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We present physical results obtained from simulations using 2þ 1 flavors of domain wall quarks and

the Iwasaki gauge action at two values of the lattice spacing a, [a�1 ¼ 1:73ð3Þ GeV and a�1 ¼
2:28ð3Þ GeV]. On the coarser lattice, with 243 � 64� 16 points (where the 16 corresponds to Ls, the

extent of the 5th dimension inherent in the domain wall fermion formulation of QCD), the analysis of C.

Allton et al. (RBC-UKQCD Collaboration), Phys. Rev. D 78 is extended to approximately twice the

number of configurations. The ensembles on the finer 323 � 64� 16 lattice are new. We explain in detail

how we use lattice data obtained at several values of the lattice spacing and for a range of quark masses

in combined continuum-chiral fits in order to obtain results in the continuum limit and at physical quark

masses. We implement this procedure for our data at two lattice spacings and with unitary pion masses in

the approximate range 290–420 MeV (225–420 MeV for partially quenched pions). We use the masses of

the � and K mesons and the � baryon to determine the physical quark masses and the values of the

lattice spacing. While our data in the mass ranges above are consistent with the predictions of next-to-

leading order SU(2) chiral perturbation theory, they are also consistent with a simple analytic ansatz

leading to an inherent uncertainty in how best to perform the chiral extrapolation that we are reluctant to

reduce with model-dependent assumptions about higher order corrections. In some cases, particularly for

f�, the pion leptonic decay constant, the uncertainty in the chiral extrapolation dominates the systematic

error. Our main results include f� ¼ 124ð2Þstatð5Þsyst MeV, fK=f� ¼ 1:204ð7Þð25Þ where fK is the kaon

decay constant, mMS
s ð2 GeVÞ ¼ ð96:2� 2:7Þ MeV and mMS

ud ð2 GeVÞ ¼ ð3:59� 0:21Þ MeV (ms=mud ¼
26:8� 1:4) where ms and mud are the mass of the strange quark and the average of the up and down

quark masses, respectively, ½�MSð2 GeVÞ�1=3 ¼ 256ð6Þ MeV, where � is the chiral condensate, the

Sommer scale r0 ¼ 0:487ð9Þ fm and r1 ¼ 0:333ð9Þ fm.

DOI: 10.1103/PhysRevD.83.074508 PACS numbers: 11.15.Ha, 11.30.Rd, 12.15.Ff, 12.39.Fe

I. INTRODUCTION

For several years now, the RBC and UKQCD
Collaborations have been undertaking a major programme
of research in particle physics using lattice QCD with
domain wall fermions (DWF) and the Iwasaki gauge ac-
tion. In the series of papers, [1–3], we studied general
properties of ensembles with an inverse lattice spacing of
a�1 ¼ 1:73ð3Þ GeV (corresponding to � ¼ 2:13) and with

unitary pion masses m� � 330 MeV (partially quenched
m� * 240 MeV). The number of points in these ensem-
bles are 163 � 32� 8 [2], 163 � 32� 16 [3], and 243 �
64� 16 [1], where the fifth dimension is a feature of DWF
and is not visible to low-energy physics which remains
four-dimensional. We do not review the properties of DWF
here, beyond underlining their physical chiral and flavor
properties which we exploit in much of our wider scientific
programme. We have used these ensembles to investigate a
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broad range of physics, including studies of the hadronic
spectrum, mesonic decay constants, and light-quark
masses [1], the evaluation of the BK parameter of
neutral-kaon mixing [1,4], the calculation of the form-
factors of K‘3 decays [5,6], studies in nucleon structure
[7–9] and proton decay matrix elements [10], and very
recently the first lattice study of the masses and mixing
of the � and �0 mesons [11] as well as a determination of
the matrix elements relevant for neutral B-meson mixing in
the static limit [12]. A key limiting factor in the precision
of these results was that the simulations were performed at
a single lattice spacing. In this paper we remove this
limitation, by presenting results for the spectrum, decay
constants and quark masses obtained with the same lattice
action using ensembles generated on a 323 � 64� 16
lattice at a second value of the lattice spacing correspond-
ing to � ¼ 2:25, for which we will see below that a�1 ¼
2:28ð3Þ GeV. Now that we have results for the same
physical quantities with the same action at two values of
the lattice spacing we are able to perform a continuum
extrapolation and below we will present physical results in
the continuum limit.

Since the most precise results at� ¼ 2:13were obtained
on the 243 � 64� 16 [1] lattices, as a shorthand through-
out this paper we will refer to these lattices as the 243

ensembles and label the new lattices at� ¼ 2:25 as the 323

ensembles.
The new 323 ensembles at � ¼ 2:25 will, of course, be

widely used also in our studies of other physical quantities.
In this first paper however, we discuss their properties in
some detail (see Sec. II). In this section we also discuss
reweighting which allows us to eliminate one source of
systematic uncertainty. While at present we cannot simu-
late with physical u and d quark masses, there is no reason,
in principle, why we cannot simulate with the physical
strange-quark mass. The difficulty, however, is that we
do not know a priori what this mass is and so in practice
the simulations are performed with a strange-quark mass
which is a little different from the physical one. As ex-
plained in Sec. II D, the technique of reweighting allows us
to correct a posteriori for the small difference in the
simulated and physical strange-quark masses. In Sec. III,
we present updated raw results for the pion and kaon
masses and decay constants and the mass of the � baryon
on the 243 ensembles which have been extended beyond
those discussed in Ref. [1]. Section IV contains the corre-
sponding results on the 323 ensembles. In these two sec-
tions we also present the raw results for the masses of the
nucleon and � baryons from the two ensembles, but in
contrast to the mesonic quantities a description of their
chiral behavior and extrapolation to the continuum limit
are postponed to a future paper.

The pricewe pay for using a formulationwith good chiral
and flavor properties is the presence of the fifth dimension
and the corresponding increase in computational cost. The

lightest unitary pion which we have been able to afford to
simulate has a mass of 290 MeV and so, in addition to the
continuum extrapolation we need to perform the chiral
extrapolation in the quark masses. In Sec. V we present a
detailed explanation of how we combine the chiral and
continuum extrapolations in an attempt to optimize the
precision of the results, exploiting the Symanzik effective
theory approach as well as chiral perturbation theory and
other ansatze for the mass dependence of physical quanti-
ties. Having explained the procedure, we then proceed in
Sec. VE to discuss the results, to determine the physical
bare masses and lattice spacings as well as to make pre-
dictions for the pion and kaon decay constants. In particular
we find that the ratio of kaon and pion decay constants [13]

fK
f�

¼ 1:204� 0:026; (1)

where the error is largely due to the uncertainty in the chiral
behavior of f� as explained in Sec. VE 3. From the chiral
behavior of the masses and decay constants we determine
the corresponding low-energy constants (LECs) of SU(2)
chiral perturbation theory (ChPT).
Among the most important results of this paper are those

for the average u and d quark mass and for the strange-
quark mass which are obtained in Sec. VI:

mMS
ud ð2 GeVÞ ¼ ð3:59� 0:21Þ MeV and

mMS
s ð2 GeVÞ ¼ ð96:2� 2:7Þ MeV: (2)

The masses are presented in theMS scheme at a renormal-
ization scale of 2 GeV, after the renormalization to
symmetric momentum schemes has been performed non-

perturbatively [14,15] and the conversion to the MS
scheme has been done using very recent two-loop results
[16,17].
Section VII contains a discussion of the topological

charge and susceptibility of both the 243 and 323 ensem-
bles and in Sec. VIII we summarize our main results and
present our conclusions. There are three appendices.
Appendix A contains the chiral extrapolations performed
separately on the 243 and 323 ensembles. This is in contrast
with the procedure described in Sec. VE in which the
chiral and continuum extrapolations were performed si-
multaneously with common fit parameters at the two spac-
ings. Appendix B contains a detailed analysis of a subtle
issue, the normalization of the partially conserved axial
current. For domain wall fermions this is expected to
deviate from the conventionally normalized continuum
current by terms of order amres, where a is the lattice
spacing and mres is the residual mass [1,18]. Current simu-
lations are now becoming sufficiently precise that these
effects need to be understood and quantified and the
method proposed in Appendix B, in which the OðamresÞ
effects are absent, is implemented in the numerical analy-
ses throughout the paper. Finally Appendix C contains a
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discussion of the expected statistical errors when reweight-
ing is performed on Monte Carlo data to obtain results with
a different action from that used to generate the data.

We end the Introduction with an explanation of our
notation for quark masses [1]. When discussing unitary
computations, with the valence and sea quarks degenerate,
we call the bare light (u or d) quark mass ml and the bare
heavy (strange) quark mass mh. mud and ms refer to the
physical values of these masses (we work in the isospin
limit so that the up and down quarks are degenerate). For
the partially quenched computations we retain the notation
ml and mh for the sea-quark masses, but use mx and my for

the valence quarks. A tilde over the mass indicates that the
residual mass has been added, ~mq ¼ mq þmres; it is ~m

which is multiplicatively renormalizable.

II. SIMULATION DETAILS AND
ENSEMBLE PROPERTIES

As described in Refs. [1,3,19], we generate ensembles
using a combination of the DWF formulation of Shamir
[20] and the Iwasaki gauge action [21]. For the fermionic
action we use a value of 1.8 for the ‘‘domain wall height’’
M5 and an extension of the 5th dimension of Ls ¼ 16. In
addition to the new ensembles generated on a 323 � 64
lattice volume and a gauge coupling � ¼ 2:25, we have
also significantly extended the 243 � 64, � ¼ 2:13 ensem-
bles generated in our previous study [1]. As indicated in
Table I we have extended the ml ¼ 0:005, 243 � 64 en-
semble from 4460 to 8980 molecular dynamics (MD) units
while the ml ¼ 0:01 ensemble has been extended from
5020 to 8540 MD units. The three 323 � 64 ensembles
that are first reported here are also shown in Table I and
those with light-quark masses of 0.004, 0.006 and 0.008
contain 6856, 7650 and 5930 MD units, respectively.

A. Ensemble generation

For the generation of both the 243 � 64 and 323 � 64
ensembles, we employ the ‘‘RHMC II’’ algorithm de-
scribed in Ref. [1]. More specifically, the simulation of
two light quarks and one strange quark is carried out using

a product of three separate strange-quark determinants
each evaluated using the rational approximation. The 2
flavors of light quarks are preconditioned by the strange-
quark determinant [22]. While the preconditioning mass
does not have to be the same as the strange-quark mass, we
found that the strange-quark mass is close to being optimal
in DWF simulations in tests on smaller volumes.

Using the notation DðmlÞ ¼ Dy
DWFðM5; mlÞDDWF�

ðM5; mlÞ, the fermion determinant including the contribu-
tion from the Pauli-Villars fields and evaluated on a
fixed gauge configuration can be written as

det

�
DðmsÞ1=2DðmlÞ

Dð1Þ3=2
�
¼ det

�
DðmsÞ
Dð1Þ

�
3=2 � det

�
DðmlÞ
DðmsÞ

�
(3)

¼ det

�
R1=2

�
DðmsÞ
Dð1Þ

��
� det

�
R1=2

�
DðmsÞ
Dð1Þ

��

� det
�
R1=2

�
DðmsÞ
Dð1Þ

��
� det

�
DðmlÞ
DðmsÞ

�
: (4)

In Eq. (4) we explicitly show how this ratio of determinants
is implemented using the rational approximation. Here
RaðxÞ denotes xa evaluated using the rational approxima-
tion and each determinant is evaluated using a separate set
of pseudofermion fields. An Omelyan integrator [23] with
the Omelyan parameter � ¼ 0:22 was used in each part of
evolution.
Given the disparate contributions to the molecular dy-

namics force coming from the gauge action and the differ-
ent factors in Eq. (4) we follow the strategy of Ref. [24] and
increase performance by simulating these different contri-
butions with different molecular dynamics time step gran-
ularities. In particular, the suppression of the force from the
light-quark determinant that results from the Hasenbusch
preconditioning allows us to evaluate the computationally
expensive force from the light quark using the largest time
step among the different terms, decreasing the computa-
tional cost significantly. As a result, we divide our simula-
tion in such a way that �tlight:�theavy:�tgauge ¼ 1:1:1=6

TABLE I. Simulation parameters as well as the average acceptance, plaquette (hPi), and value for the light-quark chiral condensate
[h �c c ðmlÞi] for the ensembles studied in this paper. The fifth column shows the number of time units in the ensembles that were
included from Ref. [1]. The residual masses given explicitly and those appearing in the ratio ~ml= ~ms are taken from Table VII appearing
in Sec. III below.

msa mla ~ms= ~ml �tlight � (Ref. [1]) � (MD) Acceptance hPi h �c c ðmlÞi
V=a ¼ 243 � 64, Ls ¼ 16, � ¼ 2:13, a�1 ¼ 1:73ð3Þ GeV, mresa ¼ 0:003 152ð43Þ, �=traj ¼ 1

0.04 0.005 5.3 1=6 4460 8980 73% 0.588 053(4) 0.001 224(2)

0.01 3.3 1=5 5020 8540 70% 0.588 009(5) 0.001 738(2)

V=a ¼ 323 � 64, Ls ¼ 16, � ¼ 2:25, a�1 ¼ 2:28ð3Þ GeV, mresa ¼ 0:000 666 4ð76Þ, �=traj ¼ 2
0.03 0.004 6.6 1=8 — 6856 72% 0.615 587(3) 0.000 673(1)

0.006 4.6 1=8 — 7650 76% 0.615 585(3) 0.000 872(1)

0.008 3.5 1=7 — 5930 73% 0.615 571(4) 0.001 066(1)
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which gave a good performance, measured in flops per
accepted trajectory in tuning runs performed separately.
(Note, the nature of the Omelyan integrator makes �theavy
effectively half of�tlight.) This ratio of time steps was used

for all the ensembles studied here. However �tlight was

varied from ensemble to ensemble to reach an approximate
acceptance of 70%. The precise numbers that were used
are listed in Table I.

In addition, we chose to simulate with a trajectory
length � ¼ 2 for the 323 ensembles, twice that used for
the 243 ensembles. While a longer trajectory length may
be expected to reduce the autocorrelation between con-
figurations, the time for a trajectory scales very nearly
linearly in the trajectory length. In comparisons between
� ¼ 1 and � ¼ 2 trajectory lengths we were not able to
recognize any statistically significant reduction in auto-
correlations, especially in those for the topological
charge, in terms of wall-clock time used to generate the
configurations.

A final optimization was used for the simulations run
on the IBM BG/P machines at the Argonne Leadership
Computing Facility (ALCF). Instead of using double
precision throughout, the BAGEL-generated assembly rou-
tines [25] keep the spin-projected spinors in single
precision in the conjugate gradient (CG) inverters during
the molecular dynamics evolution to decrease the
amount of communication needed per CG iteration.
(Full precision is used in the accept-reject step.) While
this kind of improvement is expected to make the mo-
lecular dynamics integrator unstable for sufficiently large
volumes, the effect on the acceptance turned out to be
minimal for all the ensembles presented in this paper
while improving the performance of the CG by up to
20% compared to a full double precision CG with the
same local volume.

B. Ensemble properties

In Fig. 1 we show the evolution of the plaquette and the
chiral condensate for the 323 ensembles. Both quantities
suggest that 500 MD units is enough for the thermalization
of each of the 323 ensembles. We have thus begun mea-
surements at 1000 MD units forml ¼ 0:006 (except for the
measurements of the chiral condensate which started after
3304 MD units) and 520 MD units for the other 323

ensembles. (The starting points for measurements on the
three 243 � 64 ensembles are given in Table I of Ref. [1].)
Figure 2 shows the integrated autocorrelation time for

various quantities measured on the 323 ensembles. As can
be seen the plaquette, chiral condensate and even the light
pion propagator for a separation of 20 time units show a
short autocorrelation time of 5–10 MD units. However, the
measured autocorrelation times for the topological charge
are much larger, on the order of 80 MD units. In fact, as is
discussed in Sec. VII, the evolutions shown in Fig. 52
suggest even longer autocorrelation times implying that
the autocorrelation times shown in Fig. 2 may be under-
estimated because of insufficient statistics.
In Sec. VII this issue of the autocorrelation time for the

topological charge is discussed in greater detail and the
� ¼ 2:13 and 2.25 evolutions are compared. The 323, � ¼
2:25 ensembles (with finer lattice spacing) are shown to
evolve topology more slowly. This suggests that the change
from the DBW2 gauge action used in earlier 2-flavor work
[26] to the Iwasaki gauge action used here may have been a
wise one. While the DBW2 gauge action gives smaller
residual DWF chiral symmetry breaking, it does this by
suppressing the tunneling which changes topological
charge. Thus, the use of the DBW2 gauge action may
have resulted in a topological charge evolution for our
current finest lattice spacings that would have been unac-
ceptably slow.

0.615

0.6155

0.616  ml = 0.004

0.615

0.6155
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0 2000 4000 6000 8000
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FIG. 1. Evolution of the average plaquette (left panel) and the chiral condensate (right panel) for the � ¼ 2:25, 323 � 64, Ls ¼ 16
ensembles. The chiral condensate is normalized such that h �c c i � 1=m in the heavy-quark limit.
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C. Fitting procedure

In the analysis described in this paper it is important to
take into account the fact that the various quantities com-
puted on a single gauge configuration may be correlated.
To do this we apply the jackknife technique to simple
uncorrelated fits. While there is no proof, or even expec-
tation, that this is an optimal procedure, the jackknife will
provide a good estimate of the error except in the unlikely
event of large deviations of our result from a normal
distribution. While we could attempt to perform a ‘‘text-
book’’ correlated fit (again, using a jackknife procedure),
this would not be sensible: such fits assume that the data
should exactly follow the functional form used in the fit. In
the case of a fit to chiral perturbation theory or a simpler
analytic ansatz for the quark mass dependence of physical
quantities we know that this is not the case. While this
complaint applies to both correlated and uncorrelated fits,
for the highly correlated lattice data with which we are
dealing, small deviations (which in this procedure are
assumed to be statistical, but in our case are likely to be
systematic) are penalized by many orders of magnitude
more for the correlated than uncorrelated fits.
Nevertheless, we have performed correlated fits, where
the correlation matrix is obtained by taking increasing
numbers of the leading eigenvectors. Within our limited
ability to estimate the correlation matrix, we find no

significant difference in the results and errors with those
obtained using uncorrelated fits. Therefore, in this paper
(as was also the case in Ref. [1]) we present our main
results from the uncorrelated fits, but with a full jackknife
procedure for estimating the errors. However, it must be
borne in mind that for such uncorrelated fits the resulting
�2 may not be a reliable indicator of goodness of fit.
Therefore, we present a sample set of our fits graphically.

D. Reweighting in the mass of the sea strange quark

The sea strange-quark mass value used in our ensemble

generation,mðsimÞ
h , differs from the one in nature, which we

determine only after performing our final analysis. In this
subsection, we describe the reweighting method used to

correct this strange-quark mass from mðsimÞ
h to the target

mass mh. Various target heavy-quark masses are deter-
mined in Sec. V through interpolation/extrapolation to
yield meson masses which match either unphysical values
present in a different ensemble or which reproduce those
from experiment. Recently, several large-scale QCD simu-
lations have been reported using a reweighting technique
[27–29]. The various uses of this method include obtaining
sea-quark mass derivatives in Ref. [30], tuning the light
and strange-quark masses in Ref. [31], tuning the strange
and charm quark masses in Ref. [32] and going to larger Ls

for the DWF action in Ref. [33].
An observable, such as the meson propagator, at the

target strange sea-quark mass mh is obtained by measuring

that observable on the ensemble generated using mðsimÞ
h ,

multiplied by the reweighting factor w:

hOimh
¼

hOwi
mðsimÞ

h

hwi
mðsimÞ

h

: (5)

Here the reweighting factor w½U�� for a particular en-

semble of gauge links U� is the ratio of the square root

of the two-flavor Dirac determinant evaluated at the mass
mh divided by that same rooted determinant evaluated at

mðsimÞ
h ,

w½U�� ¼ detDðmhÞ1=2
detDðmðsimÞ

h Þ1=2 : (6)

This factor must be calculated for each configuration on
which measurements will be performed in the ensemble

generated using the sea strange mass mðsimÞ
h .

Among the many possible ways of computing the de-
terminant ratio in Eq. (6), we have chosen to use the

Hermitian matrix �ðmh;m
ðsimÞ
h Þ, whose determinant is

w½U��,

�ðmh;m
ðsimÞ
h Þ ¼ ½DðmðsimÞ

h Þy�1=2½DðmhÞy��1=2½DðmhÞ��1=2

� ½DðmðsimÞ
h Þ�1=2: (7)

0030020010

MD units

0

20

40

60

80

100

Plaquette
 Chiral condensate
 Pseudoscalar(t=20)
 Topological charge(m

l
=0.004)

 Topological charge(m
l
=0.006)

 Topological charge(m
l
=0.008)

FIG. 2 (color online). The integrated autocorrelation time is
shown for the average plaquette, chiral condensate h �c c i, pseu-
doscalar propagator at time separation 20 from a Gaussian
source, and point sink, all computed from the 323, ml ¼ 0:004
ensemble and the global topological charge for all three 323

ensembles. The chiral condensate and plaquette are measured
every two MD units and the averages within sequential blocks of
10 MD units have been analyzed. The topological charge is
measured every 4 MD units and the averages within sequential
blocks of 20 MD units have been analyzed. All other quantities
were measured every 20 MD units and no averaging has been
performed. Further discussion of the topological charge is given
in Sec. VII.

CONTINUUM LIMIT PHYSICS FROM 2þ 1 FLAVOR . . . PHYSICAL REVIEW D 83, 074508 (2011)

074508-5



The square root of these matrices is implemented using the
same rational polynomial approximation, R1=2ðxÞ, and

multishift conjugate gradient algorithm, which are used in
the ensemble generation. The order of the matrix products

in� assures that in the limit ofmh ! mðsimÞ
h ,� goes to the

unit matrix, so that the method described below for evaluat-
ing w has vanishing stochastic error in this limit.

To obtain w on each configuration, the determinant of�
is stochastically evaluated using a complex random
Gaussian vector � of dimension Ls � 12. Each complex
element is drawn from a random distribution centered
at zero with width 	� in both the real and imaginary

directions:

w ¼ hhe��y½��1=ð2	2
�
Þ��ii�

�
R
D�D�ye��y½��1=ð2	2

�
Þ��e��y�=ð2	2

�
ÞR

D�D�ye��y�=ð2	2
�
Þ : (8)

We set 	2
� ¼ 1=2 and sample using N� Gaussian vectors

per configuration. For one sample, two multimass inver-

sions, one for mh and another for mðsimÞ
h , are performed.

One needs to be careful in evaluating Eq. (8) to avoid a
large and difficult to estimate statistical error. When the
eigenvalues of�, ��, are far from 1=ð2	2

�Þ, the large shift
in the width of the Gaussian in the integrand will cause
poor sampling in this stochastic evaluation of w, as can be
seen if Eq. (8) is rewritten with � diagonal:

w ¼ Y
��2spectð�Þ

Z
d���

y
�e

��y
�
½���1=ð2	2

�
Þ���e��y

�
��=ð2	2

�
Þ
�

Y
��2spectð�Þ

Z
d���

y
�e

��y
�
��=ð2	2

�
Þ: (9)

The first exponential function in the integrand (9) will be a
rapidly decreasing function of �y� when ½�� � 1=ð2	2

�Þ�
is large, with most of the Gaussian samples generated
according to the second exponential function in Eq. (9)
falling in a region where the first factor is very small. In
this sense, Eq. (8) may provide a statistically noisy esti-
mate of the ratio of the determinants in Eq. (6). The
fluctuations in this estimate will be rapidly reduced when
½�� � 1=ð2	2

�Þ� ! 0 or, for our choice of 	�, when �

becomes close to the unit matrix, � ! 1.
To reduce the stochastic noise in our estimate, det� is

divided into Nrw factors [28]

w¼det�¼ YNrw�1

i¼0

det�i¼
YNrw�1

i¼0

hhe��y
i ½�i�1=ð2	2

�
Þ��iii�i

: (10)

Each of �i needs to be close to the unit matrix while
keeping the determinant of the product the same as the
original determinant. Each factor det�i in the product is
evaluated using Eq. (8) with N� Gaussian vectors. We

note that all Gaussian vectors, �i, must be statistically

independent otherwise there will be unwanted correlation
among contribution from the Nrw steps. A similar decom-
position of the reweighting factor is also possible by using
the n-th root of the operators [33].
In this work, �i is chosen by uniformly dividing the

interval ½mh;m
ðsimÞ
h � into smaller pieces:

�i ¼ �ðmðiþ1Þ
h ; mðiÞ

h Þ; (11)

mðiÞ
h ¼mðsimÞ

h þ i
mh�mðsimÞ

h

Nrw

; ði¼0;1; . . . ;NrwÞ: (12)

In that way, reweighting factors for the intermediate

masses mðiÞ
h are also obtained, which will be used in our

analysis too.
For a given difference between the target and the simu-

lation masses, mh �mðsimÞ
h , Nrw needs to be sufficiently

large that �i is close to the unit matrix, suppressing the
statistical noise in estimating each of the determinants. We
have checked whether Nrw is large enough in our calcu-
lation of the reweighting factor. Figure 3 shows the loga-
rithm of the full reweighting factor, � lnðwÞ, as a function
of the number of divisions in strange-quark mass, Nrw, on
the � ¼ 2:13, 243 � 64, ml ¼ 0:005 lattices, the 2000th
trajectory in the left panel and the 4000th trajectory in the

0 10 20 30 40

Nrw

220

225

230

235

240

245

250

- 
ln

( 
 w

 )

traj=2000

0 10 20 30 40

Nrw

traj=4000

FIG. 3. Logarithm of the reweighting factor, � lnðwÞ, as a
function of the number of divisions in the strange-quark mass,
Nrw on the � ¼ 2:13, 243 � 64, ml ¼ 0:005 lattices, the 2000th
trajectory on the left panel and the 4000th trajectory on the right
panel. The target and simulation quark masses are mh ¼ 0:035

and mðsimÞ
h ¼ 0:040. For Nrw ¼ 1, 5, 10, 20, 32, 40, the number

of Gaussian samples per mass steps is set to N� ¼ 40, 8, 4, 4, 2,

2, respectively. The error bars shown are the standard deviations
resulting from Nrw � N� samples for det�i. We interpret the

inconsistency between the values for Nrw ¼ 1, 5, and 10 and
those with larger Nrw in the left-hand panel as resulting from
insufficient statistics leading to underestimated errors for these
three cases where the stochastic sampling is very poor.
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right panel. The target and simulation quark masses are

mh ¼ 0:035 and mðsimÞ
h ¼ 0:040.

For Nrw 	 10, the reweighting factor w appears incon-
sistent with the results obtained for larger Nrm by a large
amount [note that � lnðwÞ is plotted] for the left case
(2000th trajectory). We believe this is caused by the poor
stochastic sampling in our method to compute w when
Nrw 	 10 and that for these cases the statistics are insuffi-
cient to estimate the error accurately.

We also check the relative difference between the re-
weighting factors for Nrw ¼ 20 and Nrw ¼ 40 in Fig. 4 for
five lattices. This plot indicates that Nrw ¼ 20 is sufficient
to estimate the reweighting factor and its error for changing

from mðsimÞ
h ¼ 0:040 to mh ¼ 0:035 on this ensemble. We

summarize the values of Nrw and N� used in estimating the

reweighting factors for the sea strange-quark mass in
Table II.

Is the Nrw dependence, described above, all one needs to
check to assure the correctness of the reweighting proce-
dure? The answer is clearly no. So far, we have only
established that Eq. (10) estimates w to some degree of
accuracy, on each configuration for large Nrw. One needs
further checks to see whether or not the reweighted ob-
servable in Eq. (5) has an accurately estimated statistical
error. A highly inaccurate estimate of the statistical errors
could easily result from a poor overlap between the re-
weighted ensemble and the original ensemble generated by
the RHMC simulation. In addition, because the reweighted
observable in Eq. (5) is given by a ratio of averages it is a
biased estimator of the observable of interest. In this cir-
cumstance, a large statistical error, even if well determined,
may lead to a systematic error of order 1=Nconf enhanced
by this large statistical error.

We have attempted the following checks: In Fig. 5, w is
plotted as a function of trajectory. If the fluctuation among

different configurations is large, Eq. (5) might be domi-
nated by a small number of measurements made on those
configurations with large w, and the measurement effi-
ciency for the reweighted observable would be very poor.
Using the reweighting factor, wi, obtained on the i-th
configuration, the reweighted observable O can be written
from Eq. (5) as

hOims
¼ XNconf

i¼1

Oiŵi; (13)

ŵ i ¼ wiPNconf

i¼1 wi

: (14)

Because the process of reweighing selectively samples
the original distribution, even with precisely determined
reweighting factors we should expect the effective number
of samples to be reduced and the statistical errors to in-
crease. In Appendix C this effect is analyzed in the case that
correlations between the data and the reweighting factors
can be neglected when estimating these statistical errors,
including the effects of autocorrelations. For the case of no
autocorrelations, we obtain the following expression for
the effective number of configurations after reweighting:

Neff ¼ ðPNconf

n¼1 wnÞ2PNconf

n¼1 w
2
n

: (15)

The quantity Neff goes to Nconf if there is no fluctuation in
the wi while it goes to 1 if the largest wi completely

0 1000 2000 3000 4000 5000 6000
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( 
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 )

 / 
w
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FIG. 4. The relative differences between the reweighting fac-
tors for Nrw ¼ 20, N� ¼ 4 and Nrw ¼ 40, N� ¼ 2 on five

lattices. The target and simulation quark masses are mh ¼
0:035 and mðsimÞ

h ¼ 0:040.

TABLE II. Parameters chosen for the sea strange-quark mass
reweighting calculation are shown.

Ensemble mðsimÞ
h mh Nrw N�

323 � 64 0.030 0.025 10 4

243 � 64 0.040 0.030 40 2

0
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10

wnorm at mh=0.0345 from 0.040
ml=0.005, 0.010
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wnorm  at mh=0.0275 from 0.030
ml=0.004, 0.006, 0.008
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FIG. 5. The normalized reweighting factor ŵi as a function of
trajectory number i for the 243 � 64, ml ¼ 0:005, 0.010 ensem-
bles (left-hand plot) and the 323 � 64, ml ¼ 0:004, 0.006, 0.008
ensembles (right-hand plot). The sea-quark masses ml are plot-
ted in ascending order from top to bottom. The target sea
strange-quark mass and that of simulation are mh ¼ 0:0345,

mðsimÞ
h ¼ 0:040 (mh ¼ 0:0275, mðsimÞ

h ¼ 0:030) for the left-hand

(right-hand) plot.
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dominates the reweighted ensemble. We summarize the
statistical features of the reweighting factors for each en-
semble in Table III. For completeness we also compare the
definition of Neff given in Eq. (15) with the more pessimis-
tic estimate used in Ref. [34]:

N

eff ¼

PNconf

i¼1 wi

maxjðwjÞ : (16)

As can be seen from Table III, our choice gives a somewhat
more optimistic view of the effects of reweighting on the
effective size of our ensembles.

As the numbers in Table III indicate, for our ensemble
and reweighting settings, the ensembles are not over-
whelmed by a small number of configurations.

The efficiency of the reweighting procedure is also
observable dependent. It is influenced by the fluctuations
of the reweighted observable within the ensemble and the

strength of the correlation between the reweighted observ-
able and the reweighting factor. Sanity checks of the
statistical properties of the most important observables,
m� and f�, have been performed and are summarized in
Fig. 6. The observables reweighted to mh ¼ 0:0250 from

mðsimÞ
h ¼ 0:030 are calculated using the first half and the

second half of the ensemble (circle symbols), which are
compared to that of the full statistics (square symbols). The
number of the Gaussian vectors, N�, is also varied from

N� ¼ 1 (first 12 points from left to right in each panel

denoted by blue symbols) toN� ¼ 2 (next 6 points denoted

by green symbols) to N� ¼ 4 (next 3 points denoted by red

symbols) in the same plot. The rightmost (black) 3 points
are the unweighted observables. In the case of m�, all the
statistical samples are within 1� 	, while for f� the
deviations are less than �2� 	.
To probe the mh dependence of the observables, we

show in Fig. 7 the correctly reweighted m� and f� as a
function of mh along with the results obtained from ran-
domly permuting the fwig in Eq. (13). The random permu-
tation is done for each reweighted mass mh to show the
difference from the correctly reweighted observables.
While the randomly reweighted observables are almost
flat in mh, the correctly reweighted observables have a
positive slope in mh. Finally in Fig. 8 we plot the re-
weighted observables f� and fK as a function of the target
reweighted mass mh for three example parameter points.
Note that in both Figs. 7 and 8 we observe an increase in
statistical errors which appears roughly consistent with
what should be expected from the decrease in

ffiffiffiffiffiffiffiffi
Neff

p
. We

should emphasize that further careful studies may be
needed to establish a more accurate estimate of possible
errors in the reweighting procedure.

TABLE III. The maximum and minimum reweighting factors,
the effective number of samples, Neff , according to the formula
derived in this paper, [Eq. (15)], the corresponding number, N


eff

given by the formula of Ref. [34] [defined in Eq. (16)] and the
actual number of configurations Nconf in each ensemble. The
target sea strange-quark mass and that of the simulation are

mh ¼ 0:0345, mðsimÞ
h ¼ 0:040 (mh ¼ 0:0275, mðsimÞ

h ¼ 0:030) for
243 � 64 (323 � 64).

Ensemble maxðwiÞ minðwiÞ NEff N

Eff Nconf

243 � 64, ml ¼ 0:005 10.0 0.078 90.3 20.3 203

243 � 64, ml ¼ 0:010 5.50 0.049 97.0 32.4 178

323 � 64, ml ¼ 0:004 4.77 0.17 228 63.9 305

323 � 64, ml ¼ 0:006 3.45 0.23 234 90.4 312

323 � 64, ml ¼ 0:008 5.36 0.16 183 47.0 252
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FIG. 6 (color online). Reweighted values for m� (left) and f�(right) for various numbers of reweighting hits, N� ¼ 1 (leftmost 12
points in each panel denoted by blue symbols), N� ¼ 2 (next 6 points denoted in green), N� ¼ 4 (next 3 points denoted in red), on each

ensemble. The squares are for the full data set (300 configurations) and the circles are for the first and second half of the data (150
configurations.) The data is from the 323 � 64� 16; ðml;mhÞ ¼ ð0:004; 0:03Þ ensemble with a light valence quark of mass 0.004. The
rightmost 3 (black) points are the unreweighted observables.
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III. UPDATED RESULTS FROM
THE 243 ENSEMBLES

In this section we update the results presented on the 243

ensembles in [1] to the extended data set described in
Sec. II, and in Table I in particular. For this extended
data set we make measurements of pseudoscalar quantities
on a total of 203 configurations for the ml ¼ 0:005 en-
semble and 178 configurations for the ml ¼ 0:01 en-
semble. These configurations were separated by 40
trajectories as documented in the first two rows of
Table IV. In our previous work we used 92 of these mea-
surements on each ensemble [1,4]. Before performing the
analyses we binned the data into blocks of either 80 or 400

trajectories and the measurements from each bin were then
treated as being statistically independent. No statistically
significant increase in the error was observed with the
analysis using bins of 400 trajectories compared to that
with bins of 80 trajectories.
In the following sections the results from the 243 lattices,

combined with those obtained on the 323 ensembles, will
be input into global chiral and continuum fits in order to
determine physical quantities; here we simply tabulate the
fitted pseudoscalar masses and decay constants as obtained
directly from the correlation functions at our simulated
quark masses. In addition, since we use the mass of the
� baryon in the definition of the scaling trajectory, we also
present the results formhhh here together with those for the
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FIG. 7 (color online). The left figure gives m� with correct reweighting factors (blue squares) and with randomly permuted
reweighting factors (green diamonds). The right figure is the same but for f�.
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FIG. 8 (color online). Reweighted results for f� (left) and fK (right) as functions of mh at three parameter sets ð�;mlÞ: green
diamonds: (2.25, 0.008), red circles: (2.13, 0.005), blue squares: (2.25, 0.004).
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Sommer scale r0 and also the scale r1. Finally, we give the
results for the masses of the nucleons and � baryons from
the 243 ensembles, although the chiral and scaling behavior
of these masses will not be studied in this paper. We present
these baryon masses partly for completeness and partly to
share our experience in the use of different sources.

On the 243 lattices discussed in this section, the mea-
surements are presented for the two values of the sea light-
quark mass, ml ¼ 0:005 and 0.01, and for the full range of
valence-quark masses mx;y ¼ 0:001, 0.005, 0.01, 0.02,

0.03, and 0.04. The ensembles with ml ¼ 0:02 and 0.03,
presented in [1], are not included in this paper because such
values of ml were found to be too large for SU(2) chiral
perturbation theory to describe our data. The value of the
sea strange-quark mass in these simulations is mh ¼ 0:04.
After completing the global chiral and continuum fits
described in Sec. V below, we find that the physical value
of the bare strange-quark mass, obtained using the chiral
perturbation theory ansatz, is ms ¼ 0:0348ð11Þ. In this
section we anticipate this result and use reweighting to
obtain results also at this value of the strange-quark mass.

For the 243 ensembles, we placed Coulomb gauge-fixed
wall sources at t ¼ 5 and at t ¼ 57. From each source, we
calculated two quark propagators, one with periodic and
the other with antiperiodic boundary conditions. From the
periodic propagators for the two sources, denoted by D�1

P;5

andD�1
P;57, and the antiperiodic propagators, written asD

�1
A;5

and D�1
A;57, we form the combinations

D�1
PþA;5 ¼ 1

2ðD�1
P;5 þD�1

A;5Þ and

D�1
PþA;57 ¼ 1

2ðD�1
P;57 þD�1

A;57Þ: (17)

The use of periodic plus antiperiodic boundary conditions
in the time direction doubles the length of the lattice in
time, which markedly reduces the contamination from
around-the-world propagation in the time direction. For
two-point functions, such as the propagator of a pseudo-
scalar meson given by

h�ðtÞ�ð0Þi ¼ X
~x

Trf½D�1
PþA;5ðt; ~xÞ�yD�1

PþA;5ðt; ~xÞg; (18)

on a lattice of time extent Nt the time dependence of the
contribution of the ground state is given by

h�ðtÞ�ð0Þi ¼ A½expð�m�ðt� 5ÞÞ
þ expð�m�ð2Nt � ðt� 5ÞÞ�: (19)

Here A is a t-independent constant. For our 243 ensembles,
we find that around-the-world propagation is not visible in
two-point functions. This is not the case, however, for
three-point functions, as we now explain (although we do
not analyze three-point functions in this paper, they are
being evaluated in the computation of BK, for example
[35]).
For three-point functions of the form hPðxÞOðyÞPðzÞi,

where PðxÞ and PðzÞ are pseudoscalar interpolating fields
and OðyÞ is an operator whose matrix element we wish to
measure, we use the wall source at t ¼ 5 as the source for
PðzÞ and the wall source at t ¼ 57 as the source for PðxÞ.
We only consider y0 in the range 5 	 y0 	 57, so we do
not perform any measurements in the doubled lattice. The
doubling of the lattice is important to reject around-the-
world propagation in time for such measurements. For
kaons, we found that a time separation of 52 between the
sources gave us a broad plateau, with sufficiently small
errors. This measurement strategy was chosen to optimize
the measurement of the kaon bag parameter [4,35].
Before presenting our results for masses, decay con-

stants and r0 and r1, we discuss the values of the residual
mass and the renormalization constant of the local axial
current. The residual mass m0

resðmfÞ at each partially

quenched valence mass used in this work is measured using
the ratio [36]

m0
resðmfÞ ¼

h0jJa5qj�i
h0jJa5 j�i

; (20)

where Ja5q is the usual DWF midpoint pseudoscalar density

composed of fields of each chirality straddling the mid-
point in the fifth dimension, and Ja5 is the physical pseu-

doscalar density at the surfaces of the fifth dimension
composed of surface fields in the fifth dimension. The
results are given in Table V. For completeness we also
present the corresponding residual masses obtained after
reweighting to the physical strange mass in Table VI. The
residual mass in the two-flavor chiral limit mres ¼
m0

resðmx ¼ ml ¼ 0Þ is given in Table VII and in the left-
hand plot of Fig. 9.
We define ZA to be the renormalization constant of the

local axial current, A�, composed of the physical surface

TABLE IV. A summary of the five ensembles used in this work are shown.

Volume ðml;mhÞ Total MD time Measurement range Measurement total

243 (0.005, 0.04) 0-8980 900–8980 every 40 203

243 (0.01, 0.04) 1455-8540 1460–8540 every 40 178

323 (0.004, 0.03) 0-6756 520–6600 every 20 305

323 (0.006, 0.03) 0-7220 1000–7220 every 20 312

323 (0.008, 0.03) 0-5930 520–5540 every 20 252
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fields. Here we have determined ZA through two methods.
In the first, ZA is determined for each valence mass using
the improved ratio [37] of the matrix element hA4ðtÞPð0Þi

to hA4ðtÞPð0Þi, where A� is the conserved DWF axial

current and the results are presented in Table VIII. This
method assumes ZA ¼ 1, and we find ZA ¼ 0:716 51ð46Þ
in the two-flavor chiral limit with the simulated sea strange
mass, and ZA ¼ 0:716 89ð51Þ when reweighted to the
nearby physical strange mass. This determination of ZA

is illustrated in the plots of Fig. 10. As pointed out in [1],
we expect ZA ¼ 1þOðamresÞ, and in [1] we added a
�1% error to account for the size of this correction. As
part of our current work, we have investigated the con-
sequences of this correction, which is discussed in detail in
Appendix B. From this analysis, we find ZA ¼ 0:7041ð34Þ,
a 1.8% difference from the result with our previous
method. Although, as we will see, this error is smaller
than our current combined errors on the decay constants
and other physical quantities, we choose to use this value
of ZA ¼ 0:7019ð26Þ, coming from ZV=ZV as defined in
Eq. (B19), as the normalization factor for the local axial
current when quoting all our central values below. Here V
and V are the local and conserved vector currents.
We now turn to the measurements of the meson masses

and decay constants. In order to illustrate the quality of the
fits, we start by presenting some sample plots for the
unitary pion and kaon on the ml ¼ 0:005, mh ¼ 0:04
ensemble. The pion effective masses obtained using differ-
ent sources and sinks are shown in Fig. 11. The mass and
decay constant is obtained from a simultaneous fit with a
single, constrained mass to five correlation functions.
These are the hPjPi, hAjAi, and hAjPi correlation functions

TABLE V. m0
resðmxÞ measured on the 243 ensembles at the

simulated strange-quark mass mh ¼ 0:04 is shown.

mx ml

0.005 0.01

0.001 0.003 194(16) 0.003 286(28)

0.005 0.003 154(15) 0.003 259(26)

0.01 0.003 079(14) 0.003 187(24)

0.02 0.002 939(12) 0.003 042(21)

0.03 0.002 822(12) 0.002 919(19)

0.04 0.002 725(11) 0.002 818(17)

TABLE VI. m0
resðmxÞ on the 243 ensembles at the physical

strange-quark mass is shown.

mx ml

0.005 0.01

0.001 0.003 146(27) 0.003 224(33)

0.005 0.003 099(27) 0.003 191(32)

0.01 0.003 025(26) 0.003 120(31)

0.02 0.002 889(24) 0.002 981(26)

0.03 0.002 774(23) 0.002 863(23)

0.04 0.002 680(21) 0.002 765(21)

TABLE VII. mres in the two-flavor chiral limit on the 243 and
323 ensembles at the simulated and physical strange sea-quark
masses are shown.

mh m243
res m323

res

msim
h 0.003 152(43) 0.000 666 4(76)

m
phys
h 0.003 076(58) 0.000 664 3(82)
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FIG. 9 (color online). Chiral extrapolation of the unitary values of m0
res for the 24

3 (left) and 323 (right) ensembles. While the fit is
only marginally acceptable for the 323 lattices, an additional uncertainty of Oð5� 10�6Þ is negligible.

TABLE VIII. ZA on the 243 ensembles at the simulated and
physical strange sea-quark masses are shown.

mh ZA (chiral) ZAðml ¼ 0:005Þ ZAðml ¼ 0:01Þ
msim

h ¼ 0:04 0.71651(46) 0.71732(14) 0.71783(15)

m
phys
h 0.71689(51) 0.71746(17) 0.71781(17)
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(denoted in the figure by PP, AA, and AP, respectively)
with gauge-fixed wall sources and local (LW) or wall
(WW) sinks (we do not use the AA-WW combination
because it is noisier). The long time extent Nt ¼ 64 on
our lattices together with the noise properties of pseudo-
scalar states allow for long plateaux and the results are
insensitive to the choice of tmin, the starting point of the fits.
Figure 12 displays the effective masses for the unitary
kaon, together with the results obtained from a simulta-
neous constrained fit. We give an example of the mh

dependence of the unitary pion and kaon masses in
Fig. 13. This dependence is obtained by reweighting.

We normalize the states so that, for periodic boundary
conditions, the time-dependence of the correlators for large
times is given by

Cs1s2O1O2
ðtÞ¼h0jOs1

1 j�ih�jOs2
2 j0i

2mxyV
½e�mxyt�e�mxyð2Nt�tÞ�; (21)

where the superscripts specify the type of smearing and the
subscripts denote the interpolating operators. The sign in
the square brackets in Eq. (21) is þ for PP and AA
correlators and � for AP ones. We therefore define the
amplitude of the correlator to be

N s1s2
O1O2

� h0jOs1
1 j�ih�jOs2

2 j0i
2mxyV

: (22)

For each correlator included in the simultaneous fit

N LW
AA ;N

LW
PP ;N

LW
AP ;N

WW
PP ; and N WW

AP ;

we determine the amplitude and obtain the decay constant
fxy using

fxy ¼ ZA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

mxy

N LW2
AP

N WW
PP

vuut : (23)

Table IX contains the measured pseudoscalar masses
and decay constants at the simulated strange-quark mass
mh ¼ 0:04. After reweighting to the estimated physical
strange-quark mass ms ¼ 0:0348ð11Þ the masses and de-
cay constants of the pions are presented in Table X and
those for the kaons in Table XI.
The � baryon, being one of the quantities included in

the definition of our scaling trajectory (see Sec. V),
plays an important rôle in our analysis. We have per-
formed measurements on the same configurations using
a gauge-fixed box source of size 16 lattice units that
gives a good plateau for the � state for valence-quark
masses mx ¼ 0:04 and mx ¼ 0:03 to enable interpolation
to the physical strange-quark mass. We display the fit to
the mx ¼ 0:04 � baryon mass on the ml ¼ 0:005, mh ¼
0:04 ensemble in Fig. 14, along with the dependence
of this mass on the dynamical strange mass using
reweighting.
The results for the�mass,mhhh, obtained directly at the

simulated strange-quark mass (mh ¼ 0:04) with valence
strange-quark masses my ¼ 0:04 and 0.03 are presented in

Table XII. In this table we also present the results for mhhh

obtained after reweighting to the physical strange-quark
mass. In Table XIII we display the values of the Sommer
scale r0, r1 and their ratio at both the simulated and
physical strange-quark masses. These quantities were de-
termined using Wilson loops formed from products of
temporal gauge links with Coulomb gauge-fixed closures
in spatial directions, with an exponential fit to the time
dependence of the Wilson loopWðr; tÞ from t ¼ 3 to t ¼ 7
for each value of the separation r. The resulting potential
VðrÞ was then fit over the range r ¼ 2:45� 8 to the
Cornell form [38]

VðrÞ ¼ V0 � 


r
þ 	r; (24)
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where V0, 
, and 	 are constants. These fits are illus-
trated in Fig. 15, which shows the fit to the time depen-
dence of the Wilson loop Wðr ¼ 2:45; tÞ at the physical
strange-quark mass, and also the subsequent fit over the
potential. The strange-quark mass dependence of the
scales r0 and r1 is small and cannot be resolved within
our statistics.

Nucleon and � masses

A detailed study of the baryon mass spectrum, includ-
ing the continuum and chiral extrapolations, is postponed
to a separate paper. The one exception is the � baryon,
whose mass is used in the definition of the scaling trajec-
tory and which is therefore studied in detail together with
the properties of pseudoscalar mesons. In this subsection
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we briefly discuss our experiences in extracting the
masses of the nucleons and � baryons using different
sources and present the results for these masses on each
ensemble, starting here with those from the 243 ensem-
bles. The baryon spectrum from the 323 ensembles will be
discussed below. We start however, with some general

comments about our procedures which are relevant to
both sets of ensembles.
We use the standard operator, N ¼ �abcðuTaC�5dbÞuc,

to create and annihilate nucleon states and � ¼
�abcðuTaC��ubÞuc for the flavor decuplet � states. On an

antiperiodic lattice of size Nt in the time direction, the
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FIG. 12 (color online). Effective kaon masses from the PP LW correlator (top-left), PP WW correlator (top-right), AP LW correlator
(center-left), AP WW (center-right), and AA LW correlator (bottom). Note the different vertical scale for the WW correlators. The
horizontal bands represent the result for the mass from a simultaneous fit.
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zero-momentum two-point correlation function, CðtÞ, cal-
culated with one of these baryonic operators at its source
and sink, takes the following asymptotic form for suffi-
ciently large time, t:

CðtÞ ¼ Z½ð1þ �4Þe�Mt � ð1� �4Þe�MðNt�tÞ�; (25)

corresponding to particle and antiparticle propagation, re-
spectively. Conventionally one chooses an appropriate
range in time where the excited-state contributions can

be neglected so that this form is valid, and extracts the
ground-state mass, M, by fitting the numerical data to the
function in Eq. (25). This is indeed what we do to extract
baryon masses from the 243 ensembles. Alternatively we
can try to fit the correlation function to a sum of two
exponentials, representing the ground- and excited-state
contributions. As will be reported below, this is the method
we use for the 323 ensembles.
The determination of baryon masses can be made more

effective by an appropriate choice of smearing at the
source and/or sink. We use several different choices of
the smearing of these operators, wall, box, and gauge-
invariant Gaussian [39,40], in an attempt to obtain a better
overlap with the ground state; our choices are summarized
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FIG. 13 (color online). We illustrate the mh dependence of the unitary pion (left panel) and kaon (right panel) masses on the
ml ¼ 0:005, 243 ensemble. The values are obtained by reweighting around the simulated value (mh ¼ 0:04).

TABLE IX. Pseudoscalar masses mxyðmlÞ and decay constants
fxyðmlÞ on the 243 ensembles at the simulated strange-quark

mass (mh ¼ 0:04) are shown.

mx my mxyð0:005Þ mxyð0:01Þ fxyð0:005Þ fxyð0:01Þ
0.04 0.04 0.4317(4) 0.4344(4) 0.1063(6) 0.1087(6)

0.03 0.04 0.4051(4) 0.4080(4) 0.1034(6) 0.1059(6)

0.02 0.04 0.3772(5) 0.3802(4) 0.1002(5) 0.1028(5)

0.01 0.04 0.3478(5) 0.3509(5) 0.0967(5) 0.0996(6)

0.005 0.04 0.3325(6) 0.3358(5) 0.0949(5) 0.0982(6)

0.001 0.04 0.3199(7) 0.3233(7) 0.0937(6) 0.0975(7)

0.03 0.03 0.3771(4) 0.3800(4) 0.1006(5) 0.1031(5)

0.02 0.03 0.3472(5) 0.3502(4) 0.0974(5) 0.1001(5)

0.01 0.03 0.3152(5) 0.3184(4) 0.0939(5) 0.0969(5)

0.005 0.03 0.2983(5) 0.3016(5) 0.0920(5) 0.0954(6)

0.001 0.03 0.2843(6) 0.2877(6) 0.0908(6) 0.0946(6)

0.02 0.02 0.3149(5) 0.3179(4) 0.0943(5) 0.0971(5)

0.01 0.02 0.2794(5) 0.2826(5) 0.0908(5) 0.0938(5)

0.005 0.02 0.2603(5) 0.2636(5) 0.0889(5) 0.0923(5)

0.001 0.02 0.2440(6) 0.2475(6) 0.0876(5) 0.0915(6)

0.01 0.01 0.2389(5) 0.2422(5) 0.0872(5) 0.0905(5)

0.005 0.01 0.2161(5) 0.2195(5) 0.0853(5) 0.0889(5)

0.001 0.01 0.1960(6) 0.1997(6) 0.0840(5) 0.0879(5)

0.005 0.005 0.1904(6) 0.1940(6) 0.0834(5) 0.0871(5)

0.001 0.005 0.1669(6) 0.1709(6) 0.0819(5) 0.0858(5)

0.001 0.001 0.1391(6) 0.1434(7) 0.0802(5) 0.0840(5)

TABLE X. Pion masses mxyðmlÞ and decay constants fxyðmlÞ
on the 243 ensembles at the physical strange-quark mass ms ¼
0:0348ð11Þ are shown.

mx my mxyð0:005Þ mxyð0:01Þ fxyð0:005Þ fxyð0:01Þ
0.01 0.01 0.2378(8) 0.2420(7) 0.0867(5) 0.0900(6)

0.005 0.01 0.2149(9) 0.2192(7) 0.0848(6) 0.0882(6)

0.001 0.01 0.1948(10) 0.1994(8) 0.0833(6) 0.0871(6)

0.005 0.005 0.1891(10) 0.1936(8) 0.0828(5) 0.0863(6)

0.001 0.005 0.1656(11) 0.1704(8) 0.0813(6) 0.0850(6)

0.001 0.001 0.1377(12) 0.1427(9) 0.0796(6) 0.0832(7)

TABLE XI. Kaon massesmxhðmlÞ and decay constants fxhðmlÞ
on the 243 ensembles at the physical strange-quark mass ms ¼
0:0348ð11Þ are shown.

mx mxhð0:005Þ mxhð0:01Þ fxhð0:005Þ fxhð0:01Þ
0.01 0.330(4) 0.334(4) 0.0947(7) 0.0978(8)

0.005 0.314(4) 0.318(4) 0.0928(7) 0.0963(9)

0.001 0.301(4) 0.305(4) 0.0915(8) 0.0955(10)
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in Table XIV. The wall source, used for the 323 ensembles,
is Coulomb-gauge fixed. A box source of size 16, also
Coulomb-gauge fixed, is used for the 243 ensembles. The
Gaussian-source radius is set to 7 lattice units and 100
smearing steps are used for the 243 ensembles, while the
radius is 6 in the 323 ensembles: these choices are opti-
mized for our nucleon-structure calculations [7–9].

As can also be seen from the table, several steps are
taken to reduce the statistical error. For each configuration,
as many as four different time slices are used for the
sources, usually separated by 16 lattice units, but occasion-
ally fewer. Measurements are made as frequently as every
tenth trajectory and are averaged into bins of 40 hybrid
Monte Carlo time units.

We now turn to the results obtained specifically on the
243 ensembles. The unitary nucleon and� effective masses

are plotted in Figs. 16 and 17 for each choice of quark mass.
For the nucleon, both Gaussian and box sources are shown.
Plateaus for the effective masses obtained with the box
source appear quickly, suggesting a strong overlap with the
ground state. The corresponding plateaus obtained with the
Gaussian source appear more slowly, from above. Both sets
of results agree reasonably well for sufficiently large t. For
the � the correlators were only computed using the box
source and the plateaus for the effective masses again
appear quickly. The results for the masses, obtained using
fully correlated fits, are summarized in Table XV. Note
such fully correlated fits work well for extracting baryon
masses as the procedure involves much shorter ranges in
time than for the meson observables discussed in the rest of
this paper. As expected from the effective mass plots,
nucleon masses obtained using different sources agree
fairly well when the fits are performed over appropriate
ranges. All values of�2 per degree of freedom (�2=dof) are
close to 1 or smaller, except for the box-source nucleon fit
at mf ¼ 0:02 which is about 2.5.

Some of these results have been reported earlier at
Lattice 2008 [41], and also partially in related papers on
nucleon structure [8,9]. A preliminary report on a bootstrap
correlated analysis with a frozen correlation matrix was
presented at Lattice 2009 [42] and the results agree with
the updated ones given here.

IV. RESULTS FROM THE 323 ENSEMBLES

The results for masses, decay constants, r0 and r1 ob-
tained directly on the 323 lattice are presented in the same
format as those from the 243 ensembles in Sec. III and the
available measurements are also summarized in Table IV.
The results are presented for three values of the sea light-
quark mass ml ¼ 0:004, 0.006, and 0.008 which corre-
spond to unitary pion masses in the range 290 MeV–
400 MeV which we had found to be consistent with
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FIG. 14 (color online). Fit to the� baryon mass with valence strange mass mx ¼ 0:04 on the ml ¼ 0:005, mh ¼ 0:04, 243 ensemble
showing the quality of the fit with our box source (left panel). We also show the weak dependence of the � baryon mass with fixed
valence mass mx ¼ 0:04 on our simulated mh inferred by the reweighting procedure on the ml ¼ 0:005, 243 ensemble (right panel).

TABLE XII. Omega baryon masses on the 243 ensembles at
the simulated strange-quark massmh ¼ 0:04 (first two rows) and
at the physical strange-quark mass (third row) are shown.

my mh m�ð0:005Þ m�ð0:01Þ
0.04 0.04 1.013(3) 1.028(4)

0.03 0.04 0.963(4) 0.978(4)

0.0348 0.0348 0.988(9) 1.001(7)

TABLE XIII. The quantities r0, r1, and r1=r0 at the simulated
(mh ¼ 0:04) and physical (mh ¼ 0:0348) strange-quark masses
on the 243 ensembles. QðmlÞ denotes the quantity measured with
light-quark mass ml.

Quantity mh ¼ 0:04 mh ¼ 0:0348
Qð0:005Þ Qð0:01Þ Qð0:005Þ Qð0:01Þ

r0 4.16(2) 4.10(2) 4.15(2) 4.12(3)

r1 2.82(3) 2.70(2) 2.83(3) 2.72(3)

r1=r0 0.678(8) 0.657(6) 0.682(9) 0.661(10)
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SU(2) chiral perturbation theory on the 243 lattice [1]. The
valence-quark masses used in the analysis are mx;y ¼
0:002, 0.004, 0.006, 0.008, 0.025, and 0.03. For pseudosca-
lar quantities we use 305, 312, and 252 measurements
separated by 20 trajectories on the 0.004, 0.006, and
0.008 ensembles, respectively, (see Table IV). For the 323

lattices, we have used a single-source technique for our
measurements of pseudoscalar quantities, which differs
from the two-source method for the 243 ensembles.
Recall that for the 243 ensembles, as discussed in
Sec. III, we placed Coulomb gauge-fixed wall sources at
t ¼ 5 and at t ¼ 57. For the 323 ensembles we have used a
single source and calculated both periodic and antiperiodic
propagators from this one source. The source is placed at
t ¼ 0 on the first configuration used for measurements, and
the position of the source is then increased by 16 for every
subsequent measurement so that tsrc ¼ 16n mod 64 where

n is the measurement index, which starts from zero.
Moving the source in this way helps to decorrelate mea-
surements. We always place the antiperiodic boundary
condition on the links in the time direction going from
the hyperplane with t ¼ tsrc � 1 to t ¼ tsrc. Clearly the
number of propagators to calculate for the single-source
method is half that for the two-source method.
For meson two-point functions, as given in Eq. (18), the

single-source method is identical to the two-source
method, except for having half the number of measure-
ments per configuration. For the light-quark masses on our
323 ensembles we do see around-the-world effects at the
fraction of a percent level, so fits of the form in Eq. (19)
must be used. We also perform measurements using three-
point functions of the type hPðxÞOðyÞPðzÞi, where PðxÞ and
PðzÞ are pseudoscalar interpolating fields and OðyÞ is an
operator whose matrix element we wish to measure. Here
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FIG. 15 (color online). The effective potential of the Wilson loops with a spatial extent of r ¼ 2:45 on the 243,ml ¼ 0:005 ensemble
at the physical strange-quark mass, overlaid by the fit to the range t ¼ 3–7 (left panel). The right panel shows the static interquark
potential VðrÞ on this ensemble, again at the physical strange-quark mass, as a function of the spatial extent of the Wilson loops,
overlaid by the fit to the Cornell form over the range r ¼ 2:45–8.

TABLE XIV. A summary of the configurations used in the calculation of the baryon spectrum
is shown.

Size ml Source type Correlators Source time slices Configurations

243 0.005 Gaussian N 0, 8, 16, 19, 32, 40, 48, 51 647

0.005 Box �, � 0, 32 90

0.01 Gaussian N 0, 8, 16, 19, 32, 40, 48, 51 357

0.01 Box �, � 0, 32 90

0.02 Gaussian N 0, 8, 16, 19, 32, 40, 48, 51 99

0.02 Box �, � 0, 32 43

0.03 Gaussian N 0, 8, 16, 19, 32, 40, 48, 51 106

0.03 Box �, � 0, 32 44

323 0.004 Gaussian N, � 10, 26, 42, 58 264

0.004 Wall N, � 0, 16, 32, 48 305

0.006 Wall N, � 0, 16, 32, 48 224

0.008 Gaussian N, � 10, 26, 42, 58 169

0.008 Wall N, � 0, 16, 32, 48 254
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PðxÞ is made out of propagators of the form D�1
PþA;0 ¼

1=2ðD�1
P;0 þD�1

A;0Þ in the notation of Eq. (17) and PðzÞ is
composed of D�1

P�A;0 ¼ 1=2ðD�1
P;0 �D�1

A;0Þ propagators.

This means that the time separation between PðxÞ and
PðzÞ is Nt, the time extent of our lattice. We performed
tests on our 243 ensembles, comparing the single-source
and two-source methods and found that, for the same

number of inversions, the single-source methods gave at
least as small an error as the two-source methods. The
single-source method allows us to measure on more con-
figurations for the same computer time and so we chose
this method. Although we do not discuss three-point mea-
surements in this paper, sharing propagators between them
and the two-point measurements discussed here has helped
to define our measurement strategy.
The measured values of the residual mass m0

res at each
pair of valence and sea light-quark masses ðmx;mlÞ used in
this work are given in Table XVI; in this table the strange-
quark mass is the one used in the simulation mh ¼ 0:03.
Table XVII contains the corresponding results obtained
after reweighting to the physical strange mass [ms ¼
0:0273ð7Þ] determined later in the analysis and presented
in Sec. V. The residual mass in the unitary two-flavor chiral
limit is given in Table VII and Fig. 9.
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FIG. 16 (color online). Nucleon effective mass plots from the 243 ensembles. Results obtained using the Gaussian source are marked
by red squares and those from the box source by blue circles. The four plots correspond to unitary light-quark masses 0.005 (top-left),
0.01 (top-right), 0.02 (bottom-left), and 0.03 (bottom-right).
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FIG. 17 (color online). Effective mass plots for the � baryon from the 243 ensembles. The results were obtained using the
box source. The four plots correspond to unitary light-quark masses 0.005 (top-left), 0.01 (top-right), 0.02 (bottom-left), and 0.03
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TABLE XV. Baryon mass in lattice units from the � ¼ 2:13,
243 ensembles. fg denotes the fit range.

ml N (Gaussian) N (Box) � (Box)

0.005 0.671(4) f6–12g 0.669(7) f4–12g 0.865(11) f4–12g
0.01 0.699(5) f9–15g 0.706(6) f4–12g 0.891(8) f4–12g
0.02 0.800(8) f8–15g 0.803(7) f4–12g 0.963(8) f4–12g
0.03 0.896(7) f8–15g 0.894(8) f5–12g 1.029(12) f5–12g
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The results for ZA for the 323 ensembles obtained from
the ratios of matrix elements of A4 and A4 are given in
Table XVIII. We obtain ZA ¼ 0:744 75ð12Þ in the chiral
limit with the simulated sea strange mass and ZA ¼
0:744 68ð13Þ when reweighted to the nearby physical
strange mass. This is illustrated in Fig. 18. As explained
in Sec. III and Appendix B, however, in this paper we use
ZV=ZV ¼ 0:7396ð17Þ as the normalization factor for the
local axial current when calculating the central values of
physical quantities.

In order to illustrate the quality of the fits, we present
sample effective mass plots for the unitary simulated pion
on the ml ¼ 0:004, mh ¼ 0:03 ensemble in Fig. 19 and for
the kaon in Fig. 20. The analysis is performed as a simul-
taneous constrained fit to the five pseudoscalar channels as
for the 243 ensembles (see Sec. III). The fits are performed
between tmin ¼ 12 and tmax ¼ 51. We give an example of
the reweighted mh dependence of the unitary pion and
kaon masses in Fig. 21.

Table XIX contains the measured pseudoscalar masses
and decay constants at the simulated strange-quark mass
mh ¼ 0:03. Reweighting to the estimated physical strange-
quark mass mh ¼ 0:0273ð7Þ, we obtain the masses and

decay constants of the pions and kaons in Tables XX and
XXI, respectively.
We use a gauge-fixed box source of size 24 for the �

baryon using the same configurations as for our pion
measurements with valence strange-quark masses mx ¼
0:03 and mx ¼ 0:025 to enable an interpolation to the
physical strange-quark mass. We display the fit to themx ¼
0:03 � baryon mass on the ml ¼ 0:004, mh ¼ 0:03 en-
semble in Fig. 22, along with the dependence of this mass
on the dynamical strange mass under reweighting. We take
our fitting range between tmin ¼ 7 and tmax ¼ 13.
The results for the masses of the� baryon and the scales

r0, r1 and r1=r0 are given in Tables XXII and XXIII,
respectively. r0 and r1 were determined again using
Wilson loops formed from products of temporal gauge
links with Coulomb gauge-fixed closures in spatial direc-
tions, with an exponential fit from t ¼ 4 to t ¼ 8 and the
resulting potential fit to the Cornell form in the range r ¼
2:45� 10. An example of the fit to the time dependence of
the Wilson loops at the physical strange-quark mass is
given in Fig. 23. This figure also shows the fit to the
potential. On these ensembles, the strange-quark mass
dependence of r0 and r1 can be resolved within the statis-
tics, but remains small.

Nucleon and � masses

Baryon effective masses from the 323 ensembles are
plotted in Figs. 24 and 25. The Gaussian-source correlators
give good effective mass signals, while the wall-source
correlators are much noisier; indeed it is hard to identify
a plateau in effective mass signals from the latter. While for
nucleons effective mass signals from the wall source seem
to eventually settle at the same values as from Gaussian-
source correlators, for the � baryons a plateau cannot be
identified from the wall source except for the lightest up/
down mass. Nevertheless fully correlated fits using two
exponentials to represent the contributions of the ground
and first-excited states can be performed for both the
nucleon and �, yielding the results summarized in
Table XXIV. In addition to this fully correlated two-
exponential fit, we have tried two other fit methods: un-
correlated and bootstrap correlated with frozen correlation
matrix [42]. While those earlier analyses were conducted
on smaller statistics, they agree with the two-state fully
correlated fits within 2 standard deviations (see
Table XXV.) We use the results from the two-state fully
correlated fits as our best values of the baryon masses.

TABLE XVI. m0
res on the 323 ensemble set at the simulated

strange-quark mass mh ¼ 0:03 is shown.

mx ml

0.004 0.006 0.008

0.002 0.000 676 1(35) 0.000 668 8(34) 0.000 682 2(37)

0.004 0.000 669 7(34) 0.000 665 1(31) 0.000 679 1(36)

0.006 0.000 662 2(33) 0.000 658 9(30) 0.000 673 6(35)

0.008 0.000 655 0(32) 0.000 652 4(29) 0.000 667 6(34)

0.025 0.000 609 0(24) 0.000 608 9(21) 0.000 621 8(25)

0.03 0.000 599 3(23) 0.000 599 7(20) 0.000 611 5(24)

TABLE XVII. m0
res on the 323 ensemble set at the physical

strange-quark mass is shown.

mx ml

0.004 0.006 0.008

0.002 0.000 671 8(39) 0.000 667 1(36) 0.000 678 1(44)

0.004 0.000 665 8(39) 0.000 663 3(33) 0.000 675 1(42)

0.006 0.000 658 6(37) 0.000 656 9(31) 0.000 669 6(40)

0.008 0.000 651 5(36) 0.000 650 3(30) 0.000 663 6(39)

0.025 0.000 606 3(26) 0.000 605 8(24) 0.000 618 0(31)

0.03 0.000 596 7(24) 0.000 596 6(22) 0.000 608 0(29)

TABLE XVIII. ZA on the 323 ensembles at the simulated and physical strange sea-quark
masses is shown.

mh ZA (chiral) ZAðml ¼ 0:004Þ ZAðml ¼ 0:006Þ ZAðml ¼ 0:008Þ
msim

h ¼ 0:03 0.744 75(12) 0.745 053(54) 0.745 222(45) 0.745 328(48)

mphys
h 0.744 69(13) 0.745 059(52) 0.745 239(47) 0.745 384(56)
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They also broadly agree with an independent analysis of
baryon masses from our ensembles by the LHP
Collaboration [43] within 2 standard deviations.

V. COMBINED CONTINUUM AND CHIRAL FITS

We now turn to the main objective of this paper which is
to use the results obtained on the 243 and 323 ensembles, as
discussed in the previous two sections, to determine physi-
cal hadron and quark masses and mesonic decay constants
in the continuum limit, for physical values of the light and
strange-quark masses. Since we are reporting our first
results obtained at a second lattice spacing, we present a
careful discussion of our approach to taking the continuum
limit and the relation between evaluating the continuum
limit and determining the physical quark masses. We start
in Sec. VAwith a discussion of what we mean by a scaling
trajectory scaling trajectory and explain in some detail the
choice of scaling trajectory which we use in the following.
In Sec. VB we describe our power-counting scheme, in
which we treat the Oða2Þ terms in our two ensembles and
the next-to-leading order (NLO) terms in SU(2) chiral
perturbation theory as being of comparable size. In order
to gain insights into the uncertainties associated with the
chiral extrapolation, in addition to SU(2) chiral perturba-
tion theory, we introduce an analytic ansatz which is a
simple first-order Taylor expansion in the light-quark mass.
This is explained in Sec. VC. We then discuss the specific
fitting procedure which implements this power-counting
strategy in Sec. VD and in Sec. VE we present and discuss
the results.

A. Defining the scaling trajectory

Although ultimately we will combine the continuum and
chiral extrapolations by performing global fits as described
in Sec. VA 3 and in the following subsections, we start by

focussing on the approach to the continuum limit and
discussing the definition and choice of scaling trajectory.
For the purposes of this subsection we imagine that we can
perform lattice computations for any choice of quark
masses and envision performing a series of lattice simula-
tions for a range of values of �, the inverse square of the
bare lattice coupling. As � ! 1 the lattice spacing, mea-
sured in physical units, will vanish along with all discreti-
zation errors. We refer to such a one-dimensional path
through the space of possible lattice theories as a scaling
trajectory. For 2þ 1 flavor QCD we must vary the bare
lattice mass mudð�Þ of the up and down quarks and msð�Þ
of the strange quark so that this trajectory describes physi-
cally equivalent theories up to order a2 errors. The func-
tions mudð�Þ and msð�Þ can be determined by requiring
two mass ratios (or two other dimensionless quantities) to
remain fixed as � varies. Because of the presence of Oða2Þ
discretization errors, using a different pair of mass ratios
will yield a different trajectory of lattice theories, whose
low-momentum Green’s functions will be equivalent to
those of the first up to Oða2Þ corrections.
In Ref. [1], wherewe obtained results from simulations at

a single value of�, we found that using the masses of the�
and K mesons and the � baryon to determine the lattice
spacinga and the bare values ofmud andmswas an effective
procedure. A natural choice of scaling trajectory would
therefore be to keep the ratios m�=m� and mK=m� fixed
as� varies. Thus, these ratios would be chosen to take their
continuum values for all � with no a2 corrections. This
choice of scaling trajectory then fixes the functionsmudð�Þ
and msð�Þ. In addition, we will identify an inverse lattice
spacing, expressed in GeV, with each point on this scaling
trajectory. To do this we use the mass of the�� baryon and
define 1=a ¼ 1:672=m� GeV where 1.672 GeV is the
physical mass of this baryon and m� is the mass of the
�� as measured along our trajectory in lattice units.
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FIG. 18 (color online). Measurement of ZA for mf ¼ 0:004 on the ml ¼ 0:004, mh ¼ 0:03 ensemble (left panel) and the unitary
chiral extrapolation of ZA for the 323 ensemble set (right panel). The results do not change significantly under reweighting to the
physical strange mass.
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Having defined the scaling trajectory and determined the
lattice spacing at each � by fixing the ratios m�=m�,
mK=m�, and the mass of the � baryon to their physical
values, we are in a position to make predictions for other
physical quantities. The results obtained at a particular

value of � will differ from the physical ones by terms of
Oða2Þ. We imagine eliminating these artefacts by extrap-
olating results obtained at several values of � to the con-
tinuum limit. In order to discuss this continuum
extrapolation it is convenient to introduce some notation.
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FIG. 19 (color online). Effective pion masses from the PP LW correlator (top-left), PP WW correlator (top-right), AP LW correlator
(center-left), AP WW (center-right), and AA LW correlator (bottom). Note the different vertical scale for the WW correlators. The
horizontal bands represent the result for the mass from a simultaneous fit.
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Let us assume that we have performed lattice calculations
at a series of N values of �, f�eg1	e	N corresponding to
points along the scaling trajectory defined above (in the
present study N ¼ 2). This will determine a series of bare-
quark massesme

f ¼ mfð�eÞwhere f ¼ ud or s. On each of

the lattices we compute a number of physical quantities,

e.g., the kaon leptonic decay constant feK, and our predic-
tion for the physical value of fK is the value obtained by
extrapolating to the continuum limit.
Of course, as already mentioned above, the scaling

trajectory and the assigned value of the lattice spacing at
a particular � are not unique. Had we used three different
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FIG. 20 (color online). Effective kaon masses from the PP LW correlator (top-left), PP WW correlator (top-right), AP LW correlator
(center-left), AP WW (center-right), and AA LW correlator (bottom). Note the different vertical scale for the WW correlators. The
horizontal bands represent the result for the mass from a simultaneous fit.
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physical quantities to calibrate the lattice at each � and
then used the resulting bare-quark masses and lattice spac-
ing to compute m�=m�, mK=m�, and the mass of the �
baryon, we would find results which differed from the
physical ones by terms ofOða2Þ. Although there is a choice
of the quantities used to define and determine the scaling
trajectory and the value of the lattice spacing at each �, for
a 2þ 1 flavor theory the number of conditions is always
3N, whereN is the number of different� values used in the
simulations and the factor 3 corresponds to the fact that at

each � there are three parameters, the bare massesmud and
ms and the lattice spacing a.
In the above presentation we have tried to provide a

pedagogical introduction to the determination of scaling
trajectories and chose to decouple issues related to the
extrapolations in the mass of the light quark (chiral extrap-
olations) from the discussion. Of course, in practice at
present we are unable to perform simulations at physical
quark masses, i.e., with masses which give the physical
values ofm�=m� andmK=m�, and so chiral extrapolations
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FIG. 21 (color online). We illustrate the mh dependence of the unitary pion (left panel) and kaon (right panel) masses on the
ml ¼ 0:004, 323 ensemble. The values are obtained by reweighting around the simulated value (mh ¼ 0:03).

TABLE XIX. Pseudoscalar masses mxyðmlÞ and the decay constants fxyðmlÞ on the 323

ensembles at the simulated strange-quark mass (mh ¼ 0:03) are shown.

mx my mxyð0:004Þ mxyð0:006Þ mxyð0:008Þ fxyð0:004Þ fxyð0:006Þ fxyð0:008Þ
0.03 0.03 0.3212(3) 0.3216(2) 0.3224(3) 0.0801(3) 0.0804(3) 0.0809(3)

0.025 0.03 0.3073(3) 0.3078(2) 0.3086(3) 0.0786(3) 0.0789(3) 0.0794(3)

0.008 0.03 0.2561(3) 0.2565(2) 0.2579(4) 0.0723(3) 0.0729(3) 0.0738(3)

0.006 0.03 0.2496(3) 0.2500(3) 0.2516(4) 0.0715(3) 0.0721(3) 0.0731(3)

0.004 0.03 0.2430(4) 0.2434(3) 0.2452(5) 0.0707(3) 0.0714(3) 0.0725(3)

0.002 0.03 0.2363(5) 0.2367(3) 0.2388(6) 0.0701(3) 0.0709(4) 0.0723(4)

0.025 0.025 0.2930(3) 0.2934(2) 0.2943(3) 0.0770(3) 0.0775(3) 0.0780(3)

0.008 0.025 0.2392(3) 0.2396(2) 0.2410(4) 0.0709(3) 0.0715(3) 0.0724(3)

0.006 0.025 0.2323(3) 0.2327(3) 0.2342(4) 0.0701(3) 0.0707(3) 0.0717(3)

0.004 0.025 0.2252(4) 0.2256(3) 0.2273(5) 0.0693(3) 0.0700(3) 0.0711(3)

0.002 0.025 0.2180(4) 0.2184(3) 0.2203(5) 0.0686(3) 0.0695(3) 0.0708(4)

0.008 0.008 0.1708(3) 0.1714(2) 0.1727(4) 0.0649(3) 0.0657(3) 0.0666(3)

0.006 0.008 0.1610(3) 0.1616(3) 0.1629(4) 0.0641(3) 0.0648(3) 0.0659(3)

0.004 0.008 0.1506(3) 0.1513(3) 0.1526(4) 0.0633(3) 0.0640(3) 0.0651(3)

0.002 0.008 0.1395(4) 0.1403(3) 0.1417(4) 0.0625(3) 0.0634(3) 0.0646(4)

0.006 0.006 0.1505(3) 0.1512(3) 0.1525(4) 0.0633(3) 0.0640(3) 0.0651(3)

0.004 0.006 0.1393(3) 0.1400(3) 0.1413(4) 0.0624(3) 0.0632(3) 0.0643(3)

0.002 0.006 0.1271(4) 0.1280(3) 0.1293(4) 0.0615(3) 0.0624(3) 0.0637(4)

0.004 0.004 0.1269(4) 0.1278(3) 0.1291(4) 0.0614(3) 0.0623(3) 0.0634(3)

0.002 0.004 0.1133(4) 0.1144(3) 0.1156(4) 0.0605(3) 0.0614(3) 0.0627(4)

0.002 0.002 0.0976(4) 0.0989(4) 0.1001(5) 0.0595(3) 0.0603(3) 0.0617(4)
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are necessary. It will therefore be useful in the following to
discuss the scaling behavior of a general 2þ 1 flavor
theory in which the masses of the pion and kaon differ
from those in nature. Following the conventions defined
elsewhere in this paper, wewill useml andmh for the quark
masses in the DWF lattice action which correspond to the
usual ud and s quarks, and ~ml and ~mh for the corresponding
multiplicatively renormalizable bare-quark masses ~ml ¼
ml þmres and ~mh ¼ mh þmres specific to the DWF ac-
tion. In the next subsection we review the origin of the a2

errors as described by the Symanzik effective theory for
DWF and in the following subsection present our treatment
of scaling for this more general theory.

1. Symanzik effective theory and a2 ! 0 extrapolation

Symanzik’s effective theory provides a powerful frame-
work in which to discuss the approach to the continuum
limit. For any finite value of � we expect the low-
momentum Green’s functions in our lattice theory to agree
with those in a corresponding effective continuum theory.

The effective action for this theory contains not only the
usual dimension-3 and 4 terms standard in QCD but also
higher-dimension operators. If the quark masses and the
coefficients of these higher-dimension operators are prop-
erly chosen then the low-energy Green’s functions of the
lattice and effective theories will agree through Oðad�4Þ
provided the effective theory includes all necessary terms
of dimension up to and including d. This implies that the
low-energy Green’s functions of the lattice theory and the
usual continuum theory will differ by the matrix elements
of these dimension-5 and higher operators which of course
are not present in the standard continuum theory.
For the domain wall fermion calculation presented here

the leading corrections come from operators of dimension
6. While the dimension-5 Pauli term �q	�
F�
q is present,
its chiral properties imply that it is generated by chirality
violation due to propagation between the left and right
domain walls. This same residual breaking of chiral
symmetry gives rise to the residual mass mres, the coeffi-
cient of the dimension-3 mass term which remains when

TABLE XX. Pion masses mxyðmlÞ and decay constants fxyðmlÞ computed on the 323 ensem-
bles at the physical strange-quark mass mh ¼ 0:0273ð7Þ are shown.

mx my mxyð0:004Þ mxyð0:006Þ mxyð0:008Þ fxyð0:004Þ fxyð0:006Þ fxyð0:008Þ
0.008 0.008 0.1706(3) 0.1711(3) 0.1725(5) 0.0645(3) 0.0653(3) 0.0662(4)

0.006 0.008 0.1608(4) 0.1613(3) 0.1628(5) 0.0636(3) 0.0645(4) 0.0654(4)

0.004 0.008 0.1503(4) 0.1510(3) 0.1526(5) 0.0628(4) 0.0636(4) 0.0647(4)

0.002 0.008 0.1392(4) 0.1401(3) 0.1417(5) 0.0620(4) 0.0630(4) 0.0641(4)

0.006 0.006 0.1503(4) 0.1509(3) 0.1524(5) 0.0628(4) 0.0636(4) 0.0646(4)

0.004 0.006 0.1390(4) 0.1398(3) 0.1414(5) 0.0619(4) 0.0628(4) 0.0638(4)

0.002 0.006 0.1268(4) 0.1278(3) 0.1295(5) 0.0611(4) 0.0620(4) 0.0632(4)

0.004 0.004 0.1267(4) 0.1276(3) 0.1292(5) 0.0609(4) 0.0618(4) 0.0630(4)

0.002 0.004 0.1131(4) 0.1142(4) 0.1158(5) 0.0601(4) 0.0610(4) 0.0622(4)

0.002 0.002 0.0974(4) 0.0988(4) 0.1003(5) 0.0590(4) 0.0598(4) 0.0612(5)
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FIG. 22 (color online). We display the fit to the� baryon mass with valence strange massmx ¼ 0:03 on theml ¼ 0:004,mh ¼ 0:03,
323 ensemble showing the quality of the fit with our box source (left panel). We also show the weak dependence of the � baryon
mass with fixed valence mass mx ¼ 0:03 on our simulated mh inferred by the reweighting procedure on the ml ¼ 0:004, 323 ensemble
(right panel).
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the input quark mass is set equal to zero. The largest value
for mres found in our current calculation, mres ¼
0:003 152ð43Þ, is suppressed from unity by more than 2
orders of magnitude. Since a similar suppression for this
dimension 5 operator is expected, the combination of chiral
symmetry and the small value of a�QCD � 0:2 suggest this
term can be ignored and that the largest finite lattice-
spacing errors that we should expect are Oða2Þ.

We require that for our choice of scaling trajectory the
matrix elements of these Oða2Þ Symanzik terms behave as
a2, allowing a linear extrapolation in a2 to give the con-
tinuum limit. This implies that the coefficients of these
operators remain reasonably constant along our trajectory.
This is typically achieved by varying only � and quark
masses along the trajectory so the only variation in the
coefficients of theseOða2Þ terms comes from the variations
in � which are quite small in present scaling studies [44].

2. Scaling and the quark masses

In the present calculation we obtain results using a
number of light-quark masses, all of which are signifi-
cantly larger than the physical quark masses that were
used in the introductory remarks above to describe a physi-
cal scaling trajectory in which m�=m�, mK=m�, and m�

were fixed at their physical values. However, we can easily

generalize our notion of a scaling trajectory to include
families of choices for the parameters ð�; ~ml; ~mhÞ for
which, in an obvious notation, the ratios mll=mhhh and
mlh=mhhh are held fixed. In the language used earlier, we
require that the N triplets of parameters ð�e; ~me

l ; ~m
e
hÞ, 1 	

e 	 N, lie on the same scaling trajectory if

mllð�e; ~me
l ; ~m

e
hÞ

mhhhð�e; ~me
l ; ~m

e
hÞ

¼ mllð�e0 ; ~me0
l ; ~m

e0
h Þ

mhhhð�e0 ; ~me0
l ; ~m

e0
h Þ

; (26)

mlhð�e; ~me
l ; ~m

e
hÞ

mhhhð�e; ~me
l ; ~m

e
hÞ

¼ mlhð�e0 ; ~me0
l ; ~m

e0
h Þ

mhhhð�e0 ; ~me0
l ; ~m

e0
h Þ

; (27)

for each pair e and e0. The ratio of lattice spacings for such
a pair would be defined as

ae

ae
0 ¼ mhhhð�e; ~me

l ; ~m
e
hÞ

mhhhð�e0 ; ~me0
l ; ~m

e0
h Þ

: (28)

The scaling trajectory determines two functions ~mlð�Þ
and ~mhð�Þ, where these bare masses are nontrivial func-
tions of �. While a portion of their � dependence should
reflect their naive mass dimension, these quantities also
carry a logarithmic dependence on a characteristic of the
anomalous dimension of the mass operator �qq in QCD.
Thus, even when expressed as dimensionless ratios, e.g.,
~mlð�Þ=m� and ~mhð�Þ=m�, these parameters will have
singular continuum limits (in fact, the sign of the anoma-
lous dimension of �qq is such that these ratios vanish in the
continuum-limit).
The mass parameters ~ml and ~mh are short-distance

quantities whose definition is free of infrared singularities.
For example, they could be specified by examining high-
momentum, infrared safe Green’s functions with no need
to compute low-energy masses which are dependent upon
the low-energy, nonperturbative behavior of QCD. While

TABLE XXI. Kaon masses mxhðmlÞ and decay constants fxyðmlÞ on the 323 ensembles at the
physical strange-quark mass mh ¼ 0:0273ð7Þ are shown.

mx mxhð0:004Þ mxhð0:006Þ mxhð0:008Þ fxhð0:004Þ fxhð0:006Þ fxhð0:008Þ
0.008 0.247(2) 0.247(3) 0.249(3) 0.0712(4) 0.0718(5) 0.0727(5)

0.006 0.240(2) 0.240(3) 0.242(3) 0.0703(4) 0.0710(5) 0.0720(5)

0.004 0.233(3) 0.234(3) 0.235(3) 0.0695(4) 0.0703(5) 0.0713(5)

0.002 0.226(3) 0.227(3) 0.229(3) 0.0687(5) 0.0698(5) 0.0710(6)

TABLE XXII. Omega baryon masses on the 323 ensembles at
the simulated strange-quark massmh ¼ 0:03 (first two rows) and
at the physical strange-quark mass (third row) are shown.

my mh m�ð0:004Þ m�ð0:006Þ m�ð0:008Þ
0.03 0.03 0.760(2) 0.765(2) 0.766(3)

0.025 0.03 0.733(2) 0.739(2) 0.740(3)

0.0273 0.0273 0.743(6) 0.749(5) 0.753(4)

TABLE XXIII. The quantities r0, r1, and r1=r0 at the simulated (mh ¼ 0:03) and physical
(mh ¼ 0:0273) strange-quark masses on the 323 ensembles. QðmlÞ denotes the quantity
measured with light-quark mass ml.

Quantity mh ¼ 0:03 mh ¼ 0:0273
Qð0:004Þ Qð0:006Þ Qð0:008Þ Qð0:004Þ Qð0:006Þ Qð0:008Þ

r0 5.52(2) 5.50(2) 5.53(2) 5.52(2) 5.52(2) 5.55(2)

r1 3.738(9) 3.718(8) 3.707(9) 3.754(12) 3.728(9) 3.723(10)

r1=r0 0.678(2) 0.676(2) 0.670(2) 0.680(2) 0.675(2) 0.670(2)
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the individual masses ~mlð�Þ and ~mhð�Þ do not have a
continuum limit, both the naive and anomalous scale de-
pendence cancels in their ratio ~mlð�Þ= ~mhð�Þ, which is well
defined in the continuum limit and agrees with the corre-
sponding ratio in conventional renormalization schemes,
such as the regularization independent momentum scheme

(RI/MOM) [45] or MS.
Let us now assume that we have performed lattice

calculations at a series of N values of �, f�eg1	e	N ,
corresponding to points along the scaling trajectory defined

above. This will determine a series of quark masses
~me
f ¼ ~mfð�eÞ where f ¼ l or h. It is natural to introduce

a series of factors which relate the lattice spacings and
quark masses between these N ensembles. For conve-
nience, we identify a primary ensemble 1, and introduce
3ðN � 1Þ factors relating each ensemble e to the ensemble
1 as follows:

Re
a ¼ a1

ae
¼ m1

hhh

me
hhh

; (29)
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FIG. 23 (color online). The effective potential of the Wilson loops with a spatial extent of r ¼ 2:45 on the ml ¼ 0:004 ensemble at
the physical strange-quark mass, overlaid by the fit to the range t ¼ 4–8 (left panel). The right panel shows the static interquark
potential VðrÞ on this ensemble, again at the physical strange-quark mass, as a function of the spatial extent of the Wilson loops,
overlaid by the fit to the Cornell form over the range r ¼ 2:45–10.
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FIG. 24 (color online). Nucleon effective mass plots from the 323 ensembles are shown.
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Ze
f ¼

1

Re
a

~m1
f

~me
f

for f ¼ l or h: (30)

Since the ratio ~ml= ~mh is well defined in the continuum
limit, the corresponding ratio for each of these ensembles
~me
l = ~m

e
h differs from that limit by a term proportional to

ðaeÞ2. This Oða2Þ correction represents the discrepancy
between our choice of scaling trajectory withmll=mlh fixed
as we vary � and an alternative choice where instead
~me
l = ~m

e
h is held fixed. Since these trajectories differ at

Oða2Þ, we expect that

~me
l

~me
h

¼ lim
�!1

�
~mlð�Þ
~mhð�Þ

�
ð1þ cmð�QCDa

eÞ2Þ: (31)

The term proportional to cm arises from the shifts in m2
ll

and m2
lh caused by the first-order effects of dimension-6

terms in the Symanzik effective action. While cm must
vanish as ~me

l ! ~me
h, we prefer not to write cm as propor-

tional to the difference ~me
l � ~me

h because of possible non-

analytic terms in the quark masses (e.g. possible
logarithms of me

l ) that may appear in the low-energy

matrix elements of these dimension-6 operators. If we
divide Eq. (31) evaluated for our primary ensemble 1 by
the same equation applied to the ensemble e and Taylor
expand in the lattice spacing, we obtain the following
useful relation between Ze

h and Ze
l :

Ze
h ¼ Ze

l ð1þ cm�
2
QCD½ðaeÞ2 � ða1Þ2�Þ; (32)

implying the 2ðN � 1Þ Z factors associated with the quark
masses actually depend on N quantities through order a2

(e.g. we can take the (N � 1) Ze
l and cm as the independent

quantities). The constraints implied by Eq. (32) do not
simplify the N ¼ 2 case addressed in the present paper
where we would simply be trading the two parameters Z2

h

and Z2
l for the alternative pair of parameters Z2

l and cm.
Equation (32) provides an explicit estimate of how

scaling violations revise the standard expectation that all
quark masses will scale with a common Z factor as the
cutoff is varied. As we will see from our simulation results
presented below, the terms proportional to cm are small and
difficult to resolve from zero given our statistical errors.
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FIG. 25 (color online). � effective mass plots from the 323 ensembles are shown.

TABLE XXIV. Nucleon and � masses in lattice units from the
323 ensembles obtained by two-exponential correlated fits to
Gaussian-source correlators. fg denotes the fit range.

ml N �

0.004 0.468(6) f4–20g 0.596(15) f4–15g
0.006 0.498(4) f4–20g 0.615(9) f4–15g
0.008 0.521(4) f4–20g 0.639(10) f4–15g

TABLE XXV. A comparison of nucleon mass results from
different analyses on the same 323 ensembles is shown.

ml Fully correlated Uncorrelated Bootstrapa LHPb

0.004 0.477(4) 0.465(5) 0.469(4) 0.474(4)

0.006 0.498(2) 0.486(10) 0.489(7) 0.501(2)

0.008 0.517(3) 0.524(4) 0.5254(16) 0.522(2)

aDenotes Ref. [42], where a frozen correlation matrix was used.
bDenotes Ref. [43].
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Since we are now using formulas in which the lattice
spacing ae appears alone rather than in a ratio, e.g., as

ae=ae
0
, it may be useful to explain how we intend this to be

determined. It is natural to start by considering the physical
scaling trajectory discussed in Sec. VA on which
mll=mhhh ¼ m�=m� and mlh=mhhh ¼ mK=m�. For this
physical trajectory, the actual value of the Omega mass
measured in GeV can be used to define the lattice spacing
for any point �e on that trajectory using ae ¼
me

hhh=ð1:672 45ð0:29Þ GeVÞ. In our present study, in order

to reach the physical trajectory a chiral extrapolation must
be performed from the quark masses used in our simula-
tion. Ultimately of course, when we present results for
dimensionful quantities in physical units, it will be neces-
sary to perform the chiral extrapolation and this is the
subject of the following subsections. For the present dis-
cussion of scaling it is sufficient simply to imagine that the
lattice spacing has been determined in this way and this is
the most straightforward way of interpreting the OððaeÞ2Þ
terms appearing in equations in this subsection. We stress
however, that even this is not strictly necessary. We can
consider a scaling trajectory defined by fixed, but unphys-
ical, values of mll=mhhh and mlh=mhhh and define the
lattice spacing by assigning an arbitrary value to Mhhh,
the mass of the hhh baryon on the trajectory in ‘‘physical’’
units, ae � me

hhh=Mhhh. While the value of ae defined in

this way depends, of course, on the choice of Mhhh, this
arbitrariness is simply absorbed by a change in constants
such as cm in (31). For the discussion in this subsection it is
sufficient to note that such a definition of the lattice spacing
is possible in principle, the numerical determination of ae

does not actually have to be performed.
In the analysis to follow we will examine a family of

nearby scaling trajectories in which ~ml and ~mh vary over
limited ranges (specifically, ~ml varies up to about 0.013 on
our coarser lattice and ~mh varies by up to 20% around ~ms).
Consider two such trajectories, defined by keeping the
ratios mll=mhhh and mlh=mhhh fixed along each trajectory,
but taking different values on the two trajectories. Let
mll=mhhh ¼ rll and mlh=mhhh ¼ rlh on the first trajectory
and mll=mhhh ¼ r0ll and mlh=mhhh ¼ r0lh on the second. As
� ! 1, the ratio of bare-quark masses on the two trajec-
tories will approach a limit up to Oða2Þ corrections:

~me
fðrll; rlhÞ

~me
fðr0ll; r0lhÞ

¼ lim
�!1

�
~mfð�Þ
~m0
fð�Þ

�
ð1þ dm;fð�QCDa

eÞ2Þ; (33)

where f ¼ l or h, and ~me
l ðrll; rlhÞ and ~me

hðrll; rlhÞ
[ ~me

l ðr0ll; r0lhÞ and ~me
hðr0ll; r0lhÞ] are the values of the

bare-quark masses on ensemble e such that mll=mhhh ¼
rll and mlh=mhhh ¼ rlh [mll=mhhh ¼ r0ll and

mlh=mhhh ¼ r0lh]. The ratios Ra ¼ m1
hhhð ~m1

l ðrll; rlhÞ;
~m1
hðrll; rlhÞÞ=me

hhhð ~me
l ðrll; rlhÞ; ~me

hðrll; rlhÞÞ and R0
a ¼

m1
hhhð ~m1

l ðr0ll; r0lhÞ; ~m1
hðr0ll; r0lhÞÞ=me

hhhð ~me
l ðr0ll; r0lhÞ; ~me

hðr0ll;
r0lhÞÞ each describe the change in lattice scale as the bare

coupling changes from �1 to �e. In the limit of small

bare coupling, this change of scale can be determined
entirely from the short-distance part of the theory and
must be the same for our two trajectories up to order a2

corrections since these two trajectories differ only in the
choice of quark masses. Thus, we can write

Ra

R0
a

¼ 1þ da�
2
QCDððaeÞ2 � ða1Þ2Þ; (34)

where we have explicitly represented the fact that each
ratio and hence the ratio of ratios must approach unity as
ae ! a1. Both the coefficients dm;f and da will vanish

when the primed and unprimed trajectories that are being
compared become identical.
Taking the ratio of two versions of Eq. (33), one for �e

and the other for our primary ensemble �1 and using
Eq. (34), we obtain an expression for the change in the
factors Zf between these two trajectories:

Ze
f

Ze0
f

¼ ð1þ ðdm;f þ daÞ�2
QCD½ða1Þ2 � ðaeÞ2�Þ: (35)

Since the changes in ~ml and ~mh between these two trajec-
tories which we wish to compare are small, the resulting
coefficients dm;f and da will also be small and we will

neglect the Oða2Þ correction on the right-hand side of
Eq. (35). Thus, we will use the same values for Zl and Zh

for this family of nearby trajectories, i.e., we drop lattice
artefacts proportional to ~ml and ( ~mh � ~ms) and so neglect
the mass dependence of Zl and Zh in this limited range of
masses. In the following we will refer to this range for ~ml

and ~mh as their ‘‘allowed range.’’

3. Fitting strategies

We exploit the above relations between numerical re-
sults obtained at the two values of � for which we have
performed simulations in two ways. The first we label the
‘‘fixed-trajectory’’ method. In this approach we determine
Ra, Zl, and Zh by matching results obtained at a single pair
of equivalent quark masses [46]. For example, the masses
used at one value of �may correspond to values at which a
simulation was actually performed. The corresponding set
of masses for the other � might be determined by linear
interpolation to make the two ratios mll=mhhh and
mlh=mhhh agree with those on the first ensemble. The ratio
of lattice spacings and the two Zf factors are then deter-

mined from Eqs. (29) and (30). It will be important to recall
that Zl and Zh are constant in the allowed range of quark
masses. Finally, knowing the three factors Ra, Zl, and Zh

we make a common fit to the mass dependence of physical
quantities computed for both values of �.
In the final step, we adopt an ansatz for the mass depen-

dence that is expected to be accurate both for the points in
our calculation and for the physical values to which we
wish to extrapolate, specifically a NLO chiral expansion
about the chiral limit or a simple Taylor expansion about
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the physical point. Each ansatz for the continuum theory,
when combined with the three scaling factors Ra, Zl, and
Zh and with any required a2 corrections, will then provide
a set of formulas which should describe all of our data for
both � values. For example, in the chiral fits described in
the next section we can use a common set of LECs to fit
both sets of data provided we scale the values used on one
set by the required factors of Ra, Zl, and Zh before we use
them on the other. Where explicitOða2Þ terms are required,
these can be added with unknown coefficients which are
also scaled appropriately between our two values of �. In
such a combined chiral and a2 expansion we adopt a
power-counting scheme, described below, so that only
effects of a similar minimum size are consistently
included.

During the initial process of determining Ra, Zl, and Zh

we cannot assign a physical value to the lattice spacing.
The original trajectory being used does not correspond to
physical masses so no notion of ‘‘GeV’’ exists for that case.
Of course, the further fitting to the quark mass dependence
of the two ensembles is introduced to allow extrapolation
to physical values for the ratios mll=mhhh and mlh=mhhh.
Whenm� is evaluated at this same physical point, its value
can be compared with 1.672 GeV to determine the lattice
scale.

This fixed-trajectory method is intended to cover a wider
range of possible scaling trajectories than the example
discussed above where the trajectory passes precisely
through one of the simulation points. If we wish, we can
adopt an ansatz for the quark mass dependence of m�, mK,
and m� and perform this fixed-trajectory scaling with the
parameters Ra, Zl, and Zh allowed to vary and fix their
values from Eqs. (29) and (30) at values of ml and mh for
which the ratiosmll=mhhh andmlh=mhhh take their physical
values.

The second approach, termed ‘‘generic scaling,’’ intro-
duces the factors Ra, Zl and Zh as parameters into the
ansatz being used to fit the quark mass dependence. In
this approach we perform a fit to all our data for m�, mK,
and m� over a range of quark masses for which the fitting
ansatz is accurate and for which the use of fixed values for
Ra, Zl, and Zh is legitimate. In this generic scaling ap-
proach, our choice of scaling trajectory with fixed hadron
mass ratios mll=mhhh and mlh=mhhh and with mhhh deter-
mining the lattice scale is realized somewhat indirectly.
The three conditions associated with this choice of scaling
trajectory are realized by omitting possible a2 corrections
from the expressions used to fit mll, mlh, and mhhh. The
resulting trajectory can therefore be interpreted as being
the one along which the masses of the pion, kaon, and �
baryon take their physical values, as was the case in the
discussion of Sec. VA. The difference of course, is that
whereas in Sec. VA we envisaged (unrealistically at
present) being able to simulate directly at the physical
value of ml, we now reach the physical point after an

extrapolation in quark masses. The detailed discussion of
the ChPT functions used in describing the quark
mass dependence of the pion and kaon masses is
given in Sec. VB and those for the analytic ansatz in
Sec. VC below. However, both our ChPT and Taylor
expansion ansätze stipulate that to the order being studied
mhhh is a linear function of ~ml and ~mh. It is instructive to
explore this case here.
Included among the equations used to determine the

low-energy constants and the scaling factors Ra, Zl, and
Zh are two equations for mhhh on our two ensembles:

m1
hhhð ~ml; ~mhÞ ¼ m1

hhhð0; ~mh0Þ þ c1m�ml
~ml

þ c1m�mh
ð ~mh � ~mh0Þ; (36)

m2
hhhð ~ml; ~mhÞ ¼ 1

Ra

m1
hhhðRaZl ~ml; RaZh ~mhÞ

¼ 1

Ra

½m1
hhhð0; ~mh0Þ þ c1m�ml

RaZl ~ml

þ c1m�mh
ðRaZh ~mh � ~mh0Þ�: (37)

Here 1 is our primary ensemble, for us that is the one with
� ¼ 2:25 and the 323 � 64 volume, while the second
ensemble is the one with the coarser lattice spacing and
is labeled 2. me

hhhð ~ml; ~mhÞ are the hhh-baryon masses

corresponding to bare-quark masses ~ml and ~mh on en-
semble e. Although we have written ~mh0 as a general
constant, we have in mind to use the equations with ~mh0

in the allowed range of the physical bare strange-quark
mass in the primary ensemble. Equations (36) and (37)
define the three constants m1

hhhð0; ~mh0Þ, c1m�ml
, and c1m�mh

which are related to the physical�� mass and its physical
dependence on the quark masses. The absence of Oða2Þ
corrections to Eqs. (36) and (37) implements our choice
that m� is being used to set the scale and hence by
construction contains no finite lattice-spacing errors.
While part of a larger set of equations which are being
used to determine the low-energy constants as well as Ra,
Zl and Zh, the leading-order effect of these two equations is
to determine Ra. Note that this is identical to imposing
Eq. (29) in the fixed-trajectory method at the point ~ml ¼ 0,
~mh ¼ ~mh0. Since the variation of Ra as ~ml and ~mh change
over their allowed range is of the same size as the variation
of Zl and Zh over this same range it can also be neglected,
so any particular choice of ~mh is equivalent to any other
within this allowed range.
The fixed trajectory and generic scaling methods are

similar in nature. Both require that an ansatz be adopted
to allow the quark mass dependence of lattice quantities to
be described in order to define the scaling parameters Ra,
Zl, and Zh and to extrapolate to the physical point. Both
assume that the scaling relations between the two ensem-
bles defined by Ra, Zl, and Zh hold over the allowed range
of masses. The fixed-trajectory method corresponds most
closely to our original definition of a scaling trajectory and
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decouples the matching of the two lattices from the chiral
extrapolation. It requires however, the introduction of a
convenient but arbitrary point at which the matching be-
tween the two ensembles is performed. The generic
method avoids this arbitrary choice and applies these as-
sumptions uniformly over the entire range of allowed
masses. The fixed-trajectory method determines Ra, Zl,
and Zh in an iterative fashion as explained in Sec. VD.
The generic approach determines the coefficients in the
adopted ansatz from a single �2 minimization. The physi-
cal quark masses are then determined by inverting the
resulting equations which give m�, mK, and m� in terms
of ~ml and ~mh.

The detailed discussion and results presented in this
paper correspond to the fixed-trajectory method; fits using
the generic scaling approach were performed to monitor
the consistency of the results and estimated errors.

B. Scaling and chiral perturbation theory

At the start of Sec. VA we discussed the continuum
extrapolation in an idealized situation in which we can
perform simulations at any value of the quark mass ml.
In reality this is not the case; for example, the lightest
unitary pion appearing in the current study has mass
290 MeV. In order to compare our results with nature
we therefore need to extrapolate to lighter quark masses
and this was already acknowledged when discussing the
fitting strategies in Sec. VA3 above. We now explain
how we combine the continuum and chiral extrapolations
in global fits. We start in this section by using SU(2)
chiral perturbation theory for the mass dependence, with
the expectation that the extrapolation will be made more
precise if constrained by the theoretically known behav-
ior of QCD in the chiral limit [1]. However, in order to
estimate possible systematic errors associated with this
extrapolation and to obtain a more complete understand-
ing of the implications of our calculation, we also exam-
ine a simpler analytic extrapolation to physical quark
masses [47] and this is explained in the following sub-
section. Although later we will perform extrapolations
using partially quenched ensembles, for the purposes of
this introduction we restrict the discussion to the unitary
theory in which the valence and sea-quark masses are
equal.

We now explain the power-counting scheme we employ
to identify NLO corrections to the chiral and continuum
limits. Since the pion mass and decay constant are central
to SU(2) ChPT, we begin by considering the predictions of
continuum NLO ChPT for these two quantities:

m2
ll ¼ �l þ �l �

�
16

f2
ðð2Lð2Þ

8 � Lð2Þ
5 Þ þ 2ð2Lð2Þ

6 � Lð2Þ
4 ÞÞ�l

þ 1

16�2f2
�l log

�l

�2
�

�
; (38)

fll ¼ fþ f �
�
8

f2
ð2Lð2Þ

4 þ Lð2Þ
5 Þ�l � �l

8�2f2
log

�l

�2
�

�
: (39)

Here mll and fll are the mass and decay constant of the
pseudoscalar meson composed of two light quarks, f, L4,
L5, L6, and L8 are the conventional low-energy constants
and �� is the usual chiral scale. The quantity �l comes

directly from the lowest order chiral symmetry breaking
term in the effective chiral theory and is proportional to the
QCD light-quark mass. It is conventionally written �l ¼
2B ~ml, where B is another low-energy constant.
We now discuss how we apply these formulas to de-

scribe the low-energy behavior of lattice theories which lie
on a scaling trajectory. For a sequence of ensembles
feg1	e	N lying on such a scaling trajectory not only will
the quark masses and lattice units, ð ~me

l ; ~m
e
h; a

eÞ be related,
but also, when expressed in physical units, the quantities f,
L4, L5, L6, and L8 should take the same values up to Oða2Þ
corrections. The same is true for the renormalization inde-
pendent combination �l ¼ 2B ~ml (see the discussion be-
low). As detailed in Ref. [1], chiral perturbation theory at
finite lattice spacing for domain wall fermions involves a
simultaneous expansion in the explicit bare quark mass,
ml, the squared lattice spacing, a2, and the residual chiral
symmetry breaking arising from the finite separation, Ls,
between the two four-dimensional walls in the fifth dimen-
sion. We will denote this last quantity by e��Ls , suggesting
the exponential decrease in such residual chiral symmetry
breaking found in perturbation theory for DWF. (The
actual behavior is a sum of exponential and inverse power
dependence on Ls.) No new terms need to be added to the
resulting effective low-energy theory to describe the result-
ing Green’s functions to NLO in the parameters ~ml, a

2, and
e��Ls . Thus, we can use equations with the form of
Eqs. (38) and (39) to describe the lattice results for mll

and fll along a scaling trajectory, provided we work to
NLO in a power-counting scheme which treats the quanti-
ties �l=ð4�fÞ2, a2�2

QCD, and e��Ls as equivalent and keep

a single power of any of these quantities as a correction.
We must now determine how the parameters appearing in
these equations must be adjusted to describe lattice results
at finite a2.
Since the scale �� can be freely varied if the other

analytic terms are appropriately changed, we will choose
this quantity to be constant if measured in physical units.
Thus, for each point on our physical scaling trajectory we
will choose �� ¼ m� � 1=1:672, giving it the value of

1 GeV. Because of their proportionality to the NLO factor
�l all of the parameters which appear in the large curly
brackets on the right-hand side of Eqs. (38) and (39) can be
given their continuum values, dropping possible Oða2Þ
terms as being of next-to-next-to-leading order (NNLO)
in our power-counting scheme. Thus, within those brackets
the quantities f, L4, L5, L6 and L8, when expressed in
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physical units, can be given identical values for the ensem-
bles on the scaling trajectory.

In contrast, when Eq. (39) is used to describe our finite
lattice-spacing results, the LO quantity fe determined on
ensemble e, expressed in physical units, depends on �e.
However, it approaches its continuum limit with Oða2Þ
corrections and so we write fe ¼ fþ cfðaeÞ2.

Given the definition of a scaling trajectory, the variation
of the quantity �e

l needed to apply Eq. (38) to the ensemble

e is actually trivial. Because our choice of quark mass ~me
l

gives the same value for mll for each ensemble e on our
scaling trajectory, all of the quantities in Eq. (38) with the
possible exception of the �e

l which we are now consider-

ing, are the same when expressed in physical units for all
points on the scaling trajectory. Thus, �e

l ¼ 2Be ~me
l =ðaeÞ2

must be a constant as well, where Be and ~me
l are explicitly

left in lattice units. Since we know how the quantities ~ml

and a2 are related between an ensemble e and our primary
ensemble 1, we can determine the N � 1 constants Be in
terms of the single constant B1:

Be ¼ Ze
l

Re
a

B1; (40)

without any a2 corrections. Because of the complex scaling
behavior of the mass, we will treat B1 as one of the LECs to
be determined in our fitting and not relate it to a physical
continuum quantity whose definition would require intro-
ducing a continuum mass renormalization scheme.

We conclude that our lattice results for light pseudosca-
lar masses and decay constants obtained from a series of
ensembles feg can be described through NLO by the
formulas:

ðme
llÞ2 ¼�e

l þ�e
l �

�
16

f2
ðð2Lð2Þ

8 �Lð2Þ
5 Þþ2ð2Lð2Þ

6 �Lð2Þ
4 ÞÞ�e

l

þ 1

16�2f2
�e
l log

�e
l

�2
�

�
; (41)

fell ¼ f½1þ cfðaeÞ2� þ f �
�
8

f2
ð2Lð2Þ

4 þ Lð2Þ
5 Þ�e

l

� �e
l

8�2f2
log

�e
l

�2
�

g; (42)

with

�e
l ¼

Ze
l

Re
a

B1 ~me
l

ðaeÞ2 ; (43)

where all quantities in Eqs. (41) and (42) are expressed in
physical units [except for B1 and ~me

l in Eq. (43) which are

given in lattice units].
Two important refinements should be mentioned. First,

for the case of a physical scaling trajectory, i.e., one which
terminates in the physical masses m�, mK, and m�, these
physical units are naturally GeV. However, for other scal-
ing trajectories appropriate physical units to use can be
those in which the Omega mass is unity. Second, for
simplicity in Eqs. (38), (39), (41), and (42) we have treated
the heavy-quark mass as fixed and not displayed the de-
pendence of the quantities f, B, L4, L5, L6, and L8 on mh.
In practice we can easily generalize these equations to
describe the dependence of mll and fll on mh as well.
Provided we limit the variation of mh to a small range
about an expansion point ~mh0, this variation can be de-
scribed by including a linear term inmh � ~mh0 and treating
this term as NLO in our power-counting scheme. Thus,
such extra linear terms will only be introduced into the
leading-order terms in Eqs. (41) and (42).
Next we present the corresponding formulas for the

quantities mK and m� which are used in the determination
of the scaling trajectory and in the assignment of a lattice
spacing at each value of �:

ðme
lhÞ2 ¼ ðmðKÞÞ2 þ ðmðKÞÞ2

�
�1 þ �2

f2
�e
l

�
; (44)

me
hhh ¼ mð�Þ þmð�Þcm�;ml

�e
l : (45)

Here mðKÞ and mð�Þ are the mass of the lh meson and the
hhh baryon, respectively, in the SU(2) chiral limit, i.e.,
with ~ml ¼ 0, for the value of ~mh used in the simulation.
Similarly the LECs �1;2 and cm�;ml

depend on ~mh and we

are using the notation for the LECs �1;2 which we intro-

duced in [1]. [Note that cm�;ml
, whose value is given in

Table XXVII below, should be distinguished from the
related parameter c1m�ml

which appears in Eqs. (36) and

(37) above.] The absence of any corrections of Oða2Þ on
the right-hand sides of Eqs. (44) and (45) follows from the
same argument which justified omitting an Oða2Þ correc-
tion from the right-hand side of Eq. (41). For masses ~me

l

TABLE XXVI. Values of the quark mass ratios Zl and Zh and the lattice-spacing ratio Ra determined by matching at five points over
both ensemble sets. The quark masses here are quoted without the additive mres correction. The ensemble e � M.

M ðamlÞM ðamhÞM ðamlÞe ðamhÞe Zl Zh Ra

323 0.004 0.03 0.003 13(13) 0.038 12(80) 0.980(15) 0.976(11) 0.7617(72)

323 0.006 0.03 0.005 83(12) 0.038 39(51) 0.981(9) 0.974(7) 0.7583(46)

323 0.008 0.03 0.008 60(19) 0.038 69(64) 0.979(10) 0.972(8) 0.7545(58)

243 0.005 0.04 0.005 45(11) 0.031 48(51) 0.985(12) 0.978(9) 0.7620(57)

243 0.01 0.04 0.008 97(18) 0.030 74(57) 0.974(11) 0.968(9) 0.7517(70)
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and ~me
h lying on a scaling trajectory the left-hand sides of

these equations must all be the same because of our defi-
nition of scaling trajectory. Because of our power-counting
scheme, no a2 corrections need to be included in the NLO
terms proportional to �e

l on the right-hand side of these two

equations. Therefore the leading-order termsmðKÞ andmð�Þ
must also be the same for all ensembles when expressed in
physical units and no Oða2Þ correction can appear. As
discussed above, these equations can be generalized to
describe the NLO dependence on ~mh varying about an
expansion point ~mh0. In fact, for the � baryon this more
general case for Eq. (45) was described in the previous
subsection in the equivalent Eqs. (36) and (37).

Note that the coefficient of the chiral logarithm in
Eq. (41) includes a factor which depends on f, the
pion decay constant in the SU(2) chiral limit [all other
factors of f in Eqs. (41) and (44) can be absorbed into a
redefinition of LECs which in any case are determined
by fitting]. This low-energy constant f can be deter-
mined from the measured values of fll using Eq. (42),
but to NLO it can also be replaced by the measured
values of fll.

As described in Sec. VA3, these ChPT formulas can
now be used to determine physical results in the continuum
limit from those obtained on our two lattice spacings. We
can employ the fixed-trajectory method, finding the ratios
Zl and Zh which relate a specific choice of quark masses on
one ensemble to those on the other which lie on the same
scaling trajectory. The corresponding ratio of values of
mhhh determines Ra. These three quantities then allow a

single set of LECs to be used to extrapolate the results of
both ensembles to the continuum limit and to the physical
value of the light-quark mass using Eqs. (41), (42), (44),
and (45). As a result we learn the physical values of
~mudð�eÞ, ~msð�eÞ, and ae on our two ensembles. In other
words, we determine the quark masses and lattice spacings
for our two ensembles which lie on the physical scaling
trajectory.
Alternatively, we can use the generic fitting approach

and introduce the three parameters ðZl; Zh; RaÞ into the
four equations, Eqs. (41), (42), (44), and (45), and obtain
a fit to the lattice data from both ensembles for which the
quark masses lie in the allowed range. The resulting values
of the LECs and ðZl; Zh; RaÞ then determine the functions
me

llð ~ml; ~mhÞ, me
lhð ~ml; ~mhÞ, and me

hhhð ~ml; ~mhÞ. The physical

quark masses on each ensemble, me
ud ¼ mudð�eÞ and

me
s ¼ msð�eÞ, are then obtained by solving the equations:

me
llð ~me

ud; ~m
e
s Þ

me
hhhð ~me

ud; ~m
e
s Þ¼

m�

m�

and
me

lhð ~me
ud; ~m

e
s Þ

me
hhhð ~me

ud; ~m
e
s Þ¼

mK

m�

; (46)

where on the right-hand sides the ratios take their physical
values.
Having determined mudð�eÞ, msð�eÞ, and ae as de-

scribed above, we are in a position to compute other
physical quantities. For example, at NLO in our power
counting the behavior of the kaon decay constant fK is

felh ¼ fðKÞ½1þ cfðKÞ ðaeÞ2� þ fðKÞ
�
�3 þ �4

f2
�e
l

� 1

ð4�fÞ2
3

4
�e
l log

�e
l

�2
�

�
; (47)

where fðKÞ is the result in the SU(2) chiral limit ( ~ml ¼ 0),
�3;4 are mh-dependent low-energy constants and cfðKÞ is a

constant. For each �e, having determined ~msð�eÞ we mea-
sure felh for ~me

h ¼ ~msð�eÞ as a function of ~ml; fit the mea-

sured values at all �e to determine the LECs and cfðKÞ in

Eq. (47) andfinally obtain the physical value offK by setting
a ¼ 0 and ~ml ¼ ~mud. Such a procedure is then generalized
to the other physical quantities we wish to compute.

C. Scaling combined with an analytic
ansatz for the chiral dependence

While we know that the ansatz based on chiral pertur-
bation theory described in the previous subsection is valid
in the limit of small u and d quark masses, we do not know
the precision with which it holds over the range of masses
which we analyze in this paper (corresponding to data in
the range 240 MeV 	 m� & 420 MeV). Indeed it is pre-
cise lattice simulations which will answer such questions.
In order to obtain some understanding of the corresponding
systematic uncertainties, in addition to the procedures
based on chiral perturbation theory described in
Sec. VB, we consider an ansatz based on a first-order
Taylor expansion about a nonzero quark mass, in the style

TABLE XXVII. Parameters of the global fit to our ensembles
using NLO ChPT without finite-volume corrections (second
column) and with finite-volume corrections (third column). For
the unitary theory the parameters are defined in Sec. VB and for
the partially quenched theory in Appendix B of Ref. [1].

Parameter No FV corrections With FV corrections

B 4.12(7) GeV 4.03(7) GeV

f 0.110(2) GeV 0.112(2) GeV

cf 0:05ð7Þ GeV2 0:04ð7Þ GeV2

Lð2Þ
4 �0:000 00ð7Þ �0:000 05ð7Þ

Lð2Þ
5 0.00050(5) 0.00047(5)

Lð2Þ
6 �0:000 03ð4Þ �0:000 05ð4Þ

Lð2Þ
8 0.000 55(2) 0.000 59(2)

mðKÞ 0.4856(4) GeV 0.4854(4) GeV

fðKÞ 0.141(3) GeV 0.143(3) GeV

cfðKÞ 0:01ð6Þ GeV2 0:01ð6Þ GeV2

�1 0.0043(9) 0.0046(10)

�2 0.023(1) 0.024(1)

�3 �0:0018ð9Þ �0:0016ð10Þ
�4 0.0058(2) 0.0057(2)

mð�Þ 1.666(2) GeV 1.666(2) GeV

cm�;ml
0:20ð6Þ GeV�2 0:20ð6Þ GeV�2
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of Refs. [47,48]. Within this approach, since we do not
include chiral logarithms, we are not able to take the chiral
limit and only assume the validity of the analytic ansatz
between the physical point (to which we extrapolate) and
the region where we have data. In this work we only
consider linear, first-order fits and are therefore insensitive
to the choice of expansion point which we take to be the
same as that at which we match the ensembles when using
the fixed-trajectory method. This simplifies the discussion
below of the simultaneous expansion in a2 and mass
differences. Beyond first order, convergence may be im-
proved by considering an expansion point between the
region in which we have data and the physical point, but
this is beyond the scope of our current analysis.

Using the analytic ansatz for m2
� as a function of the

quark mass mq, we find numerically that the constant

(mass-independent) term is consistent with zero, indicating
that the tangent of m2

�ðmqÞ in the unitary case does pass

through the origin. Thus, at our statistical precision, no
significant chiral curvature is needed to satisfy Goldstone’s
theorem, however we retain the view that we are indeed
using a model which is valid only in a restricted region of
nonzero quark masses.

Goldstone’s theorem also applies in the partially
quenched theory and the pion mass vanishes as the
valence-quark masses are taken to zero while keeping the
sea-quark masses fixed. In this case however, our linear fit
extrapolates to a nonzero pion mass for massless valence
quarks, and this naturally implies that some form of cur-
vature is required at smaller masses. This is consistent with
enhanced chiral logarithms in the partially quenched the-
ory. However, the fits do not necessarily imply that chiral
logarithms at NLO correctly represent the quark mass
dependence between the simulated range of masses and
the physical point. Instead, in this approach the sum over
multiple orders of chiral perturbation theory is assumed to
be approximated by a linear dependence in the relevant
range of masses. It is also possible of course that the
simulated range of masses is outside the useful domain
of chiral perturbation theory and that, for example, phe-
nomenological models based on combining NLO chiral
perturbation theory with arbitrary analytic subsets of terms
which appear at NNLO and NNNLO are less well moti-
vated than our linear ansatz.

For m2
� and f� it is convenient to define the average

valence-quark mass ~mv ¼ ~mxþ ~my

2 . As in Sec. VB, we apply

a power-counting rule in a double expansion in mx �mm,
my �mm, ml �mm, and a2, where mm is the mass at

which we match the ensembles which we also choose to
be the point around which we perform the Taylor expan-
sion and we recall that mx;y and ml are the valence and sea

light-quark masses, respectively, (here we allow for partial
quenching). For the pion mass we use the ansatz

m2
xy ¼ Cm�

0 þ Cm�

1 ð ~mv � ~mmÞ þ Cm�

2 ð ~ml � ~mmÞ; (48)

where we use our standard notation in which the subscripts
xy imply that the two valence quarks have massmx andmy,

respectively. By the definition of our scaling trajectory,
there is no Oða2Þ term at the match point and so there is
no correction to Cm�

0 . Within our power counting we could

equivalently use

m2
xy ¼ Cm�

0 þ Cm�

1 ~mv þ Cm�

2 ~ml; (49)

where for convenience we redefine Cm�

0 between Eqs. (48)

and (49).
In searching for evidence of chiral logarithms it is

conventional to plot the ratio m2
xy= ~mv as a function of the

quark masses. With the ansatz proposed in Eq. (49)

m2
xy

~mv

¼ Cm�

0

~mv

þ Cm�

1 þ Cm�

2 ~ml

~mv

; (50)

and we note that an observed deviation of the mass depen-

dence of
m2

xy

~mv
from a constant in the finite range of quark

masses which can be simulated, is not in itself unambig-
uous evidence of a nonanalytic structure.
For decay constants, which do not vanish in the chiral

limit, the Oða2Þ term is not sensitive to the choice of
expansion point:

fxy¼Cf�
0 ½1þCf�a

2�þCf�
1 ð ~mv� ~mmÞþCf�

2 ð ~ml� ~mmÞ;
(51)

� Cf�
0 ½1þ Cfa

2� þ Cf�
1 ~mv þ Cf�

2 ~ml; (52)

where again we have redefined Cf�
0 between the first and

second lines.
Following a similar argument, at a fixed strange-quark

mass, we take the light-quark mass dependence of the kaon
mass and decay constant and the mass of the � baryon to
be given by

m2
xhða;mlÞ ¼ CmK

0 þ CmK

1 ~mx þ CmK

2 ~ml; (53)

fxhða;mlÞ ¼ CfK
0 ½1þ CfKa

2� þ CfK
1 ~mx þ CfK

2 ~ml; (54)

mhhhða;mlÞ ¼ Cm�

0 þ Cm�

2 ~ml: (55)

We stress that the constants Cm�
n , Cf�

n , Cf, C
mK
n , CfK

n , CfK ,

and Cm�
n implicitly depend on the strange-quark mass.

D. Procedure for combined scaling and chiral fitting

Having introduced the theoretical framework behind our
combined scaling and chiral fits in Secs. VB and VC we
now explain its practical implementation. The formulas
given above which describe the combined behavior are
valid only for a fixed strange-quark mass and we are faced
with the problem that the physical strange mass is not
known a priori but is an output of the calculation. The
procedure for performing the combined chiral-continuum
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fits is therefore necessarily iterative. As explained in more
detail below, we start with some initial values for the lattice
spacings and quark masses, perform the fits, and then use
linear interpolations inmh to obtain updated estimates. The
process terminates when the updated estimates converge.
During this iterative procedure we use reweighting (see
Sec. II D) to adjust all pionic observables to the new
strange-quark mass on each ensemble. For kaon and �
observables a linear interpolation between the unre-
weighted unitary measurement, and measurements with a
second valence strange quark (reweighted-to-be-unitary)
suffice to obtain that observable for my ¼ mh ¼ mguess

s .

For the remainder of this subsection we explain further
the procedure which we use to match lattices with different
� and present results for the ratios Re

a and Ze
f defined in

Eqs. (29) and (30) for our ensembles using the fixed-
trajectory method explained in Sec. VA3. We start by
taking a specific value of ðml;mhÞM on the ensemble M
to which the other ensembles are matched. We refer to this
as the matching point. The ensemble set M may be the
same as the primary ensemble 1, but does not need to be.
As discussed in Sec. VA, the matching to other ensembles
e � M is performed by requiring that the ratios of had-
ronic masses mll

mhhh
and mlh

mhhh
are the same on all lattices at the

matching point. Although the final physical predictions do
not depend upon the choice of matching point, certain
choices are favored due to the quality of the data at the
matching point and the range over which the data must be
interpolated/extrapolated on the other ensembles to per-
form the matching. The ideal point has as small a statistical
error as possible and lies within the range of simulated data
on all of the matched ensembles such that only a small
interpolation is required. In practice, the errors on the mass
ratios at the matching point can be reduced by fitting to all
partially quenched simulated data on the ensemble set M
and interpolating to the matching point along the unitary
curve. We use linear fitting functions for the light-quark
mass dependence of the pseudoscalar mesons and the �
baryon in these short interpolations:

m2
xy ¼ c0 þ clml þ cvðmx þmyÞ; (56)

m2
xh ¼ d0 þ dlml þ dvmx; (57)

mhhh ¼ e0 þ elml; (58)

where as elsewhere x, y (l) represent the light valence
(sea) quarks and h represents the heavy-quark.
Equations (56)–(58) are written in lattice units. Although
the linear behavior in Eqs. (56)–(58) is similar to that used
in the analytic ansatz, Eqs. (49), (53), and (55), we stress
that the meaning is different. When using the analytic
ansatz we assume its validity in the full range of masses
between the physical ones and those we simulate.
Equations (56)–(58) on the other hand, are only assumed
to represent the mass behavior in the short intervals

between the matching and simulated points on ensembles
e � M, independently of whether we subsequently use
chiral perturbation theory or the analytic ansatz to perform
the chiral extrapolation.
Once a matching point has been chosen, the matching

proceeds as follows:
(1) For each set of ensembles e � M, we perform an

independent partially quenched linear fit to the
simulated pion, kaon, and Omega masses using the
forms given in Eqs. (56)–(58).

(2) We make a first estimate of the pair of quark masses
ðml;mhÞe on each ensemble set e � M that corre-
sponds to the matching point.

(3) We then interpolate the three hadronic masses to the
estimatedme

l for each value of the simulated unitary

heavy-quark mass.
(4) We linearly interpolate each quantity to the esti-

mated value of me
h.

(5) Next we calculate the ratios Re
l ¼ me

ll

me
hhh

and Re
h ¼

me
lh

me
hhh

.

(6) Using the measured slopes of me
ll and me

hhh with

respect tome
l , by comparing Re

l to the corresponding

value RM
l at the matching point we obtain an up-

dated estimate of me
l .

(7) Similarly, by comparing the ratio Re
h to RM

h we

obtain an updated estimate of me
h.

(8) With these updated estimates of the quark masses
ðml;mhÞe, we return to step 3 and iterate the steps
until the process converges.

Once this procedure has converged, we have a set of bare-
quark masses ðml;mhÞe which, in physical units, are
equivalent to the masses ðml;mhÞM. Following the discus-
sion in Sec. VA2, we choose a primary ensemble 1 and
determine the ratios of quark masses Ze

f in ensembles 1 and

e as in Eq. (30) with the corresponding ratios of lattice
spacing Ra given in Eq. (29).
In the above we assumed that for each ensemble e we

had performed simulations at several values of me
h. In our

present study the simulations were performed at a single
value of me

h and the dependence on the heavy-quark mass

is obtained by reweighting as explained in Sec. II D.
The above discussion was deliberately presented in a

general case where there are an arbitrary number of en-
sembles. In our case we only have two sets, i.e., the 243 and
323 lattices. For the primary ensemble we choose the finer
323 lattice. As we have only one other ensemble set (243),
from now on we drop the superscript on the ratios of lattice
spacings (Ra) and quark masses (Zl and Zh).
In Table XXVI we give results for Zl, Zh, and Ra

obtained by matching at several matching points on both
ensemble sets M 2 f243; 323g. Since we prefer to have a
matching point within the range of simulated data on both
ensembles, we can discard the first and last entries in the
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table. From the remaining 3 possibilities, we choose as our
final values Zl ¼ 0:981ð9Þ, Zh ¼ 0:974ð7Þ, and Ra ¼
0:7583ð46Þ from the second entry with M ¼ 323 and

ðml;mhÞ323 ¼ ð0:006; 0:03Þ.
Having chosen to perform the matching of the lattices at

the two lattice spacings by requiring that mll=mhhh and
mlh=mhhh take the same values at the matching point, we
expect to see lattice artefacts in ratios of other physical
quantities. This is illustrated in Fig. 26 in which we show
the ratios of several other dimensionless combinations of
lattice quantities between the two lattices at the quark
masses used in the matching procedure above. The figure
shows that we can expect only small scaling violations on
the order of 1%–2% for the other quantities used in our
global fits, and also confirms that other dimensionless
combinations of lattice quantities would be equally suit-
able choices for the definition of the scaling trajectory.

E. Results of combined scaling and chiral fits

Using the matching factors Zl, Zh, and Ra determined as
described in the previous section we are ready to perform a
simultaneous fit of all our pion, kaon and � mass and
decay constant data to either the NLO forms in chiral
perturbation theory, Eq. (41) to Eq. (45), or the analytic
forms Eq. (49) to Eq. (55). We also correct for finite-
volume (FV) effects in NLO PQChPT by substituting the
chiral logarithms with the corresponding finite-volume
sum of Bessel functions [49]. The iterative procedure is
the same for each of these three fit ansätze. For each
iteration i, we:

(1) estimate the physical strange-quark masses, mi
s,

from the (i� 1)-th iteration;
(2) interpolate and reweight the data to mi

s;
(3) fit the mx, my, ml dependence of the light pseudo-

scalar mass and decay constant;
(4) fit the mx, ml dependence of kaon quantities at

mh ¼ mi
s;

(5) fit the ml dependence of the Omega mass for mh ¼
mi

s;

(6) by comparing to the physical values of m�=m� and
mK=m�, determine the iterated predictions for the
physical strange-quark masses miþ1

s .

This process is repeated until it converges and a self con-
sistent set of quark masses, lattice spacings, and results in
the continuum limit are obtained.
For the fits based on NLO chiral perturbation theory we

use Eqs. (41) and (42) for the pion mass and decay con-
stant, respectively, and Eqs. (44) and (47) for the kaon mass
and decay constant. In our earlier work [1] we found that
we had to apply cuts to keep the pion mass below around
420 MeV in order for NLO SU(2) ChPT to give an accept-
able description of our data. All the additional data intro-
duced in this work satisfies this cut and we include all the
data for pions with valence masses mx, my 	 0:01 on the

two 243 ensembles and all data for pions with valence
masses mx, my 	 0:008 for the three 323 ensembles. For

kaons we include all the valence light-quark masses in the
above range for each fixed strange-quark mass. For this
infinite-volume SU(2) NLO global fit the fitted parameters
are presented in the second column of Table XXVII. The
�2=dof for all the fits discussed here are given in
Table XXVIII. We also perform the corresponding fits
using the finite-volume chiral logarithm composed of a
sum of Bessel functions [49]; resummed expressions are
not available for our partially quenched fits. The parame-
ters of the fit are presented in the third column of
Table XXVII. In terms of the conventional LECs �l3 and
�l4 the results are

�l 3¼2:82ð16Þ; �l4¼3:76ð9Þ ðInfinite VolumeChPTÞ;
(59)

�l 3¼2:57ð18Þ; �l4¼3:83ð9Þ ðFinite VolumeChPTÞ:
(60)

In Table XXIX we present the parameters of the fit with
the analytic ansatz over the same mass range as for the fits
using SU(2) chiral perturbation theory, as explained in the
previous paragraph. We find that analytic fits including a
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FIG. 26 (color online). Ratios of dimensionless combinations of lattice quantities Q (listed in the figure) between the 323 and 243

lattices at the matching point corresponding to ml ¼ 0:006, mh ¼ 0:03 on the 323 lattice. A value of unity indicates perfect scaling.
The ratiosmll=mhhh andmlh=mhhh (and consequentlymll=mlh) are defined to scale perfectly at these quark masses as a consequence of
our choice of scaling trajectory.
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larger range of pseudoscalar masses give an acceptable
uncorrelated �2=dof but then the lightest data points
were consistently missed by the fit by about 1 standard
deviation. The utility of such extended fits for extrapolat-
ing to the physical point was therefore compromised and
we decided to restrict the range of masses used in the
analytic fits.

The global fit to many ensembles of partially quenched
data is naturally a high dimensional space and so the
exposition of the fits is best performed by looking at
portions of the data in turn. In order to illustrate the quality
of the fits, in the following subsections we display the fit
and data for each physical quantity in turn. In total we have
analyzed five ensembles at two lattice spacings, and each
ensemble has measurements at many partially quenched
valence-quark masses. As it is only feasible to present a
subset of possible plots, in the following we display the

dependence of each quantity on the valence-quark masses
at the lightest sea-quark mass (ml ¼ 0:005 for the 243

ensembles and ml ¼ 0:004 on the 323 ensembles). The
exception of course, is the mass of the Omega baryon
mhhh which does not depend on the light valence-quark
masses. We also display the unitary subset of data on both
lattice spacings along with the mass dependence we infer
from our fits in the unitary continuum limit.
Before discussing the chiral and continuum behavior of

hadronicmasses and decay constants in detail, we present in
Table XXX our results for the unrenormalized physical
quark masses and the lattice spacings obtained from the
three fits. In this table the quark masses are given in lattice
units. The nonperturbative renormalization of the masses
will be discussed in Sec. VI where the values of the renor-

malized quark masses in theMS scheme will be presented.

1. Chiral and continuum behavior of the � baryon

The � mass is fitted using Eq. (45) [or equivalently
(55)]. The fit form for the � baryon does not change
between the different ansätze and only very small differ-
ences arise from the different estimates of physical quark
masses and hence of the lattice spacings. For illustration,
Fig. 27 shows the extrapolation of the � mass using the
analytic ansatz.

2. Chiral and continuum behavior of the pion mass

We display the fits of the partially quenched pion masses
using infinite-volume NLO SU(2) partially quenched
ChPT [i.e. to the partially quenched generalization of

TABLE XXVIII. Fit ansatze, mass ranges, and uncorrelated
�2=dof obtained in our analyses are shown. The fits were
performed for pion masses less than 420 MeV.

Ansatz �2=dof

NLO 0.72(46)

NLO-fv 1.07(47)

Analytic 0.60(44)

TABLE XXIX. Parameters of the global fit to our ensembles
using the analytic ansatz. The parameters are defined in Eqs. (49)
–(55).

Parameter Value Parameter Value

Cm�

0 �0:001ð1Þ GeV2 CmK

1 3.67(4) GeV

Cm�

1 7.45(9) GeV CmK

2 0.7(1) GeV

Cm�

2 0.43(8) GeV CfK
0 0.149(2) GeV

Cf�
0 0.123(2) GeV CfK 0:02ð6Þ GeV2

Cf� 0:04ð7Þ GeV2 CfK
1 0.34(1)

Cf�
1 0.85(2) CfK

2 0.52(10)

Cf�
2 0.56(9) Cm�

0 1.666(2) GeV

CmK

0 0:2353ð8Þ GeV2 Cm�

2 2.7(9)

TABLE XXX. Unrenormalized physical quark masses in lat-
tice units and the values of the inverse lattice spacing a�1 for the
323 and 243 ensembles are shown.

NLO NLO fv Analytic

~mlð323Þ 0.001 00(3) 0.001 02(3) 0.001 05(6)

~msð323Þ 0.0280(7) 0.0280(7) 0.0279(7)

a�1ð323Þ 2.280(28) GeV 2.281(28) GeV 2.282(28) GeV

~mlð243Þ 0.001 34(4) 0.001 36(4) 0.001 41(9)

~msð243Þ 0.0379(11) 0.0379(11) 0.0378(11)

a�1ð243Þ 1.729(25) GeV 1.729(25) GeV 1.730(25) GeV
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FIG. 27 (color online). The fit to the light-quark mass behavior
of the �-baryon in the continuum limit obtained using the
analytic ansatz. The corresponding plots using the infinite and
finite-volume SU(2) ChPT ansatz are almost indistinguishable,
differing only slightly in the estimates of the physical quark
masses and the lattice spacings. Of the five data points, the first,
third, and fourth from the left (denoted in red) correspond to the
323 ensembles and the remaining 2 (denoted in blue) correspond
to the 243 ones.
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Eq. (38) given in Eq. (B.32) of Ref. [1] ] in Fig. 28 for the
lightest 243 and 323 ensembles. As discussed in Sec. VC,
we divide by the average valence-quark mass with the
intention of enhancing the visibility of chiral logarithms.
Figure 29 displays the corresponding fit of the same data
but including finite-volume corrections.

It is apparent that the infinite-volume and finite-volume
NLO fits diverge rapidly from our data at larger masses,
and this indeed is the reason why we were compelled to
introduce the upper cutoff of 420 MeV for this analysis [1].

We now consider the chiral extrapolation of the pion
mass using the analytic form of Eq. (49) which is shown in
Fig. 30. Comparing Figs. 28 and 29 with Fig. 30 suggests
that data at substantially larger masses can be described by
the analytic expansion, without any curvature terms in the
ansatz. The division by the average valence-quark mass in
the plots, coupled to allowing the tangent not to pass
through the origin (i.e. that the extrapolated m2

� at

mx ¼ my ¼ 0may not be equal to zero) allows the analytic

fit to reproduce a structure that might otherwise be attrib-
uted to chiral logarithms.
We emphasize that admitting the possibility that the

constant term Cm�

0 � 0 allows for a pole in Fig. 30 in the

unitary chiral limit. In fact we find that Cm�

0 is numerically

small and consistent with zero, Cm�

0 ¼ �0:001ð1Þ GeV2.

We stress again that while Goldstone’s theorem implies the
vanishing of the pion mass in the SU(2) chiral limit, this
does not necessarily imply that Cm�

0 ¼ 0. Our model is that

the linear ansatz is valid in the region between that where
we have data and the physical point, and that if Cm�

0 � 0
then it is the curvature due to chiral logarithms below the
physical pion mass which will force the pion mass to zero
in the chiral limit. Nevertheless, from the fits we found that
Cm�

0 is consistent with zero. This is illustrated by the flat

behavior (within the statistical precision) for the chiral
behavior of the unitary points for m2

�=ml in the continuum
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FIG. 28 (color online). Global fits obtained using infinite-volume NLO SU(2) chiral perturbation theory for the pion mass. The top-
left panel includes the partially quenched data from the ml ¼ 0:005 ensemble on the 243 lattice and the data points in the top-right
panel are from the ml ¼ 0:004 ensemble from the 323 lattice. In each case the curves correspond to the appropriate value of the lattice
spacing. The points marked by the circles were included in the fit, whereas those marked by the diamonds were not. In the bottom two
panels we zoom into the low-mass region, illustrating the fits to the points which were included (243 points on the left and 323 points
on the right). [For fixed ~mx, my decreases as ðamxyÞ2= ~mavg increases.]

CONTINUUM LIMIT PHYSICS FROM 2þ 1 FLAVOR . . . PHYSICAL REVIEW D 83, 074508 (2011)

074508-37



0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

m
~

x

4.2

4.3

4.4

4.5

4.6

4.7

(a
m

xy
)2  / 

m~

av
g

m
y
 = 0.01

m
y
 = 0.005

m
y
 = 0.001

0 0.002 0.004 0.006 0.008 0.01

m
~

x

3.25

3.3

3.35

3.4

3.45

3.5

3.55

3.6

(a
m

xy
)2  / 

m~

av
g

m
y
 = 0.008

m
y
 = 0.006

m
y
 = 0.004

m
y
 = 0.002

FIG. 29 (color online). Global fits for the pionmass obtained usingNLOSU(2) chiral perturbation theorywith finite-volume corrections.
In this casewe only include the points which were included in the fit (ml ¼ 0:005, 243 points on the left andml ¼ 0:004, 323 points on the
right) since the finite-volume corrections at larger masses are small. [For fixed ~mx, my decreases as ðamxyÞ2= ~mavg increases.]
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FIG. 30 (color online). Global fit curves obtained using the analytic fit ansatz (49) overlaying the simulated pion masses on the
ml ¼ 0:005, 243 ensemble (top-left) and the ml ¼ 0:004, 323 ensemble (top-right). Points marked by circles were included in the fit,
those marked by diamonds were not. The simple linear expansion replicates the entire range of lattice data reasonably well with the
description being rather better than NLO chiral perturbation theory at our larger masses. In the bottom two panels we zoom into the
low-mass region, illustrating the fits to the points which were included (243 points on the left and 323 points on the right). [For fixed
~mx, my decreases as ðamxyÞ2= ~mavg increases.]
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limit shown in the right panel in Fig. 31. Allowing for a
nonzero value of Cm�

0 does, however, lead to an amplified

error for m2
�=ml at the physical point. The left panel of

Fig. 31 shows the corresponding plots for the infinite and
finite-volume ChPT fits.

Goldstone’s theorem equally applies at vanishing
valence-quark mass (mx ¼ my ¼ 0) but with a nonzero

sea-quark mass (ml > 0). In contrast with the unitary
case discussed in the previous paragraph where Cm�

0 was

consistent with zero, in the partially quenched direction we
find that the corresponding constant Cm�

0 þ Cm�

2 ml is non-

zero, specifically Cm�

2 ¼ 0:43ð8Þ GeV. This value for Cm�

2

is much larger than might be created by propagating the
mass dependence in m0

resðmÞ through the term involving
Cm�

1 ; the greatest mass dependence in m0
res occurs on our

243 ensembles in the partially quenched direction, but can
at most generate a 1% correction to ~m and produces a term
much smaller than the measured Cm�

2 . Further, the residual

chiral symmetry breaking is 4 times smaller for the 323

ensemble which is also included in the global fit. Our
results from this global analytic fit, therefore, require a
curvature, most likely from partially quenched chiral log-
arithms which are known to be larger than in the unitary
direction, in order for Goldstone’s theorem to be satisfied.

It is also worth emphasizing that the discovery of chiral
logarithms in lattice data from plots such as those in
Figs. 28 to 30 is to a certain extent artificial.
Inconsistency with LO chiral perturbation theory is cer-
tainly indicated. Our linear fits suggest that the transfor-
mations made in displaying the data render even
conclusions of genuine curvature, let alone unambiguous
demonstration of logarithmic mass dependence, to be
somewhat optimistic. In order to prove logarithmic behav-
ior, one should really change quark masses substantially on

a logarithmic scale; our present lattice data supports only
the weaker claim of consistency with logarithmic behavior
in the partially quenched direction.

3. Chiral and continuum behavior of the
pion decay constant

We now turn to the chiral behavior of f� and the
extrapolation to the physical point. The leading term in
all the fits contains an a2 correction and we display the fits
performed at nonzero lattice spacing combined with the
unmodified lattice data and also our continuum predictions
combined with the lattice data extrapolated to the contin-
uum limit using the results of the fits.
We display our fits obtained using infinite-volume NLO

SU(2) partially quenched ChPT in Fig. 32. The correspond-
ing fits including finite-volume corrections are shown in
Fig. 33. Finally Fig. 34 displays the fits obtained using our
analytic ansatz. Having performed the fits, we adjust our
unitary data to the continuum limit using the fitting func-
tions with the determined parameters and display the
adjusted data in Fig. 35 together with the finite and
infinite-volume NLO SU(2) ChPT fits (left panel) and the
analytic fit (right panel). The effect of the adjustment to
the continuum limit is illustrated in Fig. 36 where the fits
are superimposed on the unadjusted unitary data. It can be
seen from Figs. 35 and 36 that the adjustment to the
continuum limit for the pion decay constant is very small.
The predictions for f� extrapolated to the physical

quark masses for each of the fits is given in Table XXXI.
We anticipate the discussion of the global fits for fK which
are presented in Sec. VE 6 and mention that the predictions
forfK extrapolated to the physical quarkmasses are given in
Table XXXII, and the predictions for fK=f� extrapolated to
the physical quark masses are given in Table XXXIII.
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FIG. 31 (color online). Left panel: Pion mass fit for the SU(2) NLO fit form in the continuum limit, both with and without finite-
volume logarithms. We adjust the data points to the continuum limit using the a2 dependence in our fit form and overlay these. Right
panel: Chiral extrapolation of the pion mass using the analytic (52) and infinite-volume NLO ChPT ansätze. In both panels the first,
third, and fourth data points from the left (denoted in red) correspond to the 323 ensembles and the remaining 2 (denoted in blue)
correspond to the 243 ones.
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FIG. 32 (color online). Global fits to the lattice data for the pion decay constant obtained using infinite-volume NLO SU(2) chiral
perturbation theory. The top-left and top-right panels correspond to the 243, ml ¼ 0:005 and 323, ml ¼ 0:004 ensembles, respectively.
Points marked by circles are included in the fits, while those with heavier masses marked by diamonds are not. In the bottom two
panels we zoom into the low-mass region, illustrating the fits to the points which were included (243 points on the left and 323 points
on the right). (For fixed ~mx, my increases as afxy increases.)
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FIG. 33 (color online). Global fits to the lattice data for the pion decay constant obtained using NLO SU(2) chiral perturbation theory
with finite-volume corrections. In this case we only include the points which were included in the fit (ml ¼ 0:005, 243 points on the left
and ml ¼ 0:004, 323 points on the right) since the finite-volume corrections at larger masses are small. (For fixed ~mx, my increases as

afxy increases.)
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FIG. 34 (color online). Global fits to the lattice data for the pion decay constant obtained using the analytic ansatz in Eq. (52). The
top-left and top-right panels correspond to the 243, ml ¼ 0:005 and 323, ml ¼ 0:004 ensembles, respectively. Points marked by circles
are included in the fits, while those with heavier masses marked by diamonds are not. In the bottom two panels we zoom into the low-
mass region, illustrating the fits to the points which were included (243 points on the left and 323 points on the right). (For fixed ~mx,my

increases as afxy increases.)
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FIG. 35 (color online). Unitary data for f� adjusted to the continuum limit using each of the fit ansätze. The left panel compares the
infinite-volume and finite-volume forms of the NLO SU(2) fit, while the right panel compares the analytic fit to the infinite-volume
NLO SU(2) fit. The horizontal solid line indicates the value f�� ¼ 130:4 MeV [the authors of Ref. [62] quote f�� ¼ ð130:4�
0:04� 0:2Þ MeV]. In both panels the first, third, and fourth data points from the left (denoted in red) correspond to the 323 ensembles
and the remaining 2 (denoted in blue) correspond to the 243 ones.
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We find that the NLO SU(2) fits underestimate the
physical value at our simulated lattice spacings, and that
this discrepancy is amplified a little by the extrapolation to
the continuum limit. At each of our two lattice spacings,
the analytic ansatz extrapolates close to the physical value
of f�, but, with our ansatz for the form of the a2 effects, the
result becomes statistically inconsistent in the continuum
limit.

From the above discussion we see that using NLO ChPT
to perform the chiral extrapolation for f� results in a value
which is significantly smaller than the physical one. We

recall that only data limited tom� < 420 MeVwas used in
the analysis and note that the fits were performed using the
chiral expansion with f, the decay constant in the SU(2)
chiral limit, included in the expansion parameter
�l=ð4�fÞ2. The downward curvature at low masses seen
in Fig. 35 can, of course, be reduced by replacing the mass-
independent f by an artificial larger parameter such as the
physical f� or fllð ~mlÞmeasured at each quark mass used in
the simulation. The curvature can also be partially ab-
sorbed by using a subset of terms that arise at NNLO.
We have experimented with NNLO fits [50] but find that
the low-energy constants are insufficiently constrained by
our data to be of practical use. Thus the resulting predic-
tions for the physical value of f� depend strongly on the
model assumptions used at NNLO.
The observedOð10%Þ deviation found using NLO chiral

perturbation theory is broadly consistent with the size of
NNLO terms one might expect to be present at masses in
the region of our data. Our data for f� vary from about
20% to 40% above the value of f obtained from our
extrapolations and the square of these terms can be taken
as being indicative of the expected NNLO terms. We might
therefore expect them to be around 5%–15% within our
simulated mass range.
The discrepancy of the prediction for the physical value

of f� from the analytic fits is smaller than that found with
NLO ChPT, but is nevertheless visible. The results at each
of the two lattice spacings are statistically consistent with
f� but lead to an underestimate in the continuum limit.
Given the sign of the chiral logarithms at NLO, one might
expect a linear ansatz to overestimate rather than under-
estimate the prediction for the physical value. It is never-
theless striking that one cannot admit any significant
nonlinearity in this extrapolation and retain consistency
with the physical value for f�. The simple analytic form
used here appears to be a successful phenomenological
model which is simpler and has fewer parameters than
approaches based on ChPTwith arbitrarily chosen analytic
subsets of NNLO and NNNLO terms.
It is of interest to pose the scientific question whether

any of the fit ansätze could in principal be consistent with
the experimentally measured pion decay constant? To
answer this question we update the analysis of Ref. [51]
and include an artificially created data point for each
ensemble that represents the experimental result in the
continuum limit but includes our fitted a2 correction at
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FIG. 36 (color online). Chiral extrapolation of the pion decay
constant using the analytic (52) and ChPT (42) fit ansätze. Here,
the lattice results from the 243 (first and fourth points from the
right denoted in blue) and 323 (remaining 3 points denoted in
red) ensembles are shown along with the mass dependence we
infer both at each lattice spacing and in the continuum limit. The
consistency of the two ensembles with each other and with this
continuum limit is indicative of the size of lattice artefacts. The
horizontal solid line indicates the value f�� ¼ ð130:4� 0:04�
0:2Þ MeV [62].

TABLE XXXII. Predictions for fK in GeV for each global fit
ansatz at each simulated lattice spacing and in the continuum
limit are shown.

NLO NLO fv Analytic

f24
3

K 0.147(2) 0.148(2) 0.152(2)

f32
3

K 0.147(2) 0.148(2) 0.151(2)

fcontinuumK 0.146(2) 0.147(2) 0.151(2)

TABLE XXXI. Predictions for f� in GeV for each global fit
ansatz at each simulated lattice spacing and in the continuum
limit are shown.

NLO NLO fv Analytic

f24
3

� 0.121(2) 0.123(2) 0.128(2)

f32
3

� 0.120(2) 0.122(2) 0.127(2)

fcontinuum� 0.119(2) 0.121(2) 0.126(2)

TABLE XXXIII. Predictions for fK=f� for each global fit
ansatz at each simulated lattice spacing and in the continuum
limit are shown.

NLO NLO fv Analytic

ðfK=f�Þ243 1.216(9) 1.205(9) 1.184(9)

ðfK=f�Þ323 1.221(6) 1.209(6) 1.188(6)

ðfK=f�Þcontinuum 1.229(8) 1.215(7) 1.194(7)
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FIG. 37 (color online). An artificial data point (the left-most data point in each panel) corresponding to the physical value off� [62], but
including our uncertainties in the lattice spacing, is added to the data for the pion decay constant from the five ensembles. The left-hand
panel corresponds to theNLOSU(2)ChPTfits and the right-hand panel to the analytic ansatz. In both panels the first, third, and fourth data
points from the left (denoted in red) correspond to the 323 ensembles and the remaining 2 (denoted in blue) correspond to the 243 ones.
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FIG. 38 (color online). Dependence of the kaon mass on the mass of the light valence quark with fits performed using infinite-
volume NLO partially quenched ChPT. The left panel shows the results from the 243, ml ¼ 0:005 ensemble and the right panel from
the 323, ml ¼ 0:004 ensemble. In each case the results are for the physical strange-quark mass.
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FIG. 39 (color online). Dependence of the kaon mass on the mass of the light valence quark with fits performed using finite-volume
NLO partially quenched ChPT. The left panel shows the results from the 243, ml ¼ 0:005 ensemble and the right panel from the 323,
ml ¼ 0:004 ensemble. In each case the results are for the physical strange-quark mass.
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FIG. 40 (color online). Dependence of the kaon mass on the mass of the light valence quark with fits performed using the analytic fit
ansatz. The left panel shows the results from the 243, ml ¼ 0:005 ensemble and the right panel from the 323, ml ¼ 0:004 ensemble. In
each case the results are for the physical strange-quark mass.
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FIG. 41 (color online). Chiral extrapolation of the kaon mass using unitary data points adjusted to the continuum limit by the fitting
ansätze. Here we compare results obtained using the infinite-volume NLO ChPT ansatz to that using finite-volume logarithms (left
panel) and to the analytic ansatz (right panel). In both panels the first, third, and fourth data points from the left (denoted in red)
correspond to the 323 ensembles and the remaining 2 (denoted in blue) correspond to the 243 ones.
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FIG. 42 (color online). Dependence of the kaon decay constant on the mass of the light valence quark with fits performed using
infinite-volume partially quenched NLO ChPT. The left panel shows the results from the 243,ml ¼ 0:005 ensemble and the right panel
from the 323, ml ¼ 0:004 ensemble. In each case the results are for the physical strange-quark mass.
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each nonzero lattice spacing. This is displayed in Fig. 37
and we find that the analytic ansätze could be consistent
with an uncorrelated �2=dof ¼ 1:9ð7Þ, while NLO ChPT
would fail to simultaneously fit our data and the physical
point, with �2=dof ¼ 6ð1Þ (infinite volume) and �2=dof ¼
5ð1Þ (finite volume).

Of course, improved statistical errors, simulations at a
third lattice spacing and larger physical volumeswould give
us better control of the continuum extrapolation
and finite-volume effects. However, our main conclusion
is that it is imperative to simulate with masses substantially
nearer to the physical point; this will constrain both fit forms
to give more consistent predictions. Ultimately simulations

will be performed directly at physical quarkmasses andwill
eliminate this error completely.We are currently generating
new ensembles with a coarser lattice spacing, with a sub-
stantially larger volume and with very much lighter pion
masses (for a preliminary discussion of these configurations
see Ref. [52]) precisely to address this issue.
As an estimate of the systematic uncertainties in physi-

cal quantities we take the difference between the results
obtained using linear and finite-volume NLO ChPT analy-
ses. This allows for the possible validity of the full NLO
nonanalyticity in the region of masses between the data and
the physical point but also recognizes that part of this
extrapolation may be outside the range of validity of
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FIG. 43 (color online). Dependence of the kaon decay constant on the mass of the light valence quark. The left panel shows the
results from the 243, ml ¼ 0:005 ensemble and the right panel from the 323, ml ¼ 0:004 ensemble. In each case the results are for the
physical strange quark mass. There are two curves plotted. The orange curve which turns up at low masses is the result one infers for
the infinite volume, while the red curve which turns down at low masses is the result we obtain on the finite volume. As we do not
adjust our data for finite volume effects, the finite-volume curve should go through our data. The infinite-volume curve also goes
through our data which is an indication that the finite-volume effects in our data are substatistical, and the difference between the two
curves at lighter masses indicates that one should expect substantial finite-volume effects if one were to simulate at these lighter masses
without changing our present volume.
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FIG. 44 (color online). Dependence of the kaon decay constant on the mass of the light valence quark with fits performed using the
analytic fit ansatz. The left panel shows the results from the 243, ml ¼ 0:005 ensemble and the right panel from the 323, ml ¼ 0:004
ensemble. In each case the results are for the physical strange-quark mass.
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NLO ChPTas suggested by the observation that the present
data is surprisingly consistent with linear behavior. Guided
by the results for f� discussed above, we take as our central
values for phenomenological predictions the average of the
results obtained from our finite-volume NLO ChPT fits and
our analytic fits.

4. Chiral and continuum behavior
of the mass of the kaon

We display our fits using infinite-volume NLO SU(2)
partially quenched ChPT in Fig. 38. Figure 39 displays the
corresponding fits of the same data with the finite-volume

corrections included, while the analytic fits are displayed in
Fig. 40. The corresponding unitary view of the data in the
continuum limit is shown in Fig. 41. All these plots are for
results at the physical sea strange-quark mass.

5. Chiral and continuum behavior of fK

We next discuss fK, the decay constant of the kaon. We
display our fits using infinite-volume NLO SU(2) partially
quenched ChPT in Fig. 42. The following two figures dis-
play fits of the same partially quenched data to ChPTwith
finite-volume corrections (Fig. 43) and to the global ana-
lytic fit ansatz (Fig. 44). The NLO ChPT fit ansätze, both
with and without finite-volume logarithms, are displayed
for the unitary data adjusted to the continuum limit in
Fig. 45.
The two panels in Fig. 46 display the chiral behavior of

the actual unitary data from the two sets of ensembles (left
panel) as well as of the data adjusted to the continuum limit
(right panel).
From these fits our final predictions for fK are given in

Table XXXII, and the corresponding results for fK
f�

in

Table XXXIII.

6. Predictions

We now present our results for f�, fK and their ratio as
well as for the physical bare-quark masses. As discussed
above, our central value for any physical quantity is taken
to be the average of the results obtained from analyses
using the NLO SU(2) ChPT fit with finite-volume correc-
tions and those from the analytic fit. The difference be-
tween the analytic and finite-volume NLO SU(2) fits is
taken as a systematic error. This procedure includes a NLO
finite-volume correction, estimated from the difference
between results obtained using NLO ChPT at infinite and
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FIG. 46 (color online). Chiral extrapolation of the kaon decay constant for unitary data in the continuum limit. We compare the NLO
ChPT ansatz to the analytic ansatz. The left panel displays the data and fits at nonzero lattice spacing, while the right panel displays the
predicted results and correspondingly adjusted data points for the continuum limit. In both panels the first, third, and fourth data points
from the left (denoted in red) correspond to the 323 ensembles and the remaining 2 (denoted in blue) correspond to the 243 ones.
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FIG. 45 (color online). Chiral extrapolation of the kaon decay
constant for unitary data in the continuum limit. We compare the
NLO ChPT ansatz to the corresponding ansatz with finite-
volume logarithms. Of the five data points, the first, third, and
fourth from the left (denoted in red) correspond to the 323

ensembles and the remaining 2 (denoted in blue) correspond to
the 243 ones.
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finite volumes, and which is much smaller than the total
systematic error here.

Our predictions for pseudoscalar decay constants there-
fore contain systematic errors for finite-volume effects, the
chiral extrapolation, and residual chiral symmetry break-
ing, while the discretization error is included indirectly by
the fitting procedure:

fcontinuum� ¼ 124ð2Þð5Þ MeV; (61)

fcontinuumK ¼ 149ð2Þð4Þ MeV; (62)

ðfK=f�Þcontinuum ¼ 1:204ð7Þð25Þ; (63)

where we display the statistical and systematic errors
separately. We note that the known, experimental value
of f� influenced our choice to take the central value of
physical quantities as the average of the results from the
analytic and finite-volume NLO ChPT ansätze. The pre-
diction for f� cannot therefore be considered unbiased,
however, as our aim is to select the most likely central
value for phenomenologically important quantities such as
fK=f� and BK our procedure is both appropriate and
contains a prudent systematic error.

Applying the same procedure to obtain predictions for
the physical bare-quark masses for the � ¼ 2:25 323 en-
sembles, we find:

~mud ¼ 2:35ð8Þð9Þ MeV and ~ms ¼ 63:7ð9Þð1Þ MeV;

(64)

and these will be renormalized in the following section.
The corresponding bare masses for the � ¼ 2:13 243 en-
sembles can be obtained by dividing the results in (64) by
the values of Zl and Zh in Table XXVI.

7. Chiral and continuum behavior of r0 and r1

Finally, in this section we apply the combined chiral/
continuum extrapolation procedure to the scales r0 and r1.
Assuming a linear dependence for the light sea-quark mass
dependence, and including a leading-order a2 term as
before, the scales are independently fit to the form

ri ¼ cri þ cri;aa
2 þ cri;ml

~ml; (65)

where i ¼ 0, 1. Prior to the fit, the data are linearly inter-
polated to each of the physical strange-quark masses ob-
tained from the global fits and presented in Table XXX,
and the fit and the subsequent extrapolation are performed
using the corresponding physical light-quark mass and
lattice spacings.
The parameters and �2=d:o:f of the fits are given in

Tables XXXIVand XXXV, respectively, and plots showing
the fits overlaying the data in the continuum limit are
shown in Fig. 47. The fits to r0 appear to describe the
data well by eye, and have a reasonable (uncorrelated)
�2=d:o:f for the central value, but with a large deviation
across the superjackknife distribution. The fits to r1 also
appear to describe the data reasonably well, although there
does seem to be a tension with the heaviest point on the 243

ensembles, which is likely responsible for the larger
�2=d:o:f. As there are only five data points it is difficult

TABLE XXXV. �2=d:o:f of the chiral/continuum fits to r0 and r1 is shown.

Quantity ChPT ChPT-fv Analytic

r0 1.35(1.66) 1.34(1.65) 1.31(1.63)

r1 2.69(2.39) 2.68(2.38) 2.66(2.37)

TABLE XXXIV. Parameters of the chiral/continuum fits to r0 and r1 are shown.

(a) r0
Parameter ChPT ChPT fv Analytic

cr0 2:468ð41Þ GeV�1 2:468ð41Þ GeV�1 2:467ð41Þ GeV�1

cr0;a �0:25ð14Þ GeV �0:25ð14Þ GeV �0:25ð14Þ GeV
cr0;ml

0:42ð1:23Þ GeV�2 0:44ð1:23Þ GeV�2 0:47ð1:23Þ GeV�2

(b) r1
Parameter ChPT ChPT-fv Analytic

cr1 1:694ð29Þ GeV�1 1:694ð29Þ GeV�1 1:693ð29Þ GeV�1

cr1;a �0:15ð11Þ GeV �0:15ð11Þ GeV �0:15ð12Þ GeV
cr1;ml

�1:76ð64Þ GeV�2 �1:76ð64Þ GeV�2 �1:76ð64Þ GeV�2
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to reach any stronger conclusions regarding the data: more
ensembles and better statistics are needed. For the purpose
of quoting a final result, we apply a PDG scale factor offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2=d:o:f

p
to the statistical errors on each of the results. In

order to retain the correlations between these quantities
when the ratio is taken, the scale factor is applied to the
difference of each jackknife sample from the mean.

The continuum results for r0, r1 and their ratio at physi-
cal quark masses are given in Table XXXVI. Using the
procedure for combining the results obtained using the
different chiral ansätze outlined in Sec. VE 3 and applying
the PDG scale factor as above, gives

r0 ¼ 2:468ð45Þstatð1ÞFVð1Þ� GeV�1

¼ 0:4870ð89Þstatð2ÞFVð2Þ� fm;

r1 ¼ 1:689ð47Þstatð0ÞFVð1Þ� GeV�1

¼ 0:3333ð93Þstatð1ÞFVð2Þ� fm;

and r1=r0 ¼ 0:684ð15Þstatð0ÞFVð0Þ�;

(66)

where the finite-volume error arising from the different
determinations of the lattice spacings and quark masses is
smaller than the quoted precision on the ratio. � labels
the error due to the chiral extrapolation. For comparison,

the MILC Collaboration recently obtained r1 ¼
0:3117ð6Þðþ12

�31Þ fm [ ’ 1:580ð3Þðþ6
�16Þ GeV�1] [53], and

also r1 ¼ 0:317ð7Þð3Þ fm [ ’ 1:61ð4Þð2Þ GeV�1] and r0 ¼
0:462ð11Þð4Þ fm [ ’ 2:34ð6Þð2Þ GeV�1] from an earlier
study [54]. At this time we do not have an explanation of
the discrepancy between our results in (66) and those of the
MILC Collaboration beyond noting the very different ap-
proaches to setting the scale and performing the chiral
extrapolation.

VI. LIGHT-QUARK MASSES

The quark masses quoted in Eq. (64) are the bare masses
for the lattice action which we are using on the 323 ensem-
bles with � ¼ 2:25 corresponding to a lattice spacing
a�1 ’ 2:28 GeV. In order to be useful in phenomenologi-
cal applications these results must be translated into re-
normalized masses in some standard continuum scheme.
Therefore in Sec. VIA we determine the renormalization
constants relating the bare masses in (64) to those renor-

malized in the MS scheme at a renormalization scale of
2 GeV. In Sec. VIB we then combine these renormaliza-
tion constants with the bare masses in (64) to obtain the

renormalized masses, the LO LEC BMSð2 GeVÞ and the
chiral condensate.
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FIG. 47 (color online). The scales r0 (left) and r1 (right) corrected to the continuum limit, overlaid by the chiral/continuum fit. Of the
five data points, the first, third and fourth from the left (denoted in red) correspond to the 323 ensembles and the remaining 2 (denoted
in blue) correspond to the 243 ones. The extrapolated point at the physical light-quark mass is shown as the grey cross on the left. Here
the lattice spacings and physical light-quark mass were obtained from the global fits using the analytic ansatz. The fits using the
quantities obtained with the ChPT and ChPT-fv global fit ansätze are almost indistinguishable from those shown in these figures.

TABLE XXXVI. Continuum values of r0 and r1 and the ratio r1=r0 at physical quark masses
determined from a chiral/continuum fit using the lattice spacings and quark masses obtained
from the global fits are shown.

Quantity ChPT ChPT-fv Analytic

r0 2:469ð39Þ GeV�1 2:469ð39Þ GeV�1 2:468ð39Þ GeV�1

r1 1:690ð29Þ GeV�1 1:690ð29Þ GeV�1 1:689ð29Þ GeV�1

r1=r0 0.6844(96) 0.6844(97) 0.6843(97)
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A. Nonperturbative renormalization for quark masses

The quark mass renormalization factor which relates the

lattice bare quark mass to that in the MS scheme is deter-
mined using nonperturbative renormalization (NPR) with
the RI/SMOM schemes proposed in Ref. [15] as intermedi-
ate schemes. This is an extension of the Rome-
Southampton NPR program in which the RI/MOM scheme
was defined [45]. Quark masses renormalized in the sym-
metric MOM scheme (RI/SMOM) defined in [15] or the
original RI/MOM scheme [45] are obtained entirely non-
perturbatively. Since it is not possible to simulate in a
noninteger number of dimensions, continuum perturbation
theory is needed tomatch the results in either the RI/SMOM

or the RI/MOM scheme and the target MS scheme. We
stress however, that we completely avoid the use of lattice
perturbation theory which often converges more slowly
than continuum perturbation theory (PT). Since RI/MOM
and any of the schemes proposed in [15] are legitimate
renormalization schemes, we exploit the freedom to choose
an intermediate scheme to reduce its effect on the final

result for the renormalized quark mass in the MS scheme
and to have a better understanding of this uncertainty.

Our earlier study [14], used to normalize the quark mass
on the 243 ensembles, applied the RI/MOM scheme to
renormalize the quark masses and suffered from sizable
systematic errors with two dominant sources. One of these
is the truncation error in the perturbative continuummatch-

ing between the RI/MOM and MS schemes. This was
estimated to be 6% for � ¼ 2 GeV from the relative size
of the highest-order term used (3 loop). The other is a
nonperturbative effect arising because the strange-quark
mass is fixed close to its physical value, and the chiral limit
is not taken for this quark. We estimated the corresponding
systematic error on the quark mass renormalization factor
for a�1 ¼ 1:73 GeV and � ¼ 2 GeV to be about 7%. As
the strange-quark mass and the typical scale of spontane-
ous chiral symmetry breaking are almost the same, this
error can be viewed as a general error due to contamination
of nonperturbative effects (NPE). It was shown in Ref. [14]
that changing the kinematics of momenta used to define the
NPR scheme greatly reduces the contamination from un-
wanted nonperturbative effects and this will be discussed
below. The actual implementation of the schemes with
unconventional kinematics has been done in Ref. [15] care-
fully ensuring that the Ward-Takahashi chiral identities are
satisfied. A pilot study [55] using the new schemes dem-
onstrated that it is a promising alternative to the conven-
tional RI/MOM scheme with reduced systematic errors. In
the present article we use two RI/SMOM schemes pro-
posed in Ref. [15]. Preliminary results have been reviewed
in Ref. [56].

An important technical improvement introduced since
the previous study [14] is the use of volume momentum
sources for the quark propagators. This helps to reduce
the statistical error greatly and in addition reduces the

systematic error due to the dependence on the position of
the local source used in [14]. More details about the use of
momentum sources can be found in Ref. [35].
The mass renormalization factor Zm is conveniently

calculated using the relation

Zm ¼ 1=ZS ¼ 1=ZP; (67)

where Zm, ZS, ZP are the quark mass, flavor nonsinglet
scalar, and pseudoscalar renormalization factors, respec-
tively. Here we are exploiting the important chiral symme-
try properties of DWF. Our convention is that the
renormalization factors multiply the bare quantities to
yield renormalized ones:

mR¼Zm ~m; Pa
R¼ZPP

a; SaR¼ZSS
a; (68)

where the left-hand sides are the renormalized mass, pseu-
doscalar and scalar densities, and a is a flavor label. ~m in
Eq. (68) is in physical units. The relations in Eq. (67) are
necessary for the Ward-Takahashi identities to hold for the
renormalized operators. The RI/MOM renormalization
condition on the amputated scalar vertex �S reads

ZS

Zq

1

12
Tr½�S � I� ¼ 1: (69)

Zq is the wave function renormalization factor, which can

be determined using the trace condition on the local vector
operator,

ZV

Zq

1

48
Tr½�V�

� ��� ¼ 1: (70)

The vertex functions � depend on the incoming and out-
going momenta on the two fermion lines,�ðpin; poutÞ. The
conventional RI/MOM scheme is defined using the for-
ward vertex with pin ¼ pout ¼ p. The renormalization
conditions, Eqs. (69) and (70), are applied by setting the
renormalization scale � to be the off-shell external mo-
mentum, �2 ¼ p2, in the chiral limit.
It is in principle possible to determine ZSð¼ ZPÞ using

the pseudoscalar vertex function instead of the scalar one
in Eq. (69). However, with the original RI/MOM choice for
the external momenta, the pseudoscalar vertex couples to
the zero-momentum pion, and the Green function diverges
as 1=mq as the quark mass mq ! 0 at fixed p [57].

Therefore the pseudoscalar vertex cannot be used without
some manipulation of the divergence (see, e.g., [58]) and
has not been considered in our previous publication [14].
This is in contrast with the RI/SMOM schemes described
below which do not have such a pole asmq ! 0. Similarly,

the axial-vector vertex can be used to determine Zq be-

cause ZV ¼ ZA. However, Zq obtained using the vector and

axial-vector vertices at large but finite p2 will differ be-
cause of the coupling of the axial current to the Goldstone
boson [45]. These differences are known to be of Oð1=p2Þ
at high momentum from the operator product expansion
[45,57] or from Weinberg’s theorem of power counting for
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a Feynman diagram [14]. In Ref. [14], the average of the
vector and the axial-vector vertex was used to determine
Zq and the difference was included in the systematic error,

though the corresponding 1% error is subdominant.
The caveats mentioned in the two preceding paragraphs

are both connected to the RI/MOM scheme and its channel
with an ‘‘exceptional momentum’’; specifically, the mo-
mentum transfer q � pin � pout ¼ 0. This is the reason for
the large NPE error. It was demonstrated that the use of
nonexceptional momenta pin � pout � 0 reduces the NPE
effect significantly. The RI/SMOM schemes are designed
so that all channels have nonexceptional momenta. For
quark bilinear operators we choose to have p2

in ¼ p2
out ¼

q2 and hence introduce the name ‘‘symmetric MOM’’
(SMOM) schemes. The two schemes RI/SMOM and
RI=SMOM��

are defined with this kinematical choice

but differ in the �-projection operators which are used to
define the wave function renormalization. For the vector
(axial-vector) vertex function the projector qq�=q

2

(�5qq�=q
2) is used in the RI/SMOM scheme and ��

(�5��) as in Eq. (70) is used for RI=SMOM��
. The

standard I (�5) spinor projector is used for the scalar
(pseudoscalar) vertex in both new schemes.

The conversion factors from the RI/SMOM and

RI=SMOM��
schemes to MS have been calculated at

one-loop order in Ref. [15] and recently to two-loop order
[16,17]:

CmðRI=SMOM ! MS; �Þ

¼ 1�
�

sð�Þ
4�

�
0:646

�
�

sð�Þ
4�

�
2ð22:608þ 4:014nfÞ . . . ; (71)

CmðRI=SMOM��
!MS;�Þ

¼1�
�

sð�Þ
4�

�
1:979�

�

sð�Þ
4�

�
2ð55:032þ6:162nfÞ . . . ;

(72)

where the coefficients have been rounded to the third
decimal place. Evaluating these factors at � ¼ 2 GeV
we have

CmðRI=SMOM ! MS; � ¼ 2 GeV; nf ¼ 3Þ
¼ 1� 0:015� 0:006 . . . ; (73)

CmðRI=SMOM��
! MS; � ¼ 2 GeV; nf ¼ 3Þ
¼ 1� 0:046� 0:020 . . . : (74)

In the RI/MOM and RI0=MOM schemes the conversion
factors are known to three-loop order [59,60]:

CmðRI=MOM ! MS; � ¼ 2 GeV; nf ¼ 3Þ
¼ 1� 0:123� 0:070� 0:048þ . . . ;

(75)

CmðRI0=MOM ! MS; � ¼ 2 GeV; nf ¼ 3Þ
¼ 1� 0:123� 0:065� 0:044þ . . . :

(76)

We note that, at least up to two-loop order, the convergence

of the series relating the new SMOM schemes to MS is
considerably better than for the RI/MOM scheme. As al-
ready mentioned, the truncation error of the RI/MOM
scheme was estimated from the size of the highest-order
term available (3 loop). Having, in addition, two inter-
mediate SMOM schemes, we can expect to have a more
reliable estimate of the truncation error.
We now turn to the numerical evaluation of the renor-

malization factors. At each value of �, we use data ob-
tained at the three light-quark masses: ml ¼ 0:004, 0.006,
and 0.008 for the finer 323 lattice and ml ¼ 0:005, 0.01,
and 0.02 for the coarser 243 lattice. 20 configurations
were analyzed for each point. The ratio of quark wave
function and local axial current renormalization factors is
calculated from the average of vector and axial-vector
vertex functions,

Zq

ZV

¼ 1

2
ð�V þ�AÞ; (77)

with projected and traced vertex functions:

�RI=SMOM
V ¼ 1

12q̂2
Tr½�V�

�q̂ q̂�� and

�RI=SMOM
A ¼ 1

12q̂2
Tr½�A�

� �5 q̂ q̂��; (78)

for the RI/SMOM scheme. Here q� in the continuum RI/

SMOM scheme [15] has been replaced with the q̂� ¼
sinðq�Þ, as the derivative for the divergence of the current
in the continuum theory is naturally replaced by the sym-
metric difference on the lattice. A remarkable feature of the
RI/SMOM scheme is that in the chiral limit �V ¼ �A

holds nonperturbatively, in contrast to �V � �A for the
RI/MOM scheme due to spontaneous symmetry breaking.
In principle there could still be a small difference for the
lattice RI/SMOM scheme with nonzero mres, which, how-
ever, is negligible in the momentum range we use [55].
Using the continuum Ward-Takahashi identities, one can
also show the equivalence of Zq in the RI/SMOM and

RI0=MOM schemes [15].
The RI=SMOM��

scheme is defined using the conven-

tional projectors,
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�
RI=SMOM��

V ¼ 1
48 Tr½�V�

� ��� and

�
RI=SMOM��

A ¼ 1
48 Tr½�A�

� �5���: (79)

Although these projectors are superficially the same as
those used in the RI/MOM scheme, it should be remem-
bered that the kinematics is different in the two cases with
no exceptional channels in the Green functions used to
define the RI=SMOM��

scheme.

The product of mass and wave function renormalization
factors is calculated from the average of scalar and pseu-
doscalar vertex functions,

ZmZq ¼ 1
2ð�S þ�PÞ; (80)

with

�S ¼ 1
12 Tr½�S � 1� and �P ¼ 1

12 Tr½�P � �5�; (81)

again defined with the SMOM kinematics for the vertex
functions. While �S ¼ �P holds to all orders in perturba-
tion theory with naive dimensional regularization, by using
Weinberg’s power-counting scheme we see that they can in
general differ by terms of Oð1=p6Þ [14]. The difference
�P ��S after the chiral extrapolation is plotted in Fig. 48
as a function of p2 (in physical units) for both the 243 and
323 lattices. The figure confirms the expected approximate
1=p6 scaling. The unwanted nonperturbative effect from
spontaneous symmetry breaking is small and the introduc-
tion of nonexceptional momenta has had the expected
effect. This is in contrast to the RI/MOM scheme with
the exceptional channel, where the same difference be-
haves as 1=ðmp2Þ, and thus diverges in the chiral limit at
finite p2.

The mass renormalization factor Z	
m, with 	 ¼

RI=SMOM or RI=SMOM��
, is given by combining

Eqs. (77) and (80),

Z	
m ¼ 1

ZV

�S þ�P

�	
V þ�	

A

: (82)

In calculating the ratio of vertex functions in Eq. (82) we
take the average of S and P or V and A for each light-quark
mass and then fit with a quadratic [cþ c0ðml þmresÞ2]
or linear [cþ c00ðml þmresÞ] formula to obtain the value
c in the chiral limit for the numerator and denominator. For
illustration, the extrapolation for the numerator using the
quadratic formula is shown in Fig. 49, where the observed
mass dependence is seen to be very small. Because of the
very mild mass dependence, to the precision with which we
quote our results and errors, the quadratic and linear ex-
trapolation formulas lead to exactly the same quark mass
renormalization factor and error. Finally, taking the ratio
and combining with ZV gives the mass renormalization
factor in the RI/SMOM schemes. The renormalization

factor in theMS scheme at a scale � ¼ 2 GeV is obtained

by first matching the scheme 	 to MS at �2 ¼ p2
in ¼

p2
out ¼ q2 using Eqs. (71) and (72) and then running to

2 GeV using the three-loop anomalous dimension in the

MS scheme. We use the four-loop QCD beta functions [61]

to calculate 
ð3Þ
s ð�Þ for running and matching as shown in

Appendix A of Ref. [14]. The relevant parameters taken
from the 2008 Particle Data Group [62] are


ð5Þ
s ðmZÞ ¼ 0:1176; mZ ¼ 91:1876 GeV;

�mb ¼ 4:20 GeV; and �mc ¼ 1:27 GeV; (83)

where the quark masses are in the MS scheme at the scale

of the mass itself, e.g., �mb ¼ mMS
b ð �mbÞ.

In Fig. 50 we plot Z
SMOM��
m ð�Þ and ZSMOM

m ð�Þ in the SU
(2) chiral limit as functions of �2 ¼ p2 for the 323 ensem-

bles. In addition we also plot ZMS
m ð2 GeVÞ as functions of

10
p

2
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2
]
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Λ
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1/p
6
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3

FIG. 48 (color online). �P ��S as a function of p2 [GeV2]
for fine (323) and coarse (243) lattices. A straight line with 1=p6

slope but arbitrary normalization is drawn to guide the eye.
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FIG. 49 (color online). The chiral extrapolation of ð�P þ
�SÞ=2 for the fine (323) lattice for each p2 point is shown.
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the matching scale p2 obtained with SMOM and SMOM��

as the intermediate schemes. In an ideal situation, i.e., one
in which the errors due to NPE contamination, truncation
of perturbation theory and lattice artifacts are all small, the
results obtained using the two intermediate schemes would

give the same results for ZMS
m ð2GeVÞ, and the results would

be independent of ðpaÞ2. Since we have observed that the
NPE error is small, the difference between the two sets of
results is mostly due to the truncation of perturbation
theory and lattice discretization errors. The observed de-
crease in this difference as p2 increases is consistent with
the expected behavior of the truncation error. Conversely,
since the truncation error increases as p2 decreases, taking
the limit ðpaÞ2 ! 0, which is a typical treatment to elimi-
nate the discretization error, is not an appropriate proce-
dure. We therefore choose instead to evaluate Zm by taking
an intermediate reference point p2 ¼ ð2 GeVÞ2, for both
the 243 and 323 lattices. In this way, as we take the
continuum limit of the renormalized quark mass, the lead-
ing ðpaÞ2 discretization error associated with the nonper-
turbative renormalization will be removed.

There is a subtlety due to lattice artefacts which are not
Oð4Þ invariant and which are responsible for the non-
smooth ðpaÞ2 dependence in the figure. A term like
a2
P

�ðp�Þ4=p2, whose presence has been demonstrated

in the conventional RI/MOM scheme for Wilson quarks
[63], could exist also in the SMOM schemes. Such a term
would manifest itself as scattered data around a smooth
curve in p2, and the size of the scatter is expected to be
comparable to the leading ðpaÞ2 error as both are of the
same order in a2. This appears to be compatible to what is
shown in the figure. Of course, it would be very helpful to
know these terms, but in the absence of this knowledge we

include this scatter in the systematic error by inflating the

error by a factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2=dof

p
. The results are

ZMSð32Þ
m ð� ¼ 2 GeV; nf ¼ 3; SMOM��

Þ ¼ 1:573ð2Þ;
(84)

ZMSð32Þ
m ð� ¼ 2 GeV; nf ¼ 3; SMOMÞ ¼ 1:541ð7Þ: (85)

The final arguments on the left-hand sides denote the
choice of intermediate scheme. The error on the right-
hand sides is the combination of the statistical fluctuations
and the scatter of the points around the linear fit. The
central values and errors are shown in the figure at the
reference point, p2 ¼ ð2 GeVÞ2.
The 243 coarser lattice has been analyzed similarly for

the ml ¼ 0:005, 0.01 and 0.02 ensembles and the results
are shown in Fig. 51. The mass renormalization factors on
the 243 lattice for the two intermediate SMOM schemes are

ZMSð24Þ
m ð� ¼ 2 GeV; nf ¼ 3; SMOM��

Þ ¼ 1:578ð2Þ;
(86)

ZMSð24Þ
m ð�¼2GeV;nf¼3;SMOMÞ¼1:534ð10Þ: (87)

In Eq. (64) we have presented the bare-quark masses for
the fine 323 lattice and in Table XXVI we give the ratios of
equivalent bare masses on the 243 and 323 lattices. Because
of the different Oða2Þ artefacts for the light and heavy-
quark masses, there are two such ratios Zl for the ud quarks
and Zh for the s quark. These ratios Zl and Zh are also the
scheme-independent ratios of the renormalization con-
stants on the course and fine lattices. We now use these

ratios to estimate the difference of the MS renormalized
masses with the SMOM and SMOM��

schemes in the

continuum limit. The continuum extrapolation of Zð32Þ
m
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FIG. 50 (color online). Z
SMOM��
m ð�Þ and ZSMOM

m ð�Þ as func-

tions of �2 ¼ p2, and ZMS
m ð2 GeVÞ from the SMOM or

SMOM��
schemes as a function of matching scale squared p2

for the fine lattice. The interpolation points are shown with the
error bar at p2 ¼ ð2 GeVÞ2.
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FIG. 51 (color online). The same figure as Fig. 50, but for the
coarse 243 lattice is shown.
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and Zð24Þ
m =Zl or Z

ð24Þ
m =Zh will remove the ðpaÞ2 error in the

nonperturbative renormalization. Thus, if a difference is
found, it can largely be attributed to the truncation error of
the perturbative matching. Performing such an extrapola-
tion we find

ZMSð32Þc
ml ð� ¼ 2 GeV; nf ¼ 3; SMOM��

Þ ¼ 1:527ð6Þ;
(88)

ZMSð32Þc
ml ð� ¼ 2 GeV; nf ¼ 3; SMOMÞ ¼ 1:511ð22Þ;

(89)

for the ud quark, and

ZMSð32Þc
mh ð� ¼ 2 GeV; nf ¼ 3; SMOM��

Þ ¼ 1:510ð6Þ;
(90)

ZMSð32Þc
mh ð� ¼ 2 GeV; nf ¼ 3; SMOMÞ ¼ 1:495ð22Þ;

(91)

for the s quark. Note that because these factors multiply
~mudð323Þ=að323Þ or ~msð323Þ=að323Þ presented in Eq. (64)

to give theMS mass in the continuum limit, they are made
to absorb the Oða2ð323ÞÞ discretization error in these bare-
quark masses on the fine lattice. Because of this, as well as
the fact that the Zm’s are free fromOða2Þ errors originating
from the SMOM nonperturbative renormalization, we have
put additional suffix ‘‘c’’ as ‘‘continuum’’ to distinguish

them from ZMSð32Þ
m . The existence of a mass dependent

contribution to theOða2Þ artefacts gives rise to the different
Zm for the light and heavy-quark masses. From the two

different estimates of the MS renormalization factors with
the SMOM and SMOM��

intermediate nonperturbative

schemes, we choose to take SMOM��
for our central value.

The reason is that the scatter about the linear behavior
observed for the SMOM scheme in Figs. 50 and 51 is
much larger. Although the effect of the scatter has been
taken into account in the error, we consider the continuum
extrapolation from the SMOM scheme to be less reliable.

The difference in the central values of ZMSð32Þc
ml in Eqs. (88)

and (89) is about 1%, and this is also the case for

the difference between the central values of ZMSð32Þc
mh in

Eqs. (90) and (91). These differences of about 1% give an
indication of the possible size of the truncation error of the

perturbative two-loop matching to MS (it should be noted
however, that the errors in the renormalization factors in
the SMOM scheme are even a little larger). Another esti-
mate of the truncation error of the matching is obtained by
evaluating the size of the two-loop term in Eq. (74),
resulting in 2.1% for the SMOM��

scheme. In order to

be conservative, we shall take the latter as our estimate.
Other systematic errors arise from the fact that the simu-
lated strange mass is nonzero and from the small difference
in the scalar and pseudoscalar vertices due to the residual
spontaneous symmetry breaking effects. The first error is
estimated from the response of scalar and pseudoscalar
vertex functions to the variation of the light-quark mass
[14]. From the flat behavior of�P þ�S on the light-quark
mass in Fig. 49 it can be seen that this uncertainty is small.
The error estimates are compiled in Table XXXVII. In the
table, the corresponding errors from the RI/MOM analysis
[14] are shown for comparison. All errors have become
significantly smaller for the new SMOM schemes. Now

our final values for the MS renormalization factor read

ZMSð32Þc
ml ð� ¼ 2 GeV; nf ¼ 3Þ ¼ 1:527ð6Þð33Þ; (92)

ZMSð32Þc
mh ð� ¼ 2 GeV; nf ¼ 3Þ ¼ 1:510ð6Þð33Þ; (93)

where the first error is the statistical uncertainty inflated to
take into account the scatter about the linear behavior due
to Oð4Þ noninvariant effects (as explained above) and the
second is due to the remaining systematic effects and is
dominated by the 2.1% truncation error of the perturbative
matching. Here we have not taken into account the statis-
tical fluctuation of ZV , which will be properly included in
the calculation of the renormalized quark masses described
in the next subsection. The corresponding renormalization
factor for the light-quark mass on the coarse 243 lattice is

ZMSð24Þc
ml ð�¼ 2 GeV; nf ¼ 3Þ ¼ Zl � ZMSð32Þc

ml ð�¼ 2 GeV;

nf ¼ 3Þ ¼ 1:498ð6Þð33Þ. This value is consistent with our

earlier estimate of the same quantity using RI/MOM as the
intermediate scheme, 1.656(157) [14], but now with a
considerably reduced error.

TABLE XXXVII. The systematic error budget for ZMS
m ð2 GeVÞ with intermediate RI/SMOM

schemes (this work) and RI/MOM scheme [14].

Ensemble Fine (322) Course (243) Course (163) [14]
Intermediate scheme RI/SMOM RI/SMOM RI/MOM

PT truncation error 2.1% 2.1% 6%

ms � 0 0.1% 0.2% 7%

ð�P ��SÞ=2 0.5% 0.6% N.A. (1)

ð�A ��VÞ=2 0.0% 0.0% 1%

total 2.2% 2.2% 9%
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B. Renormalized quark masses

After the detailed discussion of the quark mass renor-
malization, it is now straightforward to combine the renor-
malization constants in Eqs. (92) and (93) with the physical
bare-quark masses on the 323 lattice in Eq. (64) to obtain

the light and strange-quark masses renormalized in MS
scheme:

mMS
ud ð2 GeVÞ ¼ ZMSð32Þc

ml ð� ¼ 2 GeV; nf ¼ 3Þ
� ~mudð323Þ � a�1ð323Þ

¼ 3:59ð13Þstatð14Þsysð8Þren MeV; (94)

mMS
s ð2 GeVÞ ¼ ZMSð32Þc

mh ð� ¼ 2 GeV; nf ¼ 3Þ
� ~msð323Þ � a�1ð323Þ

¼ 96:2ð1:6Þstatð0:2Þsysð2:1Þren MeV; (95)

where the three errors on the right-hand side correspond to
the statistical uncertainty, the systematic uncertainty due
to the chiral extrapolation and finite volume, and the error
in the renormalization factor. We recall that for the error
due to the chiral extrapolation we conservatively take the
full difference of the results obtained using the finite-
volume NLO SU(2) and analytic fits and for the central
value we take the average of these results. We estimate the
finite-volume effects from the difference of the results
obtained using finite-volume and infinite-volume NLO
ChPT fits and combine these errors in quadrature. The
finite-volume errors prove to be small. The error in the
renormalization factor includes those in Eqs. (92) and (93).

The ratio of the s and ud quark masses is

ms

mud
¼ 26:8ð0:8Þstatð1:1Þsys: (96)

We end this section by presenting our results for the
leading-order LEC B and the chiral condensate. Using the
finite-volume NLO ChPT fits we find

BMSð2 GeVÞ ¼ ZMSð32Þ�1
ml ð� ¼ 2 GeV; nf ¼ 3Þ

� Bð323Þ � a�1ð323Þ
¼ 2:64ð6Þstatð6Þsysð6Þren GeV: (97)

Combining this result with the pion decay constant in the
chiral limit, also obtained using the finite-volume NLO
ChPT fits the chiral condensate is found to be

½�MSð2 GeVÞ�1=3 ¼ ½f2Bð2 GeVÞ=2�1=3
¼ 256ð5Þstatð2Þsysð2Þren MeV: (98)

In Eqs. (97) and (98) the second error is only due to finite-
volume corrections estimated from the difference of finite
and infinite-volume NLO ChPT fits.

VII. TOPOLOGICAL SUSCEPTIBILITY

The topological charge Q, defined on a single Euclidean
space-time configuration, and its susceptibility, �Q, are

interesting quantities to calculate. While Q depends only
indirectly on the quark masses, leading-order SU(2) ChPT
[64,65] predicts a strong dependence of �Q on the light

with �Q vanishing linearly as ml ! 0, suggesting that �Q

may show important dynamical quark mass effects.
In the continuum Q and �Q are defined by

Q¼ g2

16�2

Z
d4xG�
ðxÞ ~G�
ðxÞ and �Q¼hQ2i=V; (99)

where V is the four-volume of the lattice, G�
ðxÞ is the

gluon field strength tensor and ~G�
ðxÞ, its dual. In the

continuum, Q is integer valued and related to exact chiral
zero modes of the massless Dirac operator by the Atiyah-
Singer index theorem [66]. For sufficiently smooth gauge
fields it is possible to find a lattice expression which will
always evaluate to an integer [67], as in the continuum
limit. However, in the calculation reported here the neces-
sary smoothness condition is not obeyed and we instead
replace the right-hand side of Eq. (99) by a sum of Wilson

loops chosen to approximate the G�
ðxÞ ~G�
ðxÞ product in
Eq. (99). Specifically we employ the ‘‘five-loop improved’’
definition of the topological charge proposed in Ref. [68]
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FIG. 52 (color online). Monte Carlo time histories of the
topological charge. The light sea-quark mass increases from
top to bottom, [0.005 and 0.01, 243 (top two panels), and
0.004-0.008, 323]. Data for the 243 ensembles up to trajectory
5000 were reported originally in [1]; the results for later trajec-
tories and for the 323 ensembles are new and are plotted in black.
Most of the data was generated using the RHMC II algorithm
(red and black lines). The exceptions are the trajectories up to
1455 for the ml ¼ 0:01, 243ensemble for which the RHMC 0
(for the first 550 trajectories, green line) and RHMC I (for
remaining trajectories up to 1455, blue line) were used. The
small gap in the top panel represents missing measurements
which are irrelevant since observables are always calculated
starting from trajectory 1000.
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which at tree level is accurate through order a4. However,
before evaluating this lattice expression for the topological
charge, we smooth the links in the lattice by performing a
series of APE smearing steps [69,70]. The smearing pa-
rameter was set to 0.45, and 60 smearing sweeps were
performed before measuring Q. The results are insensitive
to the choice of these parameters.

In Fig. 52 theMonte Carlo time history ofQ is shown for
each ensemble of gauge fields in our study. For each case,
the update algorithm RHMC II [1] was used, except for the
first 1455 configurations for theml ¼ 0:01 ensemble where
the RHMC 0 and RHMC I algorithms were used. In [1] it
was shown that RHMC II is more effective in changing the
gauge field topology, and therefore produces shorter auto-
correlation times. The data for the first half (up to trajec-
tory 5000) of both 243 ensembles is repeated from [1].
Figure 52 shows clearly the expected slowing of the rate of
change of topological charge when moving towards the
continuum [71] and, to a lesser degree, when decreasing
the quark mass. The integrated autocorrelation times for Q
for the smaller lattice-spacing ensembles are shown in
Fig. 2. While this figure is consistent with the autocorrela-
tion times reaching a plateau of about 80 time units when

integrated over an interval of about 200 time units, the
exploding errors make this conclusion highly uncertain.
Scanning Fig. 52 by eye, one might argue that the auto-
correlations could be 500 time units, or longer. For ex-
ample, note the large fluctuation to negative Q beginning
around time unit 4750 for ml ¼ 0:006.
The distributions of topological charge for each en-

semble are shown in Fig. 53. The distributions become
narrower as the quark mass is decreased. For the smaller
lattice spacing, they also appear to exhibit non-Gaussian-
like tails, or humps at large jQj.
Because of the parity symmetry of our calculation, the

average of the pseudoscalar quantity hQi vanishes.
However, �Q remains nonzero and at leading order in

SU(2) chiral perturbation theory [64,65] is given by

�Q ¼ �

�
1

mu

þ 1

md

��1 ¼ �
mumd

mu þmd

; (100)

where � ¼ Bf2=2 is the chiral condensate coming from a
single flavor in the limit of vanishing up and down quark
mass.
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FIG. 53. Topological charge distributions are shown. Top: 323, ml ¼ 0:004–0:008, left to right. Bottom: 243, ml ¼ 0:005 and 0.01.
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At one-loop in chiral perturbation theory [72],

�Q ¼ �

�
1

mu

þ 1

md

��1 �
�
1� 3

ð4�fÞ2 m
2
� log

m2
�

�2

þ K6ðmu þmdÞ þ 2ð2K7 þ K8Þ mumd

mu þmd

�
; (101)

¼ �
ml

2

�
1� 3

ð4�fÞ2 m
2
ll log

m2
ll

�2
þ ð2K6 þ 2K7 þ K8Þml

�
;

(102)

where Ki ¼ 128�Li=f
4 are proportional to the Gasser-

Leutwyler NLO LECs [72], and in the last line the formula
is evaluated for degenerate quarks. In contrast to other
quantities considered in this paper, we do not attempt to
characterize or evaluate the corrections to Eqs. (101) or
(102) which come from nonzero lattice spacing. That
interesting question is left for future work.

In Table XXXVIII values of hQi and �Q for each en-

semble of configurations are summarized. To test for the
expected autocorrelations, the data were blocked into bins
of various sizes ranging from 10 to 600 time units. The
quoted values of the statistical errors resulted when the
block sizes were taken large enough that the errors no
longer changed significantly. The block sizes are given in
Table XXXVIII. For all cases the first 1000 time units were
discarded for thermalization.

The dependence of �Q on the light-quark mass is shown

in Fig. 54. All of the data points lie above the LO curve
(dashed line), all but the lightest significantly so. The result
of the fit (�2=dof � 13=4 � 3) to the NLO formula,
Eq. (102), is also shown. Since we have not determined
K7 in Eq. (102) from other means, we treat the linear
combination of LECs as a single, new, free parameter in
the fit and find ð2K6 þ 2K7 þ K8Þ ¼ 19:8ð6:3Þ. Except for
the lightest data point, there is scant evidence for large
Oða2Þ errors, though the statistical errors on the heavier
two points with a�1 ¼ 2:284 are somewhat large. Omitting
the former point in the fit leads to a more acceptable value
of �2=dof � 1:5, suggesting the lightest point may be
systematically low due to long autocorrelations in Q
that are not well resolved in our finite Markov chain of
configurations. Despite these limitations, the data appear to

show a dependence on the light quark mass that is consis-
tent with the dictates of NLO SU(2) ChPT.

VIII. CONCLUSIONS

We have presented results from simulations using DWF
and the Iwasaki gauge action for lattice QCD at two values
of the lattice spacing [a�1 ¼ 1:73ð3Þ GeV and a�1 ¼
2:28ð3Þ GeV] and for unitary pion masses in the range
290–420 MeV (225–420 MeV for the partially quenched
pions). The raw data obtained at each of the two values of
� was presented in Secs. III and IV respectively and the
chiral behavior of physical quantities on the 243 and 323

lattices separately was studied in Appendix A. The main
aim of this paper, however, was to combine the data
obtained at the two values of the lattice spacing into global
chiral-continuum fits in order to obtain results in the con-
tinuum limit and at physical quark masses and we explain

TABLE XXXVIII. Topological charge and susceptibility. The measurement frequency,
‘‘meas. freq.’’, and ‘‘block size’’ are given in units of Monte Carlo time.

ml

Measurement

frequency

Block

size hQi hQ2i � (GeV4)

0.005 5 50 0.49 (25) 28.6 (1.4) 0.000 290 (14)

0.01 5 50 �0:22ð37Þ 45.2 (2.5) 0.000 458 (25)

0.004 4 200 0.59 (42) 11.4 (1.1) 0.000 148 (14)

0.006 4 200 �0:07ð64Þ 24.8 (4.3) 0.000 322 (55)

0.008 4 400 0.64 (100) 27.9 (5.6) 0.000 363 (72)
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FIG. 54 (color online). Topological susceptibility [243

(squares), 323 (circles)]. The dashed line is the prediction from
LO SU(2) chiral perturbation theory [Eq. (100)] with the chiral
condensate computed from the finite-volume LECs given in
Table XXVII. The solid line denotes the result of the single-
parameter fit to the NLO formula given in Eq. (102).
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our procedure in Sec. V. In that section we define our
scaling trajectory, explain how we match the parameters
at the different lattice spacings so that they correspond to
the same physics and discuss how we perform the extrap-
olations. We consider this discussion to be a significant
component of this paper and believe that this will prove to
be a good approach in future efforts to obtain physical
results from lattice data. Although we apply the procedures
to our data at two values of the lattice spacing, we stress
that the discussion is more general and can be used with
data from simulations at an arbitrary number of different
values of �. In the second half of Sec. V we then perform
the combined continuum-chiral fits in order to obtain our
physical results for the decay constants, physical bare-
quark masses (which are renormalized in Sec. VI) and
for the quantities r0 and r1 defined from the heavy-quark
potential. For the discussion below, it is important to recall
that we use the physical pion, kaon, and � masses to
determine the physical quark masses and the values of
the lattice spacing and we then make predictions for other
physical quantities.

In contrast to most other current lattice methods, the
DWF formulation gives our simulations good control over
chiral symmetry, nonperturbative renormalization factors,
and flavor symmetry. This control allows us to measure and
use, as either inputs or predictions: pseudoscalar decay
constants, as well as their ratios; pseudoscalar masses;
baryon masses; weak matrix elements and static potential
values, limited only by the statistics achievable for these
observables. The ability to predict many observables from
the same simulations, provides evidence for the general
reliability of the underlying methods. The good properties
of DWF also allow us to test scaling, over this wide range
of observables, at unphysical quark masses, since there are
no flavor or chiral symmetry breaking effects to distort a
test of scaling. We find scaling violations at the percent
level, which supports including scaling corrections in only
the leading-order terms in our light-quark expansions.

As we reduce the quark masses used in the simulations,
it is frustrating that there remains a doubt as to the best
ansatz to use for the chiral extrapolation. We know of
course that for sufficiently light u and d masses the behav-
ior is given by SU(2) ChPT; what we do not know is what
‘‘sufficiently light’’ means in practice. While in the range
of quark masses accessible in our simulations, correspond-
ing to 290–420 MeV for unitary pions and 225–420 MeV
for partially quenched pions, our data are consistent with
NLO SU(2) ChPT, we have seen that they are also con-
sistent with a simple analytic ansatz leading to an inherent
uncertainty in how best to perform the chiral extrapolation.
This is particularly well illustrated in the study of f�, see
Fig. 35 for example, where the data is well represented by
all three ansätze [including NLO SU(2) ChPT with finite-
volume corrections], but the extrapolated values differ as
seen in Table XXXI f� ¼ 121ð2Þ MeV from the NLO

ChPT analysis with finite-volume corrections and f� ¼
126ð2Þ MeV using the analytic ansatz. Since a complete
NNLO ChPT analysis is not possible with the available
data, we have resisted the temptation to introduce model
dependence by including only some of the higher order
corrections and for our current ‘‘best’’ results we take the
average of the two values and include the full difference
in the systematic uncertainty obtaining f� ¼
124ð2Þð5Þ MeV. In Sec. VE 3 we investigated the increase
in �2=dof if the fits are required to pass through the
physical value 130.7(4) MeVup to corrections from lattice
artefacts and found �2 ¼ 1:9ð7Þ for the analytic ansatz and
an unacceptably large value of 5(1) for the NLO ChPTwith
finite-volume corrections. In the future, it will be very
interesting to see how the different ansätze for the chiral
extrapolation become constrained or invalidated as we
perform simulations with even lighter masses. We point
out that the difference in the results from the analyses using
the finite-volume ChPT and analytic ansätze is much
smaller for the other quantities studied in this paper than
for f�.
The main physical results of this study are

f� ¼ 124ð2Þð5Þ MeV;

fK ¼ 149ð2Þð4Þ MeV;

fK
f�

¼ 1:204ð7Þð25Þ;

mMS
s ð2 GeVÞ ¼ ð96:2� 2:7Þ MeV;

mMS
ud ð2 GeVÞ ¼ ð3:59� 0:21Þ MeV;

½�MSð2 GeVÞ�1=3 ¼ 256ð6Þ MeV;

r0 ¼ 0:487ð9Þ fm; and

r1 ¼ 0:333ð9Þ fm:

(103)

For convenience, in order to help the reader find the
corresponding discussion, we now list the equation num-
bers where the results were presented earlier in this paper.
They are (61) for f�, (62) for fK, (63) for fK=f�, (95) for

mMS
s , (94) formMS

ud , (98) for�
MS, and (66) for r0 and r1. All

the results in Eq. (103) were obtained after reweighting the
strange-quark mass to its physical value at each �, and the
renormalized quark masses were obtained using nonper-
turbative renormalization with nonexceptional momenta as
described in Sec. VI. The low-energy constants obtained
by fitting our data to NLO chiral perturbation theory can be
found in Sec. VE.
The configurations and results presented in this paper are

being used in many of our current studies in particle
physics phenomenology, including the determination of
the BK parameter of neutral-kaon mixing in the continuum
limit [35]. In parallel to these studies we are exploiting
configurations generated at almost physical pion masses on
lattices with a large physical volume (� 4:5 fm) but at the

CONTINUUM LIMIT PHYSICS FROM 2þ 1 FLAVOR . . . PHYSICAL REVIEW D 83, 074508 (2011)

074508-57



expense of an increased lattice spacing. Preliminary results
obtained for the meson spectrum and decay constants and
for �I ¼ 3=2 K ! �� decay amplitudes were recently
presented in Refs. [52,73]. Having access to data with
excellent chiral and flavor properties with a range of lattice
spacings and quark masses makes this an exciting time
indeed for studies in lattice phenomenology.
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TABLE XXXIX. Results from the SU(2) ChPT fits to the 243 data (without and with finite-volume corrections) compared to those
from [1] obtained with lower statistics (without finite-volume corrections). We also quote in the lower part of the table the SU(2) ChPT

fit parameters aB, af, Lð2Þ
i (at the scale �� ¼ 1 GeV), and bare-quark masses a ~mud;s in lattice units. Only statistical uncertainties are

quoted except for quark masses and the LEC B renormalized in the MS scheme at 2 GeV where also the systematic uncertainty from
the renormalization constant is quoted. [Mass renormalization constant at 1=a ¼ 1:731ð19Þ GeV: Zm ¼ 1:546ð0:002Þstatð0:044Þren and
at 1=a ¼ 1:784ð44Þ GeV: Zm ¼ 1:559ð0:003Þstatð0:047Þren.]

Allton et al. [1] Increased statistics

No FV correlated No FV corrrelated Including FV correlated

�: ml 	 0:03 �: ml 	 0:03 �: ml 	 0:01 �: ml 	 0:01

1=a [GeV] 1.729(28) 1.731(19) 1.784(44) 1.784(44)

BMSð2 GeVÞ [GeV] 2:52ð0:11Þð0:23Þren 2:63ð0:06Þð0:07Þren 2:69ð0:09Þð0:08Þren 2:63ð0:09Þð0:08Þren
f [MeV] 114.8(4.1) 111.5(2.9) 114.8(4.0) 117.1(4.0)

�l3 3.13(0.33) 2.76(0.24) 2.82(0.24) 2.59(0.27)
�l4 4.43(0.14) 4.54(0.10) 4.61(0.10) 4.57(0.11)

f� [MeV] 124.1(3.6) 121.2(2.5) 124.4(3.6) 126.4(3.6)

fK [MeV] 149.6(3.6) 147.9(2.6) 151.0(3.7) 152.1(3.7)

fK=f� 1.205(0.018) 1.220(0.011) 1.214(0.012) 1.204(0.012)

mMS
ud ð2 GeVÞ [MeV] 3:72ð0:16Þð0:33Þren 3:56ð0:08Þð0:10Þren 3:48ð0:12Þð0:10Þren 3:55ð0:12Þð0:11Þren

mMS
s ð2GeVÞ [MeV] 107:3ð4:4Þð9:7Þren 101:0ð1:9Þð2:9Þren 99:0ð3:0Þð3:0Þren 98:8ð3:0Þð3:0Þren

~mud: ~ms 1:28.8(0.4) 1:28.37(0.27) 1:28.44(0.26) 1:27.89(0.28)

aB 2.414(61) 2.348(43) 2.349(44) 2.298(45)

af 0.0665(21) 0.0644(14) 0.0643(14) 0.0656(14)

Lð2Þ
4 � 104 1.3(1.3) 2.2(0.9) 2.5(0.9) 2.2(0.9)

Lð2Þ
5 � 104 5.16(0.73) 5.00(0.47) 5.50(0.47) 5.36(0.48)

ð2Lð2Þ
6 � Lð2Þ

4 Þ � 104 �0:71ð0:62Þ �0:09ð0:45Þ 0.03(0.45) 0.01(.49)

ð2Lð2Þ
8 � Lð2Þ

5 Þ � 104 4.64(0.43) 4.86(0.30) 4.36(0.38) 5.34(0.33)

a ~mud 0.001 300(58) 0.001 331(43) 0.001 251(71) 0.001 274(72)

a ~ms 0.0375(16) 0.0377(11) 0.0356(19) 0.0355(19)
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APPENDIX A: SEPARATE FITS
TO 243 AND 323 DATA

In this section we report on results obtained by fitting the
data from the 243 runs at� ¼ 2:13 and from the 323 runs at
� ¼ 2:25 separately to the predictions of SUð2Þ � SUð2Þ
ChPT. This complements the material presented in Secs. III
and IV in which we presented the results for masses and
decays constants at each set of quark masses but did not
perform the chiral extrapolations and also that in Sec. V in
which we performed simultaneous chiral and continuum
fits to the data at both lattice spacings. Our main motivation
for studying separate fits here is to be able to compare
directly our results obtained with the new data to those in
our previous publication [1]. For that reason in this appen-

dix we will be using the same renormalization constant ZA

as in our previous publication, which differs from the one
used in the global analysis presented in the main part of this
paper, see the discussion in Sec. III and Appendix B for
details. We use the same method of iterated fits as outlined
in our earlier publication [1]; at each lattice spacing we
iterate the combined fits of the meson masses and decay
constants with mx 	 0:01 to the SU(2)-ChPT formulas,
using kaon SU(2) ChPT to fit the kaon mass and decay
constants and the extrapolation in the�-baryon mass until
convergence. The pion, kaon, and� masses are used to fix
the physical bare-quark masses mud, ms, and the lattice
scale 1=a. Predictions for the remaining physical quantities
are then obtained by extrapolation to these physical quark
masses. For further details see [1]. In the case of the 243
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FIG. 55 (color online). Combined SU(2) ChPT fits (without finite-volume corrections) for the meson decay constants (left column)
and masses (right column) on the 243 data set at ml ¼ 0:005 (top row) and 0.01 (bottom row). Only points marked with circles,
corresponding to the range ðmx þmyÞ=2 	 0:01, are included in the fits.

CONTINUUM LIMIT PHYSICS FROM 2þ 1 FLAVOR . . . PHYSICAL REVIEW D 83, 074508 (2011)

074508-59



ensembles, the runs have been extended since the publica-
tion of [1] (see Sec. II and especially Table I for details) so
that a direct comparison of the results from the previous
(smaller) data set with the new extended data set is pos-
sible. We quote results from fits with and without correc-
tions due to finite-volume effects. When including the
finite-volume corrections, the terms described in
Appendix C of [1] are included in the SU(2) ChPT in the
pion sector (both for the meson masses and decay con-
stants). We also include the correction terms containing the
chiral logarithm of the light-quark masses in the kaon
decay constant [74] and note that up to NLO in the light-
quark masses, no finite-volume corrections arise in the
masses of the kaon and � baryon. Below we present the
physical results in the infinite-volume limit, i.e., after re-
moving the corrections. Finally, we will perform a naive
continuum extrapolation of the results obtained by the
separate fits at the two lattice spacings, which can then
be compared to results from the combined chiral-
continuum extrapolations using the global fits described
in Sec. V. Note that in this appendix also for the combined
chiral-continuum extrapolations we are going to quote
results obtained using our previous definition of ZA. For
that reason the results reported here differ slightly from
those in the main part of this paper.

1. SU(2)-ChPT fits to 243 data

In Table XXXIX we summarize our results from the
iterative fits to the masses and decay constants measured
on the 243 ensembles (see Sec. III for details) and compare
them to our earlier results obtained with lower statistics [1].
We have performed two kinds of fits: one including the
�-baryon masses determined at all the simulated light-
quark masses, ml ¼ 0:005, 0.01, 0.02, and 0.03, (as was
done originally) and one where only the �-baryon masses
at the two lightest dynamical quark massesml ¼ 0:005 and
0.01 are included. The latter, limited range is also the one
used in the combined chiral-continuum extrapolations in
Sec. V and in the separate fits to the 323 data in the next
subsection. In Fig. 55 we plot the combined SU(2) ChPT
fits (without finite-volume corrections) to the meson

masses and decay constants in the pion sector. It is evident
that over the fit range ðmx þmyÞ=2 	 0:01, corresponding

to a maximum meson mass of about 420 MeV, the data is
well described by SU(2) ChPT. This is also true for the fits
including the finite-volume corrections (not shown).
We note that by comparing the results in the first two

columns of Table XXXIX, which have been obtained using
the same (large) mass-range for the chiral extrapolation of
the�-baryon mass, the results obtained with the increased
statistics (for each dynamical light-quark mass the statis-
tics has nearly been doubled, see Sec. III) nicely agree with
those from our previous publication [1] within the statisti-
cal uncertainty. Furthermore, we observe the expected
reduction in the statistical error. For the remainder of the
discussion, we focus on the fits in which only the two
lightest dynamical masses have been included in the ex-
trapolation of the�-baryon mass, i.e., the last two columns
of Table XXXIX. The major difference resulting from this
change in the fit range is in the value of the lattice scale
1=a, but within 1.4 standard deviations (statistical error
only, taking into account correlations) the results still show
agreement. Including the finite-volume effects results in
higher values for the decay constants (both in the chiral
limit and at the physical point), which is a statistically
significant effects (taking the correlations into account).
In Table XL we compare the decay constants and their ratio
obtained from the separate fits with the corresponding
results from the global analysis at the simulated, finite
value of the lattice-spacing (i.e. not extrapolated to the
continuum, see Sec. V and especially Tables XXXI,
XXXII, and XXXIII but note the difference due to the
use of our previous definition of ZA here). We are reassured
by the observed agreement between the results obtained
using the global fits with those obtained using our previous
strategy in Ref. [1] which was developed at that time to
describe data at only a single lattice spacing.

2. SU(2)-ChPT fits to 323 data

The results of a separate fit on the 323 data set are
summarized in Table XLI. Here we only included the
�-baryon masses from the ml ¼ 0:004, 0.006, and 0.008

TABLE XL. Comparison of the pion and kaon decay constants and their ratios at finite lattice spacing from separate (see
Tables XXXIX and XLI) and global fits using our previous definition of ZA.

f� [MeV] fK [MeV] fK=f�

No FV correlated 243, � ¼ 2:13 separate 124.4(3.6) 151.0(3.7) 1.214(0.012)

global 123(2) 150(2) 1.215(0.009)

323, � ¼ 2:25 separate 120.4(1.9) 147.1(2.0) 1.222(0.007)

global 121(2) 147(2) 1.222(0.006)

Including FV correlated 243, � ¼ 2:13 separate 126.4(3.6) 152.1(3.7) 1.204(0.012)

global 126(2) 151(2) 1.204(0.009)

323, � ¼ 2:25 separate 122.3(1.9) 148.1(2.0) 1.212(0.007)

global 123(2) 149(2) 1.210(0.006)
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ensembles. In Fig. 56 we show the fits for the meson
masses and decay constants in the pion sector (without
finite-volume corrections). Again, over the fit range
[ðmx þmyÞ=2 	 0:008], corresponding to a maximum

pion mass of about 400 MeV, the data is well described
by SU(2) ChPT.

As was already the case for the 243 ensembles, taking
finite-volume corrections into account also leads to a good
description of the data and results in higher values for the
decay constants at the physical point and in the chiral limit.
Again, taking the correlations into account, we note that
this is a statistically significant effect. As was also the case
on the 243 ensembles, we observe a good agreement for the
decay constants and their ratio between the results of the
separate fits to the 323 data and the results from the global
fits at finite lattice spacing, see Table. XL.

3. Extrapolation to the continuum limit

With the results obtained from separate chiral extrapo-
lations on the 243 (extended statistics) and the 323 data sets
(see the two previous subsections, respectively) we can
perform a naive continuum limit extrapolation assuming a2

scaling. Of course, with only two lattice spacings available,

we are not able to confirm this scaling behavior. Further
caveats include the fact that here, for simplicity, we did not
use reweighting and so the dynamical strange-quark mass
is not tuned to exactly the same value on the two data sets
and indeed is not exactly the physical one on either set.
Also, the dynamical light-quark mass ranges are a little
different at the two lattice spacings, corresponding to
unitary pion masses in the range 330–420 MeV on the
coarser 243 lattices and 290–400 MeV on the finer 323

lattices (a similar statement is true for the partially
quenched masses). One might therefore expect a larger
uncertainty in the chiral extrapolation of the 243 results.
In the naive continuum ansatz followed here, we are not
taking into account this effect. Because of this, and maybe
more importantly, since two separate chiral extrapolations
have been performed (one at each of the two values of the
lattice spacing), the continuum extrapolation is not com-
pletely disentangled from the chiral extrapolation. Recall
that in our procedure for the global fits described in the
main part of this paper, these two extrapolations are indeed
disentangled. There this is achieved by addingOða2Þ terms
into the two functions, such that the chiral and continuum
extrapolations are performed simultaneously and indepen-
dently from each other.

TABLE XLI. Results from the SU(2) ChPT fits to the 323 data (without and with finite-volume
corrections). We also quote in the lower part of the table the SU(2) ChPT fit parameters aB, af,

Lð2Þ
i (at the scale �� ¼ 1 GeV) and quark masses a ~mud;s in lattice units. Only statistical

uncertainties are quoted except for quark masses and the LEC B renormalized in the MS
scheme at 2 GeV where also the systematic uncertainty from the renormalization constant is
quoted. [Mass renormalization constant at 1=a ¼ 2:221ð29Þ GeV: Zm ¼ 1:550ð0:002Þstat �
ð0:034Þren.]

No FV correlated FV correlated included

1=a [GeV] 2.221(29) 2.221(29)

BMSð2 GeVÞ [GeV] 2:62ð0:05Þð0:06Þren 2:57ð0:05Þð0:06Þren
f [MeV] 111.4(2.2) 113.7(2.2)

�l3 2.84(0.21) 2.61(0.24)

�l4 4.18(0.09) 4.10(0.09)

f� [MeV] 120.4(1.9) 122.3(1.9)

fK [MeV] 147.1(2.0) 148.1(2.0)

fK=f� 1.222(0.007) 1.212(0.007)

mMS
ud ð2 GeVÞ [MeV] 3:58ð0:07Þð0:08Þren 3:64ð0:07Þð0:08Þren

mMS
s ð2 GeVÞ [MeV] 100:6ð1:7Þð2:2Þren 100:4ð1:7Þð2:2Þren

~mud: ~ms 1:28.08(0.19) 1:27.60(0.20)

aB 1.826(0.024) 1.790(0.025)

af 0.0502(0.0007) 0.0512(0.0007)

Lð2Þ
4 � 104 �0:75ð0:79Þ �1:21ð:82Þ

Lð2Þ
5 � 104 5.14(0.40) 4.87(0.41)

ð2Lð2Þ
6 � Lð2Þ

4 Þ � 104 �0:93ð0:42Þ �1:03ð0:45Þ
ð2Lð2Þ

8 � Lð2Þ
5 Þ � 104 6.22(0.23) 7.37(0.24)

a ~mud 0.001 040(31) 0.001 057(32)

a ~ms 0.0292(08) 0.0292(08)
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FIG. 56 (color online). Combined SU(2) ChPT fits (without finite-volume corrections) for the meson decay constants (left column)
and masses (right column) on the 323 data set at ml ¼ 0:004 (top row), 0.006 (middle row), and 0.008 (bottom row). Only points
marked with circles, corresponding to the range ðmx þmyÞ=2 	 0:008 are included in the fits.
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In Table XLII we repeat the results obtained at the two
different lattice spacings (with and without finite-volume
corrections) and give the values extrapolated to the con-
tinuum limit assuming a2 scaling. Figure 57 illustrates the
continuum extrapolation of the various quantities (only
results obtained without taking into account finite-volume
corrections are shown there). Note, that the two points at
the different lattice spacings are completely uncorrelated,
the only correlation in the data for the continuum extrapo-
lation is between the uncertainty in the lattice spacing (the
‘‘x’’ datum) and the quantity itself at that lattice spacing
(the ‘‘y’’ datum). These correlations were treated by the
superjackknife method which we have been using in our
earlier work and which is clearly explained in [75,76]. For
comparison, Table XLII also contains our results from the
combined continuum-chiral extrapolation as described in
the main part of this paper but here using our previous
definition of ZA. As one can see, the combined continuum-
chiral extrapolation gives a substantially smaller (up to a
factor of 5) statistical uncertainty compared to the naive
continuum extrapolation. The main reason, of course, is the
correlation in the combined fits between the two data sets
at different lattice spacings. This correlation occurs be-
cause we require the fitted parameters to be the same on
both data sets and only include Oða2Þ corrections for the
leading-order terms, as is consistent with our power-

counting scheme. In this way, the continuum extrapolation
in the combined fits is also more constrained, leading to a
smaller statistical uncertainty. Comparing the results of the
naive continuum extrapolation and the combined
continuum-chiral extrapolation for the quantities in
Table XLII we observe agreement better than 0:5-	 (taking
into account correlations) for all quantities except for �l4,
where the agreement still holds at the 1- or 1:5-	 level
(without and with taking FV corrections into account,
respectively). It is reassuring, that the results from the
two methods agree well, although the value of this state-
ment is limited, given the large (statistical) uncertainty of
almost 10% for the decay constants or even more in case of
the LECs from the naive method. However, it should be
noted that the same agreement holds, not only for the
continuum values, but also for the results obtained in the
separate fits as compared to the predictions of the global fit
made for the finite lattice spacings. This has already been
discussed in the previous subsections and is shown in
Table XL.

APPENDIX B: DETERMINING ZA

As pointed out by Sharpe [18] and refined in Ref. [1], the
normalization of the partially conserved axial current de-
fined for domain wall fermions [77] is expected to deviate

TABLE XLII. Selected results from separate fits to the 243 and 323 data sets (� masses from
ml 	 0:1 for 243 data set, cf. Tables XXXIX and XLI) and their naive continuum limit assuming
a2 scaling (see Fig. 57) compared to results from the combined chiral-continuum extrapolation
using the previous definition of ZA. The top table contains results without finite-volume
corrections whereas the results in the bottom table were obtained by including finite-volume
effects.

No FV correlated

Separate fits Naive CL Combined chiral/CL

243, � ¼ 2:13 323, � ¼ 2:25

a [fm] 0.1106(27) 0.0888(12) ! 0 ! 0
f [MeV] 114.8(4.0) 111.4(2.2) 105.2(10.4) 107(2)
�l3 2.82(0.24) 2.84(0.21) 2.87(0.74) 2.81(0.16)
�l4 4.61(0.10) 4.18(0.09) 3.39(0.36) 3.76(0.08)

f� [MeV] 124.4(3.6) 120.4(1.9) 113.0(9.5) 117(2)

fK [MeV] 151.0(3.7) 147.1(2.0) 139.9(9.6) 144(2)

fK=f� 1.214(0.012) 1.222(0.007) 1.236(0.030) 1.233(0.008)

Including FV correlated

Separate fits naive CL Combined chiral/CL

243, � ¼ 2:13 323, � ¼ 2:25

a [fm] 0.1106(27) 0.0888(12) ! 0 ! 0
f [MeV] 117.1(4.0) 113.7(2.2) 107.4(10.3) 110(2)
�l3 2.59(0.27) 2.61(0.24) 2.64(0.83) 2.55(0.18)
�l4 4.57(0.11) 4.10(0.09) 3.26(0.38) 3.83(0.09)

f� [MeV] 126.4(3.6) 122.3(1.9) 114.8(9.4) 119(2)

fK [MeV] 152.1(3.7) 148.1(2.0) 140.9(9.6) 145(2)

fK=f� 1.204(0.012) 1.212(0.007) 1.226(0.029) 1.219(0.007)
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from that of the conventionally normalized continuum
current by an amount of order mresa. Here and below,
when making such estimates we will introduce the explicit
lattice spacing a and express the residual mass in physical
units in order to make the comparison of various terms in a

Symanzik expansion in powers of a easier to recognize.
Since such a deviation can be viewed as OðmaÞ which is
formally larger than the Oðma2Þ which we neglect in our
power-counting scheme and because the normalization of
this axial current plays a central role in our determination
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FIG. 57 (color online). Results from separate fits (without finite-volume corrections) to the 243 and 323 data sets (black points) and
the naive continuum-limit extrapolation (blue asterisks) for selected quantities assuming a2 scaling. For details see Appendix A 3 and
Table XLII.
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of the important quantities f� and fK, we have calculated
this normalization factor ZA numerically. We explain our
method and result in this appendix. The first subsection
contains a discussion of the theoretical issues and explains
the basis for our method of determining ZA. The second
subsection describes the actual calculation and results.

1. Determining the normalization of A�

To determine the normalization of A� we compare the

matrix element of four distinct domain wall fermion cur-
rents. The first two are the conserved/partially conserved
vector and axial currents V a

�ðxÞ and Aa
�ðxÞ, respectively,

where a and � are flavor and space-time indices. These
currents were introduced by Furman and Shamir [77] and
involve fermion fields evaluated on each of the Ls

4-dimensional hyperplanes and at both the space-time
points x and xþ ê� where ê� is a unit vector pointing

the �-th direction. Thus, these currents are local but dis-
tributed in the fifth dimension and one-link nonlocal in
space-time. While this vector current is exactly conserved,
the divergence of the axial current contains the usual mass
term and a midpoint term Ja5q. In the long-distance limit

this midpoint term can be decomposed into the residual
mass term, a piece that is conveniently written as (1� ZA)
times the divergence of the same axial current and a final
term of dimension five which we write out explicitly as the
sum of the dimension-five, chiral rotation of the usual
clover term and the four-dimensional Laplacian applied
to the pseudoscalar density:

Ja5q ¼ mres �q�
5�aqþ 1� ZA

2
��Aa

� þ c1 �q	
�
F�
�aq

þ c2@�@� �q�5�aq: (B1)

In Eq. (B1) �a is the generator which acts on the fermion
fields corresponding to the flavor index a while qðxÞ and
�qðxÞ are the physical, four-dimensional quark fields ob-
tained by evaluating the five-dimensional domain wall
fields on the s ¼ 0 and s ¼ Ls � 1 boundaries. [See
Eqs. (11) and (12) in Ref. [1].]

The second pair of currents which we will need in this
appendix is the local vector and axial currents, Va

�ðxÞ and
Aa
�ðxÞ, constructed in the standard way from the four-

dimensional quark fields, qðxÞ and �qðxÞ. These currents
are localized in all five dimensions and neither is
conserved.

Finally, it will also be convenient to introduce the scalar
densities �qðxÞqðxÞ, �qðxÞ�aqðxÞ from which the domain
fermion mass is constructed and their chiral transforms
�qðxÞ�5qðxÞ, �qðxÞ�a�5qðxÞ. These four classes of operators
will be labeled SðxÞ, SaðxÞ, PðxÞ, and PaðxÞ.

Following Symanzik, we can add improvement terms to
each of these six operators to insure that their Green’s
functions, when evaluated with an appropriately improved
action, will agree with the corresponding continuum

Green’s functions up to errors of order an. For our present
purposes, accuracy up toOðamÞwherem is a quark mass in
physical units, will be sufficient. Since mres and m have a
similar size, we are explicitly attempting to control the
mresa corrections described above. We do not attempt to
explicitly remove Oða2Þ terms since these will be elimi-
nated by the final linear extrapolation a2 ! 0.
In the discussion to follow we will recognize constraints

on the required Symanzik improvement terms and relations
between the various renormalization constants by applying
the approximate chiral symmetry of domain wall fermions
to Green’s functions containing these various operators.
For such arguments to be valid we will assume that these
Green’s functions are evaluated at sufficiently small dis-
tances that the effects of the vacuum chiral symmetry
breaking of QCD can be ignored but at sufficiently large
distances that the Symanzik improvement program can be
applied. Since this discussion is a theoretical one, con-
straining the form of the Symanzik improvement terms,
we need not be concerned about practical questions regard-
ing the degree to which such conditions can be realized in
our present calculation.
Using the notation VSa

� , ASa
� , SSa, and PSa for the

Symanzik-improved vector current, axial current, scalar
density, and pseudoscalar density, respectively, keeping
improvement terms which are nominally of order a and
imposing charge conjugation symmetry, we find

VSa
� ¼ ZVV a

� þ CV@
 �q	
�
�aq; (B2)

ASa
� ¼ ZAAa

� þ CA@�P
a; (B3)

VSa
� ¼ ZVV

a
� þ CV@
 �q	

�
�aq; (B4)

ASa
� ¼ ZAA

a
� þ CA@�P

a; (B5)

SSa ¼ ZSS
a; (B6)

PSa ¼ ZPP
a: (B7)

In contrast to the Symanzik-improved current operators,
we have not specified a normalization convention for the
operators SSa and PSa. Adopting definitive conventions for
SSa and PSa is not needed here beyond the requirement that
those conventions are consistent with SSa � PSa belonging
to the ð�3; 3Þ=ð3; �3Þ representations of the SUð3ÞL � SUð3ÞR
flavor symmetry.
Because the operators S and P contain no vector indices,

any correction terms must increase the dimension by two
and we have chosen to neglect such Oða2Þ contributions.
Thus, Eqs. (B6) and (B7) are particularly simple. However,
we can also drop the dimension-four, OðaÞ correction
terms to Eqs. (B2)–(B5). This can be established by con-
sidering the chiral structure of the Symanzik and con-
served/partially conserved current operators. Ignoring
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effects of order m, the Symanzik currents will couple to
pairs of quarks which are either left- or right-handed.
Likewise the domain wall conserved/partially conserved
current operators couple to a pair of quarks with the same
value of the coordinate s in the fifth dimension. For s ¼ 0
these are left-handed fermions while for s ¼ Ls � 1 they
are right-handed. As the coordinate s moves into the fifth-
dimensional bulk, the amplitude for coupling to such
physical modes decreases until when s � Ls=2 the ampli-
tude will be suppressed by two traversals halfway through
the fifth dimension which implies a suppression of order
mresa. Of course, the s � 0 and s � Ls � 1 terms will
dominate. The character of the local vector and axial
currents is simpler since they contain quark field strictly
limited to s ¼ 0 and Ls � 1. Since the four, dimension-
four improvement terms included in Eqs. (B2)–(B5) in-
volve pairs of quarks with opposite handedness, such terms
require a complete propagation across the fifth dimension
if they are to couple to the conserved/partially conserved or
local currents. This is true even for the terms with general s
which appear in the former currents. Thus, these correction
terms involve an additional power ofmresa and are of order
mresa

2 and can be neglected in our power-counting
scheme.

With this simplification, we can demonstrate that to this
order the following relations hold:

ZV ¼ 1; (B8)

ZV ¼ ZA; (B9)

ZS ¼ ZP: (B10)

Equation (B8) follows easily from the fact that V a
� is

conserved at finite lattice spacing and has been given the
conventional normalization. Equations (B9) and (B10) can
each be shown using essentially the same argument which
we will now review.

In the massless continuum theory the operators
�qc�a��ð1� �5Þqc are independent involving only right-
handed/left-handed degrees of freedom. Here the label c
indicates continuum. This implies the vanishing of the
Symanzik-improved Green’s function:

hðVSa
� þ ASa

� ÞðxÞðVSa

 � ASa


 ÞðyÞi ¼ 0: (B11)

This same property is obeyed by the local domain wall
currents up to order ðmresaÞ2 since nonvanishing terms
which can contribute to the DWF version of Eq. (B11)
must connect both fermion degrees of freedom between the
left and right walls requiring two-traversals of the fifth
dimension and hence are of order ðmresaÞ2 [18,78]. It is
then easy to see that these two behaviors can be consistent
through order mresa only if ZV ¼ ZA through order mresa.
We need only examine the mixing between VSa

� � ASa
� that

is generated by ZV � ZA:

hðVSa
� þ ASa

� ÞðxÞ � ðVSa

 � ASa


 ÞðyÞi
¼ hðZVV

a
� þ ZAA

a
�ÞðxÞ � ðZVV

a

 � ZAA

a

ÞðyÞi

¼ 1
4h½ðZV þ ZAÞðVa

� þ Aa
�ÞðxÞ þ ðZV � ZAÞ

� ðVa
� � Aa

�ÞðxÞ� � ½ðZV þ ZAÞðVa

 � Aa


ÞðyÞ
þ ðZV � ZAÞðVa


 þ Aa

ÞðyÞ�i: (B12)

The product of the left-most operators in the square
brackets on the right-hand side of Eq. (B12) cannot mix
at order mres because of their construction from domain
wall quark fields as explained above. Likewise the product
of the right-most terms also vanishes. However, the two
cross terms have nonzero correlators implying that for the
entire expression to be of order m2

res, the difference ZV �
ZA must be of order ðmresaÞ2, demonstrating the intended
result. A very similar argument can be constructed which
shows that ZS ¼ ZP through order mresa. One must invoke
the flavor structure and, for example, consider correlators
between ðS1 � iS2ÞðxÞ þ ðP1 � iP2ÞðxÞÞ and ðS1 þ iS2Þ�
ðyÞ þ ðP1 þ iP2ÞðyÞÞ which also must vanish in the chiral
limit. Here a ¼ 1, 2 is a specific choice of the eight octet
indices a ¼ 1–8.
The relations in Eqs. (B8)–(B10) were established by

considering the domain wall and continuum theories in a
limit in which the physical quark masses could be ne-
glected, at sufficiently short distances that vacuum chiral
symmetry breaking could be ignored but at sufficiently
long distances that the Symanzik effective theory could
be applied. While this is an excellent regime in which to
establish these theoretical constraints, it is not a practical
one for calculations. Thus, we will now employ these
relations at low energies where vacuum chiral symmetry
breaking is important in order to provide a practical
method to compute ZA.
Since at low energies the left- and right-hand sides of

Eqs. (B4) and (B5) must have identical matrix elements,
the ratio of long-distance correlators computed with the
Symanzik and local currents must give identical constants:
ZV ¼ ZA. Thus, we have established

hVSa
i ðxÞVa

i ðyÞi
hVa

i ðxÞVa
i ðyÞi

¼ hASa
0 ðxÞPaðyÞi

hAa
0ðxÞPaðyÞi ; (B13)

where we have introduced the fixed spatial index i, the
temporal index 0 and sources Va

i ðyÞ and PaðyÞ that will
correspond to those used in our actual calculation. Next we
can use the long-distance equality represented by Eqs. (B2)
and (B3) to write

1 ¼ hVSa
i ðxÞVa

i ðyÞi
hV a

i ðxÞVa
i ðyÞi

; (B14)

ZA ¼ hASa
0 ðxÞPaðyÞi

hAa
0ðxÞPaðyÞi : (B15)
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Then we can combine Eqs. (B13)–(B15) to yield an equa-
tion for ZA which does not involve the Symanzik currents:

ZA ¼ hAa
0ðxÞPaðyÞi

hAa
0ðxÞPaðyÞi �

hV a
i ðxÞVa

i ðyÞi
hVa

i ðxÞVa
i ðyÞi

; (B16)

which determines ZA in terms of four correlators which
we have evaluated directly in our lattice calculation.

In order to relate the discussion of the Symanzik-
improved operators given in Eqs. (B2)–(B7) with the op-
erators appearing in Eq. (B1), we should recognize that the
quantity ZA has been introduced in two places. The most
important is in the relation between the Symanzik current
and the partially conserved domain wall operator in
Eq. (B3). It is this quantity that is determined in
Eq. (B16) and which is needed to give a physical normal-
ization to the axial current matrix elements determined in
our calculation. However, the quantity ZA also appears in
the expression for J5q given in Eq. (B1). For completeness,

we will now demonstrate that these two quantities are in
fact the same up to order ðmresaÞ2.

This is easily done by introducing a flavor-breaking
mass term �qMq into the DWF action, examining the di-
vergence equations obeyed by V a

� and Aa
� and using the

relation ZS ¼ ZP established above. With the additional
mass term the conserved/partially conserved vector and
axial currents obey the lattice divergence equations,
through OðmresaÞ:

��V a
� ¼ �q½�a;M�q; (B17)

��Aa
� ¼ �qf�a;Mg�5qþ 2mres �q�

5q

� ðZA � 1Þ��Aa
�: (B18)

Taking the ZA � 1 term to the left-hand side and recog-
nizing that the scalar and pseudoscalar operators Sa and Pa

are symmetrically normalized (ZS ¼ ZP), we can conclude
that the operators V a

� and ZAAa
� must be related to the

corresponding Symanzik currents by the same factor. This
establishes that our two definitions of ZA are consistent.

We will conclude this analysis with a brief discussion of
the effects of the explicit quark mass, mf, on the operator

product expansion represented by Eq. (B1) and on the
Symanzik-improved operators given in Eqs. (B2)–(B7).
Although mf explicitly connects the s ¼ 0 and s ¼
Ls � 1 walls, it can combine with the midpoint operator
J5q appearing on the left-hand side of Eq. (B1) to create

effects with arbitrary chiral properties. Thus, we expect
multiplicative corrections of the form ð1þ bimfaÞ1	i	4 to

each of the four terms on the right-hand side of Eq. (B1). In
the case of the left-most term the correction is of order
mfmresa while for the remaining three terms the correc-

tions are of order mfmresa
2 or mfmresa

3, all beyond the

level of accuracy of the current paper. The conclusion that
ZV ¼ 1 through order mresa

2 (and order mfa
2) prevents

the appearance of a factor 1þ bðmfaÞ multiplying the ZV

in Eq. (B2). The argument that ZA ¼ ZV and ZS ¼ SP with
corrections of order ðmresaÞ2 applies equally well to the
left-right mixings created by mf but again the allowed

mfmresa
2 and ðmfaÞ2 terms are negligible within our

present power-counting scheme so Eqs. (B4)–(B7) need
no OðmfaÞ corrections. Lastly, consider adding a factor of

the form ð1þ bðmfaÞÞ multiplying the ZA on the right-
hand side of Eq. (B3). As explained above, a similar
correction to ZA appearing in Eq. (B1) carries the addi-
tional suppression of one power of mresa. Since the equal-
ity derived above between the ZA factors appearing in the
divergence equation, Eq. (B1), and the Symanzik-
improved current Aa

�, in Eq. (B3), holds at order mfa

such a 1þ bðmfaÞ factor is not allowed in Eq. (B3). Thus,

no mfa terms need to be introduced into the equations

presented in this appendix.

2. Computational method and results

We have evaluated the two factors in Eq. (B16) to
determine ZA on both the 323 � 64, � ¼ 2:25 (ml ¼
0:004, 0.006, and 0.008) and the 243 � 64,� ¼ 2:13 (ml ¼
0:005, 0.01 and 0.02) ensembles. We used a small subset of

TABLE XLIII. Results for the ratios ZA=ZA, ZV=ZV , and ZV =ZA computed on six ensembles. The rows with quark mass �mres

contain the chiral extrapolation to the light-quark mass ml ¼ �mres. The left-hand portion of the fit range gives that used for the axial
current ratio while the right-hand portion that for the vector current. For the ZV=ZV calculation the data at t and 63� t were combined
for 0 	 t < 32.

� ml ZA=ZA ZV=ZV ZV =ZA Fit range Nmeas

2.13 0.02 0.719 00(20) 0.6956(17) 1.0336(25) 9–54=9–17 50

2.13 0.01 0.71759(16) 0.6998(20) 1.0254(29) 9–54=9–17 50

2.13 0.005 0.71743(30) 0.6991(17) 1.0262(25) 9–54=10–19 105

2.13 �mres 0.71615(36) 0.7019(26) 1.0208(40)

2.25 0.008 0.745 26(12) 0.738 02(55) 1.0098(7) 9–54=9–20 85

2.25 0.006 0.745 23(12) 0.738 53(64) 1.0090(9) 9–54=9–18 76

2.25 0.004 0.74513(15) 0.73871(77) 1.0087(10) 9–54=10–19 166

2.25 �mres 0.744 99(34) 0.7396(17) 1.0073(23)
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these six ensembles and obtained the results given in
Table XLIII. The results presented for ZA=ZA duplicate
those from the calculation of ZA described in Secs. III and
IV. In this appendix we add the factor ZA in the denomi-
nator because we are now determining the deviation of this
factor from unity. We do not simply use the results pre-
sented earlier in the paper because our calculation of
ZV=ZV has been performed on a subset of the configura-
tions analyzed earlier and results for ZA=ZA are needed on
this same subset of configurations if ratios with meaningful
jackknife errors are to be determined.

The ratio ZA=ZA was computed from the same ratio of
current-pseudoscalar correlators studied in Secs III and IV,
using the method specified in Ref. [79]. Similar methods
are used to compute ZV=ZV using the ratio of vector
correlators

ZV

ZV
¼

P3
i¼1

P
~x

hV a
i ð ~x; tÞVa

i ð~0; 0ÞiP
3
i¼1

P
~x

hVa
i ð ~x; tÞVa

i ð~0; 0Þi
; (B19)

an equation expected to be valid for time separations t
much larger than 1 lattice spacing: t � a. Figure 58 shows
the right-hand side of Eq. (B19) as a function of time for
the case of the lightest mass for each of the 323 and 243

ensembles. A constant fit to plateau regions identified by
the horizontal lines was then used to determine the ZV=ZV
on the left-hand side of this equation. Figure 59 displays
the chiral extrapolation of the two quantities ZA=ZA and
ZV=ZV on both sets of ensembles.
Two useful results follow from this appendix. First, the

ratio ZV =ZA differs from unity on our two ensembles and
that difference decreases more rapidly than a2 with in-
creasing �. Thus, we will obtain more accurate results in
our continuum extrapolation from both matrix elements of
the local axial current and our NPR calculations which are
normalized using off-shell Green’s functions containing
the local vector and axial currents if we convert the nor-
malization of these local currents to the usual continuum
normalization by using the ratio ZV=ZV instead of the ratio
ZA=ZA, the quantity which we have used in previous work

FIG. 58 (color online). Plots of the correlator ratio which determines the renormalization factor ZV=ZV as a function of time. The
left panel shows results from the 323, ml ¼ 0:004 ensemble while the right panel shows the result from the 243, ml ¼ 0:005 ensemble.
The horizontal line with error bands in each panel shows the fitting range and the result obtained in each case.

FIG. 59 (color online). The quantities ZA=ZA and ZV=ZV extrapolated to the chiral limit for the 323 (left panel) and 243 (right
panel) ensembles are shown.
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for such conversions. The values of ZV=ZV presented in
Table XLIII are therefore used to normalize the results
presented in the current paper and are the second result
obtained in this appendix. Because these ratios were calcu-
lated on a smaller subset of configurations than were used
for our main results, we have included their statistical
fluctuations as independent within our superjackknife, sta-
tistical error analysis. Since these fluctuations are at or
below the 0.5% level, this omission of possible statistical
correlations is unimportant.

APPENDIX C: STATISTICAL ERRORS OF
REWEIGHTED QUANTITIES

In this appendix we discuss the statistical errors that
should be expected when Monte Carlo data is reweighted
to obtain results for a gauge or fermion action that is
different from that used to generate the data. Throughout
this discussion we will make the assumption that the
reweighting factors are not correlated with the data. Of
course, if this assumption were exactly true then the re-
weighting would not be needed. However, the correlation
between the data and reweighting factors is often small in
practice and neglecting this correlation may well provide a
reasonably accurate view of the resulting errors. As wewill
show, with this assumption the usual analysis of the statis-
tical errors applies easily to reweighted data and yields a
simple, useful formula which we present here.

Consider a quantity x and the corresponding ordered
ensemble of N Monte Carlo configurations with corre-
sponding measured values fxng, 1 	 n 	 N. For each of
these N configurations we will determine a reweighting
factor wn so that the final, reweighted quantity of interest is
given by

hxiN ¼
P

N
n¼1 xnwnP
N
n¼1 wn

: (C1)

Here the single brackets h. . .iN indicate an average over a
single Monte Carlo ensemble of N samples. In this appen-
dix we are interested in how the statistical fluctuations in
the quantity hxiN are affected by the operation of reweight-
ing. We can then express the true value for xN as

�xN ¼ hhhxiNii; (C2)

where the double brackets hh. . .ii indicate a ‘‘meta’’ average
over many equivalent Monte Carlo ensembles. The statis-
tical fluctuation present in a particular result hxiN can then
be characterized by the average fluctuation of hxiN about
�xN:

Error ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhðhxiN � �xNÞ2ii

q
: (C3)

A quantity such as hxiN , defined in Eq. (C1) as a ratio of
averages, will be a biased estimator of the physical result
which must be determined in the limit N ! 1. Thus, the
meta average �xN ¼ hhhxiNii will differ from the true result
by terms of order 1=N. While these 1=N corrections are not
difficult to enumerate and estimate from our data, these
corrections are not the subject of the present appendix and
will not be considered further here. Instead we will study
how the size of the statistical fluctuations of hxNi about �xN
is affected by the reweighting. Thus, the quantity ErrorðxÞ
defined in Eq. (C3) describes the average deviation of hxiN
from �xN not from the N ! 1 limit of �xN .
We will now work out an expression for ErrorðxÞ in the

case that nearby measurements xn and xnþl in a single
Markov chain (or reweighting factors wn and wnþl) are
correlated but with the assumption that xn and wnþl are
not:

hhðhxiN � �xNÞ2ii ¼ hh
�PN

n¼1 xnwnP
n
wn

� �xN

��PN
n0¼1 xn0wn0P

n0
wn0

� �xN

!
ii (C4)

¼ hhð
PN

n¼1 xnwn � �xN
PN

n¼1 wnÞðPN
n0¼1

xn0wn0 � �xN
PN

n0¼1
wn0 Þ

ðPN
n¼1 wnÞðPN

n0¼1
wn0 Þ ii (C5)

¼ hhð
PN

n¼1ðxn � �xNÞwnÞÞðPN
n0¼1

ðxn0 � �xNÞwn0 Þ
ðPN

n¼1 wnÞð
P

N
n0¼1

wn0 Þ ii (C6)

¼
P

N
n¼1

P
N�n
l¼1�nfhhðxn � �xNÞðxnþl � �xNÞiihhwnwnþliig

hhPN
n¼1 wnii2

; (C7)
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where in the last line we have used our assumption of the
lack of correlation between the xn and wn to write the
average of their product as the product of their separate
averages. We have also assumed that our sample size N is
sufficiently large that correlated fluctuations of the aver-
ages in the numerator and denominator will be sufficiently
small that the average of the original ratios and products
can be replaced by the corresponding ratios and products of
the individual averages.

This result can be cast in a simple form if we define the
three averages:

�x2 ¼ hhðxn � �xNÞ2ii; (C8)

�w ¼ hhwnii; (C9)

w2 ¼ hhw2
nii (C10)

(where �x2 is the usual width of the distribution of the
measured quantity xn) and the two autocorrelation func-
tions:

CðlÞ ¼ hhðxn � �xNÞðxnþl � �xNÞii
�x2

; (C11)

WðlÞ ¼ hhwnwnþlii
w2

; (C12)

defined so that Cð0Þ ¼ Wð0Þ ¼ 1. Making the conven-
tional assumption that the range of l over which the corre-
lation function CðlÞ is nonzero is small compared to the
sample size N and using the quantities defined above, we
can rewrite Eq. (C7) as

hhðhxiN � �xNÞ2ii ¼
�x2

PLmax

l¼�Lmax
CðlÞWðlÞw2

Nð �wÞ2 (C13)

¼ �x2
�corr
N

w2

ð �wÞ2 ; (C14)

where the autocorrelation time �corr is defined as

�corr ¼
XLmax

l¼�Lmax

CðlÞWðlÞ: (C15)

The limit Lmax is chosen to be larger than the region within
which CðlÞ is nonzero and has been introduced as a re-
minder that when working with a single finite sample, one
must take care to evaluate the limit of large N before the
limit of large Lmax. Finally, Eq. (C14) can be written in the
conventional form

Error ðxÞ ¼
ffiffiffiffiffiffiffiffi
�x2

Neff

s
; (C16)

where the effective number of configurations Neff is
given by

Neff ¼ N

�corr

�w2

w2
: (C17)

This result makes precise a number of aspects of re-
weighting that may be useful to understand. In the case that

there are no autocorrelations so �corr ¼ 1, the ratio �w2=w2

expresses the degree to which the reweighting process
selectively samples the original data and degrades the

initial statistics. The general inequality �w2=w2 	 1 (a con-
sequence of the Schwartz inequality) is saturated only in
the case that the reweighting factors wn do not vary with n.
In the extreme case that a single sample wn dominates the

averages then �w2=w2 ¼ 1=N and Neff ¼ 1. Thus, in
the case of uncorrelated data (which is the case for most
of the results presented here) we should expect the statis-
tical fluctuations to grow as the degree of reweighting

increases by the factor w2= �w2.
Including autocorrelations makes the effects of re-

weighting on the size of the statistical fluctuations less
certain because the behavior of the factors 1=�corr and

�w2=w2 in Eq. (C17) become entangled. In the limit in
which the autocorrelation time associated with the mea-
sured quantity xn alone,

�x ¼
XLmax

l¼�Lmax

CðlÞ; (C18)

becomes much larger than that of the reweighting factor
wn, then the majority of the sum in Eq. (C15) contributing
to �corr will come from values of l where hhwnwnþlii �
hhwii2 so that

�corr � �x
�w2

w2
: (C19)

In this case the error given by Eq. (C16) reduces to the

standard expression
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2�x=N

p
that holds if no reweighting

is performed. Of course, this is easy to understand. When
such long autocorrelation times are involved, the average
over the autocorrelation time is providing an average over
the reweighting factorswn which is sufficiently precise that
the error-enhancing fluctuations in the reweighting factors
are averaged away. Given the large size of the fluctuations
between the reweighting factors and the relatively short
autocorrelation times seen in our data, it is unlikely that
this averaging would be seen in the results presented here.
A second type of behavior for �corr occurs if the wn are

relatively uncorrelated and w2 � �w2 so that only the l ¼ 0
term contributes to the sum in Eq. (C15) giving �corr ¼ 1.
In this case reweighting has removed the effects of auto-
correlation but increased the statistical fluctuations by the

factor w2= �w2 which was assumed to be large. Here the
fluctuation-enhancing effects of autocorrelations and re-
weighting are not compounded.
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