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The walking technicolor theory attempts to realize electroweak symmetry breaking as the spontaneous

chiral symmetry breakdown caused by the gauge dynamics with slowly varying gauge coupling constant

and large mass anomalous dimension. Many-flavor QCD theories are candidates owning these features.

We focus on the SU(3) gauge theory with ten flavors of massless fermions in the fundamental

representation, and compute the gauge coupling constant in the Schrödinger functional scheme.

Numerical simulation is performed with OðaÞ-unimproved lattice action, and the continuum limit is

taken in linear in lattice spacing. We observe evidence that this theory possesses an infrared fixed point.

DOI: 10.1103/PhysRevD.83.074509 PACS numbers: 11.15.Ha

I. INTRODUCTION

While the standard model has been established through a
number of experiments, unnatural hierarchies are present
between the electroweak scale and the Planck scale and
also among the fermion masses. The Large Hadron
Collider (LHC) is expected to give new insight into these
hierarchies. Among various new physics models proposed
so far, the technicolor (TC) model [1] is one of the most
attractive ones in these regards, as it does not require
elementary scalar particles, which make the former hier-
archy unnatural, and its extension, extended TC model [2],
has a possibility to generate the Yukawa hierarchy in a
dynamical way. For recent review articles, see, for ex-
ample, Ref. [3].

TC should be a strongly coupled vectorlike gauge sys-
tem, which triggers spontaneous chiral symmetry breaking
(S�SB). It is widely known, however, that the simplest TC
models obtained by rescaling ordinary QCD have already
been ruled out by the S parameter [4] and flavor-changing
neutral-current (FCNC) [5] constraints. Reference [6] sug-
gests a series of TC models to circumvent the FCNC
problem. Those TC models appeal to the gauge dynamics
in which the effective gauge coupling constant runs slowly
(i.e. ‘‘walks’’) at a relatively large value over a wide range
of energy scale above the S�SB scale, and in which the
chiral condensate gets large anomalous dimension. Such
TC is called walking TC (WTC), and possible candidates
have been enumerated through semiquantitative analyses
[7]. Since the dynamics that underlie WTC significantly

differ from those of two- or three-flavor QCD, the naive
scaling argument in Nc or Nf to estimate the S parameter

would not work, and any quantitative predictions from
WTC require solving nonperturbative dynamics explicitly.
Lattice gauge theory provides a unique way to study this
class of models from the first principles at present.
The search for candidate theories of WTC is frequently

linked to the Nf-dependent phase structure of the gauge

theories. Let us take SU(3) gauge theory with Nf flavors of

fermions in the fundamental representation as an example.
According to the analysis of the perturbative � function,
the system with large enoughNf (Nf > 16:5) is asymptoti-

cally nonfree and trivial unless a nontrivial ultraviolet fixed
point exists. On the other hand, if Nf is sufficiently small

(Nf � 3) the dynamics is QCD-like and thus in the chirally

broken phase. It is believed that for the in-betweenNf there

exists a so-called conformal phase, where the coupling
constant reaches an infrared fixed point (IRFP) without
S�SB set in, but confinement may take place [8]. The
range of Nf in which the conformal phase is realized is

called conformal window, and is represented by Ncrit
f <

Nf < 16:5. It is then natural to speculate that the gauge

dynamics slightly below Ncrit
f exhibit the features required

for WTC; slow running of the gauge coupling constant and
S�SB. The first goal in the search for WTC is thus to
identify Ncrit

f .

In the past years, many groups have used techniques of
lattice simulations to search for Ncrit

f and/or WTC through

hadron spectrum, eigenvalue distribution of Dirac operator,
the behavior of running coupling constant, or renormaliza-
tion group analysis of candidate theories [9]. For nonlattice*norikazu.yamada@kek.jp
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studies, see, for example, Refs. [10,11]. Among various
candidates, many-flavor QCD [12–19], sextet QCD
[20–25], and two-color adjoint QCD [26–31] have been
intensively studied. In this work, we focus on many-flavor
QCD with Nc ¼ 3 and fermions in the fundamental repre-
sentation. In a seminal work [12], the running coupling
constants were calculated for eight- and 12-flavor QCD
using the Schrödinger functional (SF) scheme on the lattice
[32]. They concluded that 12-flavor QCD has an IRFP at
g2SF � 5 while eight-flavor QCD does not. In practice, the

study of the running coupling alone is supposed to be
unable to fully exclude the possibility of a large IRFP
because it requires lattice simulations at arbitrarily large
coupling. Even worse, the unphysical, bulk first-order
phase transition was found to occur in the strong coupling
regime of several gauge theories [23,33,34]. In such simu-
lations, there exists an upper limit on the bare coupling at
which lattice calculation is sensible. Nevertheless, because
of the supports from the spectroscopy studies [14,16,18],
the conclusion in Ref. [12] that the eight-flavor QCD is
QCD-like, i.e.Ncrit

f > 8, seems to be established nowadays.

After the work of Ref. [12], one group [15] has presented
evidence of the conformality of 12-flavor QCD. The oppo-
site conclusion, however, has also been reported by the
other groups [16,18]. Therefore Ncrit

f < 12 is still under

debate. Clearly, the observed contradiction must be clari-
fied before going further. While in the spectroscopy study
of 12-flavor QCDmany sources of systematic uncertainties
due to finite volume, taste breaking, chiral extrapolation,
lack of continuum limit, etc. remain to be quantified, the
calculation of the SF coupling constant of Ref. [12]
appears, at present, to be less ambiguous. In such a circum-
stance, we are tempted to explore the dynamics of ten-
flavor QCD. In this paper, we investigate, as a first step, the
running coupling constant of ten-flavor QCD on the lattice
to see whether it shows conformal behavior. We find that
the running slows down and observe evidence that this
theory possesses an infrared fixed point.

The paper is organized as follows. In Sec. II, we give
remarks on how we identify IRFP on the lattice. Section III
summarizes the coefficients relevant to the perturbative
calculation of the running coupling constant for later use.
In Sec. IV, the simulation setup including the definition of
the running coupling constant in the Schrödinger func-
tional scheme is presented. In Sec. V, we describe the
analysis method and present the numerical results.
Section VI is devoted to the summary and outlook.

II. REMARKS ON SEARCHING FOR
IRFP ON THE LATTICE

Since there exists a subtlety in proving the existence of
IRFP with lattice gauge theory, in this section we briefly
explain what is actually calculated and then give how to
identify the existence of IRFP. Here we focus on the

concept only. For further details of the calculational and
analysis method that we take, see the following sections.
In this work, we calculate the renormalized coupling

constant in the Schrödinger functional scheme at two
different length scales, L and s � L. In practice, this is
realized by repeating the calculation on two different vol-
umes, l4 and ðs � lÞ4, at a common lattice bare coupling g20,
where l ¼ L=a. We denote those couplings by u [or
g2ðg20; lÞ] and g2ðg20; s � lÞ, respectively. Using those, we

define the discrete beta function (DBF) by Bðu; s; lÞ ¼
1=g2ðg20; s � lÞ � 1=u, where the rescaling factor s is arbi-

trary but is fixed to 2. If the DBF is free from lattice
discretization errors, the sign of this quantity may directly
tell whether the coupling constant increases or decreases
against the scale change by s at the scale L, which is
implicitly set by the value of u that we can choose. Since
discretization errors do exist, however, we need to take the
continuum limit. The a ! 0 limit is taken for a fixed L, i.e.
for a fixed u, by varying lattice spacing a. A series of the
DBF thus obtained is then a function of l, and the l ¼
L=a ! 1 limit is expected to give the continuum limit. In
summary, the DBF is constructed from a pair of lattice
volumes [l4, ðs � lÞ4], and choice of larger l results in the
DBF closer to the continuum limit.
In practice, lattice spacing is varied by changing the

lattice bare coupling g20. If g
2ðg20; l2Þ turns out to be always

larger than g2ðg20; l1Þ with l2 > l1, Bðu; s; lÞ< 0 should

hold for any l and s > 1. In this case, the bare coupling
at which g2ðg20; l1Þ is equal to a fixed value u becomes

small as lattice size l1 increases or one approaches the
continuum limit. Thus, the a ! 0 limit is realized in the
g20 ! 0 limit. This is the case for asymptotically free

theories with no IRFP such as ordinary QCD, and no
subtlety is present. Even if an IRFP exists in such theories,
the situation does not change as long as the input u is
smaller than the IRFP, g2IRFP. In other words, if the

DBF extrapolated to l ! 1 (or equivalently 1=l ! 0) is
negative, the limiting value is interpreted as the continuum
limit and the possibility that an IRFP exists below u is
excluded.
When the DBF extrapolated to l ! 1 is positive, inter-

pretation of numerical results becomes ambiguous. In this
case, in the vicinity of 1=l ¼ 0, g2ðg20; s � lÞ< g2ðg20; lÞ, i.e.
Bðu; s; lÞ> 0. Indeed, it happens below � ¼ 4:4 in Fig. 4
of Ref. [13], for example. Then, one may expect that the
l ! 1 limit is realized by g20 ! 1 on first sight. However,

recalling �4 theory, this expectation turns out to be too
naive. In �4 theory, the continuum limit exists only in the
trivial case unless the theory possesses a nontrivial UV
fixed point. Since the situation is similar to this case, the
most plausible interpretation is that, when u > g2IRFP, the
continuum limit does not exist unless a nontrivial UV fixed
point exists. Since no nontrivial UV fixed point has been
established so far, it is not suitable to call the extrapolated
value the continuum limit when it is positive. Nevertheless,
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we can still infer that u > g2IRFP because no other possibil-
ity remains.

We investigate the sign of the DBF, starting with the
weak coupling regime u� 1 where the perturbative calcu-
lation is reliable and predicts a negative value. We keep
monitoring the sign of the DBF with increasing u. The
identification of the IRFP is then made by sign flip of the
DBF extrapolated to l ! 1. Notice that, when the extrapo-
lated value is positive, the extrapolation does not make
sense and hence we do not insist that the continuum limit is
determined.

III. PERTURBATIVE ANALYSIS

We start with defining the � function of an effective
gauge coupling constant in a mass-independent renormal-
ization scheme, which should have the following expan-
sion in the perturbative regime,

�ðg2ðLÞÞ ¼ L
@g2ðLÞ
@L

¼ b1g
4ðLÞ þ b2g

6ðLÞ þ b3g
8ðLÞ

þ b4g
10ðLÞ þ � � � ; (1)

where L denotes a length scale. The first two coefficients
on the right-hand side are scheme independent, and given
by

b1 ¼ 2

ð4�Þ2
�
11� 2

3
Nf

�
;

b2 ¼ 2

ð4�Þ4
�
102� 38

3
Nf

�
:

(2)

The remaining coefficients are scheme dependent and
known only in the limited schemes and orders. The third
coefficient takes the following form in the Schrödinger
functional scheme:

bSF3 ¼ bMS
3 þ b2c

�
2

2�
� b1ðc�3 � c�22 Þ

8�2
; (3)

where bMS
3 is a coefficient in the MS scheme,

bMS
3 ¼ 2

ð4�Þ6
�
2857

2
� 5033

18
Nf þ 325

54
N2

f

�
; (4)

and the calculable quantities c�2 and c�3 depend on the

spatial boundary condition imposed on the fermion fields
in the SF setup, i.e. so-called �. Those for � ¼ �=5 and c�2
for � ¼ 0 are known to be [35]

c�¼�=5
2 ¼ 1:255 63þ 0:039 863� Nf; (5)

c�¼�=5
3 ¼ ðc�¼�=5

2 Þ2 þ 1:197ð10Þ þ 0:140ð6Þ � Nf

� 0:0330ð2Þ � N2
f; (6)

c�¼0
2 ¼ 1:255 63þ 0:022 504� Nf; (7)

but c�¼0
3 has not been calculated yet. Although � ¼ 0 is

chosen in our simulation as described in Sec. IV, the
coefficients for � ¼ �=5 are used only to see the situation
of conformal windows inferred just from the perturbative
analysis, and the potential size of difference between the
two- and three-loop calculations.
The perturbative estimates of the infrared fixed point

(IRFP) for SU(3) gauge theory with Nf flavors of funda-

mental fermion are summarized in Table I. We note that in
the three-loop perturbative analysis the existence of IRFP
is determined only by the sign of b3, which is always
negative for the range of Nf shown in Table I. Therefore,

the existence of IRFP as well as its value may be unstable
against including higher orders. Nevertheless, for Nf � 14

the difference between the two- and three-loop results is
reasonably small, and one may expect that higher order
corrections do not spoil the existence of IRFP or even do
not change its value by much for such a large Nf.

According to the analysis based on the Schwinger-
Dyson equation, S�SB is expected to occur when the
running coupling constant reaches g2 � �2 in SU(3) gauge
theories [36]. In spite of the scheme dependence of the
running coupling constant and the value of IRFP, those
results motivate us to speculate that ten-flavor QCD may
exhibit strongly coupled walking dynamics, and thus de-
serves full nonperturbative calculation.

IV. SIMULATION DETAILS

A. Schrödinger functional

We employ the Schrödinger functional (SF) method [32]
to study the scale dependence of the running coupling
constant. Unimproved Wilson fermion action and the stan-
dard plaquette gauge action are used without any boundary
counterterms as described below.
The SF on the lattice is defined on a four-dimensional

hypercubic lattice with a volume ðL=aÞ3 � ðT=aÞ in the
cylindrical geometry. Throughout this work, the temporal
extent T=a is chosen to be equal to the spatial one L=a. The

TABLE I. The perturbative IRFP obtained from the two-loop universal and the three-loop SF
scheme analyses.

Nf 4 6 8 10 12 14 16

Two-loop universal 27.74 9.47 3.49 0.52

Three-loop SF with � ¼ �=5 43.36 23.75 15.52 9.45 5.18 2.43 0.47
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periodic boundary condition in the spatial directions with
vanishing phase factor (� ¼ 0) and the Dirichlet one in the
temporal direction are imposed for both gauge [U�ðxÞ] and
fermion [c ðxÞ and �c ðxÞ] fields. The boundary values for
gauge and fermion fields are represented by three-by-three
color matrices, C and C0, and spinors, �, �0, ��, and ��0,
respectively. The partition function of this system is
given by

ZSFðC0; ��0;�0;C; ��;�Þ¼e��ðC0; ��0;�0;C; ��;�Þ

¼
Z
D½U;c ; �c �e�S½U;c ; �c ;C;C0;�;�0; ��; ��0�;

(8)

where � is the effective action, and

S½U; c ; �c ; C; C0; �; �0; ��; ��0�
¼ Sg½U;C; C0� þ Sq½U; c ; �c ; �; �0; ��; ��0�: (9)

For the pure gauge part, we employ the plaquette action,

Sg½U;C;C0� ¼ �

6

X
x

X3
�¼0

X3
�¼0

�	�;�w�;�ðx0Þ

� Tr½1� P�;�ðxÞ�; (10)

where � ¼ 6=g20 denotes the inverse of the bare coupling

constant, �	�;� ¼ 0 when � ¼ � otherwise 1, and P�;�ðxÞ
denotes a 1� 1Wilson loop on the �-� plane starting and
ending at x. The spatial link variables on the boundaries,
the hypersurfaces at x0 ¼ 0, and L=a, are all set to the
diagonal, constant SUð3Þ matrices as

UkðxÞjx0¼0¼ exp½C�;

C¼ ia

L


��
3 0 0

0 �1
2
 0

0 0 �1
2
þ�

3

0
BB@

1
CCA; (11)

UkðxÞjx0¼L=a¼ exp½C0�;

C0 ¼ ia

L

�
�� 0 0

0 1
2
þ�

3 0

0 0 1
2
þ 2�

3

0
BB@

1
CCA; (12)

where k ¼ 1; 2; 3, and 
 is parametrizing the gauge bound-
ary fields. The weight w�;�ðx0Þ in Eq. (10) is given by

w�;�ðx0Þ ¼

8>>><
>>>:

ct for ðt ¼ 0 or t ¼ ðL=aÞ � 1Þ and ð� or � ¼ 0Þ
0 for ðt ¼ ðL=aÞÞ and ð� or � ¼ 0Þ
1
2 cs for ðt ¼ 0 or t ¼ ðL=aÞÞ and ð� � 0 and � � 0Þ
1 for all the other cases:

(13)

By tuning ct, OðaÞ errors induced from the boundaries in
the time direction can be removed perturbatively, but
in this work we simply take its tree level values, ct ¼ 1.
With this setup, the value of cs can be arbitrarily chosen
because the spatial plaquettes on the boundaries do not
contribute to the action. We thus set cs ¼ 0.

The fermion fields are described by the unimproved
Wilson fermion action,

Sq½U; c ; �c � ¼ Nf

X
x;y

�c ðxÞDðx; y;UÞc ðyÞ

¼ Nf

X
x;y

�c latðxÞDlatðx; y;UÞc latðyÞ; (14)

Dlatðx; y;UÞ ¼ 	xy � �
X
�

fð1� ��ÞU�ðxÞ	xþ�̂;y

þ ð1þ ��ÞUy
�ðx� �̂Þ	x��̂;yg; (15)

where

c latðxÞ ¼ 1ffiffiffiffiffiffi
2�

p c ðxÞ; �c latðxÞ ¼ 1ffiffiffiffiffiffi
2�

p �c ðxÞ;

Dlatðx; y;UÞ ¼ 2�Dðx; y;UÞ:
(16)

The hopping parameter � is related to the bare mass m0

through 2� ¼ 1=ðam0 þ 4Þ. The dynamical degrees of
freedom of the fermion field c ðxÞ and antifermion fields
�c ðxÞ reside on the lattice sites x with 0< x0 < T. On both
boundaries (x0 ¼ 0 and T), the half of the Dirac compo-
nents are set to zero and the remaining components are
fixed to some prescribed values, �, ��, �0, and ��0, as

Pþc ðxÞjx0¼0 ¼ �ðxÞ; P�c ðxÞjx0¼0 ¼ 0; (17)

P�c ðxÞjx0¼T ¼ �0ðxÞ; Pþc ðxÞjx0¼T ¼ 0; (18)

�c ðxÞP�jx0¼0 ¼ ��ðxÞ; �c ðxÞPþjx0¼0 ¼ 0; (19)

�c ðxÞPþjx0¼T ¼ ��0ðxÞ; �c ðxÞP�jx0¼T ¼ 0; (20)

where P� ¼ ð1� �0Þ=2. In this work, the boundary values
for the fermion fields are set to zero, i.e.,

� ¼ �0 ¼ �� ¼ ��0 ¼ 0: (21)
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B. Definition of the running coupling

With the gauge boundary conditions (11) and (12), the
absolute minimum of the action is given by a color-electric
background field denoted by BðxÞ. Then, the effective
action can be defined as a function of B by

�½B� ¼ � lnZSFðC0; ��0; �0;C; ��; �Þ; (22)

which has the following perturbative expansion in the bare
coupling constant,

� ¼ 1

g20
�0 þ �1 þOðg20Þ; (23)

and, in particular, the lowest-order term,

�0 ¼ ½g20Sg½B��g0¼0; (24)

is exactly the classical action of the induced background
field. The SF scheme coupling is then defined in the mass-
less limit for fermions by

@�

@


��������
¼0
¼ 1

g2SFðg20; l ¼ L=aÞ
@�0

@


��������
¼0
¼ k

g2SFðg20; lÞ
;

(25)

where the normalization constant k is determined such that
g2SF ¼ g20 holds in the leading order of the perturbative

expansion, and is found to be

k ¼ @�0

@


��������
¼0
¼ 12

�
L

a

�
2½sinð2�Þ þ sinð�Þ� ¼ k

with � ¼ �

3

�
a

L

�
2
: (26)

Because of the absence of the clover term, only the 

derivative of the gauge action contributes to 1=g2SFðg20; lÞ.

C. Parameters

The simulation was performed on the lattice sizes of
l4 ¼ ðL=aÞ4 ¼ 44, 64, 84, 124, and 164 with the inverse of
bare gauge coupling constant� ¼ 6=g20 in the range, 4:4 �
� � 96:0. However, the data from l ¼ 4 lattices are not
used in the following analysis because it was found that
they have large discretization errors. We calculated the SF
coupling on 184 lattice with a single � (� ¼ 4:55), and the
result is used to check the scaling violation at a specific
value of g2SF.
The algorithm to generate the gauge configuration fol-

lows the standard hybrid Monte Carlo (HMC) with five

TABLE II. Simulation parameters and results obtained at L=a ¼ 6.

� � Trajectories Plaquette 	
 Acceptance g2SF M

96.0000 0.126 703 0 39 700 0.979 268(0.000 002) 0.0076 0.827(0.002) 0.064 31(0.000 06) 0.000 12(0.000 03)

96.0000 0.126 707 0 49 900 0.979 267(0.000 002) 0.0076 0.826(0.002) 0.064 28(0.000 05) �0:000 04ð0:000 03Þ
48.0000 0.127 606 0 40 100 0.958 852(0.000 005) 0.0098 0.857(0.002) 0.132 21(0.000 10) �0:000 13ð0:000 02Þ
48.0000 0.127 610 0 41 100 0.958 846(0.000 004) 0.0098 0.857(0.002) 0.132 09(0.000 10) �0:000 16ð0:000 02Þ
24.0000 0.129 518 0 24 700 0.917 566(0.000 009) 0.0149 0.848(0.002) 0.280 79(0.000 15) 0.000 06(0.000 02)

24.0000 0.129 520 0 60 300 0.917 562(0.000 005) 0.0152 0.838(0.002) 0.280 86(0.000 10) 0.000 06(0.000 01)

12.0000 0.133 964 0 48 700 0.833 056(0.000 014) 0.0250 0.812(0.002) 0.644 50(0.000 76) �0:000 04ð0:000 05Þ
9.6000 0.136 568 0 160 300 0.789 765(0.000 012) 0.0256 0.826(0.001) 0.871 89(0.000 68) 0.000 02(0.000 03)

7.4000 0.141 069 0 120 500 0.724 148(0.000 015) 0.0270 0.854(0.001) 1.304 13(0.001 94) 0.000 06(0.000 06)

6.8000 0.143 052 0 120 300 0.698 517(0.000 018) 0.0270 0.870(0.001) 1.510 24(0.002 44) �0:000 25ð0:000 08Þ
6.3000 0.145 140 0 17 400 0.673 231(0.000 076) 0.0333 0.817(0.001) 1.747 88(0.005 05) 0.000 15(0.000 19)

6.0000 0.146 638 0 33 600 0.655 993(0.000 034) 0.0333 0.837(0.002) 1.936 84(0.006 91) 0.000 44(0.000 21)

6.0000 0.146 641 0 80 300 0.655 981(0.000 029) 0.0333 0.833(0.001) 1.936 05(0.003 62) 0.000 04(0.000 10)

5.5000 0.149 759 0 50 300 0.622 923(0.000 025) 0.0370 0.817(0.002) 2.383 40(0.010 92) 0.000 42(0.000 20)

5.5000 0.149 761 0 36 000 0.622 942(0.000 027) 0.0357 0.827(0.002) 2.362 32(0.006 34) �0:000 18ð0:000 22Þ
5.5000 0.149 762 0 140 300 0.622 977(0.000 023) 0.0357 0.831(0.001) 2.375 42(0.009 63) 0.000 23(0.000 14)

5.2000 0.152 133 0 220 300 0.600 097(0.000 019) 0.0380 0.812(0.001) 2.806 68(0.012 46) �0:000 15ð0:000 14Þ
5.0000 0.153 980 0 59 900 0.583 463(0.000 049) 0.0400 0.806(0.002) 3.288 37(0.066 18) �0:000 05ð0:000 46Þ
4.6000 0.158 514 0 33 800 0.545 776(0.000 055) 0.0400 0.813(0.002) 5.470 08(0.130 64) 0.000 92(0.000 43)

4.6000 0.158 515 0 150 000 0.545 680(0.000 041) 0.0400 0.813(0.001) 5.412 63(0.098 91) 0.001 23(0.000 42)

4.5000 0.159 902 0 100 300 0.535 280(0.000 061) 0.0400 0.813(0.001) 7.025 16(0.244 79) 0.001 11(0.000 69)

4.5000 0.159 903 0 100 300 0.535 305(0.000 066) 0.0400 0.813(0.002) 6.705 75(0.196 22) 0.000 33(0.000 61)

4.4215 0.161 068 0 105 900 0.526 537(0.000 087) 0.0385 0.825(0.001) 8.888 82(0.369 44) 0.002 38(0.000 97)

4.4215 0.161 082 0 92 400 0.526 692(0.000 066) 0.0385 0.826(0.001) 8.901 39(0.323 55) 0.000 73(0.000 75)

4.4000 0.161 421 0 249 500 0.524 331(0.000 060) 0.0400 0.811(0.001) 9.601 63(0.196 61) 0.000 51(0.000 50)

4.4000 0.161 422 0 182 500 0.524 342(0.000 091) 0.0400 0.812(0.001) 10.179 80(0.339 90) 0.001 19(0.000 73)

4.4000 0.161 423 0 250 500 0.524 387(0.000 062) 0.0400 0.811(0.001) 10.077 13(0.253 79) 0.000 49(0.000 53)
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pseudofermion fields introduced to simulate the ten flavors
of dynamical fermions. The numerical simulations were
carried out on several different architectures including
general purpose graphics processing unit, PC cluster, and

supercomputers. In order to achieve high performance on
each architecture, the HMC code, especially the fermion
solver part, was optimized depending on each architecture.
In particular, mixed precision solver using multiple

TABLE III. Simulation parameters and results obtained at L=a ¼ 8.

� � Trajectories Plaquette 	
 Acceptance g2SF M

96.0000 0.126 327 0 22 500 0.979 420(0.000 002) 0.0056 0.811(0.004) 0.064 34(0.000 04) 0.000 01(0.000 01)

48.0000 0.127 225 0 18 300 0.958 843(0.000 003) 0.0100 0.818(0.007) 0.132 47(0.000 17) 0.000 02(0.000 02)

24.0000 0.129 145 0 42 300 0.917 260(0.000 004) 0.0125 0.804(0.003) 0.282 82(0.000 23) �0:000 04ð0:000 02Þ
12.0000 0.133 585 0 68 500 0.832 266(0.000 007) 0.0167 0.828(0.005) 0.653 80(0.000 71) �0:000 10ð0:000 03Þ
9.6000 0.136 180 0 21 820 0.788 830(0.000 013) 0.0200 0.828(0.006) 0.887 51(0.002 87) �0:000 08ð0:000 05Þ
7.4000 0.140 660 0 63 330 0.723 081(0.000 010) 0.0250 0.818(0.003) 1.341 82(0.004 17) �0:000 04ð0:000 16Þ
6.8000 0.142 620 0 41 500 0.697 409(0.000 013) 0.0250 0.797(0.002) 1.562 32(0.006 62) 0.000 12(0.000 11)

6.3000 0.144 700 0 28 000 0.672 208(0.000 021) 0.0250 0.816(0.003) 1.819 87(0.010 36) �0:000 34ð0:000 14Þ
6.0000 0.146 200 0 47 000 0.654 999(0.000 012) 0.0250 0.820(0.003) 2.012 48(0.012 58) �0:000 42ð0:000 11Þ
5.5000 0.149 270 0 35 900 0.622 016(0.000 021) 0.0286 0.797(0.003) 2.481 39(0.019 69) �0:000 21ð0:000 15Þ
5.0000 0.153 360 0 27 900 0.582 458(0.000 038) 0.0250 0.825(0.004) 3.469 30(0.072 38) 0.000 94(0.000 34)

4.8000 0.155 427 0 114 500 0.564 464(0.000 020) 0.0250 0.860(0.001) 4.353 48(0.098 45) 0.000 26(0.000 24)

4.7000 0.156 550 0 35 400 0.554 789(0.000 040) 0.0256 0.854(0.002) 4.875 95(0.210 35) 0.000 27(0.000 51)

4.6200 0.157 550 0 86 300 0.546 856(0.000 030) 0.0312 0.783(0.001) 6.237 44(0.25321) �0:000 23ð0:000 33Þ
4.6000 0.157 780 0 149 300 0.544 695(0.000 027) 0.0250 0.852(0.002) 6.011 08(0.170 93) �0:000 07ð0:000 28Þ
4.5500 0.158 420 0 24 500 0.539 428(0.000 090) 0.0278 0.833(0.003) 6.920 22(0.464 91) 0.000 87(0.000 88)

4.5500 0.158 427 0 93 300 0.539 336(0.000 033) 0.0278 0.831(0.002) 6.994 32(0.318 73) 0.001 35(0.000 41)

4.5500 0.158 450 0 25 700 0.539 683(0.000 064) 0.0278 0.832(0.004) 6.741 87(0.469 70) �0:001 63ð0:000 71Þ
4.5200 0.158 850 0 56 570 0.536 316(0.000 058) 0.0278 0.827(0.002) 8.280 29(0.576 87) �0:000 10ð0:000 59Þ
4.5000 0.159 130 0 107 100 0.534 108(0.000 036) 0.0250 0.859(0.001) 8.406 30(0.373 69) �0:000 07ð0:000 38Þ
4.4800 0.159 400 0 41 555 0.531 781(0.000 085) 0.0250 0.827(0.002) 8.572 14(0.572 02) 0.000 27(0.000 70)

4.4215 0.160 264 0 160 900 0.525 143(0.000 050) 0.0263 0.837(0.001) 12.218 77(0.496 25) �0:000 12ð0:000 41Þ
4.4215 0.160 270 0 127 500 0.525 149(0.000 058) 0.0250 0.861(0.001) 12.623 65(0.689 80) �0:000 59ð0:000 48Þ
4.4200 0.160 270 0 29 700 0.524 651(0.000 132) 0.0278 0.828(0.002) 13.150 85(0.997 74) 0.002 14(0.000 75)

4.4000 0.160 600 0 229 500 0.522 502(0.000 057) 0.0278 0.819(0.002) 15.007 64(0.691 15) 0.000 20(0.000 42)

TABLE IV. Simulation parameters and results obtained at L=a ¼ 12.

� � Trajectories Plaquette 	
 Acceptance g2SF M

48.0000 0.126 970 0 11 200 0.958 648(0.000 002) 0.0056 0.815(0.003) 0.133 04(0.000 33) �0:000 14ð0:000 03Þ
24.0000 0.128 892 9 54 620 0.916 777(0.000 002) 0.0083 0.798(0.002) 0.284 32(0.000 36) �0:000 08ð0:000 02Þ
12.0000 0.133 335 9 68 955 0.831 306(0.000 003) 0.0125 0.808(0.002) 0.660 07(0.001 19) �0:000 12ð0:000 03Þ
9.6000 0.135 935 0 86 700 0.787 681(0.000 003) 0.0133 0.806(0.002) 0.903 25(0.002 33) �0:000 01ð0:000 03Þ
7.4000 0.140 406 0 106 050 0.721 824(0.000 004) 0.0154 0.795(0.004) 1.368 96(0.005 43) �0:000 01ð0:000 04Þ
6.8000 0.142 325 0 45 150 0.696 157(0.000 006) 0.0167 0.819(0.002) 1.599 98(0.009 83) 0.000 91(0.000 06)

6.3000 0.144 405 0 23 500 0.671 015(0.000 014) 0.0182 0.767(0.002) 1.890 12(0.016 92) 0.000 13(0.000 12)

6.0000 0.145 900 0 43 296 0.653 900(0.000 008) 0.0182 0.820(0.007) 2.106 12(0.022 02) 0.000 11(0.000 07)

5.8000 0.147 020 0 43 400 0.641 479(0.000 007) 0.0182 0.799(0.002) 2.221 71(0.028 02) �0:000 09ð0:000 07Þ
5.5000 0.148 940 0 45 200 0.621 162(0.000 012) 0.0167 0.842(0.003) 2.589 33(0.024 96) 0.000 17(0.000 17)

5.2000 0.151 200 0 68 000 0.598 557(0.000 009) 0.0200 0.781(0.002) 3.062 12(0.032 10) 0.000 56(0.000 09)

5.0800 0.152 235 0 25 480 0.588 819(0.000 013) 0.0167 0.848(0.002) 3.39 969(0.089 24) 0.000 15(0.000 13)

5.0000 0.152 970 0 90 921 0.582 135(0.000 019) 0.0167 0.826(0.002) 3.673 56(0.089 08) �0:000 44ð0:000 20Þ
4.8000 0.154 970 0 194 300 0.564 213(0.000 006) 0.0182 0.810(0.002) 4.848 05(0.145 09) 0.000 09(0.000 11)

4.6000 0.157 230 0 127 922 0.544 423(0.000 012) 0.0182 0.818(0.002) 7.298 85(0.385 89) 0.0007 5(0.000 17)

4.5500 0.157 850 0 57 260 0.539 025(0.000 021) 0.0192 0.802(0.002) 10.152 31(1.118 27) 0.001 25(0.000 27)

4.5000 0.158 550 0 104 570 0.534 014(0.000 049) 0.0250 0.701(0.007) 13.039 15(1.339 94) �0:002 37ð0:000 39Þ
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graphics processing units (GPUs) enables us to obtain high
statistics on g2SF at l4 ¼ 124 and 164 [37]. The acceptance
ratio is kept to around 80% by adjusting the molecular
dynamics step size (	
).

Since the Wilson fermion explicitly breaks chiral sym-
metry, the value of � is tuned, for every pair of ð�;L=aÞ, to
its critical value �c realizing the massless fermion by
monitoring the mass defined through the partially con-
served axial-vector current (PCAC) relation. The values
of �, �, the number of trajectories, 	
 and the results for
l ¼ L=a ¼ 6; 8; 12; 16, and 18 lattices are tabulated in
Tables II, III, IV, V, and VI, respectively.

D. Comment on OðaÞ unimprovement

In our pilot study, we employed the OðaÞ-improved
fermion action with the perturbatively determined counter-
terms. With this setup, we encountered a sudden change of
the plaquette and the PCAC mass at l ¼ 6 and � ¼ 3:6
when � was decreased from 0.1517, and we could not
realize the vanishing PCAC mass. The expected SF cou-
pling constant is about 3–4 there. The same phenomenon
also occurs on l ¼ 4 lattices at almost the same value of
bare coupling constant. Since the observed behavior looks
similar to those reported in Refs. [23,33,34], we infer that
this is a bulk, first-order phase transition. In order to cover
the region g2SF �Oð10Þ, we omitted any OðaÞ improve-

ments. Thus, the leading discretization error in our result is
linear in lattice spacing.

Even without OðaÞ improvements, the bulk, first-order
phase transition is observed for� ¼ 6=g20 � 4:4. However,

this time it happens at the renormalized coupling constant
greater than the OðaÞ-improved case, typically g2SF �
Oð10Þ. Since this bulk phase transition is considered as a
lattice artifact, whenever this happens we discard the gauge
configurations at such �. Thus, the position of the critical
� (� 4:4) sets the lower limit on our exploration of �.

V. ANALYSIS METHOD AND RESULTS

A. Raw data

The SF coupling constant (g2SF) and the PCAC mass (M)

obtained on each (�, �, l) are shown in Tables II, III, IV, V,
and VI. g20=g

2
SF is plotted as a function of the bare coupling

constant g20 in Fig. 1. The figure shows that g2SF increases

with l ¼ L=a at a fixed g20, but the change between the data
from l ¼ 12 and l ¼ 16 is tiny. For later use, we fit the data
of g20=g

2
SF to an interpolating formula as a function of the

bare coupling constant g20. Among various functional

forms we examined, the following form,

g20
g2SFðg20; lÞ

¼ 1� al;1g
4
0

1þ p1;l � g20 þ
P

N
n¼2 al;n � g2n0

; (27)

turned out to give the minimum �2=dof for a fixed number
of free parameters,N. We thus employ Eq. (27). In Eq. (27),
p1;l is the l-dependent coefficient and we have calculated

them perturbatively in the SF scheme:

TABLE V. Simulation parameters and results obtained at L=a ¼ 16.

� � Trajectories Plaquette 	
 Acceptance g2SF M

24.0000 0.128 8000 22 890 0.916 505(0.000 002) 0.0067 0.796(0.003) 0.283 68(0.000 57) 0.000 11(0.000 02)

12.0000 0.133 259 0 40 950 0.830 799(0.000 003) 0.0091 0.718(0.011) 0.663 84(0.002 93) �0:000 16ð0:000 02Þ
9.6000 0.135 860 0 30 900 0.787 096(0.000 002) 0.0080 0.807(0.003) 0.905 38(0.005 70) �0:000 23ð0:000 03Þ
7.4000 0.140 325 0 62 300 0.721 190(0.000 003) 0.0111 0.812(0.002) 1.390 94(0.008 34) �0:000 02ð0:000 03Þ
6.8000 0.142 290 0 39 796 0.695 613(0.000 004) 0.0133 0.787(0.002) 1.635 62(0.016 49) �0:000 42ð0:000 05Þ
6.3000 0.144 340 0 69 000 0.670 503(0.000 004) 0.0133 0.798(0.002) 1.914 12(0.016 28) �0:000 36ð0:000 04Þ
6.0000 0.145 795 0 18 900 0.653 363(0.000 007) 0.0156 0.712(0.004) 2.121 47(0.038 87) 0.000 43(0.000 10)

5.5000 0.148 850 0 50 330 0.620 911(0.000 007) 0.0143 0.782(0.002) 2.679 36(0.038 97) �0:000 47ð0:000 11Þ
5.0800 0.152 131 0 23 760 0.588 803(0.000 007) 0.0139 0.804(0.003) 3.247 42(0.072 71) �0:000 03ð0:000 12Þ
5.0000 0.152 855 0 71 954 0.582 121(0.000 004) 0.0143 0.797(0.002) 3.867 09(0.126 22) �0:000 04ð0:000 09Þ
4.8000 0.154 831 0 46 000 0.564 445(0.000 008) 0.0156 0.755(0.002) 5.729 11(0.490 13) 0.000 03(0.000 14)

4.6000 0.157 050 0 83 705 0.544 764(0.000 008) 0.0143 0.794(0.001) 8.212 43(0.631 14) 0.001 28(0.000 12)

4.5500 0.157 675 0 107 069 0.539 609(0.000 010) 0.0139 0.809(0.002) 10.814 52(0.800 73) 0.000 11(0.000 11)

4.5200 0.158 065 0 42 400 0.536 387(0.000 021) 0.0156 0.754(0.002) 17.341 93(3.728 29) �0:000 30ð0:000 21Þ

TABLE VI. Simulation parameters and results obtained at L=a ¼ 18.

� � Trajectories Plaquette 	
 Acceptance g2SF M

4.5500 0.157 650 0 32 309 0.540 093(0.000 014) 0.0143 0.785(0.003) 11.131 31(1.413 81) �0:001 24ð0:000 18Þ
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p1;l ¼

8>>>><
>>>>:

0:447 710 783 1 for l ¼ 6
0:462 481 340 8 for l ¼ 8
0:475 688 826 0 for l ¼ 12
0:483 307 920 3 for l ¼ 16
0:486 476 795 8 for l ¼ 18:

(28)

The other coefficients al;n’s are determined for each l
independently. We optimize the degree of polynomial N
in the denominator of Eq. (27) by monitoring �2=dof, and
take N ¼ 5 for l ¼ 6 and 12, and N ¼ 4 for l ¼ 8 and 16.
Table VII shows the fit results for the coefficients in
Eq. (27). The fit results are also shown as the region sand-
wiched by a pair of solid curves in Fig. 1.

Hereafter we denote the SF coupling obtained at a bare
coupling constant g20 and at a lattice length of l by g

2
SFðg20; lÞ

and its continuum counterpart by g2SFðLÞ.

B. Discrete � function

In order to see the scale dependence of the SF coupling
constant, we analyze the discrete � function (DBF)

introduced in Refs. [20,23]. The whole procedure is de-
scribed below.
First, we choose an initial value of the running coupling

constant, denoted by u. This implicitly sets the initial
length scale L0 through g

2
SFðL0Þ ¼ u. Using the interpolat-

ing formula (27) for the lattice size l ( ¼ L=a), the bare
coupling constant g	0 is numerically obtained by solving

the equation g2SFðg	20 ; lÞ ¼ u. l is identified with L0=a, so
that the lattice spacing at g	20 is found to be aðg	20 ; lÞ ¼
L0=l. Now we choose a rescaling factor, s. The lattice step
scaling function �0ðu; s; lÞ is then defined as the SF cou-
pling for l0 ¼ s � l at the same bare coupling g	20 , i.e.,

�0ðu; s; lÞ 
 g2SFðg	20 ; s � lÞjg2
SF
ðg	2

0
;lÞ¼u: (29)

The meaning of the subscript ‘‘0’’ becomes clear soon. Of
course, both l and s � lmust be equal to one of 6, 8, 12, and
16, and hence the possible values for the rescaling factor s
are limited. The difference between �0ðu; s; lÞ and u gives
the scale dependence through the scale change from L to
s � L, up to lattice artifacts.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

g
0

2

0

0.2

0.4

0.6

0.8

1

g 02 /g
SF

2

L/a=6
        8
      12
      16

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35

g
0

2

0

0.1

0.2

0.3

0.4

0.5

g 02 /g
SF

2

L/a=6
        8
      12
      16

FIG. 1 (color online). g20 dependence of g20=g
2
SF for l ¼ L=a ¼ 6, 8, 12, and 16. The right panel magnifies the region of g20 2½1:1; 1:40�.

TABLE VII. The results for the coefficients in the fit function (27).

L=a N �2=dof aL=a;1 aL=a;2 aL=a;3 aL=a;4 aL=a;5

6 3 9.0(1.3) 0.4906(0.0025) �0:2749ð0:0105Þ �0:1897ð0:0151Þ
6 4 1.4(0.5) 0.5048(0.0014) �0:3993ð0:0119Þ 0.1136(0.0283) �0:2042ð0:0184Þ
6 5 1.3(0.5) 0.5015(0.0032) �0:4240ð0:0256Þ 0.2538(0.1301) �0:4043ð0:1815Þ 0.0899(0.0808)

8 3 2.1(0.7) 0.5068(0.0018) �0:2308ð0:0104Þ �0:2412ð0:0150Þ
8 4 0.6(0.3) 0.5153(0.0019) �0:3410ð0:0260Þ 0.0405(0.0629) �0:1852ð0:0390Þ
8 5 0.6(0.8) 0.5153(0.0051) �0:3419ð0:1697Þ 0.0444(0.7500) �0:1904ð0:9672Þ 0.0021(0.3906)

12 3 3.0(1.0) 0.5239(0.0047) �0:1923ð0:0118Þ �0:3019ð0:0198Þ
12 4 1.1(0.6) 0.5400(0.0038) �0:3614ð0:0376Þ 0.1063(0.0884) �0:2671ð0:0550Þ
12 5 1.0(0.6) 0.5438(0.0039) �0:2783ð0:0726Þ �0:2779ð0:2977Þ 0.2457(0.3815) �0:2165ð0:1582Þ
16 3 4.9(1.4) 0.5308(0.0055) �0:1881ð0:0266Þ �0:3057ð0:0375Þ
16 4 1.8(0.8) 0.5520(0.0039) �0:4948ð0:0663Þ 0.4387(0.1516) �0:4762ð0:0903Þ
16 5 1.9(0.9) 0.5538(0.0050) �0:4403ð0:1324Þ 0.1801(0.5648) �0:1283ð0:7332Þ �0:1457ð0:3025Þ
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Since the raw data of 1=g2SFðg20; lÞ fluctuate around zero

in the strong coupling region, converting from 1=g2SFðg20; lÞ
to g2SFðg20; lÞ sometimes induces huge statistical uncer-

tainty. To avoid this we treat the inverse coupling constant,
1=g2SFðg20; lÞ, directly. Then, to see the scale dependence of

the inverse coupling constant, we introduce the lattice DBF
[20,23] by

B0ðu; s; lÞ ¼ 1

�0ðu; s; lÞ �
1

u
: (30)

We calculate the continuum limit of this function for
various initial values of the coupling constant, u. If the
sign of the DBF in the continuum limit flips at a certain

renormalized coupling constant u, it indicates the existence
of IRFP around there.

C. Improving discretization errors

Since OðaÞ discretization errors are not improved at all
in the lattice actions, it is important to remove the scaling
violation as much as possible. To do this, we perform the
following improvements on the step scaling function and
the DBF before taking the continuum limit.
First, let �ðu; sÞ be the continuum limit of �0ðu; s; lÞ,

i.e., �ðu; sÞ ¼ g2SFðsLÞ with u ¼ g2SFðLÞ. Its perturbative

expression is given by
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FIG. 2. Fit of 	1 to a quadratic function of u. The solid and dashed curves show the fit results and the fit ranges.

RUNNING COUPLING CONSTANT OF TEN-FLAVOR QCD . . . PHYSICAL REVIEW D 83, 074509 (2011)

074509-9



�ðu; sÞ ¼ uþ s0u
2 þ s1u

3 þ s2u
4 þ � � � ; (31)

s0 ¼ b1 lnðsÞ; (32)

s1 ¼ lnðsÞðb21 lnðsÞ þ b2Þ; (33)

s2 ¼ lnðsÞðb31ln2ðsÞ þ
5

2
b1b2 lnðsÞ þ b3Þ; (34)

where bi’s are the coefficients of the � function introduced
in Sec. III. Recalling the parametric form of the discretiza-
tion error [35], the error normalized by �ðu; sÞ, denoted by
	0ðu; s; lÞ, is written as

	0ðu; s; lÞ ¼ �0ðu; s; lÞ � �ðu; sÞ
�ðu; sÞ

¼ 	ð1Þðs; lÞuþ 	ð2Þðs; lÞu2 þOðu3Þ: (35)

With Eq. (31), the discretization error at the lowest order in
u is found to be

	ð1Þðs; lÞ ¼ ðp1;s�l � b1 lnðs � lÞÞ � ðp1;l � b1 lnðlÞÞ
¼ p1;s�l � p1;l � b1 lnðsÞ: (36)

Now by replacing �0ðu; s; lÞ in Eq. (35) with �1ðu; s; lÞ ¼
�0ðu; s; lÞ=ð1þ 	ð1Þðs; lÞuÞ, the discretization error reduces
to Oðu2Þ. Using �1ðu; s; lÞ, the one-loop improved DBF is
defined by

B1ðu; s; lÞ ¼ 1

�1ðu; s; lÞ �
1

u
: (37)

This completes the one-loop improvement.
The above procedure can be repeated to an arbitrarily

higher order in u, but it requires the perturbative coeffi-
cients like p1;l and the perturbative expression of �ðu; sÞ to
the corresponding order in u. All the coefficients necessary
for the two-loop improvement are not available at this
moment. Instead, we follow an alternative prescription
proposed in Ref. [38]. After the one-loop improvement,
the scaling violation is written as

	1ðu; s; lÞ ¼ �1ðu; s; lÞ � �ðu; sÞ
�ðu; sÞ ¼ 	ð2Þðs; lÞu2 þOðu3Þ:

(38)

If one can somehow know 	ð2Þðs; lÞ, the scaling violation
can be reduced toOðu3Þ by replacing�0ðu; s; lÞ in Eq. (35)
with

�2ðu; s; lÞ ¼ �0ðu; s; lÞ=ð1þ 	ð1Þðs; lÞuþ 	ð2Þðs; lÞu2Þ:
(39)

	ð2Þðs; lÞ can be determined by fitting our data for 	1ðu; s; lÞ
in Eq. (38) to the function quadratic in u. Notice that in
order for this fitting to make sense, the perturbative series
of�ðu; sÞmust be known throughOðu3Þ. Since the first two
coefficients, b1 and b2, are available, the correct value of
�ðu; sÞ can be calculated to Oðu3Þ as seen from Eq. (31).
	1ðu; s; lÞ is fitted to the form of Eq. (38), neglecting

Oðu3Þ or higher order terms, for all possible pairs of ðs; lÞ as
shown in Fig. 2. The fit has to be performed in a weak
coupling region where the perturbative expansion is reli-
able. We examine two fit ranges, 0 � u � 1:6 and 0 �
u � 2:0, to see the fit range dependence. The extracted

values for 	ð2Þðs; lÞ are tabulated in Table VIII together

with 	ð1Þðs; lÞ defined in Eq. (36).

The Table shows that the values of 	ð1Þðs; lÞ and 	ð2Þðs; lÞ
lie between 10�2 and 10�3, and 	ð2Þðs; lÞ turns out not to
depend on the fit range. In the following analysis, we

employ 	ð2Þðs; lÞ from the shorter fit range. It is also seen
from the Table that generally the coefficients for ðs; lÞ ¼
ð4=3; 12Þ are the smallest among others. This is anticipated
because the improvement coefficient vanish as s ap-
proaches to unity or l becomes large. An exception is the

one-loop coefficient 	ð1Þð4=3; 6Þ. Since two-loop coeffi-

cient 	ð2Þð4=3; 6Þ is, however, much larger than

	ð1Þð4=3; 6Þ, the smallness of 	ð1Þð4=3; 6Þ is probably by
accident. In the data sets we have, the data with ðs; lÞ ¼
ð4=3; 6Þ is the coarsest one. As we will show in the follow-
ing subsections, this data turns out to suffer from nonlinear
scaling violation larger than the linear one in the strong
coupling region. Thus, we omit this data point throughout

the analysis. Using 	ð2Þðs; lÞ thus obtained, we define the
two-loop improved step scaling function �2ðu; s; lÞ in
Eq. (39), and in turn the two-loop improved DBF,

B2ðu; s; lÞ ¼ 1

�2ðu; s; lÞ �
1

u
: (40)

D. Strategy

The continuum limit is taken for a fixed rescaling factor
s and a fixed input length scale L varying a lattice spacing a

TABLE VIII. Coefficients for perturbative correction, 	ð1Þðs; lÞ and 	ð2Þðs; lÞ, for each pair of ðs; lÞ. The square brackets in the first
column indicate the fit range in u.

ðs; lÞ (4=3, 6) (2, 6) (8=3, 6) (3=2, 8) (2, 8) (4=3, 12)

	ð1Þðs; lÞ �0:001 02 �0:0101 �0:0182 �0:009 05 �0:0172 �0:008 17
	ð2Þðs; lÞ [0, 1.60] 0.0075(12) 0.0108(15) 0.0123(26) 0.0035(14) 0.0054(24) 0.0026(23)

�2=dof 2.2 3.0 0.1 1.0 0.7 1.7

	ð2Þðs; lÞ [0, 2.0] 0.0061(9) 0.0106(12) 0.0112(18) 0.0038(13) 0.0053(18) 0.0014(17)

�2=dof 2.2 2.1 0.2 0.9 0.6 1.4
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ð¼ L=lÞ. As described in the preceding subsections, an
input length scale is fixed by choosing a particular value
of input coupling u. However, for a given s the number of
data sets with different a in this work is, at most, two;
ðs; lÞ ¼ ð2; 6Þ and (2,8) for s ¼ 2. While it is still possible
to employ these two sets of data to evaluate the continuum
limit, the validity of the linear extrapolation can not be
tested. Alternatively, we may supplement a data set with a
desired s by interpolating or extrapolating data of g2SFðg20; lÞ
in l. However, a lack of guiding principles in the interpo-
lation or extrapolation may cause a systematic uncertainty.
In this work, we use the two available data sets, ðs; lÞ ¼
ð2; 6Þ and (2,8), to evaluate the continuum limit by linear
extrapolation, and the other data sets are used to monitor
the validity of the linear extrapolation. For this purpose, we
introduce a relation which approximately converts the DBF
for s0 into that for s, as follows.

We start with a closer look at the discretization error.
The discretization error of the lattice DBF, i.e. Biðu; s; lÞ �
Bðu; sÞ (i ¼ 0; 1; 2), can be expressed in terms of an
asymptotic expansion in 1=l [35] as

Biðu; s; lÞ � Bðu; sÞ ¼
�
1

l
� 1

sl

�
eiðuÞ þOðl�2Þ; (41)

where eiðuÞ is an unknown coefficient of OðaÞ error and is
a function of u. We then define the rescaled lattice DBF by

B0
iðu; s; l; s0Þ ¼

lnðsÞ
lnðs0ÞBiðu; s0; lÞ: (42)

In addition, using the continuum counterpart of Eq. (42),
we define

	Bðu; s; s0Þ ¼ Bðu; sÞ � lnðsÞ
lnðs0ÞBðu; s

0Þ; (43)

which represents the difference between the true contin-
uum DBF and the rescaled continuum DBF. Combining
Eqs. (41)–(43) together and introducing

�ðs; l; s0Þ ¼ lnðsÞ
lnðs0Þ

�
1

l
� 1

s0l

�
; (44)

we arrive at

B0
iðu; s; l; s0Þ ¼ Bðu; sÞ þ �ðs; l; s0ÞeiðuÞ � 	Bðu; s; s0Þ

þOðl�2Þ: (45)

Therefore, if 	Bðu; s; s0Þ and Oðl�2Þ (or higher order) dis-
cretization errors are negligible compared to the statistical
error of B0

iðu; s; l; s0Þ, the numerical data of B0
iðu; s; l; s0Þ

plotted against � will line up on a single line, and even two
unknown coefficients in Eq. (45), Bðu; sÞ and eiðuÞ, for
given u and s can be extracted from that behavior. Instead,
if both or one of them is large, the data will not align. Thus,
whether B0

iðu; s; l; s0Þ plotted against � aligns or not tests
the validity of the linear extrapolation within the statistical
uncertainty.

We comment on the size of 	Bðu; s; s0Þ. Solving Eq. (1)
perturbatively, the continuum DBF is found to be

Bðu; sÞ ¼ � lnðsÞ
�
�ðuÞ
u2

þ u2 lnðsÞ 1
2
b1b2 þ u3 lnðsÞ

�
�
1

3
b21b2 lnðsÞ þ b1b3 þ 1

2
b22

��
þOðu4ln2ðsÞÞ;

(46)

and thus the perturbative expression of 	Bðu; s; s0Þ is
	Bðu; s; s0Þ
¼ u2 lnðsÞ ln

�
s

s0

��
� 1

2
b1b2 þ u

�
� 1

3
b21b2 lnðss0Þ

�
�
b1b3 þ 1

2
b22

���
þOðu4 lnðsÞ lnðs=s0ÞÞ: (47)

Since the numerical values of bi’s are small, e.g. b1 �
0:055, b2 ��0:002, bSF3 �Oð10�4Þ, 	Bðu; s; s0Þ is also

small in the perturbative regime as 10�5 � u2ð1:5þ
0:6uÞ, 10�5 � u2ð1:1þ 0:4uÞ, and 10�5 � u2ð�1:1�
0:5uÞ for ðs; s0Þ ¼ ð2; 16=12Þ, (2, 12=8), and ðs; s0Þ ¼
ð2; 16=6Þ, respectively. As u becomes large, 	Bðu; s; s0Þ
may become sizable and at some point exceed the statisti-
cal error of B0

iðu; s; l; s0Þ. Then, the alignment will be
deformed. Notice that, the smaller Bðu; s0Þ is, the smaller
	Bðu; s; s0Þ is, and in particular, when Bðu; s0Þ ¼ 0 for a
certain s0, 	Bðu; s; s0Þ ¼ 0 holds exactly.
We extract the continuum DBF Bðu; sÞ as follows. First,

we assume linear scaling violation and calculate Bðu; sÞ for
s ¼ 2 by extrapolating the two data sets, ðs0; lÞ ¼ ð2; 6Þ and
(2, 8), to � ¼ 0. Since s0 ¼ s, B0

iðu; s; l; s0Þ ¼ Biðu; s0; lÞ
and 	Bðu; s; s0Þ ¼ 0 by construction. Thus, we do not have
to rely on the smallness of 	Bðu; s; s0Þ. Then, to test the
linearity of the scaling violation, we calculate the rescaled
lattice DBF B0

iðu; s; l; s0Þ with s ¼ 2 from the other data
sets and plot them as a function of �ðs; l; s0Þ. If the data
align within the statistical error of B0

iðu; 2; l; s0Þ, the as-
sumption of the linear scaling violation is valid, 	Bðu; s; s0Þ
is negligible, and then the value of Bðu; sÞ thus obtained is
reliable. Alternatively, once the linearity is confirmed, we
can even determine the continuum limit by taking the
linear extrapolation of B0

iðu; 2; l; s0Þ. Since 	Bðu; s; s0Þ is
negligible in the perturbative regime, the linearity can be
tested more rigorously in such a regime. When the data do
not align, either or both of the linear violation dominance
and small 	Bðu; s; s0Þ are invalid and the result for Bðu; sÞ
becomes uncertain.

E. Extraction of the continuum DBF

Extrapolation to the continuum limit described in the
following is carried out for every jackknife ensemble, and
the statistical error in the continuum limit is estimated by
the single elimination jackknife method.
We begin with analysis at relatively weak coupling.

Figure 3 shows the continuum limit of B0
iðu; s; l; s0Þ for

s ¼ 2 (i ¼ 1; 2) at the four representative values of 1=u
corresponding to u ¼ 1:0; 2:0; 10=3; 5:0, where the data
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with s0 ¼ 2 are shown in filled symbols and the other in
open symbols and two data of the one-loop improved
lattice DBF (B0

1) with s0 ¼ 2 (filled squares) are linearly

extrapolated to � ¼ 0. The two-loop improvement de-
scribed in Sec. VC is equivalent to tuning the improve-
ment coefficients such that the resulting DBF reproduces
the perturbative DBF in the region 0< u< 1:6. Indeed,
the constant fit of the two-loop improved DBF with s0 ¼
2 (filled diamonds) gives the value consistent with the
perturbative prediction when 1=u ¼ 1:0 and 0.5 as seen
in the figure. In the same region (1=u * 0:5), the data of
the one-loop improved DBF align and the linear extrapo-
lation reproduces the perturbative DBF as well.
Importantly, the extracted continuum DBF is clearly
negative in this region.

The deviation from the perturbative prediction appears
at 1=u ¼ 0:3, where the linear extrapolation gives the value
closer to and consistent with zero. It is important to note
that the data of the one-loop improved DBF align down to

1=u ¼ 0:2 with a slope increasing with u. From this
observation, we conclude that, in the region 1=u � 0:2
(u � 5), 	Bðu; s; s0Þ is small, the scaling violation is linear
for the one-loop improved DBF, and hence the extracted
continuum limit is reliable.
Next let us move on to the result at a stronger coupling

shown in Fig. 4. As seen from the figure, first the data of B0
1

except for the one with ðs0; lÞ ¼ ð4=3; 6Þ (rightmost point)
remains to align within the statistical uncertainty. Thus, the
linear extrapolation of B1 is reliable at 1=u ¼ 0:15.
Second, the linear extrapolation of B1 and the constant fit
of B2 lead to different continuum DBF. It appears that the
constant fit of B2 is no longer valid and the linear fit
appears to be more reasonable. Indeed, the linear fit of
B2 (solid line and open diamond at � ¼ 0) turns out to give
the consistent limit as shown in the figure.
From the alignment of B0

1, we infer that both 	B and

nonlinear scaling violation remain small. This is consistent
with the fact that the continuum DBF obtained by linear
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FIG. 3 (color online). Linear extrapolation of B1 (filled squares) and constant fit of B0
2 (filled diamonds) to the continuum limit. The

extrapolation and fit use the data with s0 ¼ 2 (filled symbols). The data with s0 � 2 (open symbols) are also shown to see whether they
align or not. The values of (s0, l) of the data shown are (4=3, 6), (2, 6), (8=3, 6), (3=2, 8), (2, 8), and (4=3, 12) from right to left. The data
points are slightly shifted in the horizontal direction for clarity. The perturbative predictions including the two-loop (plus) and three-
loop (star) effects are also shown.
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extrapolation of B1 is consistent with zero and thus 	B
should be small as well.

The deviation of the coarsest data from the linear behav-
ior indicates that the linear discretization error no longer
dominates others in the data with ðs0; lÞ ¼ ð4=3; 6Þ. Since in
general nonlinear scaling violation can be large for small l,
the data with l ¼ 6 may suffer from this though it is not
visible in the figure. To evaluate the potential uncertainty
due to theOðl�2Þ discretization error, we performed a linear
fit without the l ¼ 6 data. The fit result is shown as an open
square at � ¼ 0 and the dashed line in Fig. 4. The result is
consistent with that using the s0 ¼ 2 data only.

From Figs. 3 and 4, it turns out that for 1=u & 0:3 the
extracted continuum DBF is consistent with zero. This
indicates that in this region the running coupling constant
reaches an infrared fixed point or, at least, the running
appreciably slows down. In order to further investigate
the existence of the infrared fixed point, we include the
data obtained from l ¼ 18 lattice at� ¼ 4:55 into analysis.
This data is combined with the data with l ¼ 12 to con-
struct B0

1 with ðs0; lÞ ¼ ð3=2; 12Þ. At � ¼ 4:55, the inverse
SF coupling for l ¼ 12 turns out to be 1=u ¼ 0:107. On the
l ¼ 6 lattice, this value of 1=u is realized at �� 4:4. In
such a small �, the SF couplings are not calculated on
l ¼ 12; 16 lattices, and hence the following analysis is
carried out without the data from l ¼ 6 lattices.

B0
1 constructed from the l ¼ 18 data is shown in Fig. 5

(filled circle). Since the four data points shown align well,
we take the linear extrapolation using all of them and
obtain the positive value in � ¼ 0. Interpretation of this
result needs care as mentioned in Sec. II. The most plau-
sible explanation for this observation is that an IRFP exists
in uIRFP < 1:0=0:107 ¼ 9:35.

Figure 6 shows the 1=u dependence of the continuum
DBF, where the results are compared with the perturbative

calculations. It is seen that the running starts to slow down
at around 1=u� 0:5, and eventually the coupling constant
reaches a fixed point in the range of 0:107< 1=u & 0:3.
When the DBF is positive, it is nontrivial for the continuum
limit to exist. Thus, we omit the positive DBF data from the
figure.

VI. SUMMARYAND OUTLOOK

In this work, the running coupling constant of ten-flavor
QCD is numerically investigated using the lattice tech-
nique. The extrapolation of the DBF to the continuum limit
is taken linearly assuming that the OðaÞ scaling violation
dominates the higher order ones. The DBF extrapolated
approaches zero from below as the SF coupling constant u
increases and when u * 10=3 the DBF becomes consistent
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FIG. 5 (color online). Same as Fig. 4 but the data point
obtained with ðs0; lÞ ¼ ð3=2; 12Þ (filled circle) is included in
the analysis at 1=u ¼ 0:107. The dashed line and the open square
at � ¼ 0 are the result of the linear fit.
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stronger coupling is plotted. Solid lines denote the linear ex-
trapolation using the data with s0 ¼ 2 (filled symbols). The
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the three smallest �.
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with zero. Further investigation at one particular strong
coupling u ¼ 9:3 (1=u ¼ 0:107) is made using the data
from the large lattice (l ¼ 18), and suggests that the con-
tinuum DBF at this coupling is not negative. This indicates
the existence of the infrared fixed point 10=3 & g2IRFP &
9:3. The linear extrapolation is reasonably justified within
the statistical error, but further rigorous check is clearly
preferable. Combining our result with that of Ref. [12], the
critical number of flavors which separates the conformal
phase and the broken phase is 8<Ncrit

f < 10.

In order to confirm the existence of IRFP or even deter-
mine the value of the fixed point more precisely, data from
larger lattices with high statistics are necessary. It is, how-
ever, difficult to do with machines currently available to us,
and probably more efficient methods or different ap-
proaches are necessary to go further. As mentioned in
Sec. I, the conformal window can also be studied by
looking at hadrons’ spectroscopy or renormalization group
analysis on the lattice. Currently the conclusions based on
various methods are not consistent among them. In order to
pin down Ncrit

f , these contradictions must be clarified with

further studies.
What is really important in the context of theWTC is the

anomalous dimension of the �c c operator. The calculation
of the anomalous dimension in ten-flavor QCD is on-going.
The result will be published elsewhere.

Once one has fixed an attractive candidate for WTC,
the next important step would be the calculation of the S
parameter. The calculational method has been established
in Ref. [39], where the QCD S parameter is calculated on
the lattice for the first time and is correctly reproduced.
Later, the method was applied to three-flavor QCD [40],
sextet QCD [41], and six-flavor QCD [42]. In Ref. [42],
the evidence of the reduction of the S parameter is
reported. Another important quantity which should
be calculated is obviously the mass spectrum of the

candidate theory, including vector and scalar resonances,
the decay constant of the Nambu Goldstone boson, and
the chiral condensate. Although the precise determina-
tions of these quantities are challenging, the direct com-
parison with the upcoming LHC results is extremely
interesting and, hence, we believe that such calculations
are worth a lot of effort.
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