relative sign between the
proton and the neutron spin scattering amplitudes once
the measurements of the total event rate from three
appropriate targets become available, thus extracting the
maximum information on the SUSY parameter space
available from direct detection experiments.
Other multicouplings/multitargets approaches and

analysis are found in literature [11]. In Ref. [12] a scheme
for an analysis of the DAMA results considering both the
SI-SD cross sections was proposed. In Ref. [13] the authors
developed a procedure for deducing upper limits for both
the spin-dependent couplings. An analysis of the experi-
ments with SD sensitivity, in terms of both the SD proton
and neutron cross section, was performed, for example, in
Refs. [14–17]. In some recent papers the Bayesian and
frequentist statistical approach [18,19] have been applied
to the multitarget analysis to estimate the uncertainties in
the measurements of the basic quantities.
Our scheme is based on a suitable normalized form of

the momentum dependent spin structure functions (SSF)
entering in the SD nutralino-nucleus cross section, which
differs from the standard one. Though these functions were
used by one of the present authors in previous publications
[20–27], in this work, we explicitly compare the two
formalisms and emphasize the advantages of the normal-
ized SSF.
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The plan of this paper is as follows. In Sec. II we
discuss our scheme and the main results. In Sec. III we
make comparisons with the predictions of the con-
strained MSSM (CMSSM). Further discussions and com-
ments are given in Sec. IV. Finally, in the Appendixes
we discuss and demonstrate the advantages of the nor-
malized spin structure functions over the standard
formalism.

II. AN ANALYTICAL SCHEME FOR EXTRACTING
THE ELEMENTARY CROSS SECTIONS

For a nucleus with mass number A the total event rate
per unit of mass per unit of time is given by [27]

R ¼ �l

m�

1

Amp

ffiffiffiffiffiffiffiffiffi
hv2i

q
ð�SI

ðAÞð0ÞtSI þ �SD
ðAÞð0ÞtSDÞ: (1)

Here �l ¼ 0:3 GeV=cm3 is the local dark matter density in
the halo, m� the WIMP mass, mp � mn the nucleon mass,

i.e. Amp is the nuclear mass, �SI
ðAÞð0Þ and �SD

ðAÞð0Þ are the

total SI and SD WIMP-nucleus cross sections in the zero
momentum transfer limit (ZMTL).

Assuming the near equality of the proton and neutron SI
cross sections as is the case for the neutralino, in terms of
the elementary WIMP-nucleon cross section �SI, the SI
WIMP-nucleus cross section reads

�SI
ðAÞð0Þ ¼

�
�A

�p

�
2
A2�SI; (2)

with �p (�A) the WIMP-proton (nucleus) reduced mass.

Moving to the SD case, the ZMTL spin nuclear matrix
elements are defined as

�A
p;n ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
J þ 1

J

s
h ~Sp;ni; (3)

with J the total angular momentum of the nucleus in the

ground state and h ~Sp;ni the expectation values of the spin of
the proton and neutron groups. The ZMTL SD WIMP-
nucleus cross section can be written in the proton-neutron
representation using Eqs. (3) and (A3)–(A5). The SD
WIMP-nucleon scattering amplitudes ap and an in general

can have an opposite sign (see Sec. IV), thus we write1

�SD
ðAÞð0Þ ¼

�2
A

�
ð�A

pjapj ��A
n janjÞ2: (4)

For the scope of this paper it is convenient to rewrite
Eq. (4) in terms of the elementary cross sections that

are given by �SD
p;n ¼ 3ð�p

2=�Þjap;nj2. Using this

expression2 and introducing % ¼ �1, we get

�SD
ðAÞð0Þ ¼

�
�A

�p

�
2 1

3

�
�A

p

ffiffiffiffiffiffiffiffiffi
�SD

p

q
þ %�A

n

ffiffiffiffiffiffiffiffiffi
�SD

n

q �
2
: (5)

The factors tSI;SD are the convolution of the nuclear form
factor and of the momentum transfer dependent SSF with
theWIMP velocity distribution, assumed to be the standard
truncated Maxwellian velocity distribution. The root mean

squared velocity is
ffiffiffiffiffiffiffiffiffihv2ip ¼ ffiffiffiffiffiffiffiffi

3=2
p

�0 ¼ 280 km=s with
�0 ¼ 229 km=s the velocity of the Sun around the center
of the galaxy. We neglect the small time dependent effects
(modulation) associated with the motion of the Earth.
It is worth remarking here that the factor tSD in the SD

part of the total rate in Eq. (1) does not depend on the
particle physics couplings ap;n but only on the momentum

transfer dependent SSF. This factorization is achieved us-
ing the SSFFij defined in Refs. [20–27] while it is not valid

using the commonly used functions Sij [28,29]. We discuss

this issue in full details in Appendix A.
In view of the fact that the spin structure functions have

been obtained in the context of the nuclear shell model, we
deviate from the usual practice of dark matter calculations
[30] and use also for the SI cross section a form factor
obtained in the context of the shell model. Details on tSI;SD

are given in Appendix B.
We then proceed by first rewriting Eq. (1) in a form

where only quantities with the dimension of a cross section
appear. To this end we define the factor

R0 ¼ �l

ð100 GeVÞ
1

mp

ffiffiffiffiffiffiffiffiffi
hv2i

q
�0 ’ 1:6� 103 kg�1 yr�1

� �l

ð0:3 GeV=cm3Þ

ffiffiffiffiffiffiffiffiffihv2ip
ð280 km=sÞ

�0

ðpbÞ ; (6)

where �0 ¼ 10�8 pb is the current experimental sen-
sitivity to the SI cross section. R0 is thus fixed to R0 ’
1:6� 10�5 kg�1 yr�1. Furthermore we define the abbrevi-
ations

cSI ¼ ð100 GeVÞ
m�

�
�A

�p

�
2
AtSI; (7)

cSD ¼ ð100 GeVÞ
m�

�
�A

�p

�
2 1

3

tSD

A
; (8)

1Depending on the nucleus, also the spin matrix elements can
have an opposite sign. The relative sign thus would appear
between j�A

papj and j�A
nanj. Anyway, the sign of�A

p;n is known
from nuclear physics calculations. In particular, in case of 127I,
73Ge, 19F used below, the relevantmatrix elements are all positive.

2Different normalizations for the SDcross sections can be found
in literature with the scattering amplitudes still indicated as ap;n.
For example, in Ref. [3] one finds�SD

p;n ¼ 12ð�p
2=�Þjap;nj2 while

in Ref. [13] �SD
p;n ¼ 24G2

Fð�p
2=�Þjap;nj2; in these cases other

factors appear in Eq. (4). For our scope it is useful to have compact
expressions, thus our jap;nj2 include all numerical factors except
the factor 3, that in last analysis comes from the spin average. This
normalization seems to be same adopted in the code DARKSUSY

used in Sec. IV for numerical calculations.

M. CANNONI, J. D. VERGADOS, AND M.E. GÓMEZ PHYSICAL REVIEW D 83, 075010 (2011)
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R ¼ cSD=cSI; (9)

S ¼ R

cSIR0

�0: (10)

Leaving the dependence on the WIMP mass understood,
Eq. (1) can be rewritten in the desired form:

SA ¼ �SI þRA

�
�A

p

ffiffiffiffiffiffiffiffiffi
�SD

p

q
þ %�A

n

ffiffiffiffiffiffiffiffiffi
�SD

n

q �
2
: (11)

We now consider three nuclei with the following char-
acteristics: A1 for which both proton and neutron spin
matrix elements are relevant, a proton spin favoring target

A2 with �A2
p � �A2

n and a neutron spin favoring target A3

with �
A3
n � �

A3
p . A system of nuclei matching these

conditions is given by three odd mass nuclei currently
employed in many experiments: 127I as the target A1,

19F
as the A2 nucleus and

73Ge as the A3.
Detailed nuclear model calculations for the spin matrix

elements h ~Sp;ni and form factors have been carried out in

past years. For 19F we use the spin matrix elements of
Ref. [21] that give �19

p ¼ 1:646 and �19
n ¼ �0:030; for

73Ge the results of Ref. [31], �73
p ¼ 0:066 and �73

n ¼
0:836; finally for 127I the set obtained with the potential
Bonn-A from Ref. [32] that furnishes �127

p ¼ 0:731 and

�127
n ¼ 0:177. The hypothesis on the spin matrix elements

are thus well satisfied.
Neglecting the neutron contribution in A2 and the proton

contribution in A3, from Eq. (11) we have the system of
equations:

8>>>><
>>>>:

�SI þRA1

�
�A1

p

ffiffiffiffiffiffiffiffiffi
�SD

p

q
þ %�A1

n

ffiffiffiffiffiffiffiffiffi
�SD

n

p �
2 � SA1

¼ 0

�SI þRA2
ð�A2

p Þ2�SD
p � SA2

¼ 0

�SI þRA3
ð�A3

n Þ2�SD
n � SA3

¼ 0:

(12)

Solving for �SD
p and �SD

n from the second and third equa-

tions and substituting them into the squared of the first
equation, we obtain a second order equation in �SI,
namely,Að�SIÞ2 � 2Bð�SIÞ þ C ¼ 0. Introducing the pa-
rameters

a ¼ RA1

RA2

ð�A1
p Þ2

ð�A2
p Þ2 ; b ¼ RA1

RA3

ð�A1
n Þ2

ð�A3
n Þ2 : (13)

and the abbreviations

� ¼ 1� a� b; (14)

� ¼ SA1
� aSA2

� bSA3
; (15)

	 ¼ 2ab; (16)

the coefficients are found to be

A ¼ �2 � 2	; (17)

B ¼ ��� 	ðSA2
þ SA3

Þ; (18)

C ¼ �2 � 2	SA2
SA3

: (19)

The two sets of solutions, indicated as sþ and s� respec-
tively, are thus

sþ:

8>>>>>>>><
>>>>>>>>:

�SIþ ¼Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2�AC

p
A

�SD
p;þ¼ SA2

��SI
þ

RA2
ð�A2

p Þ2

�SD
n;þ¼ SA3

��SI
þ

RA3
ð�A3

n Þ2

s�:

8>>>>>>>><
>>>>>>>>:

�SI� ¼B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2�AC

p
A

�SD
p;�¼ SA2

��SI�
RA2

ð�A2
p Þ2

�SD
n;�¼ SA3

��SI�
RA3

ð�A3
n Þ2 :

(20)

Though the solutions do not depend on % explicitly, for
each sign the solution is unique. In fact, each of the three
equations of the system in Eq. (12) is the sum of �SI with a
term that depends on the SD cross sections, say �SI þ fi,
i ¼ 1, 2, 3. Obviously, for each solutions set, the three
terms fi have to be equal, that is, it must be f1 ¼ f2 ¼ f3.
However, the square in f1 in the first equation contains an
interference term that can be positive or negative because it
depends on %. This means that, for example, the set sþ
cannot satisfy at the same time f1ð% ¼ þ1Þ ¼ f2 ¼ f3
and f1ð% ¼ �1Þ ¼ f2 ¼ f3. Given that the same argument
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FIG. 1 (color online). Correlated plane ðRð127IÞ; Rð19FÞÞ (left
column) and ðRð127IÞ; Rð73GeÞÞ (right column), showing the
behavior of the signs in Eq. (20) for m� ¼ 30 GeV (top) and

200 GeV (bottom). For example, fixing a value of Rð127IÞ in the
abscissas of the two columns, one can read at the same time on
the ordinates, the allowed ranges of values for Rð19FÞ and
Rð73GeÞ. The cross sections of sþ are all positive for values of
the rates in the colored areas while the values of s� are all
positive only in the restricted central turquoise and orange areas.
In the white nonphysical areas both sþ and s� have at least one
negative value.
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applies to s�, each set in Eq. (20) is thus associated to one
sign of %.

In the specific case of 127I, 73Ge, 19F, the factors tSI;SD

were calculated for Emin ¼ 0 and neutralino masses up to
200 GeV in Ref. [27]. Using those results we find that the
parameters defined in Eq. (13) are very similar for all the
masses, a ’ 4� 10�3 and b ’ 1� 10�2, that is a � 1 and
b � 1. Considering the cases S1 � S2 � S3, S1 �
ðS2;S3Þ and S1 � ðS2;S3Þ, one easily finds from
Eqs. (14) and (19) that �� 0, �� 2	S2

1, �� 2	S2S3,
respectively, thus the discriminant is always positive.

Some of the cross sections in sþ and s� may turn out to
be negative for some values of the rates, thus nonphysical.
We have varied numerically the three rates in 4 orders of
magnitude and in Fig. 1 we show the behavior of the signs
of Eq. (20) in the correlated planes ðRð127IÞ; Rð19FÞÞ, left
column, and ðRð127IÞ; Rð73GeÞÞ, right column. In the central
turquoise and orange regions around the diagonal, all the
three cross sections of sþ and all the three cross sections of
s� are positive. In the grey and yellow areas, sþ have
positive values but s� can have at least one negative cross
section. In the white areas both the sets have at least one
negative cross section. As an example, suppose that a rate
Rð127IÞ ¼ 10�1 kg�1 yr�1 is measured for the case m� ¼
30 GeV. In the interval of values 10�3 & Rð19FÞ &
6 kg�1 yr�1 and 10�3 & Rð73GeÞ & 10 kg�1 yr�1 the so-
lutions sþ are positive but the solutions s� are all positive

only in the restricted ranges 10�3 & Rð19FÞ &
8� 10�1 kg�1 yr�1 and 10�2 & Rð73GeÞ & 4 kg�1 yr�1.
The variations of the allowed regions passing from m� ¼
30 GeV to m� ¼ 200 GeV are small.

We plot in Fig. 2 the extracted cross sections, Eq. (20), as
a function of Rð19FÞ fixing the rates in 73Ge and 127I near
the experimental limits, Rð73GeÞ ¼ Rð127IÞ ¼ 1 kg�1 yr�1

and three values of the neutralino mass. Note that the
abscissa range of the curves corresponds to the interval
of values of Rð19FÞ, where both sets of solutions are
positive, that can be read from the left column of Fig. 2
for Rð127IÞ ¼ 1 kg�1 yr�1. The two solutions for �SD

p are

almost overlapping: this is because we plot the cross
sections as a function of the rate in 19F that is the nucleus
more sensitive to this cross section. For the same reason
�SD

p changes by orders of magnitude with Rð19FÞ while the
variations of �SI and �SD

n are less dramatic. We find
numerically that, for the chosen nuclei in the considered
range of rates in Fig. 2, sþ (s�) is the set of solutions
associated with % ¼ �1 (% ¼ þ1).

III. COMPARISON WITH THE CMSSM

In the CMSSM [33] all the soft breaking terms at the
weak scale are obtained by evolving the renormalization
group equations of the model from the common scalar
massm0, the common gaugino massm1=2 and the common

trilinear scalar coupling A0, assigned at the gauge unifica-
tion scale. The running further depends on the ratio of the
vacuum expectation values of the Higgs doublet, tan�, and
the sign of Higgs mixing term �, which we take to be
positive.
Assuming that the neutralino constitutes all the DM

relic density as deduced from WMAP [34] measurements,
0:094<�h2 < 0:128 at 3�, the CMSSM parameter
space is heavily restricted. We further impose [35,36]
the LEP bound on the light Higgs mass mh > 114 GeV,
and other phenomenological constraints using the code
DARKSUSY [37]. The scan of the parameter space is done

fixing A0 ¼ 0, tan� ¼ 10, 50 and varying the scalar mass
and gaugino mass up to the values m0 < 4000 GeV,
m1=2 < 1500 GeV.
In Fig. 3 we plot the SI neutralino-proton cross section

(the neutron SI cross section may differ from that for the
proton by less than a few percent), the proton and neutron
SD cross sections and their ratio as a function of the
neutralino mass. In all the panels the points on the bottom
arise from points of the parameter space in the stau-
coannihilation region where the lightest stau has mass
nearly degenerate with the lightest neutralino. The points
on the top are in the focus point regions of the parameter
space, large m0, where the neutralino has a relevant
Higgsino component, and some points, at large tan�, in
the funnel region, where the neutralino mass is almost half
of the mass of the neutral pseudoscalar Higgs. We also plot
in the first panel the upper limit curve on the SI cross
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FIG. 2 (color online). The solutions, Eq. (20), of the system
Eq. (12) for the nuclei 127I, 73Ge, 19F as a function of Rð19FÞ: sþ,
solid lines, and s�, dashed lines. We fix Rð127IÞ ¼ Rð73GeÞ ¼
1 kg�1 yr�1 and three values of the neutralino mass.
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section obtained by the XENON100 experiment [38],
which, at present, has provided the strongest constrain on
�SI. The points with the highest cross sections at low
neutralino mass, mostly in the focus point region, are
already excluded.

The proton and neutron SD scattering amplitudes, ap ¼P
qgq
q

ðpÞ and an ¼ P
qgq
q

ðnÞ, are determined by the

low energy effective couplings gq and 
qN , the spin frac-

tion of the nucleon carried by the light quarks q ¼ u, d, s.
We adopted for the latter quantities the central values
obtained by the HERMES collaboration for the proton

[39], 
uðpÞ ¼ 0:842, 
dðpÞ ¼ �0:427, 
sðpÞ ¼ �0:085

and 
uðnÞ ¼ 
dðpÞ, 
dðnÞ ¼ 
uðpÞ, 
sðnÞ ¼ 
sðpÞ from iso-
spin symmetry for the neutron. The ratio �SD

p =�SD
n is

almost constant and it is greater than one in the focus point
and funnel strip and less than one in the stau-coannihilation
regions.

Moreover we find that ap is always negative and an
always positive and this crucially depends on the values
of the spin structure functions of the proton [40]. The
fundamental cross sections are thus provided by the set
sþ. Comparing the predictions of sþ in Fig. 2, solid lines,
for m� ¼ 200 GeV (in the CMSSM masses below

�50 GeV are excluded) with Fig. 3 we see that the
extracted cross sections are compatible with the cross

sections predicted by the CMSSM in the stau-
coannihilation region for a total rate in fluorine at the level
of 5� 10�2 kg�1 yr�1.

IV. DISCUSSION

Other realizations of the supersymmetry breaking or
supersymmetric models other than the CMSSM may
predict different relations between the elementary cross
sections; it is however clear that the SD interactions carry
a lot of information about the fundamental theory. In spite
of this fact, the SD event rate can be small also in
light nuclei, thus rendering the measurement of the SD
WIMP-nucleon cross sections difficult.
We have shown that, if the total event rates are measured

in 127I, 73Ge and 19F targets, the system given by Eq. (11)
allows the extraction of all elementary nucleon cross sec-
tions, i.e. the spin-independent as well as the proton and
neutron spin-dependent, and that the solutions are con-
nected with the relative sign between the proton and
neutron spin-dependent scattering amplitudes.
These three nuclei were chosen for several reasons: the

nuclear spin matrix elements are known with sufficient
degree of precision and their values allow to write
the equations for the total rates in the form of Eq. (12);
the parameters defined in Eq. (13) are both � 1 and this
ensures that the solutions given by Eq. (20) are real for all
values of the measured rates; finally, they are going to be
employed in experiments with much more massive targets.
For example, the COUPP experiment, bubble chamber
based on CF3I [41], which has a proposal for a ton scale
experiment [42] cannot measure the energy spectra but
only counting rates (see also the discussion in Ref. [18]).
This experiment contains the nuclei I and F employed in
our analysis. If, in the future, precise rates are measured by
this experiment, in conjunction with a ton scale experiment
employing Ge like SuperCDMS/GEODM [43] and
EURECA [44] projects, our results will directly allow the
extraction of all the cross sections, even if the recoil energy
spectra are not available.
Certainly, due to the great variety of nuclei employed in

present and planned experiments, other combinations of
target nuclei can be used, depending on the availability of
reliable data. If the nucleus A1 has sensitivity only to the SI
interaction, it is a ¼ b ¼ 0. From Eqs. (14)–(19) it is found
A ¼ 1, B ¼ SA1

, C ¼ B2 thus � ¼ B2 �AC ¼ 0 and

the two sets in Eq. (20) reduce to the unique solution:

��SI¼SA1
; ��SD

p ¼ SA2
�SA1

RA2
ð�A2

p Þ2 ; ��SD
n ¼ SA3

�SA1

RA3
ð�A3

n Þ2 : (21)

These are the expected formulas for the simpler case where
A1 is an even-even nucleus, like Ar employed in large mass
experiments like WArP [45], ArDM [46] and the future
project DARWIN [47]. In this case it is possible to extract
the SI cross section cleanly but the connection of the
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FIG. 3 (color online). Neutralino-nucleon cross sections as a
function of the neutralino mass in the constrained minimal
supersymmetric standard model with A0 ¼ 0, �> 0, m0 <
4000 GeV, m1=2 < 1500 GeV, tan� ¼ 10 and tan� ¼ 50. The

points satisfy the WMAP 3� bound 0:094<�h2 < 0:128 [34]
on the relic density. The blue points are for tan� ¼ 10, the
turquoise ones for tan� ¼ 50. The red curve is the XENON100
upper limit on the SI cross section.
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solutions with the sign is lost. However, it can be recovered
using 127I with other combinations like I, Ar, Ge or I, Ar, F
or Xe instead of Ge.

One last comment regarding the normalized SSF dis-
cussed in Appendix A is in order. In the usual formalism of
the SD rate employing Eqs. (A1) and (A2), in general it is
not possible to convert an experimental upper limit to an
upper bound on �SD

p;n independently of neutralino proper-

ties [48] because the nuclear momentum dependent de-
grees of freedom are not decoupled from the particle
physics couplings. As a matter of fact, it has become
standard procedure to use the method of Ref. [13] to set
limits on the cross sections in a WIMP-independent way.
This independence is achieved anyway using the ZMTL
total cross section in Eq. (A5) and not the full q-dependent
cross section: this can be a bad approximation in the case of
heavy nuclei and/or heavy neutralinos. The correct q de-
pendence, at least for the nuclei for which full nuclear
physics calculations are available, can be incorporated in
this method employing the normalized SSF which allow
the factorization of the particle physics degrees of freedom
from the q-dependent nuclear physics structure functions.
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APPENDIX A: THE NORMALIZED
SPIN STRUCTURE FUNCTIONS

The calculation of the elastic neutralino-nucleus full
momentum transfer dependent cross section is conven-
iently performed in the isospin basis. In the formalism
introduced in Ref. [28] and reviewed in [29], which is
the commonly used in the particle physics and astrophysics
literature (see the reviews in [2–4]), the differential cross
section is written as

d�SD
ðAÞ

dq2
¼ 1

4ð�AvÞ2
�SD

ðAÞð0Þ
SðqÞ
Sð0Þ : (A1)

The momentum transfer dependent SSF enter in the factor

SðqÞ ¼ a20S00ðqÞ þ a0a1S01ðqÞ þ a21S11ðqÞ: (A2)

In the ZMTL it reduces to

Sð0Þ ¼ 2J þ 1

�
JðJ þ 1Þ

�
�
a0ðh ~Spi þ h ~SniÞ þ a1ðh ~Spi � h ~SniÞ

2J

�
2
; (A3)

being a0;1 the isoscalar and isovector coupling deter-

mined by the particle physics model and related to the
proton-neutron representation by the relations

a0 ¼ ap þ an; a1 ¼ ap � an: (A4)

In the ZMTL the total cross section is

�SD
ðAÞð0Þ ¼

4�2
A

2J þ 1
Sð0Þ: (A5)

The single functions SijðqÞ, i, j ¼ 0, 1 denoting the isospin

channels, that are obtained from nuclear shell model cal-
culations, are not normalized to one, but the normalization
of the ‘‘spin form factor’’ is achieved by the ratio
SðqÞ=Sð0Þ.
In the formalism of Refs. [20,21], the SSF are given by

FijðuÞ ¼
X
�;k

�ð�;kÞ
i ðuÞ�ð�;kÞ

j ðuÞ
�i�j

; (A6)

where �ð�;kÞ
i ðuÞ are the matrix elements of the multipole

expansion of the nuclear spin operators evaluated in a

multiparticle basis and �ð0;1Þ
i ð0Þ � �i are the ZMTL

values. Details can be found in Ref. [21].
The dimensionless variable u is given by u ¼ q2b2=2

where b is the nuclear oscillator size parameter that
depends on the atomic mass number of the particular

nucleus, b ¼ 1 fmA1=6 � 5� 10�3 MeV�1A1=6. The dif-
ferential neutralino-nucleus cross section in the laboratory
frame reads

d�SD
ðAÞ

du
¼ 1

2ð�AbvÞ2
4�2

A

2J þ 1
F ðuÞ; (A7)

with

F ðuÞ ¼ 2J þ 1

16�
ða20�2

0F00ðuÞ þ 2a0a1�0�1F01ðuÞ
þ a21�

2
1F11ðuÞÞ: (A8)

The SSF defined in Eq. (A6) are normalized to one at
u ¼ 0 because the ZMTL values �0;1 have been factored

out, thus explicitly appearing in Eq. (A8). These are related
to the �p;n defined in Eq. (3) by

�0 ¼ �p þ�n; �1 ¼ �p ��n: (A9)

The formulas connecting the two sets of SSF are

S00ðqÞ ¼ 2J þ 1

16�
�2

0F00ðuÞ; (A10)

S01ðqÞ ¼ 2J þ 1

8�
�0�1F01ðuÞ; (A11)

S11ðqÞ ¼ 2J þ 1

16�
�2

1F11ðuÞ: (A12)

We are in the position to appreciate the differences
between the two formalisms. In the case of the light
nucleus 19F, the functions Fij are given in an analytical

form in Refs. [21,27] as
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Fð19FÞ
ij ðuÞ ¼ e�u

X4
k¼0

fðkÞij u
k: (A13)

For the isotope 73Ge, the authors of Ref. [31] furnish a
polynomial fit to the calculated SSF of the following form:

Sð
73GeÞ
ij ðyÞ ¼ X6

k¼0

gðkÞij y
k; (A14)

while for 127I, the authors of Ref. [32] fit their functions
(here we use the ones obtained with the Bonn-A nucleon-
nucleon potential) with

Sð
127IÞ
ij ðyÞ ¼ e�2y

X8
k¼0

iðkÞij y
k; (A15)

in terms of the variable y ¼ ðqb=2Þ2 ¼ u=2. The coeffi-
cients of the polynomials are found in the cited papers and
in the review [4]. Using Eqs. (A10)–(A15) and the ZMTL
�0;1 obtained with Eqs. (3) and (A9), we plot in Fig. 4 the

two sets for the nuclei 19F, 73Ge, 127I as a function of
the variable y. Introducing the quantity Q0 ¼ ðb2AmpÞ�1

the variables u and y are related to the recoil energy
through the relation

ER ¼ uQ0 ¼ 2yQ0 ¼ 2y� 40A�4=3 MeV: (A16)

As it is evident, while the Sij look quite different, the Fij

are practically identical in the interesting range 0< y< 1:
using Eq. (A16), y ¼ 1 corresponds to ER ¼ 1578 keV in
19F, ER ¼ 262 keV in 73Ge and ER ¼ 125 keV in 127I. We
remark that while for the light nucleus 19F the functions in
Eq. (A13) are an exact result of the shell model calcula-
tions, the functions in Eqs. (A14) and (A15) for the more
complex nuclei 73Ge, 127I, fit with the results of the shell
model calculations which cannot be cast in a simple ana-
lytical form. Furthermore, in a more recent large-scale
shell model computation performed in Ref. [49] the au-
thors calculate the FijðuÞ SSF for the heavy nuclei 127I,
129Xe, 131Xe, 133Cs and find the same behavior (see Fig. 3
and Fig. 4 of [49]).
Given that F00ðuÞ ’ F01ðuÞ ’ F11ðuÞ we can describe

the momentum dependence of the cross section in terms
of only one structure function, for example, the one asso-
ciated with the isovector channel F11ðuÞ. Considering the
intrinsic uncertainties in the nuclear physics calculations,
in the WIMP velocity distribution function and in the
particle physics couplings, this is by far a well motivated
approximation with negligible error in the calculation of
the cross section. We thus rewrite Eq. (A8) as

F ðuÞ ¼ 2J þ 1

16�
ða0�0 þ a1�1Þ2F11ðuÞ; (A17)

and going to the proton-neutron representation using
Eqs. (A3)–(A5) and (A9), we finally find

d�SD
ðAÞ

du
¼ 1

2ð�AbvÞ2
�SD

ðAÞð0ÞF11ðuÞ: (A18)

Equation (A18) is equivalent to, but simpler than, Eq. (A1).
We summarize and highlight the advantages of the nor-
malized SSF:
(1) the three Fij are normalized to one at zero momen-

tum transfer and are always positive definite, while
the interference term S01, depending on the nucleus,
can be negative (see the case of 73Ge);

(2) the three Fij are to a very good approximation

identical, thus one has to deal only with one SSF
instead of three;

(3) in Eq. (A7), differently from Eq. (A1), the particle
physics and nuclear physics momentum dependent
degrees of freedom are thus completely factorized.

APPENDIX B: THE FACTORS tSI;SD

Starting from Eq. (A7) the tSD factor in Eq. (1) is
defined as

0.00

0.05

0.10

0.15

0.20

0.25

S00
S01
S11

0.0

0.2

0.4

0.6

0.8

1.0

F00
F01
F11

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

y=(qb/2)
2y=(qb/2)

2

19
F

73
Ge

127
I

19
F

73
Ge

127
I

FIG. 4 (color online). The momentum transfer dependent spin
structure functions Sij (left column) and Fij (right column), from

top to bottom for the nuclei 19F, 73Ge, 127I.
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tSD¼
Z umax

umin

duF11ðuÞ
Z vmax

vminðuÞ
d3 ~v

vffiffiffiffiffiffiffiffiffihv2ip fð ~vÞ
2ð�AbvÞ2

: (B1)

As stated in Sec. II, we neglect in this work the small
effects associated to motion of the Earth and consider the
standardWIMPMaxwellian velocity distribution truncated
at the escape velocity vesc [50]. The integration limits are:

vmax ¼ vesc, vminðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu=ð2�2

Ab
2Þ

q
, umax¼2ð�AbvescÞ2

and umin ¼ Emin=Q0, where Emin is set by the energy
threshold of the detector.

The factor tSI is given by the same formula replacing
F11ðuÞ with jFðuÞj2, where FðuÞ is the nuclear form factor
[20,21,51]. For consistency we use the same nuclear
model, i.e. the same orbitals, the same interaction and the

same size parameter, in obtaining the spin structure func-
tions and the coherent form factor. In the context of the
shell model, the coherent form factor arises: (1) from the
contribution of the Acore ¼ A� Aexc nucleons in the core.
These nucleons are put in the lowest orbitals allowed by the
Pauli principle; (2) from the contribution of the nucleons
Aexc outside of the closed shell. The wave function describ-
ing them is obtained by diagonalizing a suitable effective
interaction in the corresponding model space. It turns out
that this last contribution can be very well approximated by
allowing the Aexc nucleons to be placed in the lowest
energy harmonic oscillator shells allowed by the Pauli
principle. This approximation is quite good even in the
case of light nuclei [21].
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