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Screening correlators and masses were studied at finite temperature in QCD with two flavors of

dynamical staggered quarks on a lattice. The spectrum of screening masses show a hierarchical approach

to chiral symmetry restoration. Control of explicit chiral symmetry breaking through the quark mass was

shown to be an important step toward understanding this phenomenon. No sign of decay was found in the

finite temperature scalar mesonlike correlators in the confined phase.
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I. INTRODUCTION

High-temperature QCD is the subject of a long-running
experimental program of heavy-ion collisions in several
experimental facilities, including the Relativistic Heavy
Ion Collider (RHIC) at BNL, the Large Hadron Collider
(LHC) at CERN, and planned programs in GSI and Dubna.
They aim to collide together heavy-ions at high energies
and produce fireballs of strongly interacting matter, whose
study may then yield information about the phases and
properties of such matter. Lattice computations are the
primary source of theoretical information on such matter.
The aim of this study is to examine the response of this
matter to quasistatic perturbations.

It is known that the generic response of matter to such
perturbations is to screen them. The knowledge of screen-
ing lengths, �, is one of the most basic pieces of micro-
scopic information we can have about the system. Of
particular interest is the longest screening length, �0, or
its inverse, the smallest screening mass, �0 ¼ 1=�0 [1].
When �0 ¼ 0, the effective long-distance theory of matter
(at, or close to, equilibrium) requires us to take into ac-
count these unscreened perturbations. Such is the case in a
QED plasma, where magnetic fields are not screened. Not
only are equilibrium properties of a plasma strongly influ-
enced by this, but also the off-equilibrium long-distance
theory changes to magneto hydrodynamics rather than
Navier-Stokes hydrodynamics, as it is for other fluids.

For the QCD plasma with nonvanishing quark masses,
one knows that all fields are screened and the long-distance
theory will be hydrodynamics coupled to the diffusion of
conserved charges. Nevertheless, the study of screening
masses is of practical importance. If the smallest dimen-
sion of the fireball produced in heavy-ion collisions is ‘,
one expects thermodynamic properties to manifest them-
selves only when ‘�0 � 1. Furthermore, since both these
quantities are functions of the temperature T, it is possible
for the fireball to drop into, and out of, equilibrium at

different temperatures. In this way, quasistatic properties
such as the screening masses may put bounds on truly
dynamical quantities such as the thermalization and
freeze-out times in heavy-ion collisions.
The study of screening properties in a plasma has a long

history. In the glue sector, the Debye screening length has
been the object of many studies and now seems to be
quantitatively understood, both in nonperturbative lattice
studies [2] and in weak-coupling theory at high tempera-
tures [3]. Screening in other quantum number channels in
the glue sector has also been studied [4]. Screening in color
singlet channels due to quark bilinear (mesonlike) and
trilinear (baryonlike) currents [1] was understood as the
first signal of deconfinement above the chiral symmetry
restoring temperature in QCD with dynamical quarks [5].
Analyticity arguments relate these hadronlike screening
masses in the low-temperature confined and chiral symme-
try broken phase to the (pole) masses and properties of the
hadrons. This has implications for models of heavy-ion
collisions such as the hadron resonance gas model.
One more application is to the viability of resummation

of the weak-coupling series at high temperature using
dimensional reduction. This is possible only if the lowest
screening mass belongs to the glue sector [6]. It turns out
that dimensional reduction does not work just above the
chiral crossover temperature, Tc.
Hadron-like screening masses have been studied exten-

sively [7,8]. In QCD with light dynamical quarks they have
been studied before using 2 flavors of staggered quarks [9]
and with 2þ 1 flavors of p4 improved quarks [10]. They
have been studied also with overlap valence quarks and
staggered sea quarks [11]. In all these studies the renor-
malized light quark masses are almost equal, and nearly
physical.
In this work, we extend previous studies through the

analysis of mesonlike spatial correlation functions in
2-flavor QCD with staggered quarks. This brings the state
of the art for dynamical staggered quarks into the regime of
lattice spacings already reached using quenched overlap
quarks. The organization of our paper is the following:
In Sec. II we discuss operators selected for our analysis
and the technical details of our fitting methodology.
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We investigate chiral symmetry restoration through the
correlation functions in Sec. III. Our results on the screen-
ing spectrum are presented in Sec. IV along with a finite
volume analysis. Finally we summarize the main details in
Sec. V. A technical point about the covariances of mea-
surements of correlators is dealt with in the Appendix.

II. CONFIGURATIONS, MEASUREMENTS
AND ANALYSIS

A large part of this study uses decorrelated gauge con-
figurations described in [13]. Two light flavors of staggered
quarks were used with the bare quark mass tuned so as to
give m� ’ 230 MeVat zero temperature. The lattice spac-
ing was a ¼ 1=ð6TÞ, i.e., Nt ¼ 6. The extraction of the
temperature scale was explained in [13]; we note that Tc

was identified there through the peak of the Polyakov loop
susceptibility. The lattice volumes, V ¼ ðaNsÞ3 were set

using 12 � Ns � 24, i.e., the aspect ratio � ¼ T
ffiffiffiffi
V3

p ¼
Ns=Nt between 2 and 4. This provided basic control of
finite volume effects; most of our results are reported for
the largest volumes, � ¼ 4. In addition, we performed a
detailed finite volume scaling study at T ¼ 0:94Tc. For this
we generated configurations with 4=3 � � � 5, with all
other parameters fixed as before. We measured autocorre-
lation times as before, and used at least 50 decorrelated
configurations for our measurements.

The meson screening correlation functions projected to
zero momentum are—

C�
z ¼ 1

V

�X
x

Tr½Gðx; zÞGyðx; zÞ���ðxÞ
�
; (1)

where x stands for sites labeled by the triplet ðx; y; tÞ, the
number of terms in the sum is the same as the volume of
such a slice, V ¼ NxNyNt, Gðx; zÞ is the inverse of the

Dirac operator, i.e., the quark propagator from the origin to
the point ðx; zÞ, the angular brackets denote an average
over gauge field configurations with the correct weight, and
the staggered phase factors ��ðxÞ pick out the quantum

numbers, �, of the meson under study.
In this work we have taken all eight possible local

staggered phases. At T ¼ 0 they would correspond to the
flavor nonsinglet scalar (S) (corresponding to the a0 me-
son), the Goldstone pion (PS), and three components each
of the local vector meson (V) and the axial vector (AV).
Symmetry operations of the spatial slice interchange the
components of the V and AV, so the three components are
expected to be identical after averaging over gauge
configurations.

Since we measure spatial direction correlators at finite
temperature, the symmetries of the ðx; y; tÞ slice orthogonal
to the direction of propagation are not the same as they
would be in the corresponding zero temperature computa-
tion [14]. The S/PS operators both lie in the trivial repre-
sentation, called the Aþþ

1 , of the spatial direction transfer

matrix. The sum of the x and y polarizations of the V/AV,
and, separately, the t polarization, also lie in the Aþþ

1

representation. These six different kinds of Aþþ
1 operators

do not mix under the symmetries of the ðx; y; tÞ slice, and
hence we need separate notations for them. For the S/PS
correlators it is economical to carry on the T ¼ 0 notation.
For the sum of the x and y polarizations of the V we use the
notation Vs (and AVs for the sum in the AV sector) and for
the t polarizations we use the notation Vt and AVt. The
difference of the x and y polarizations of the V/AV lie in a
nontrivial representation called the Bþþ

1 . We use the nota-
tion VB and AVB for these. These particular realizations of
the Bþþ

1 correlator have earlier been seen to vanish [15].
We will also have occasion to use the S and PS suscep-

tibilities [16] defined as

�PS ¼ X
z

CPS
z ; and �S ¼

X
z

ð�1ÞzCS
z : (2)

The construction uses a fact that we demonstrate later: at
high temperatures the S/PS correlators are essentially
dominated by a single-parity state.
The inversion of the Dirac operator was done using a

conjugate gradient (CG) algorithm, as usual. The tolerance
for stopping was chosen such that the residual vector had
squared norm less than �NtN

3
s . We investigated whether

we had an acceptable stopping criterion by monitoring

	ð�Þ ¼ 1� CPS½��
CPS½�0� (3)

where CPS½�� is the PS correlation function obtained when
the stopping tolerance parameter is �. We chose a fixed
�0 ¼ 10�5. In Fig. 1 we show 	 computed on a randomly
chosen test configuration at T ¼ 0:94Tc with � ¼ 4. The
configuration to configuration variance of CPS is about
2–5% of the expectation value, so keeping 	 < 0:01 suffi-
ces. Clearly, the errors converge fast, and our choice of
� ¼ 10�5 is seen to be more than sufficient.
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FIG. 1 (color online). 	ð�Þ, see Eq. (3), as a function of the
separation z for varying �, with a fixed value of �0 ¼ 10�5.
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Each staggered correlation function may contain contri-
butions from two parity partners, and can be parametrized
through the doubled-parity fit

CðzÞ ¼ A1ðe��1z þ e��1ðNz�zÞÞ
þ ð�1ÞzA2ðe��2z þ e��2ðNz�zÞÞ; (4)

where �1 and �2 are the screening masses of the lightest
natural parity meson appropriate for the operator used and
its opposite parity partner.

Since measurements of the correlation function at differ-
ent distances, z, are made using the same gauge configu-
rations, they are correlated, and the fit must take care of
these correlations. Therefore, we used the definition of �2

�2 ¼ X
zz0
½Cz � CðzÞ���1

zz0 ½Cz0 � Cðz0Þ�: (5)

Here z is the spatial separation, Cz are the measured
expectation values of Eq. (1), the function CðzÞ is the
2-mass form of Eq. (4), and �zz0 is the covariance of Cz

andCz0 . When�zz0 is diagonal, the definition reduces to the
more familiar one. In actuality, the correlation coefficients
are fairly high, so the matrix �zz0 is nearly singular. The
inversion was done in Mathematica to an accuracy of
Oð10�10Þ. The errors in the inversion were therefore neg-
ligible compared to the statistical errors in the measure-
ments, 
z, which were of the order of a few percent. See
the Appendix for further discussion of this procedure.

A check on the consistency of the results obtained from
fits is to use local masses. Because of the even-odd oscil-
lations for staggered fermions, we used the definition of
[9]—

Czþ1

Cz�1
¼ cosh½�mðzÞðzþ 1� Nz=2Þ�

cosh½�mðzÞðz� 1� Nz=2Þ� : (6)

Given the measurement on the left, the effective mass,
mðzÞ, can be extracted by solving the equation and errors
estimated by jackknife. This differs from a procedure
where successive time slices are used for the modified
correlator ð�1ÞzCz [10].
In the chiral symmetry broken phase there is no particu-

lar relation between �1, �2 and A1, A2 for different corre-
lators. However, when chiral symmetry is restored, the
staggered phases give

CPS
z ¼ ð�1ÞzCS

z ; CAVs
z ¼ ð�1ÞzCVs

z ;

CAVt
z ¼ ð�1ÞzCVt

z :
(7)

This implies the relations

AVs
1 ¼ AAVs

2 ; �Vs
1 ¼ �AVs

2 and ðVs $ AVsÞ; (8)

and similarly for the Vt and AVt or the S and PS channels.
These relations are very easily demonstrated by using the
projections

Cð�SÞ
z ¼ CPS

z � ð�1ÞzCS
z ;

Cð�VsÞ
z ¼ CVs

z � ð�1ÞzCAVs
z ;

Cð�VtÞ
z ¼ CVt

z � ð�1ÞzCAVt
z :

(9)

If the correlators Cð��Þ
z vanish for all z then chiral symme-

try is restored for the full spectrum of excitations.

III. THERMAL EFFECTS AND APPROXIMATE
CHIRAL SYMMETRY RESTORATION

The screening correlators at any nonzero temperature
should be decomposed according to the symmetry group of
the finite temperature slice. At sufficiently low tempera-
ture, however, one expects the Vt and Vs correlators to be
nearly equal, and the symmetries of the T ¼ 0 problem to
be realized approximately. We investigated this by com-
puting the ratios of the Vt and Vs correlators (normalized
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FIG. 2 (color online). The panel on the left shows Vs and Vt correlators at z ¼ 0 as a function of T=Tc. Note the abrupt lifting of the
degeneracy at Tc. The panel on the right shows the ratio of the Vs and Vt correlators as a function of z, normalized by their values at
z ¼ 0. The data at T ¼ 0:97Tc is displaced slightly to the right for clarity.
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to be unity at z ¼ 0). The statistical analysis was per-
formed using a bootstrap, since the distribution of the ratio
is not expected to be Gaussian [13]. The results below Tc

are shown in Fig. 2; the ratio is consistent with unity at
all z. The normalization is the value of the ratio of the
correlators at z ¼ 0. In Fig. 2 we have plotted CVs

0 and CVt
0

as a function of T. Below Tc the two are equal within
statistical errors. The two facts taken together imply that
the T ¼ 0 symmetries remain good until rather close to Tc.
Quite abruptly, just above Tc this higher symmetry is
broken, and the symmetry of the finite temperature prob-
lem is obtained. Similar results are obtained for the AVs
and AVt. In view of this, in most of our subsequent analy-
sis, wewill group the correlators below Tc into S, PS, Vand
AV. For T � Tc we will continue to use the decomposition
into S, PS, Vs, Vt, AVs, and AVt.
The next question which we examine is whether the

correlation functions exhibit chiral symmetry restoration
at any temperature. As discussed earlier, the most straight-

forward way to examine this is to plot Cð��Þ
z at each T and

ask whether it is consistent with zero at all z. In Fig. 3 we
show these quantities at two temperatures above Tc. From

the correlator Cð�SÞ
s we see that at T ¼ 1:48Tc the symme-

try is clearly restored, whereas for T ¼ 1:012Tc the sym-

metry is broken. The correlator Cð�VsÞ
z is consistent with

zero for zT > 1, but at distances less than 1=T there is clear

chiral symmetry breaking close to Tc. The correlator V
ð�VtÞ
z

most nearly exhibits chiral symmetry restoration immedi-
ately above Tc, with only the value at z ¼ 0 being signifi-

cantly nonzero. At higher temperatures all the Cð��Þ
z are

consistent with zero at all z, thereby indicating chiral
symmetry restoration.
In order to extend this analysis to all temperatures it is

useful to introduce a less local quantity,

�2
� ¼ X

zz0
Cð��Þ
z ��1

zz0 C
ð��Þ
z0 ; (10)

where�zz0 is the covariance matrix of the measurements of
the correlator at different distances. This is a measure of
the likelihood that the correlators at all z are consistent

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2

C
z(-

S
)

zT

T=1.48 Tc
T =1.012 Tc

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2

C
z(-

V
s)

zT

T=1.48 Tc
T =1.012 Tc

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2

C
z(-

V
t)

zT

T=1.48 Tc
T =1.012 Tc

FIG. 3 (color online). The chiral projections Cð�SÞ
z , Cð�VsÞ

z and

Cð�VtÞ
z of Eq. (9) at two temperatures as computed on lattices

with � ¼ 4. The Vt channel shows chiral symmetry is close to
being restored immediately above Tc.

TABLE I. This table lists the values of �2 at different tem-
perature for tests of the hypotheses that various correlators
vanish. The number of degrees of freedom in all these cases is
12, since there are 13 independent values of z on the lattices with
� ¼ 4 with periodic boundary conditions. In order to rule out the
hypothesis that a correlator vanishes at the 99% C.L., the value
of �2 should be more than 36.

T=Tc �2
S �2

Vs �2
Vt �2

VB �2
AVB

1.92 0.52 0.42 0.86 16.2 16.2

1.48 9.62 1.33 0.77 10.2 11.5

1.33 13.5 2.07 1.13 14.1 11.7

1.21 441 27 15 19.8 8.8

1.012 1429 107 40 6.2 12.1

1.00 878 125 56 19.0 9.1

0.99 3009 214 114 10.1 17.2

0.97 3013 440 212 14.0 9.2

0.94 746 188 92 28 14.9

0.92 936 348 141 15.0 14.5

0.89 539 101 80 21.3 18.8
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with zero, and hence that chiral symmetry is restored.
Values of these variables are collected in Table I. Note
that �2

Vt shows a distinct change at Tc, although it is

consistent with chiral symmetry restoration only at T ¼
1:21Tc. �Vs also shows a change at Tc, although it is less
dramatic. From Fig. 3 it would appear that the change in

�2
Vs at Tc is due to the long distance (z > 1=T) correlation

function becoming consistent with zero, whereas the short
distance (z � 1=T) part disappears only at larger T. �2

S, on

the other hand, does not seem to undergo any significant
change at Tc and signals chiral symmetry restoration only
at T ¼ 1:33Tc. One sees the difference in behavior in
Fig. 3; the S/PS correlators, unlike the V/AV, do not
show any kind of effective long-distance chiral symmetry
restoration. This spatial structure has not been noticed
before, and could be worth further investigation in future.
The late restoration of chiral symmetry breaking can be

understood from the fact that the nonvanishing quark mass
provides explicit chiral symmetry breaking. In the chiral
limit, there is a phase transition at Tc. In the high-
temperature phase there is, effectively, a single scale, T,
so the screening mass � / T. However, when there is a
nonvanishing bare quark mass, m, there is no phase tran-
sition at Tc but only a crossover. In the absence of a phase
transition, one could have �=T ¼ fðm�=TÞ where m� is
the pion mass at T ¼ 0 (we have traded the bare quantitym
for a renormalized measure of chiral symmetry breaking,
m�). At large T, when the argument of the function be-
comes small, f should go to a constant. On lowering T from
large values, nonconstant behavior should become visible
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when the argument becomes of order unity, i.e., at T=Tc ’
m�=Tc. Since our simulations are performed with m� ’
230 MeV and Tc ’ 175 MeV, this argument implies that
explicit chiral symmetry breaking should manifest itself up
to T ’ 1:35Tc, which is what we see. Such an argument
would lead us to expect that in the real world chiral sym-
metry breaking in screening masses should not be visible
above Tc. This may have some bearing on the relation
between Tc defined through susceptibilities of the decon-
finement and chiral order parameters [17]. An alternative
explanation of the late restoration of chiral symmetry is due
to approximate restoration of the UAð1Þ symmetry [10]. A
future computation with different sea quark masses can
easily distinguish between these two alternatives.

The projection of the local Vand AV channel correlators
on the Bþþ

1 channel is expected to vanish. This was dem-
onstrated in [9,15] with lattice spacing a ¼ 1=ð4TÞ. Here
we investigate the vanishing of these correlators at smaller
lattice spacing using a correlated �2 definition similar to
that above. In �2

VB=AVB the factors of C��
z in Eq. (10) are

replaced by the VB or AVB correlator. The results are
collected in Table I and show that the VB and AVB
correlators vanish.
In Fig. 4 we show the ratio of the PS and S susceptibil-

ities [see Eq. (2)]. As expected, they become equal at T ¼
1:33Tc, which is the point where the two correlators begin
to satisfy Eq. (7). At lower temperatures �PS is larger,
essentially because �PS is smaller than �S.

TABLE II. Fits to PS and V Correlators at T ¼ 0:97Tc on a lattice with � ¼ 4. An asterisk on a number indicates that the fit value is
not determined reliably.

PS V

Uncorrelated single-parity fit

Range 3–11 4–11 5–11 4–9 4–10

A 3.61(7) 3.59(6) 3.59(6)

m 0.401(2) 0.400(2) 0.400(2)

�2=DOF 0:24=7 0:01=6 0:01=5
Correlated single-parity fit

A 3.64(18) 3.59(16) 3.58(16) 0.053(4) 0.053(3)

m 0.401(3) 0.400(3) 0.400(2) 0.484(7) 0.480(8)

�2=DOF 11:0=7 2:1=6 1:9=5 9:5=4 9:8=5
Correlated doubled-parity fit

4–11 5–11 6–11 2–11 1–10 3–9

A1 3.59(14) 3.59(12) 3.58(11) �0:67ð4Þ �0:70ð3Þ �0:55ð5Þ
�1 0.400(2) 0.400(2) 0.400(2) 1.18(3) 1.20(3) 1.14(3)

A2 0.02(6) 0.04(12) 3.1(*) 0.38(6) 0.49(4) 1.4(4)

�2 0.9(*) 0.9(*) 1.5(*) 1.62(8) 1.71(5) 1.98(11)

�2=DOF 1:60=4 1:58=3 1:28=2 6:55=6 6:56=6 2:20=3
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FIG. 7 (color online). The extracted local masses for the mesons at representative temperatures in the two phases on a lattice with
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In the next sections we examine the other projection of

the correlation function, Cðþ�Þ
z . This is nonzero at all

temperatures. At high enough temperature one might ex-
pect the whole correlation function to be described in a
weak-coupling theory. In Fig. 5 we show the correlators at
T ¼ 1:92Tc. One sees that the correlation function is far
from the free field theory result, especially the correlator

CðþSÞ
z ; indicating that even at this temperature the theory

cannot be treated as weakly interacting. This is consistent
with previous observations on the lattice [9–12]. Similar
features were also observed in the Nambu-Jona-Lasinio
model and attributed to soft modes in the medium [18].

IV. SCREENING MASSES

Figure 6 displays all four screening correlators at two
temperatures, one each in the hadron and the plasma phase,
i.e., at T ¼ 0:97Tc and T ¼ 1:92Tc. The V/AV correlators
show clear even-odd oscillations at both temperatures,
whereas these staggered artifacts are less clear in the S/
PS correlators. This has clear implications for the fits: the
former always requires a doubled-parity fit of the form
given in Eq. (4), whereas for the latter a single-parity form
may suffice.
In Table II we show that this is indeed correct. In the PS

channel a single mass fit is acceptable judging by the value

TABLE III. Screening masses at different temperatures. The fit range was z=a ¼ 3–11 except
for the S/PS at 1:92Tc, where the fit range was z=a ¼ 4–11 (the larger range gave very large �2

without appreciably changing the best fit values). Also note that except at 1:92Tc, the PS fit was
done with a single-parity fit form, and therefore has two more degrees of freedom than the other
channels. A dash indicates that some mass could not be obtained because staggered oscillations
were not visible. At temperatures below Tc the analysis was performed on the V/AV channels.

T=Tc PS S Vs AVs Vt AVt

1.92 �1=T 4.93(3) 5.1(6) 6.5(1) 12.6(4) 9.4(3) 6.1(2)

�2=T 5.1(7) 4.93(3) 12.8(4) 6.5(1) 6.1(2) 9.3(4)

�2 15.8 16 9.2 9.3 7.4 7.2

1.48 �1=T 4.44(4) 17(1) 6.8(1) 5.8(4) 8.9(4) 6.6(4)

�2=T - 4.5(4) 5.6(4) 6.8(1) 6.6(4) 8.7(4)

�2 8.1 1.8 5.2 5.3 9.6 9.2

1.33 �1=T 4.15(2) 7.0(7) 6.7(2) 9.6(6) 8.7(3) 6.8(5)

�2=T - 4.22(4) 8.7(5) 6.8(2) 6.6(6) 8.9(4)

�2 31.8 9.2 11.4 11.3 6.0 7.7

1.21 �1=T 3.31(7) - 6.5(2) 9.4(8) 8.1(4) 6.1(8)

�2=T - 3.91(5) 15.0(6) 6.8(2) 6.8(8) 9.1(4)

�2 18.2 6.3 5.4 12.5 2.2 3.8

1.012 �1=T 2.65(4) 23(3) 6.9(3) 4.5(9) 6.4(5) 5.7(7)

�2=T - 4.3(1) 4(2) 8.8(4) 5(1) 5.3(6)

�2 21.2 7.4 5.2 2.1 1.0 2.8

1.00 �1=T 2.54(3) - 5.9(3) 5.2(6) 7.9(4) 13(2)

�2=T - 4.6(2) 9.8(9) 8.6(4) - 11.6(5)

�2 11.9 7.0 6.1 4.6 3.2 7.8

PS S V AV

0.99 �1=T 2.47(2) 5(1) 5.5(2) 6.4(5)

�2=T - 4.6(2) 12(1) 6.0(4)

�2 8.4 2.6 6.3 4.3

0.97 �1=T 2.41(2) 4(1) 7.0(2) 7.0(3)

�2=T - 5.2(1) 11(1) 7.7(3)

�2 11.0 3.6 6.5 1.7

0.94 �1=T 2.35(2) 4(2) 5.9(2) 4(1)

�2=T - 5.2(2) - 14.4(3)

�2 15.3 3.2 2.8 2.4

0.92 �1=T 2.31(2) 5(1) 7.3(3) 7.3(7)

�2=T - 5.7(2) - 10.0(7)

�2 7.5 1.3 6.5 7.6

0.89 �1=T 2.27(2) - 5.5(6) 7(1)

�2=T - 4.9(4) 7(2) 5(1)

�2 5.6 7.7 4.3 12.2
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of �2=DOF, and the fitted value does not change signifi-
cantly when a doubled-parity fit is performed. In fact, when
a doubled-parity fit is attempted to the data, the mass of the
parity partner is ill-determined. In the V channel, on the
other hand, the doubled-parity fit turns out to be indispens-
able. In the AV channel the behavior is similar to that in the
V. In the S channel a single mass suffices, although one
needs a ð�1Þz factor multiplying the exponential to take
care of staggered oscillations. Only at the highest tempera-
ture were we able to extract a second mass from the S/PS
correlators. The table also shows that the fitted masses are
reasonably stable against changes in the fit range in both
the PS and V channels. We find similar results for all T.

Interestingly, although the covariance matrix is nearly
singular (the smallest correlation coefficient being about
0.8), the difference between the parameters extracted using
or neglecting the covariance matrix in the PS channel is
marginal. The major difference seems to be that the value
of �2 obtained when covariances are neglected are clearly
too small for the usual statistical interpretation.

In Fig. 7 we demonstrate that the fitted masses agree
with the local mass extracted from Eq. (6). We draw
attention to the fact that the local masses exhibit a very
well-developed plateau, indicating that the correlation
functions of fixed parity can be well described by a single
mass. The spatial structure of chiral symmetry restoration
shown in Fig. 3 is visible also in the local masses at high
temperature.

In Table III we collect the results for the fitted masses at
all temperatures. We checked in all cases that the local
masses for z > 1=T were compatible with these fits. For the
V/AV correlators we also checked that if the fits were
restricted to z � 1=T the fit results were generally differ-
ent. Wherever doubled-parity fits are available, one can
look for chiral symmetry restoration by checking whether
or not the relations of Eq. (8) are satisfied. Consistent with

the analysis of Sec. III, we find that this happens only for
T � 1:33Tc in the S/PS channels. Surprisingly, the equal-
ities of Eq. (8) hold in the V/AV channels, within statistical
errors, from just above Tc.
In Fig. 8 we plot the lowest screening mass in each

channel as a function of T=Tc. Above Tc we could plot
three channels. To avoid clutter we plotted only the S/PS
and Vt/AVt channels. As one sees in Table III, the lowest
Vs/AVs masses are slightly larger, but consistent with Vt/
AVt at the 2-
 level. All the features discussed are clearly
visible here. Also visible is the fact that �PS=T increases
monotonically with T whereas �S=T dips near Tc. Note
also that �Vt=T may approach its ideal gas value from
above, becoming consistent with the limit already at T ’
2Tc. However �S=T remains about 20% below this limit
even at the highest temperature we explored. We shall
return to this point later when we discuss the continuum
limit.

A. The role of explicit chiral symmetry breaking

In free field theory one has no pion and the explicit chiral
symmetry breaking scale is the quark mass. In this case one
has

�

T
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ

�
m

T

�
2

s
’ 2�

�
1þ 1

2

�
m

�T

�
2
�
: (11)

Substituting the bare quark mass into this expression, it can
be seen that the effect is of the order of a few parts in 105,
and hence negligible. However, it turns out that in weak-
coupling theory one has to insert in the above equation the

thermal mass of the quark [19]. Since this is gT=
ffiffiffi
3

p
, and g

is large near Tc [20], the effect can be significant. Of
course, when g is large, the weak-coupling theory is un-
likely to be quantitatively useful, and should be taken only
as an indication that one must explore the quark mass
dependence of the chiral symmetry breaking seen in the
screening masses.
Changing the quark mass involves in principle a com-

pletely new set of computations, and lies beyond the scope
of this paper. However, it is possible to change the valence
quark mass (mval) without changing the sea quark mass
(msea). As a result, such a restricted study can be done
without a large cost in CPU time. In view of this, we
repeated our analysis above Tc with mval chosen to be
2/3 and 1/3 of msea. Sample results are shown in Fig. 9.
We find that a change in the valence quark mass has

insignificant effect in the V/AV channels (see, for example,
the second panel of Fig. 9). However, there are statistically
significant changes in the S/PS sector. Both the S and PS
screening mass increase with mval. The difference also
increases, although the limiting value formval ¼ 0 is finite.
We find that

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0.8  1  1.2  1.4  1.6  1.8  2

µ/
T

T/Tc

Free continuum

PS
S

V/Vt
AV/AVt

FIG. 8 (color online). Screening masses as functions of T=Tc.
Below Tc the S, PS, V, and AV channels are shown. At Tc and
above the S, PS, Vt, and AVt are shown. The free continuum
value of 2� is indicated with an arrow.
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�S ��PS

T

��������T=Tc¼1:21
¼ 0:46� 0:03

ðfor msea=Tc ¼ 0:1; mval ¼ 0Þ:
(12)

It is not inconceivable that decreasing msea in a future
computation can lower this mass difference further. Note,
however, that �PS=T and �S=T both drop as the quark
mass changes, and move further away from the weak-
coupling expectation.

In fact, the dependence of correlation functions on the
bare quark mass can be deeper than what was discussed
above. We illustrate this in Fig. 10, where local masses in
the PS channel are shown for several values of mval. It
seems that with decreasing mval the plateau in the local

masses becomes less well developed; for the smallest mval,
in fact, a distinct slope is visible.

B. The effect of finite volume

Finite volume effects in the high-temperature phase of
QCD have been explored earlier [9] and are by now well
understood. These effects are under control as long as �PS

is large compared to the inverse size of the smallest lattice
dimension, i.e., T. Since we find �PS=T > 2:5 in the high-
temperature phase, we expect that finite volume effects are
under control for T > Tc.
In this paper we report on the magnitude of finite volume

effects, below Tc. We studied the screening correlators on
lattices with 4=3 � � � 5 at T ¼ 0:94Tc. As shown in
Table IV and Fig. 11, finite volume effects are invisible
within statistical errors. Again, since �PS=T ’ 2:3, this
may not seem unexpected.
It is worth the remark that while such studies can

have some bearing on decay widths at finite temperature,
much larger lattices and smaller quark masses and lattice
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FIG. 9 (color online). The valence quark mass dependence of various quantities at T ¼ 1:21Tc when the bare sea quark mass is held
fixed at the value m=Tc ¼ 0:1 (corresponding to m� ’ 230 MeV). The screening masses in the S/PS sector depend significantly on the
valence quark mass, whereas the V sector screening correlators are insensitive.
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FIG. 10 (color online). Local masses in the PS channel for
different valence quark masses at T ¼ 1:33Tc with � ¼ 4. The
horizontal lines are the 1-sigma bounds from the fit to the
correlator for mval ¼ msea.

TABLE IV. Screening mass estimates at T ¼ 0:94Tc at fixed
a ¼ 1=ð6TÞ with changing spatial volume ð�=TÞ3.
� PS S V AV

4=3 �1 2.45(4) - 8.0(2) 4.3(6)

�2 - 5.0(3) - 7.7(6)

2 �1 2.41(2) - 6.8(3) 13.1(7)

�2 - 5.5(2) 14.7(5) 9.2(5)

3 �1 2.44(3) 6(1) 6.5(2) 8.0(3)

�2 - 5.3(2) 6.4(8) 9.1(3)

4 �1 2.35(2) 4(2) 6.4(3) 7.6(3)

�2 - 5.2(2) 29(4) 9.4(2)

5 �1 2.39(2) 4.2(-) 6.6(4) 8.1(5)

�2 - 5.5(4) 9(1) 8.6(4)
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spacings may be required for those. For example, the scalar
under study cannot decay into two pions, and must have at
least three pions in the final state. This is ruled out kine-
matically at present.

On the other hand, since �S=�PS ’ 2:2, one must ask
whether the long-distance behavior of the S correlator is
determined by a single scalar exchange or multiparticle
exchanges (this is the finite temperature analogue of par-
ticle decays, and we shall save space by using the word
decay). In the continuum theory, this nonisosinglet scalar
cannot decay into two pions. From this point of view, since
�S=�PS ’ 2:2< 3, one could expect that the scalar does
not decay. However, with staggered quarks on a lattice,
there are spurious two pion states (taste multiplets) through
which the scalar current could be correlated [21]. The
featureless behavior of the volume dependence of the
screening masses implies that no decays occur. However,
this is a weak statement, because a 7% taste symmetry
breaking is sufficient to forbid this decay on the largest
lattice which we used.

C. The continuum limit

In Table V we extract the values of the screening masses
in units of temperature,�=T for two different temperatures
in the chirally symmetric phase, at two different lattice
spacings. From two pieces of data in each case it is hard to
construct a continuum extrapolation. However, we can test

whether the extrapolation is consistent with the expectation
� ’ 2�T by attempting a fit to the form

�

T

��������Nt

¼ 2�þ s

N2
t

: (13)

It is possible to get reasonable fits in the V/AV channel,
yielding

s ¼
	�13� 2 ðT ¼ 1:5TcÞ
�9:0� 0:2 ðT ¼ 2TcÞ : (14)

This is consistent with previous results. However, in the S/
PS case this procedure fails to yield the expected result; the
extrapolated screening length remains below the ideal gas
value. One cannot rule out the possibility that the weak-
coupling result emerges at even smaller lattice spacings.
We note however, that the screening of mesonlike cor-

relations in the weak-coupling theory occurs, not through
the exchange of a single particle, but through multiparticle
exchange. As a result, the zero-momentum correlator is not
expected to be strictly exponential, but to have some
curvature. Such a curvature was actually seen in computa-
tions in the quenched theory using staggered [22] and
Wilson [8] quarks using much smaller lattice spacings.
An easily observed feature of such a curvature is that local
masses do not show a plateau, but change continuously
with z. Such behavior was neither seen here (see Fig. 7),
nor with p4 improved quarks at the same renormalized
quark mass [10]. However, as pointed out in Sec. IVA,
when the quark mass is lowered such a feature could
emerge.

V. SUMMARY

We studied screening correlation functions and screen-
ing masses of mesonlike probes of strongly interacting
matter, both in the low-temperature hadron and high-
temperature plasma phases. We used configurations de-
scribed in [13]; these were generated using two flavors of
dynamical staggered quarks with masses tuned to give
m� ’ 230 MeV. Most of the results come from lattice
spacing a ¼ 1=ð6TÞ, although we have attempted to check
assumptions about the continuum limit using earlier mea-
surements with the same renormalized quark mass and
lattice spacing a ¼ 1=ð4TÞ. We have explicitly checked
for finite volume effects, and found that these are negli-
gible when we take the aspect ratio � ¼ 4.
We checked that the correlators at T < Tc effectively

have the symmetries of the T ¼ 0 transfer matrix, and that
there is a fairly abrupt transition at Tc to the symmetries of
the screening transfer matrix (see Fig. 2). Although the
QCD crossover occurs at Tc, we found a lack of parity
doubling in the spectrum of screening masses up to a
temperature of 1:33Tc (see, for example, Fig. 4 and
Table I). We argued that explicit chiral symmetry breaking
due to the quark mass is visible up to a temperature of
1:35Tc, as seen here. This argument leads us to believe that
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FIG. 11 (color online). Screening masses in various channels
as a function of � at T ¼ 0:94Tc. Note that there is nothing
special about the S channel masses.

TABLE V. The lattice spacing dependence of �=T in various
quantum number channels. The temperature scale is rounded off.
Data for a ¼ 1=ð4TÞ is taken from [9].

T=Tc a ¼ 1=ð4TÞ a ¼ 1=ð6TÞ
S/PS Vt/AVt S/PS Vt/AVt

1.5 3:67� 0:02 5:44� 0:08 4:44� 0:04 6:6� 0:4
2.0 4:08� 0:01 5:72� 0:04 4:93� 0:03 6:1� 0:2
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in the limit of realistic quark masses, such a breaking
would not be visible above Tc. Interestingly, there turns
out to be a lot of structure in this apparent breaking of
chiral symmetry above Tc. The V/AV correlators are equal
to each other at distances z > 1=T, and the chiral symmetry
breaking in this sector is entirely a short distance effect
(see Fig. 3). In the S/PS sector the nondegeneracy of the
correlators persists into the long-distance regime.

Nondegeneracy of the S/PS correlators could also be due
to UAð1Þ symmetry breaking. This is suspected to persist
well into the high-temperature plasma phase [23]. We
tested what happens to the S/PS difference as the valence
quark mass is changed (see Fig. 9). Our results imply that
other physics effects can be disentangled from the explicit
symmetry breaking effect due to finite quark mass only
through computations with smaller quark masses.
Alternatively, one could examine the short distance part
of the V/AV correlators for signals of such microscopic
physics.

We made the first study of hadron decays at finite
temperature (below Tc) through a systematic exploration
of the volume dependence of screening masses. We found
no significant volume dependence (see, for example,
Table IV and Fig. 11), indicating the stability of the scalar.
As we discussed already, this study needs to be carried out
with smaller quark masses so that �S=�PS > 3, or at
smaller lattice spacings, so that taste violations are
reduced.

We combined the analysis of this paper with data from
an earlier source [9] in which the same renormalized quark
masses were used to study screening at a coarser lattice
spacing, a ¼ 1=ð4TÞ to explore the continuum limit. Being
restricted to only two values of the lattice spacing at each
T, we ask whether the continuum limit of screening masses
is compatible with the ideal gas expectation, 2�T, in the
high-temperature phase. We find that it is, in the V/AV
channels, but not in the S/PS channels.

If the high-temperature phase is deconfined, then corre-
lations of static currents with meson quantum numbers
must be mediated by the exchange of a quark antiquark
pair. The most straightforward signal of this is that the local
masses do not show a well-developed plateau. In most of
our studies we did not see this. Only in a study with rather
small valence quark masses did we see a signal of such
behavior (see Fig. 10). Studies with lower sea quark masses
in the future will be needed to resolve the question of
deconfinement above Tc in QCD with physical quark
masses.
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APPENDIX: COVARIANCE MATRICES AND
STATISTICAL DATA COMPRESSION

The correlation functions are evaluated on a fixed set of
gauge configurations. In general, the estimates of the cor-
relator at different separations are not statistically indepen-
dent. The covariance matrix of the correlators measures the
degree of independence, and is defined as

�zz0 ¼ hðC�
z � hC�

z iÞðC�
z0 � hC�

z0 iÞi; (A1)

where the averages are over the ensemble of gauge con-
figurations. The diagonal elements are the variances. The
matrix is positive and symmetric by construction, so that it
has well defined (positive) eigenvalues and orthogonal
eigenvectors. It is found that it often has large condition
number, i.e., the ratio of the largest and smallest eigenval-
ues is large. Any fits to the correlation function are made by
minimizing the �2 function

�2 ¼ Dt��1D; where D ¼ C� � f; (A2)

C� is the vector of measured correlation functions, with
components C�

z , and f is the corresponding vector made
from the function to be fitted.
The covariance matrix is often inverted using a singular

value decomposition, � ¼ UDVT where U and V are
orthogonal matrices (in this case U ¼ V) and D is diago-
nal. The inverse matrix is usually obtained as ��1 ¼
VD�1UT , with the largest components of D�1 set to zero
[24]. This procedure is used to prevent errors arising from
finite precision rounding. For this part of the analysis we
use MATHEMATICA, which allows arbitrary precision com-
putations. By tuning the precision of the computation from
10 digits to 40 digits, we checked for control of rounding
errors. Our conclusion is that the rounding errors can be
kept under control without setting large numbers to zero.
As a result, in our ensuing investigations we are assured
that the eigenvalues of � are the inverses of those of ��1.
The covariance matrix and its eigenvectors are deter-

mined essentially by the statistical properties of the mea-
surement and not directly by the correlation function. One
extreme can be illustrated by the imagined case where we
generate a very large set of decorrelated gauge configura-
tions, and use a disjoint subset for evaluation of the corre-
lator at each z. Since the measurements at each of the z are
then statistically independent of each other, � must be
diagonal. As a result, the eigenvectors have support only
on a single separation z.
Take the eigenvalues of ��1 to be �� with correspond-

ing eigenvectors v�. Each correlation function can be
written as a linear combination of the v�, i.e.,

C� ¼ X
�

c��v�: (A3)

Our purpose in doing this is that if some of the c�� turn out
to be small then one can perform a noise reduction by
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dropping the small terms. Since c�� ¼ C� � v�, the errors
on the dot product are clearly given by


2ðc��Þ ¼ v�zv�z0�zz0 ¼ 1

��

: (A4)

In writing this formula we have taken v�z to have no errors.
This approximation can be removed, if necessary, by a
bootstrap analysis of the errors in c��. If many of the
components, c��, are zero within errors, then we can drop
them from the analysis. In this case we say that the corre-
lation function is compressible. Such a notion corresponds
to that of ‘‘lossy data compression’’ in a variety of con-
texts, including jpeg image compression and mp3 audio
compression.

In the imagined case which we discussed before, generi-
cally all the c�� will be nonzero and the correlator will not
be compressible. Only if some of the measurements are so
noisy that they are compatible with zero can we drop them
from the fits. This example illustrates the connection of
compressibility with that of statistical independence.

The actual situation we investigated was the usual one
where the correlation function at all separations were

measured on all configurations and the lowest mass was
obtained by a fit to the long-distance correlation function
using the cuts mentioned in Sec. IV, i.e., 3 � z=a � 13.
Very surprisingly, we found that the PS correlator can be
compressed to exactly one component, corresponding to
the smallest �� both above and below Tc. This means that
the corresponding eigenvector v� contains the full infor-
mation on the correlator. The V correlator can also be
compressed down to a very small number of components,
usually one or two. These surprising results are shown in
Fig. 12. When we examine the correlation functions at all
distances, then again we find a high, but lesser, degree of
compressibility with two or three eigenvectors being
needed for the description of the data.
What is the origin of these extremely strong covariances

in the data? The gauge configurations we used were chosen
so that thermodynamic operators such as the action,
Polyakov loops, chiral condensate, various quark number
susceptibilities, are decorrelated between one configura-
tion and another. Several of these quantities, for example,
those which involve fermions, are highly nonlocal. In view
of this, autocorrelations between configurations are not the
cause of the high compressibility of the data.
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FIG. 12 (color online). The measured correlator (red circles) and the compressed version obtained by projection on to a single
eigenvector of � (blue squares) for the PS and V at T ¼ 1:92Tc and 0:97Tc.
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So it must be the correlation function itself which gen-
erates these covariances, with the result that one of the
eigenvectors, v� contains all the information present in
the measured correlator. Could this be due to the fact that
the Dirac propagators are highly nonlocal? If so, the baryon
correlators must also be highly compressible, whereas
glueball correlators need not be. Or could it be that the

relatively low masses are at the root of the covariance? If
so, neither the baryon nor glueball correlators need be
compressible. Since correlated fits are standard technology
in the fitting of masses, measuring statistical compressibil-
ity of correlators is a trivial extension of standard lattice
measurements. It would be interesting to have more data in
future on the compression of correlation functions.
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