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Directional detection is a promising dark matter search strategy. Indeed, weakly interacting massive

particle (WIMP)-induced recoils would present a direction dependence toward the Cygnus constellation,

while background-induced recoils exhibit an isotropic distribution in the Galactic rest frame. Taking

advantage of these characteristic features, and even in the presence of a sizeable background, it has

recently been shown that data from forthcoming directional detectors could lead either to a competitive

exclusion or to a conclusive discovery, depending on the value of the WIMP-nucleon cross section.

However, it is possible to further exploit these upcoming data by using the strong dependence of the

WIMP signal with: the WIMP mass and the local WIMP velocity distribution. Using a Markov chain

Monte Carlo analysis of recoil events, we show for the first time the possibility to constrain the unknown

WIMP parameters, both from particle physics (mass and cross section) and Galactic halo (velocity

dispersion along the three axis), leading to an identification of non-baryonic dark matter.

DOI: 10.1103/PhysRevD.83.075002 PACS numbers: 95.35.+d, 14.80.�j

I. INTRODUCTION

Directional detection of Galactic dark matter has been
first proposed by D.N. Spergel , highlighting the fact that
even low-angular-resolution directional detectors could be
used to show a clear asymmetry in the forward/backward
distribution of weakly interacting massive particle (WIMP)
events with respect to the direction of the Cygnus
constellation.

Beyond the simple asymmetry feature, it has recently
been shown that dedicated statistical data analysis of forth-
coming directional detectors [2–6] could lead either to a
competitive exclusion [7] or to a conclusive discovery
[8,9], depending on the value of the WIMP-nucleon cross
section. In the latter case, by using a map-based likelihood
analysis and even in the presence of a sizeable background,
it is possible to show that the main incoming direction does
correspond to the direction of the Cygnus constellation
ð‘�; b�Þ. This is indeed the discovery proof of this
detection strategy and it has been shown that a 10 kg CF4
detector (MIMAC), operated during three years, would
allow for a high significance discovery down to
�SD ’ 10�4 pb [10]. In this paper, we strive to go one
step beyond by trying to constrain the properties of
Galactic dark matter with directional detection.

Indeed, constraining WIMP parameters (mass m� and

cross section �n) with upcoming dark matter experiments
is a main concern of current phenomenological studies,
using either indirect detection [11,12], direct detection on
its own [12–17], in combination with collider data [18] or
with the measurements of halo star kinematics [19]. The
quest for a model-independent formalism is a difficult task,

as the signal expected in direct detection depends on the
properties of both the WIMP particle (mass and cross
section) and the Galactic dark batter halo (three-
dimensional local WIMP velocity distribution and den-
sity). This approach is of particular interest in the context
of competitive upcoming experiments which might be able
to give positive WIMP detection instead of background
rejection. M. Drees and C. L. Shan have proposed a model-
independent reconstruction of the WIMP velocity distribu-
tion as well as its various moments (mean velocity,
dispersions, . . .), providing the WIMP mass is a priori
known [15] or deduced from positive signals from at least
two direct detectors with different target nuclei [16]. The
complementary approach is to constrain the WIMP prop-
erties with the help of a high-dimensional multivariate
analysis and within the framework of a general halo model,
with a large number of parameters. Thus, the main strength
of this study, and hence of directional detection, is the
possibility of constraining the properties of both the dark
matter particle and the dark matter halo with a single
experiment. The choice of the fitting model must be well
motivated e.g. by N-body simulations, as it remains as an
ansatz.
Directional detection presents a high identification po-

tential, thanks to the use of the double-differential spec-
trum d2R=dERd�R, also called the directional event rate,
in a given recoil energy range. Indeed, its shape depends
both on the WIMP mass and WIMP velocity distribution,
while the magnitude mainly depends on the product of the
local WIMP density and the WIMP-nucleon cross section.
Within the framework of a multivariate recoil event analy-
sis using a Markov chain Monte Carlo (MCMC), we show
for the first time the possibility of constraining, with a
single directional experiment, the unknown WIMP*billard@lpsc.in2p3.fr
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parameters, both from particle physics ðm�;�Þ and

Galactic halo (velocity dispersion along the three axis),
leading to an identification of nonbaryonic dark matter. It
is, of course, possible to include external data, e.g. halo star
kinematics as in [19], and to relax some astrophysical
inputs, as �0 for instance. However, in this work, we focus
on the contribution of directional detection on its own,
highlighting the need for future large directional detectors.

The paper is organized as follows. In Sec. II, the dark
matter halo modeling is introduced, while the directional
detection framework is presented in Sec. III. Then, the
Markov chain Monte Carlo analysis is detailed in
Sec. IV, highlighting the performance of such a method
in the context of directional detection. Section V presents
the results of this eight-parameter analysis for a directional
detector with a sizeable background contamination and in
the case of a benchmark dark matter model. Departures
from this input model, by changing the WIMP mass, the
velocity anisotropy and the background assumptions are
presented in Sec. VI.

II. DARK MATTER HALO MODELING

Direct detection depends crucially on the local WIMP
velocity distribution [20–22] and it is important to inves-
tigate the effect of halo modeling on exclusion limits and
allowed regions. The alternative strategy is to build a
multivariate analysis, using a halo model with a large
number of parameters to be constrained by the analysis.
The isothermal sphere halo model is often considered, but
it is worth going beyond the standard assumption,
especially when considering recent hints in favor of
triaxiality.

Indeed, recent results from N-body simulations are in
favor of triaxial dark matter halos with anisotropic velocity
distributions and potentially containing substructures as
subhalos (clumps) and dark disk [23–26]. Moreover, recent
observations of Sagittarius stellar tidal stream have shown
evidence for a triaxial Milky Way dark matter halo [27],
with the short axis being approximately aligned with the
Galactic x̂ axis (toward the Galactic center), and the lon-
gest with the Galactic ŷ axis (in the direction of the solar
motion). However, it is noteworthy that this result holds
true at large radius (60 kpc) and N-body simulations have
shown that there can be significant variations of the axis
ratios with radius [28]. Hitherto, there is no observational
evidence of triaxiality at solar position.

The multivariate Gaussian WIMP velocity distribution
has been first proposed by N.W. Evans et al. [29].
It corresponds to the simplest triaxial generalization of
the standard isothermal sphere with a density profile
�ðrÞ / 1=r2, leading to a smooth WIMP velocity distribu-
tion without substructure, with a flat rotation curve and in
dynamical equilibrium. The velocity dispersion tensor �v,
given by the Jeans equations, is symmetric. Thus, one can
find an orthogonal basis in which the tensor is diagonal

leading to the following expression of the WIMP velocity
distribution in the solar system rest frame,

fð ~vÞ¼ 1

ð8�3 det�2
vÞ1=2

exp

�
�1

2
ð ~v� ~v�ÞT��2

v ð ~v� ~v�Þ
�
;

(1)

where the velocity dispersion tensor �v¼diag½�x;�y;�z�
is assumed to be diagonal in the Galactic rest frame
and ~v� is the Sun motion with respect to the Galactic
rest frame. The velocity anisotropy �ðrÞ is then defined
as [30]

�ðrÞ ¼ 1� �2
y þ �2

z

2�2
x

: (2)

According to N-Body simulations with or without baryons
[24,31–33], the � parameter at R� ¼ 8 kpc of the Galactic
center spans the range 0–0.4, which is in favor of radial
anisotropy.
As stated above, our choice is to develop a high-

dimensional multivariate analysis considering a general
enough halo model, i.e. with a large number of parame-
ters, and by constraining all of them with the data analy-
sis of a single experiment. The choice of the halo model
must be carefully done, as it remains as an ansatz.
Following recent results from N-body simulations with
baryons [24,34], the choice of a multivariate Gaussian
seems to be a reasonable guess, although one could argue
that deviations are observed in the WIMP velocity dis-
tribution, making it closer to a generalized Gaussian or
even a double Maxwellian distribution when considering
the presence of a corotating dark disk. We argue that
worrying about the exact shape of the WIMP velocity
distribution seems to be not relevant, in particular when
taking into account the fact that the resolution of current
numerical simulations is many orders of magnitude larger
than the scale of the ultralocal dark matter distribution
probed by current and future detectors. This is why we
have chosen a multivariate Gaussian WIMP velocity
distribution as a fitting model, in a first attempt to con-
strain both the WIMP parameters ðm�;�nÞ and the dark

matter halo properties using directional detection. Effect
of nonsmooth halo model with substructures and/or
streams will be addressed in a forthcoming paper.
In the following, the input halo model used to generate

simulated data is chosen according to two models:
a standard isotropic halo (� ¼ 0), in which case the
velocity dispersions are linked to the local circular velocity

v0 ¼ 220 km=s as �x ¼ �y ¼ �z ¼ v0=
ffiffiffi
2

p � 155 km=s;

and an anisotropic halo (� ¼ 0:4), with the following
velocity dispersions f�x¼200 km=s;�z¼169 km=s;�y¼
140 km=sg. The latter case corresponds to the logarithmic
ellipsoidal halo model from [29] with the Sun located on
the major axis of the halo, the axis ratios p and q being
equal to 0.9 and 0.8, respectively. This is usually taken as
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an extreme case for the anisotropy, in order to avoid
instabilities arising when the ratio of any of the velocity
dispersion is greater than 3. Indeed, as discussed in [21,29],
in order to consider only physically relevant model, every
velocity dispersion has to satisfy the following constraint:
�j=3<�i < 3�j.

III. DIRECTIONAL DETECTION FRAMEWORK

A. Detector configuration

Several dark matter directional detectors [2] are being
developed and/or operated: MIMAC [3], DRIFT [4],
DM-TPC [5] and NEWAGE [6]. Directional detection
requires 3D track reconstruction of recoiling nuclei down
to a few keV with sense recognition. In fine, an ideal
directional detector should allow one to evaluate the
double-differential spectrum d2R=dERd�R in a given re-
coil energy range ½ER1

; ER2
�. The lower bound is due to the

threshold ionization energy taking into account the
quenching factor, while the upper bound allows one to
limit background contamination, as most of the WIMP
events are concentrated at low-recoil energy. In the follow-
ing, we consider an ideal detector configuration, which
could be within reach in a few years. The configuration
of the MIMAC project is chosen: a 10 kg CF4 detector,
operated at 50 mbar and allowing 3D reconstruction of
recoiling tracks with sense recognition. The chosen recoil
energy range is between 5 and 50 keV and an exposure
� ¼ 30 kg:year is taken into account for data simulation.
In order to treat realistic cases, we allow for a sizeable
residual background contamination in the data. Indeed, the
discrimination of isotropic background events fromWIMP
events has been early recognized as the main strength of
this detection strategy [1]. However, as discussed in
[7,8,12–14,16,17], one of the key issues for direct detec-
tion is the unknown background energy distribution. Two
extreme cases may be considered [12–14,16,17]: flat or
exponentially decreasing with increasing recoil energy, i.e.
with the same feature as the WIMP-induced energy spec-
trum. Within the framework of a dedicated statistical data
analysis aiming at the identification of dark matter, residual
background should be accounted for and we will show that
it does only mildly alter the result.

Energy and angular resolutions are other points to be
carefully handled. However, it depends on various track
parameters such as track length, gaz mixture, initial track
position and direction. A full study of 3D track reconstruc-
tion is underway [35] and we argue that taking into account
finite angular resolution required a full coupling of track
reconstruction analysis with this MCMC method. As a first
step, and as our goal is to show the identification potential
of directional detection, an ideal detector is considered
hereafter, i.e. perfect energy and angular resolutions. As
shown in [7], the effect of finite angular/energy resolution
has been shown to be small as far as directional exclusion
limits are concerned, providing the angular resolution is

well estimated via detector commissioning, e.g. by using a
neutron field [36].

B. Directional detection

The detector velocity in the Galactic rest frame corre-
sponds to ~v�, when neglecting the Sun peculiar velocity
and the Earth orbital velocity about the Sun [37]. We
consider the value ~v� ¼ 220 km:s�1 along the ŷ axis. In
such case, the main incoming direction of the WIMP signal
should be pointing toward (‘� ¼ 90�, b� ¼ 0�). Using the
Galactic coordinates ð‘; bÞ, theWIMP velocity is written in
the Galactic rest frame as

~v ¼ vðcos‘ cosbx̂þ sin‘ cosbŷþ sinbẑÞ: (3)

Following [38], the directional recoil rate is given by

d2R

dERd�R

¼ �0�0

4�m�m
2
r

F2ðERÞf̂ðvmin; q̂Þ; (4)

with m� the WIMP mass, mr the WIMP-nucleus reduced

mass, �0 ¼ 0:3 GeV=c2=cm3 the local dark matter density
(see Sec. VC for discussion),�0 theWIMP-nucleus elastic
scattering cross section, FðERÞ the form factor, q̂ refers to
the recoil direction expressed in the Galactic coordinates,

and vmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mNER=2m

2
r

p
is the minimal WIMP velocity

required to produce a nuclear recoil of energy ER. In the
case of an axial coupling and within the Born approxima-
tion, the expression of the form factor is given by [39]

FðERÞ ¼
sin

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mNER

p � RðAXÞ
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mNER

p � RðAXÞ ; (5)

where RðAXÞ is the radius of the target nucleus. Eventually,
f̂ðvmin; q̂Þ is the three-dimensional Radon transform [40] of
the WIMP velocity distribution fð ~vÞ defined as

f̂ðvmin; q̂Þ ¼
Z

d3v�ðvmin � ~v:q̂Þfð ~vÞ: (6)

Geometrically, the Radon transform is the integral of the
function fð ~vÞ on a plane orthogonal to the direction q̂ at a
distance vmin from the origin. Using the Fourier slice
theorem, P. Gondolo found the expression of the Radon
transform of the multivariate Gaussian to be [38],

f̂ðvmin; q̂Þ¼ 1

ð2�q̂T�2
vq̂Þ1=2

exp

�
�½vmin� q̂: ~v��2

2q̂T�2
vq̂

�
: (7)

Together with (4), this expression is of particular interest in
the context of massive MCMC calculations, as it allows
one to avoid time-consuming evaluation of the 3D integral
of fð ~vÞ for each event at each step. It is, however, equiva-
lent to the directional recoil rate of [41].
In the energy range ½ER1

; ER2
�, the expected number of

WIMP events �s corresponding to a given set of physical
parameters is given by
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�s ¼ �
Z ER2

ER1

Z
�R

d2R

dERd�R

dERd�R; (8)

where � is the total exposure.

IV. THE DIRECTIONAL MARKOV CHAIN
MONTE CARLO METHOD

We present a new method, based on a Markov chain
Monte Carlo analysis, to extract information on dark mat-
ter from directional data. First, the interest of the use of
MCMC algorithm is outlined. Then, the method is fully
described in the following section. Discussion on chain
efficiency will be done in order to prove that MCMC
algorithms are suited for this type of analysis.

A. Interest of the MCMC algorithm

As stated above, directional detection offers the possi-
bility of using three-dimensional data sets: the recoil en-
ergy ER and its direction in Galactic coordinates ð‘R; bRÞ. It
follows that constraints on dark matter properties should be
enhanced by the use of directional detection when com-
pared to directional insensitive detection. This is of par-
ticular interest when developing a high-dimensional
multivariate analysis aiming at going beyond the standard
isotropic halo assumption. Indeed, the information en-
closed in the directional event rate (d2R=dERd�R), i.e.
the energy spectrum and the 2D shape of the angular
distribution, allows one in principle to increase the number
of degrees of freedom of the fitting model. Indeed, adding
directional information to the energy one allows one to
remove degeneracies among fitting parameters and hence
to deduce consistent constraints. In the following, we list
the free parameters of our fitting model:

(i) ð�x;�y; �zÞ the three velocity dispersions of the

local WIMP velocity distribution,
(ii) ð‘�; b�Þ referring to the main direction of the recoil-

ing nuclei. It is indeed an unambiguous signature of
dark matter detection [8],

(iii) m� the WIMP mass,

(iv) �n theWIMP-nucleon cross section directly related
to �0 in the pure proton approximation for the
fluorine target,

(v) Rb the background event rate in the considered
energy range [5, 50] keV. The background events
are those remaining after the electron/nuclear recoil
rejection, based for instance on the length/energy
discrimination [42].

This leads to an eight-parameter analysis of directional
dark matter data set allowing us to quantitatively constrain
the WIMP properties and the dark matter halo profile. Prior
ranges are presented in Table I.

As the number of free parameters is large, grid calcu-
lation of likelihood or �2 functions are not suitable, due to

the exponential growth of the volume of the parameter
space. Indeed, in order to ensure a scan of all the physical
parameter space, the regions of interest, i.e. the regions
where the model fits the data, will fill only a tiny part of the
whole volume. This corresponds to a waste of computation
time that is avoided using MCMC algorithm. Indeed,
Markov chains are used in order to sample the likelihood
(or �2) distribution according to Bayesian statistics, ena-
bling the enlargement of the parameter space at a minimal
computing time cost by focusing on the regions of interest.
In the following we provide a brief description of the
MCMC, emphasizing its use in the context of directional
detection. We refer the reader to a more complete descrip-
tion, within the framework of cosmic ray physics, in [43]
and references therein.

B. Description of the method

In a general description, an m-dimensional para-

meter space is described by the following basis ~	 ¼
f	ð1Þ; 	ð2Þ; . . . ; 	ðmÞg, where each element 	ð
Þ refers to one
of the physical parameters of interest. The MCMC algo-
rithm enables us to sample the conditional posterior proba-
bility density functions (PDF) of each parameter given the

data Pð ~	j ~DÞ, where ~D refers to the number of events N,
their direction ð‘R; bRÞ and their energy ER. This can be
achieved with the use of the Bayes’ theorem applied to
parameter inference

Pð ~	j ~DÞ ¼ Pð ~Dj ~	Þ ��ð ~	Þ
Pð ~DÞ ; (9)

where Pð ~DÞ is the data probability, also called the evi-
dence, which can be regarded as a normalization factor,

�ð ~	Þ is the prior probability indicating the degree of belief
before observing the data. Finally, Pð ~Dj ~	Þ corresponds to
the likelihood function written Lð ~	Þ. In this framework,

the posterior PDF Pð ~	j ~DÞ is the normalized product of the
likelihood function with the priors. Using a Bayesian ap-

proach, the posterior PDF of each single parameter 	ð
Þ is
given by the marginalization of the multidimensional

Pð ~	j ~DÞ distribution over the other parameters 	ð��
Þ,

Pð	ð
Þj ~DÞ ¼
Z
��;8�2½1;m�nf
g

Pð ~	j ~DÞd	ð�Þ: (10)

TABLE I. Parameters with their uniform prior ranges used for
all MCMC analysis.

Parameter Prior range

m�ðGeV=c2Þ (5,1000)

log10ð�nðpbÞÞ ð�5;�1Þ
‘�ð�Þ ð�180;þ180Þ
b�ð�Þ ð�90;þ90Þ
�x;y;zðkm:s�1Þ (5,500)

Rbðkg�1 year�1Þ (0,50)
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From each one-dimensional PDF, we can estimate the
expected value of a given parameter and its confidence
level (CL). The difficulty is then to evaluate the multi-

dimensional target PDF pð ~	Þ � Pð ~	j ~DÞ. For the above-
mentioned reasons, instead of using a grid calculation
algorithm, we developed a MCMC algorithm in order to

evaluate pð ~	Þ. This Monte Carlo sampling of the target
function is done usingMarkov chains which are a sequence
of N points in the m-dimensional parameter space

f ~	igi¼1;...;N � f ~	1; ~	2; . . . ; ~	Ng; (11)

which is constructed according to the Metropolis-Hastings
algorithm, ensuring that the stationary distribution of each

chain corresponds to the target distribution pð ~	Þ being
sampled. The Metropolis-Hastings algorithm is a random

walk in the parameter space where each step ~	iþ1 is derived

from the step ~	i with the following procedure:

(i) At each step ~	i a trial step ~	trial is generated from a

proposal distribution qð ~	trialj ~	iÞ.
(ii) This trial step is accepted or not according to the

acceptance probability a calculated as follows:

a¼að ~	trialj ~	iÞ¼min

�
1;
pð ~	trialÞ
pð ~	iÞ

qð ~	trialj ~	iÞ
qð ~	ij ~	trialÞ

�
: (12)

The probability for the trial step to be accepted
is equal to a. Notice that in the case of a symme-

tric proposal function q we have qð ~	trialj ~	iÞ ¼
qð ~	ij ~	trialÞ, which simplifies the expression of
Eq. (12).

(iii) If the trial step is accepted, then ~	iþ1 ¼ ~	trial and if
not, the chain stagnates at the same point in the

parameter space leading to ~	iþ1 ¼ ~	i.
Three characteristics of the Markov chains are worth

being investigated in order to ensure a consistent sampling
of the target function:

Burn-in length (b): it corresponds to the number of steps
(or iterations) to be removed from the beginning in order to
forget the starting point of the random walk. It is estimated
as the first step reaching the median value of the target

distribution E½pð ~	Þ� as
pð ~	bÞ>E½pð ~	Þ�: (13)

Correlation length (l): it is the required minimal length
between two steps so that they can be considered as un-
correlated. By construction, each step depends on the
previous one. Then, in order to get independent steps,
some subsampling is needed. It corresponds to rejecting
all steps which are closer than l to each other. The corre-

lation length lð
Þ of each parameter 	ð
Þ is estimated by

computing the autocorrelation function cð
Þj , where j cor-

responds to the distance between two steps. Indeed, lð
Þ is

defined as the smallest j for which the correlation function

is strictly less than 1=2, i.e cð
Þj < 1=2. It should be noticed

that the limit of 1=2 is arbitrary but has been shown to be

sufficient in order to consider the steps 	ð
Þi and 	ð
Þiþj as

uncorrelated [43]. Then the correlation length of the whole
chain l is defined as

l ¼ max½lð1Þ; . . . ; lð
Þ; . . . ; lðmÞ�: (14)

Hence, in order to consider only independent samples

(steps) ~	ind, we have subsampled each Markov chain ac-

cording to the following procedure: ~	ind ¼ ~	i¼bþkl, with k
being an integer. Figure 1 represents the autocorrelation
function for the eight parameters from a MCMC analysis
discussed in Sec. V. For this chain, we can see that the
correlation length is equal to 187, due to the WIMP mass
parameter. Indeed, as explained in the following section,
the strong correlation between the WIMP mass and cross
section will induce larger correlation length. Hence, as the
correlation length is linked to the stagnation of the chain,
in order to have a smaller value of l, the proposal function
has to be carefully chosen to approximate the target PDF.
The efficiency of a Markov chain Monte Carlo sampling
can then be estimated as the fraction of independent
samples Nind with respect to the total number of samples
N, where Nind is given by:

Nind ¼ N � b

l
: (15)

More efficient is a MCMC sampling, since the number of
rejected samples is lower, leading to a better estimation of
the target PDF. The quality of the estimation of the target
PDF is directly affected by the MCMC sampling efficiency
and hence by the burn-in and correlation lengths.
Depending on the input values of the different parameters

Steps

1 10 210 310 410

j
)

α(
C

0

0.5

1

l
b

χm

nσ10log

xσ
yσ

zσ

bR

FIG. 1 (color online). Correlation function of the 8 parameters
from the MCMC run applied to our benchmark model (see
Sec. V) with the simple multivariate Gaussian proposal function.
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used to simulate pseudodata of single directional detection
experiments, the sampling efficiency is between 0.6% and
8%. It mainly depends on the correlation lengths, which
were found to be between 6 and 130 using the second
proposal function: the multivariate Gaussian with covari-
ance matrix (see below). The sampling efficiency could be
enhanced by using other proposal functions not necessarily
Gaussian, like the binary space partitioning first intro-
duced in MCMC sampling by A. Putze et al. [43].
However, as we are running a large number of Markov
chains in parallel with a low computational time, such
efficiencies are largely enough to get well sampled PDFs.

Chain convergence: it is a key criteria worth being
investigated for MCMC sampling, as it ensures that the
target PDF is being sampled by the different chains.
Indeed, the left panel of Fig. 2 presents the evolution of
the mean of the log-likelihood value of each Markov chain

E½logðpð ~	ÞÞ� as a function of the number of independent
samples for 10 Markov chains. From this figure, we can
appreciate the fact that the mean value of each Markov
chain is converging to the same value as well as the
variance, not shown here. Then, in order to quantify the
convergence, we can form the following ratio:

r ¼ Var½Eðpð ~	ÞÞ�
E½Varðpð ~	ÞÞ� : (16)

As seen on the right panel of Fig. 2,Var½Eðpð ~	ÞÞ� tends to 0
whereas E½Varðpð ~	ÞÞ� tends to a finite number leading to
r ! 0 when increasing the number of independent
samples. Then, we can arbitrarily fix a limit rc which
will correspond to a chain convergence if r < rc.
Following [44], we have chosen rc ¼ 0:2. Then, from
Fig. 2, we can see that for this MCMC run with 10
independent chains, the convergence status is reached at

the 40th independent step (sample). However, even if the
chain convergence criteria is reached with only a few tenth
of independent samples, one should have longer chains of
independent samples to get a very precise estimation of the
target function. In our case, we have run between 10 and
100 Markov chains of 105 steps in order to get more than
5� 104 independent samples for each analysis. Indeed,
another interest in computing several Markov chains in
parallel is that we can add all the independent samples
from every chain together to enhance the estimation of the
target function.
In this paper, we have considered flat prior for each

parameter fm�; log10ð�nÞ; ‘�; b�; �x; �y; �z; Rbg. In such

case, the Bayes’ theorem is simplified and the target dis-

tribution pð ~	Þ reduces to the likelihood functionLð ~	Þ. The
latter is given by the extended likelihood function (see
Ref. [45]) dedicated to unbinned data as

Lð ~	Þ ¼ ð�s þ�bÞN
N!

e�ð�sþ�bÞ � YNevent

n¼1

�
�s

�s þ�b

Sð ~RnÞ

þ �b

�s þ�b

Bð ~RnÞ
�
; (17)

where �s and �b ¼ Rb � � are the expected number of

WIMP events and background events, respectively. ~Rn

refers to the energy and direction of each event while the
functions S and B are the directional event rate of the
WIMP events and the background events, respectively.
As previously highlighted, in order to optimize the

MCMC sampling efficiency, the proposal function must
be as close as possible to the target PDF. Two different
successive proposal functions are used:
(i) A multivariate Gaussian in the same basis of the

parameter space with dispersions �ð
Þ taken from a
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FIG. 2 (color online). Left panel: mean of the log-likelihood value of each Markov chain E½logðpð ~	ÞÞ� as a function of the number of

independent samples for 10 Markov chains. Right panel: Var½Eðpð ~	ÞÞ�, E½Varðpð ~	ÞÞ� and convergence ratio r as a function of the
number of steps. Both figures come from the MCMC run applied to our benchmark model (see Sec. V).
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fast evaluation of the likelihood function on a grid. In
such case, we have

	ð
Þtrial ¼ 	ð
Þi þ �ð
Þx; (18)

where x is a random variable distributed following
the normal distribution N ð0; 1Þ.

(ii) A multivariate Gaussian with the covariance matrix
estimated from the previous run. Then, the next step
is calculated using

~	 trial ¼ ~	i þ PC~x; (19)

where C is the eigenvalue of the covariance matrix,
P is the matrix of the corresponding eigenvectors
and ~x is a vector of m random variables distributed
following N ð0; 1Þ.

In both cases, as the proposal function is a Gaussian, we are

in the case where qð ~	trialj ~	iÞ ¼ qð ~	ij ~	trialÞ, which simplifies
the expression of the acceptance (Eq. (12)).

V. RESULT FOR A BENCHMARK INPUT
DARK MATTER MODEL

For concreteness, we exemplify this directional
MCMC method by studying the case of a given bench-
mark input model, i.e. the standard isothermal sphere
with an isotropic velocity distribution with � ¼ 0 (see
Sec. II for more details). A sizeable background
contamination (10 kg�1 year�1) is accounted for, with a
flat energy spectrum. We consider a 50 GeV=c2 WIMP
with a WIMP-nucleon axial cross section �n ¼ 10�3 pb.
The input model is used to generate simulated data in a
10 kg CF4 detector (as proposed by the MIMAC collabo-
ration) with a three-year exposition time. These data are
then analyzed with the directional MCMC method
(Sec. IV). As stated above, the eight parameters
fm�; log10ð�nÞ; ‘�; b�; �x; �y; �z; Rbg, are taken as free

parameters in the MCMC analysis, with flat priors, thus
ensuring that the study is model-independent from a point
of view of both particle physics (WIMP properties) and
Galactic physics (halo properties). In particular, no
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FIG. 3. Marginalized distributions (diagonal) and 2D correlations (off-diagonal) plots of the 8 parameters from the analysis of
simulated data in the case of an isothermal halo with a WIMP mass of 50 GeV:c�2 and a WIMP-nucleon cross section �n ¼ 10�3 pb.
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previous knowledge of the Galactic dark batter halo is
needed, the goal being to extract the posterior PDF of all
parameters and check their consistencies with the input
model. Departure from isotropy as well as modification of
the various parameters of the input model will be studied in
Sec. VI.

Figure 3 presents marginalized distributions (diagonal)
and 2D correlations (off-diagonal) plots of the eight pa-
rameters of the analysis of simulated data obtained with the
benchmark input model. The complete result for each
parameter, as extracted from marginalized distributions,
is summarized in Table II, where the output parameters
are characterized by the mean value extracted from their
1D posterior PDF, while the error bars are accounted for a
68% confidence level. However, to fully understand corre-
lations between the parameters, the full set of 2D correla-
tions is needed. Moreover, to quantify those correlations
among the eight different parameters, the correlation
matrix defined as

�
;� ¼ �½	ð
Þ; 	ð�Þ� ¼ cov½	ð
Þ; 	ð�Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var½	ð
Þ�var½	ð�Þ�

q (20)

is given in Fig. 4 and will be discussed hereafter.
The result obtained is threefold: the discovery proof is

given by the reconstruction of the main incoming
direction ð‘�; b�Þ (Sec. VA). Then, the three velocity

dipersions and hence the velocity anisotropy parameter
ð�Þ of the dark batter halo are assessed (Sec. VB), leading
to a constraint on the properties of the WIMP particle on
the ðm�; log10ð�nÞÞ plane, within the framework of our

ansatz. In the following, we detail the results arising
from the analysis of Fig. 3.

A. Discovery proof

Following a previous study [8], we first present the
extraction of the main incoming direction of the events
ð‘�; b�Þ, from a pseudodata analysis. This is a blind analy-
sis, as these two parameters are taken as free parameters of
the analysis. It can be concluded from marginalized dis-
tributions of Fig. 3 that the recovered main recoil direction
is pointing towards the Cygnus constellation within 2.5� at
68% CL, corresponding to a nonambiguous detection of
particles from the Galactic halo, which is in favor of a dark
matter positive detection. We found the same result as in
[8], which was expected, as the information on the main
incoming direction is enclosed mainly in the angular part
of the WIMP-induced spectrum. The major update is the
fact that we prove that this result is model-independent, as
no a priori knowledge of either the Galactic dark matter
halo or the WIMP particle is needed. The 2D correlations
of Fig. 3 (third and fourth columns and lines) and the two
first columns of the correlation matrix (see Fig. 4) indicate
that there is no correlation of the main incoming direction
with the six other parameters. In addition, this result holds
true for all cases studied hereafter, where we have consid-
ered different input values of the WIMP mass or halo
model. Indeed, for each case, we have checked that the
main incoming direction is always consistently constrained
and reveals no correlation with other parameters (see
Sec. VI). We emphasize conclusions from [8,9]: directional
detection of dark matter is a powerful strategy to clearly
identify a positive dark matter signal, using the main
incoming direction as the discovery proof, even in the
case of a sizeable background contamination and nonstan-
dard halo model.

B. Dark matter halo properties

The originality of this work, in comparison to current
phenomenological studies, is that the properties of the dark
matter halo itself are constrained using a single directional
detection experiment. As shown on Fig. 3, the velocity
dispersions are strongly and consistently constrained ac-
cording to the input values. Indeed, from the marginalized

TABLE II. Comparison of the values of the parameters for the input model and as extracted after the MCMC analysis from the
marginalized distributions. We quote mean value of the PDF distribution and (68% CL) error bars.

m�ðGeV=c2Þ log10ð�nðpbÞÞ ‘�ð�Þ b�ð�Þ �xðkm:s�1Þ �yðkm:s�1Þ �zðkm:s�1Þ � Rbðkg�1 year�1Þ
Input 50 �3 90 0 155 155 155 0 10

Output 51:8þ5:6
�19:4 �3:01þ0:05

�0:08 92:2þ2:5
�2:5 2:0þ2:5

�2:5 158þ15
�17 164þ27

�26 145þ14�17 �0:073þ0:29
�0:18 10:97� 1:2

0.2
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0.6

0.8
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b l χm )nσ(
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bR

FIG. 4. Correlation matrix as defined by Eq. (20) for the eight
parameters of the MCMC analysis in the case of an isothermal
halo with a WIMP mass of 50 GeV:c�2 and a WIMP-nucleon
cross section. The grey scale represents the absolute values of
�
;�. Signs of correlation can be deduced from Fig. 3.
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distributions of the posterior PDF of each velocity disper-
sion, the following constraints can be deduced

�x ¼ 158þ15
�17 km:s�1ð68%CLÞ;

�y ¼ 164þ27
�26 km:s�1ð68%CLÞ;

�z ¼ 145þ14
�17 km:s�1ð68%CLÞ;

giving, in such case, strong evidence in favor of an iso-
tropic dark matter halo.

However, one could notice, from the full MCMC result
(Fig. 3) and from the correlation matrix (Fig. 4), that the
three velocity dispersions are quite correlated to each other,
to the WIMP properties ðm�; log10ð�nÞÞ, and to the back-

ground rate. In the following, we propose a short discus-
sion to understand the fundamental origin of these different
correlations. To begin with, the positive correlation be-
tween each of the three velocity dispersions mainly comes
from the information on the angular distribution. Indeed, in
order to reproduce the shape of the velocity distribution,
which is isotropic in this case, the three velocity disper-
sions have to be positively correlated to each other; in this
case, we found �½�i; �j� � 0:4 for i � j 2 fx; y; zg.
However, increasing the velocity dispersions leads to an
increase in the number of expectedWIMP events�s and to
wider WIMP event angular distribution. The latter can be
compensated by decreasing the WIMP mass as it leads to
tighter angular distribution (see [7,8] for a detailed
discussion), thus implying a negative correlation between
the WIMP mass and the three velocity dispersions
with �½m�;�x� ¼ �½m�;�z� � �0:55 and �½m�;�y� �
�0:75. As the cross section is directly proportional to
�s, the correlations between the log10ð�nÞ and the
three velocity dispersions are obviously negative
with �½log10ð�nÞ; �x� ¼ �½log10ð�nÞ; �z� � �0:57 and
�½log10ð�nÞ; �y� � �0:70. Correlations between the

WIMP parameters and �y are stronger than in the case of

�x and�z, as it is the most related to�s and the total width
of the angular event distribution. Then, as the velocity
dispersion along the y axis is more degenerated with the
other parameters than �x and �z the error bar on the
estimation of �y is larger than for the two other velocity

dispersions (about 2 times larger). The negative correlation
between the three velocity dispersions and the background
rate can be easily explained by the definition of the ex-
tended likelihood function, where the sum of �s (propor-
tional to the velocity dispersions) with �b (proportional to
the background rate) follows a Poisson distribution of
mean equal to �s þ�b ¼ Nevent; we found in this case:
�½Rb; �j� � �0:4 with j 2 fx; y; zg.

The evaluation of the velocity anisotropy parameter �
allows us to summarize the results from the three velocity
dispersions. Indeed, the posterior PDF of the � parameter
can be computed from Eq. (2). However, having a flat prior
on the three velocity dispersions implies a nonflat (infor-
mative) prior on the � parameter. Hence, Fig. 5 presents

the raw PDF of � considering flat priors on the �i’s in the
black solid line, the induced prior on the� parameter�ð�Þ
is shown as the blue dashed line, and the red dotted line
corresponds to the corrected PDF of � with a flat prior. In
the following, for each case, we will only consider the
corrected posterior PDF of the � parameter. From
the latter, we can deduce an interesting constraint
� ¼ �0:073þ0:29

�0:18ð68%CLÞ favoring an isotropic dark mat-

ter halo. This is a proof that within the framework of the
multivariate Gaussian halo model, a dedicated MCMC
analysis of directional data would allow us to constrain
the velocity dispersions, resulting in a discrimination be-
tween various halo models.

C. WIMP parameters

As stated above, this MCMC analysis also allows us to
constrain the parameters of the WIMP by considering both
the angular and the energy information from each recoiling
event. Figure 3 (first 2 columns) presents marginalized
distributions and 2D correlation plots concerning the
WIMP parameters ðm�; log10ð�nÞÞ. First, we can notice

that this analysis method allows us to get satisfactory
results, i.e. constraints which are consistent with the input
values and with a rather small dispersion:

m� ¼ 51:8þ5:6
�19:4 GeV=c2ð68%CLÞ;

log10ð�nÞ ¼ �3:01þ0:05
�0:08ð68%CLÞ:

Moreover, as the velocity dispersions are set as free pa-
rameters, induced bias due to wrong halo model assump-
tions is avoided as long as the input halo model is
consistent with our ansatz. We refer the reader to [13] for
a detailed discussion about the effect of halo model un-
certainties on allowed regions. In fact, the combined use of
angular and energy information allows us to remove

βVelocity anisotropy 
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FIG. 5 (color online). Posterior PDF distribution of the �
parameter, with and without correction due to nonflat prior.
The prior is Monte Carlo estimated.
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degeneracies amongst the eight parameters and
hence to obviate bias in the determination of the WIMP
properties.

We observe the usual strong correlation
�½m�;log10ð�nÞ��1 (see Fig. 4) between m� and

log10ð�nÞ, which is inherent in the very definition of the
event rate, as it scales basically with �n=m� for low mass

target. We also found a small and positive correlation
between the WIMP mass (inversely proportional to �s)
and the background rate (proportional to �b) such as
�½m�;Rb� � 0:25. Indeed, as mentioned before, this cor-

relation is straightforwardly due to the relationship be-
tween �s and �b, where the total number of recorded
events follows a Poisson distribution of mean �s þ�b ¼
Nevent. Finally, we found no correlation between log10ð�nÞ
and the background rate Rb.

As a conclusion, directional detection provides a
unique opportunity to constrain, with a single experi-
ment, the WIMP mass and the WIMP-nucleon cross
section within the framework of a high-dimensional mul-
tivariate analysis. This is of great interest in the context
of phenomenological efforts [12–18,46–48] trying to con-
strain the WIMP parameters ðm�;�nÞ with upcoming

dark matter experiments, with either an indirect, direct,
or directional strategy. In this work, we have gone one
step further in constraining the local WIMP velocity
distribution with a single directional detection experi-
ment. It is, of course, possible to include external data
as nuisance parameters, e.g. measurement of the local
dark matter density �0 [49,50], the local circular velocity
v0, and the escape velocity (taken as infinity in
this study). However, it seems premature at the level of
a methodological study aimed at showing how to
handle directional detection data. For instance, the local
WIMP density is usually quoted within the range
�0 	 0:2–0:8 GeV:c�2:cm�3 and we used the so-called
‘‘standard’’ value 0:3 GeV:c�2:cm�3 for the sake of com-
parison with various direct detector results [49]. We
note that recently a value of the local dark matter density,
�0 ¼ 0:43� 0:11� 0:10 GeV:c�2:cm�3, has been de-
rived within the framework of a Galaxy-model-
independent method [50]. All constraints on the
WIMP-nucleon cross section can be relaxed into
constraints on �0 � �.

D. Background estimation

The background rate estimation is also a key point of
this analysis strategy, not for the value itself but for the
fact that a wrong background estimation may induce bias
for other parameters. Indeed, as upcoming data will
necessarily be contaminated by some background events,
it is important to be able to manage them. As shown in
Fig. 3 (last row), it is correctly estimated from the
MCMC: Rb ¼ 10:97� 1:2 kg�1 year�1ð68%CLÞ, with
tiny correlations with other parameters already discussed

in the previous sections. Then, the fact that the back-
ground rate is left as a free parameter and reconstructed
with the MCMC method allows us to avoid bias in the
estimation of the other parameters. Qualitatively, the
background rate is mainly constrained by the angular
part of the spectrum, more precisely in the hemisphere
opposite to the Cygnus constellation, where few WIMP
events are expected. In fact, the quality of the estimation
of the WIMP and halo parameter is directly related to the
estimation of the background rate. In this example, we
have shown that dark matter parameter estimation (main
direction, WIMP, and dark matter halo properties) is not
affected by a rather large background fraction (	 30%).
Hence, directional detection can accommodate to a size-
able background contamination (posterior to data selec-
tion), suggesting the idea that light shielding might be
sufficient, thus allowing us to reduce muon-induced neu-
tron background [51]. As stated above, for this example a
flat background energy spectrum has been considered,
which is indeed an optimistic case. In Sec. VI, we study
the effect of considering an energy distributions for
background events which is similar to the one for
WIMP events.

VI. RESULTS FOR VARIOUS INPUT MODELS

The constraints on the different parameters obviously
depend on the input model, characterized by the WIMP
and dark matter halo properties as well as the background
energy spectrum. Indeed, the directional WIMP event rate
crucially depends on the dark matter parameters, both from
particle physics and Galactic halo physics, and degenera-
cies may arise depending on their input values. In the
following, we explore various input models in order to
evaluate their impact on the different constraints which
could be obtained with a single directional detection ex-
periment, as the one proposed by the MIMAC collabora-
tion, using our MCMC analysis.
The first point worth emphasizing is the fact that in all

cases presented hereafter, the recovered main recoil direc-
tion is always pointing towards Cygnus, within at most
	4� at 95% CL (see Fig. 6). This is relatively straightfor-
ward, given the fact that this directional signature is un-
correlated with the other parameters of the MCMC
analysis, as emphasized in Sec. VA. Indeed, it has been
shown in [8] that this directional signature only depends on
the background contamination, which is taken equal to
10 events/kg/year in every following cases. This outlines
the robustness of the choice of this parameter as a relevant
observable to prove that a positive detection of dark batter
has been reached by a directional detector. As outlined in
[8], this would allow directional detection to provide evi-
dence in favor of a detection of Galactic dark batter even at
low exposure and even with a sizeable background con-
tamination. In this study, we have checked that this
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conclusion holds true even in the case of nonstandard dark
matter halo model.

A. Varying the input WIMP mass

As highlighted by several previous studies [12–14,18],
theWIMPmass plays a key role in the shape of the allowed
regions. We have simulated three different sets of direc-
tional data corresponding to an input WIMP mass ofm� ¼
20, 50, 100 GeV=c2 with a constant WIMP-nucleon cross
section �n ¼ 10�3 pb, considering a MIMAC-like direc-
tional detector (Sec. III B) and the standard isotropic halo
model. The results from the three MCMC runs are illus-
trated in Fig. 7. We present for the three WIMP masses, in

the left panel, the 68% and 95% CL contours in the
ðm�; log10ð�nÞÞ plane, and in the right panel, the posterior

PDF Pð�j ~DÞ of the anisotropy velocity parameter �. The
WIMP properties ðm�; log10ð�nÞÞ are consistently con-

strained according to the input values with no a priori
knowledge of the halo properties, as the velocity disper-
sions are set as free parameters of the analysis. It can be
deduced from Fig. 7 that this analysis is working for any
input WIMP mass even if the constraints strongly
depend on the input value. Indeed, as it can be seen in
Fig. 7, the constraints on ðm�; log10ð�nÞÞ are very tight

below 50 GeV=c2 and become wider for increasing
WIMP mass. In fact, for the 100 GeV=c2 input WIMP
mass, only a lower limit should be deduced as
m� > 30 GeV=c2 (68% C.L.) Indeed, the 68% and 95%

C.L. contours correspond to the case where a flat prior on
m� 2 ½5; 103� GeV=c2 is considered. These weaker con-

straints in the case of a heavyWIMP are due to the fact that
the signal characteristics, i.e the slope of the
energy distribution and the width of the angular distribu-
tion, evolve slowly with the WIMP mass once
m� 
 100 GeV=c2 for a fluorine target and a recoil energy

in the range [5,50] keV, as shown in [8]. As a consequence
of this weaker constraint at heavy WIMP masses, the
constraints on the halo properties are also getting
weaker, albeit with smaller effect. Indeed, as shown in
the right panel of Fig. 7, the constraint on the anisotropy
velocity parameter � is stronger (smaller error bars)
for an input WIMP mass of 20 GeV=c2 than for a
100 GeV=c2 one. However, as highlighted in Table III,
the constraint on the � parameter remains competitive
and for a 30 kg/year exposure with a MIMAC-like
directional detector, this MCMC would allow us to get,
in this case, a strong evidence in favor of an isotropic dark
matter halo.
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B. Effect of an anisotropic input halo model

In this section, we vary the input halo model to evaluate
the evolution of the constraints associated with the differ-
ent dark matter properties ðm�;�n; �Þ. Indeed, as the ve-

locity dispersions are set as free parameters, induced bias
due to wrong model assumption should be avoided. This is,
for instance, the effect observed in [13], with a systematic
downward shift of the estimated cross section, when as-
suming a standard isotropic velocity distribution fitting
model, whereas the input model is a triaxial one. In the
following, we investigate the effect of an extremely triaxial
input halo model with � ¼ 0:4 (see Sec. II) on the estima-
tion of the dark matter parameters.

The results from the MCMC run on a simulated data set
corresponding to a WIMP mass of 50 GeV=c2 with the
latter anisotropic halo model are presented in Fig. 8. As for
the previous section, in the left panel is presented the
constraint at 68% and 95% on the ðm�; log10ð�nÞÞ plane,
while in the right panel is given the deduced posterior PDF
of the � parameter. For convenience and comparison, the
results from the benchmark input model (isothermal sphere
with a 50 GeV=c2 WIMP) are recalled. From the left panel

of Fig. 8, we can conclude that the two halo models give
similar constraints, which are both consistent with the
input values. In fact, and as foreseen, the fact that
the velocity dispersions are set as free parameters in the
MCMC analysis allows us to avoid induced bias due to
wrong model assumption.
From the right panel of Fig. 8, we can deduce that the �

parameter is well constrained: � ¼ 0:38þ0:2
�0:1, as in the

isotropic case. In fact, the constraint is even stronger in
the anisotropic case than in the isotropic one. This comes
straightforwardly from the decrease of the degeneracy
between the three velocity dispersions with increasing
departure from isotropy. As a conclusion of this study, it
should be highlighted that the combination of information
from the angular and energy distributions leads to robust
allowed regions in the ðm�; log10ð�nÞÞ plane, since the halo
model is also being constrained with the MCMC analysis
from the same data set of a single directional detection
experiment. Moreover, the velocity anisotropy parameter
�, i.e. the three velocity dispersions, could be sufficiently
constrained to discriminate between different halo models
with future directional detectors such as the one proposed
by the MIMAC collaboration [3].

C. Varying the input background spectrum

The background energy spectrum is a key issue for
both directional detection and direct detection (direction-
insensitive experiments). When setting exclusion limits
with directional detection, the difficulty can be avoided
by considering only the angular part of the directional
event rate, thus allowing us to set robust and conservative
limits [7]. But as far as the whole directional event rate is
used, the question of the background energy spectrummust
be carefully treated. In fact, as the background energy
spectrum is unknown, it must be guessed to be included
in a likelihood-type analysis. Then, a wrong assumption on

TABLE III. Values of the � parameter from the marginalized
distribution for various input models. We quote mean value of
the PDF distribution and 68% CL error bars.

Halo Background m�ðGeV=c2Þ �in �out

Isotropic Flat 20 0 �0:06þ0:2
�0:1

Isotropic Flat 50 0 �0:07þ0:3
�0:2

Isotropic Expo. 50 0 �0:20þ0:3
�0:2

Isotropic NO 50 0 þ0:05þ0:1
�0:1

Isotropic Flat 100 0 �0:10þ0:4
�0:2

Anisotropic Flat 50 0.4 þ0:38þ0:2
�0:1
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FIG. 8 (color online). Left panel: 68% and 95% contour level in the ðm�;�nÞ plane, for a 50 GeV=c2 WIMP and for two input
models: isotropic (� ¼ 0) and triaxial (� ¼ 0:4). Right panel: posterior PDF distribution of the � parameter for the same models.
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the background shape leads to an incorrect estimation of
the background rate, resulting in a wrong estimation of the
dark matter properties. Motivated by simulations of neu-
tron background in dark matter detectors, e.g. in low-
pressure time projection chamber (TPC) [52], two different
background energy distributions are usually considered
[12–17]: flat and exponentially decreasing with increasing
recoil energy. The exponential one corresponds to the most
pessimistic case as it is chosen, in our case, to be exactly
the same as the WIMP-induced energy distribution: That is
to say, an exponential distribution with a slope of	17 keV
in the case where the WIMP mass is 50 GeV=c2 and
considering an isotropic halo model. As outlined in [14],
it is not possible to disentangle a WIMP signal from the
background, with a single direct detector, if the shape of
the background and WIMP-induced energy distributions
are similar. In principle, this will not be the case for
directional detection as the angular distribution of the
background is isotropic, then remaining different from
the WIMP-induced one.

Figure 9 presents the constraints in the ðm�; log10ð�nÞÞ
plane and on the � parameter for three input background
energy distributions: no background (black solid line), flat
(red dashed line), and exponential (blue dotted line). The
other input parameters are those used in Sec. V for the
benchmark input model (an isotropic halo, a 50 GeV=c2

WIMP mass, and a 10�3 pb WIMP-nucleon axial cross
section). First, the comparison between the case with no
background and the case with a flat background energy
distribution highlights the fact that even with a large back-
ground contamination (	 30%), the results are quite simi-
lar, particularly in the determination of the WIMP
properties, due to the fact that the disentanglement be-
tween WIMP and background events is done with both
energy and directional arguments. Then, in both cases, as

the background rate is correctly estimated by the MCMC
analysis (see Table IV), systematic bias in the estimation of
the dark matter properties is avoided. However, from Fig. 9
and Table III, it should be noticed that, even if the �
parameter is consistently constrained according to the in-
put value, the presence of a sizeable background leads to a
wider constraint (about two times larger).
In the case of an exponential input background energy

distribution, the result is basically unchanged, although
constraints are weaker. This is due to the fact that the
background event rate parameter is less constrained (see
Table IV), resulting in broader marginalized distributions
of other parameters. Indeed, the estimation of the Rb

parameter is done solely with the angular part of the
spectrum, as the energy distributions are exactly the same
for both kinds of events. Nevertheless, even in such a
pessimistic case, the WIMP properties ðm�; log10ð�nÞÞ
and the dark matter halo properties encoded in the �
parameter can still be estimated with upcoming directional
detectors with realistic exposures thanks to the use of this
MCMC analysis.
From this study, it should be concluded that, the effect of

background contamination on directional data can be
handled in the case where the background energy
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FIG. 9 (color online). Left panel: 95% contour level in the ðm�;�nÞ plane, for a 50 GeV=c2 WIMP and for three input background
model: no background, flat spectrum and exponential spectrum. Right panel: posterior PDF distribution of the � parameter for the
same models.

TABLE IV. Values of the Rb parameter (in kg�1 year�1) from
the marginalized distribution for various background input mod-
els. We quote mean value of the PDF distribution while the error
bars and upper limits are quoted with a 68% CL.

Halo Background Rin
b Rb MCMC output

Isotropic Flat 10 10:97þ1
�1

Isotropic Expo. 10 10:03þ3
�2

Isotropic NO 0 <0:36 (upper limit)

Anisotropic Flat 10 9:8þ1�1
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distribution is correctly estimated. Eventually, we have
shown that even for a large background contamination
and in the most pessimistic background model, directional
detection combined with this MCMC analysis should allow
us to assess consistent and interesting constraints on the
dark matter properties with a single experiment.

VII. CONCLUSION

We have shown that identification of dark matter might
be achieved with a 10 kg CF4 directional detector, allowing
3D track reconstruction with sense recognition down to
5 keV and operated during three years. To fully exploit
upcoming data, we propose a new high-dimensional multi-
variate analysis method based on a Markov chain
Monte Carlo analysis of recoil events, allowing us to
constrain, in a single directional experiment, the WIMP
parameters, both from particle physics (mass and cross

section) and Galactic halo (velocity dispersion along the
three axis) and within the framework of a given ansatz.
Indeed, the combination of information from the angular

and energy distributions leads to robust allowed regions in
the ðm�; log10ð�nÞÞ plane, since the halo model is also

being constrained with the MCMC analysis from the
same data set of a single directional detection experiment.
Moreover, the velocity anisotropy parameter �, related to
the three velocity dispersions, could be sufficiently con-
strained to discriminate between various halo models with
future directional detectors such as the one proposed by the
MIMAC collaboration [3].
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