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We present results concerning the nonperturbative evaluation of the renormalization constant

for the quark field, Zq, from lattice simulations with twisted-mass quarks and three values of the lattice

spacing. We use the regularization-invariant momentum-subtraction (RI’-MOM) scheme. Zq has very large

lattice spacing artefacts; it is considered here as a test bed to elaborate accurate methods which will be used

for other renormalization constants. We recall and develop the nonperturbative correction methods and

propose tools to test the quality of the correction. These tests are also applied to the perturbative correction

method. We check that the lattice-spacing artefacts indeed scale as a2p2. We then study the running of Zq

with particular attention to the nonperturbative effects, presumably dominated by the dimension-two gluon

condensate hA2i in Landau gauge. We show indeed that this effect is present, and not small. We check its

scaling in physical units, confirming that it is a continuum effect. It gives a �4% contribution at 2 GeV.

Different variants are used in order to test the reliability of our result and estimate the systematic

uncertainties. Finally, combining all our results and using the known Wilson coefficient of hA2i, we find

g2ð�2ÞhA2i�2CM ¼ 2:01ð11Þðþ0:61
�0:73ÞGeV2 at � ¼ 10 GeV, the local operator A2 being renormalized in the

MS scheme. This last result is in fair agreement within uncertainties with the value independently extracted

from the strong coupling constant. We convert the nonperturbative part of Zq from the regularization-

invariant momentum-subtraction (RI’-MOM) scheme toMS. Our result for the quark field renormalization

constant in the MS scheme is Z
MSpert
q ðð2GeVÞ2;g2bareÞ¼0:750ð3Þð7Þ�0:313ð20Þðg2bare�1:5Þ for the pertur-

bative contribution and Z
MSnonperturbative
q ðð2GeVÞ2;g2bareÞ¼0:781ð6Þð21Þ�0:313ð20Þðg2bare�1:5Þ when the

nonperturbative contribution is included.
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I. INTRODUCTION

Computing matrix elements in lattice quantum chromo-
dynamics (LQCD) often needs the computation of renor-
malization constants. Indeed, even if the lattice computation
contains only Oða2Þ lattice artefacts, the bare quantities
differ from the continuum ones by Oðg2Þ ’ Oð1= logða2ÞÞ,
which is unacceptable. Renormalization restores the Oða2Þ
accuracy. It has also been known for a long time that these
renormalization constants need to be computed nonpertur-
batively, using LQCD techniques.

Several nonperturbative methods have been proposed.
Let us here concentrate on those based on the MOM
scheme. They start from the computation of Green func-
tions of quarks, gluons, and ghosts at large enough mo-
menta in a fixed gauge, usually the Landau gauge. This
gives the renormalization constant Zð�Þ at many values of
the scale �. Assuming that our goal is to deliver the

renormalization constant in the MS scheme at, say,
2 GeV (a typical phenomenological scale), one must then
use results from perturbative QCD to convert MOM into

MS and run to 2 GeV. The running of ZMOMð�Þ is a very
powerful testing tool: indeed, perturbative QCD is only
useful if we are in the perturbative regime, i.e., at large
enough momenta. The only way to check whether this is
the case is to compare lattice data with the perturbative
running. In this framework, it turns out that this is not
always the case.
Deviations from perturbative running can be analyzed

via Wilson operator expansion and the Shifman-
Vainshtein-Zakharov sum rules. It turns out that the domi-
nant nonperturbative correction in Landau gauge is due to
the nonvanishing vacuum expectation value of the only
dimension-two operator: A2 � Aa

�A
a� [1], and that it is

not small [2–8]. It is thus necessary to carefully look for the
possibility of such a contribution, which appears in the
operator product expansion (OPE), as a 1=p2 contribution
up to logarithmic corrections. The coefficient of this 1=p2

contribution is equal to the vacuum expectation value
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g2hA2i times a Wilson coefficient that has to be computed
in perturbation theory, and has been up to three loops for
propagators [9]. To argue that a measured 1=p2 contribu-
tion is a continuum power correction and not a lattice
artefact, we must check that the 1=p2 term in the fit scales
with lattice spacing when expressed in physical units. To
further argue that this is indeed due to hA2i, we must
compare the resulting hA2i from different quantities and
thus check the universality of the condensates which is
based on the Shifman-Vainshtein-Zakharov technology.
The theory of Wilson operator expansion is then constrain-
ing: since there exists only one dimension-two operator,
provided that it is renormalized with the same prescription
for all these quantities, all the different estimates of hA2i
should coincide within errors, up to 1=p4 corrections, for a
given value of Nf and of the dynamical masses. Of course,

its extraction needs the coefficients of the Wilson expan-
sion which are computable in perturbation. To test this
universality of the extracted hA2i is one of the goals of
our program of analyzing many different quark and gluon
quantities obtained from lattice gauge configurations pro-
duced by the European Twisted Mass Collaboration
(ETMC). We have also applied a criterion proposed in
[10] to validate the way we use operator expansion. This
paper takes one of the first steps in such a program.

It is worthwhile also to mention that several authors have
elaborated further on the relation between this gauge-
dependent gluon condensate, obtained in the Landau
gauge, and possible 1=p2-terms in gauge invariant quanti-
ties, and thus on the phenomenological implications,
mainly in connection with confinement scenarios, of such
a dimension-two condensate [11].

All this can only be done once the lattice artefacts are
eliminated or at least under control. The Oða2Þ artefacts
can be quite large since we consider large momenta, while
finite volume artefacts are minor. There are two main types
of Oða2Þ artefacts: Oða2p2Þ artefacts, which respect the
continuum Oð4Þ rotation symmetry, and hypercubic arte-
facts, which respect the Hð4Þ hypercubic symmetry group
but not Oð4Þ. The latter are effects of the hypercubic
symmetry of the lattice action. We will identify the
Oða2p2Þ artefacts nonperturbatively by doing a fit of the
running Zð�Þ, which will include the perturbative running,
the hA2i power correction, and a term proportional to a2p2.
Notice that, while the perturbative and hA2i running con-
tributions must approximately scale in physical units, the
artefacts must scale in lattice units. This is an additional
check we shall perform.

Concerning the elimination of hypercubic artefacts,
which is better done before the above-mentioned running
fit, several methods have been proposed in literature: the
democratic selection, the perturbative correction, and the
nonperturbative ‘‘egalitarian’’ one (‘‘egalitarian’’ because
all the points are used on the same footing in this ap-
proach). We will discuss this in some detail later and

perform extensive comparisons. In particular, we will use
a new quality test which consists of watching to what
extent the ‘‘half-fishbone’’ structure, which raw lattice
results for Zq always exhibit and which is a dramatic

illustration of hypercubic artefacts, are corrected by every
method.
Although all the issues raised here concern all the

renormalization constants as well as the QCD coupling
constant, we will concentrate in the following on Zq that

renormalizes the quark field,

qR ¼ Z1=2
q qB; (1.1)

where qB (qR) is the bare (renormalized) quark field.
In the regularization-invariant momentum-subtraction
(RI’-MOM) scheme, Zq is defined by

Zqð�2 ¼ p2Þ ¼ �i

12p2
Tr½S�1

bareðpÞp�; (1.2)

where SbareðpÞ is the bare quark propagator. Our goal is to
compute that constant from LQCD with twisted Wilson
quarks.
In [4,12], a study1 of Zq was performed from LQCD in

the case Nf ¼ 0 using both the overlap and Wilson clover

fermions. In [12], the exceptional size of hypercubic arte-
facts was stressed and a nonperturbative elimination of
hypercubic artefacts was performed along the same prin-
ciple as we use here. In [4], the Wilson coefficient of the
hA2i was computed up to the leading logarithm approxi-
mation and applied to estimate the condensate from the
LQCD data. The outcome was that a significant nonper-
turbative contribution from hA2i was needed to account for
the results. Notice that we do not expect the hA2i to be
similar or even close in the cases of Nf ¼ 0 and Nf ¼ 2.

Summarizing the above discussion, we do here concen-
trate on Zq because we consider it as a kind of benchmark

for the following reasons:
(a) It has especially large hypercubic artefacts and is

thus a good test bed for a correct treatment of these.
(b) It has a vanishing anomalous dimension at leading

order in the Landau gauge: its perturbative running
is thus soft.

(c) The Wilson coefficient of the hA2i condensate is
rather large [4,9], which is an incentive to look
carefully for nonperturbative contributions.

In this paper, in order to test deeply the reliability
of our results, we will compare many fits: perturbative/
nonperturbative hypercubic correction, one-window/
sliding-windows nonperturbative hypercubic correction,
effect of the total fitting range, fitting separately every �,
and global fit. As a consequence, we will proceed as
follows:

1In [4], Zq was denoted Zc .
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(a) Recall some general formulae concerning the per-
turbative and nonperturbative running in the
continuum;

(b) Describe our lattice setting and our nonperturbative
egalitarian method to eliminate hypercubic
artefacts;

(c) Present the results concerning the perturbative cor-
rection method for hypercubic artefacts and show
the quality checks;

(d) Present the results concerning the nonperturbative
method to correct for hypercubic artefacts, show the
quality checks, and propose two types of fits, the
sliding-windows fit (SWF) and the one-window fit
(OWF);

(e) Perform the running fit on the output of all of the
previously mentioned hypercubic corrected data,
compare the results for the g2hA2i for all these fits,
and check the scaling of g2hA2i;

(f) Check the scaling of the / a2p2 artefacts;

(g) Check the lattice spacing dependence of Zpert
q , the

perturbative contribution to Zq, / g2;

(h) Study the range of variation of our results
for g2hA2i from the egalitarian method with one
window/sliding-windows, with varying fitting
ranges, and the perturbative method with two real-
izations, and extract from there the systematic
uncertainty;

(i) Join in one plot the three �’s and perform the fit of
the running;

(j) Compare the resulting g2hA2i with the one extracted
from the strong coupling constant and with
quenched estimates, and test our procedure accord-
ing to Martinelli-Sachrajda’s criterion [10];

(k) Conclude.

II. RUNNING OF Zq

A. Perturbative running

In Landau gauge, Zq has a vanishing anomalous dimen-

sion to leading order, i.e., its running starts at Oð�2Þ. The
perturbative running has been computed up to four loops
(see [13] and references therein). The needed formulae are
accessible on the web site in Ref. [13].

B. Wilson expansion and nonperturbative running

To handle nonperturbative corrections, we use the theory
of operator product expansion [14] and its application in
estimating power-suppressed nonperturbative corrections
via vacuum expectation values [15]. In Landau gauge,
there exists only one dimension-two operator allowed to

have a vacuum expectation value: A2 � Pa¼1;8
�¼1;4 A

a
�A

a�.

The Wilson coefficient of this operator has been computed
to leading logarithm in [4] and extensively for all propa-
gators up to Oð�4Þ in [9].

1. hA2i tree-level Wilson coefficients for Zq

In order to give a hint, let us just sketch the tree-level
calculation of that Wilson coefficient.

Consider the above diagram describing a quark propa-
gating in a constant background gauge field. As a conse-
quence the [red] filled bubbles represent the interaction of
the quark with this background field: ig�a=2A

a. The
Feynman rules are then applied as usual. Neglecting the
quark mass, it gives

�ip

p2

� X�¼4;a¼8

�¼1;a¼1

X�0¼4;a0¼8

�0¼1;a0¼1

ig
�a

2
Aa
��

��ip

p2
ig
�a0

2
Aa0
�0��0

�aa0���0

��ip

p2
¼�g2

12

hA2i
p2

��ip

p2
; (2.1)

where h i represents the vacuum expectation value,P
�2
a=4 ¼ CF ¼ 4=3 (proportional to the identity

matrix in color space), the sum over � gives a factor 4,
and

hðAa
�Þ2i ¼ hA2=32i; hðA � p̂Þ2i ¼ hA2=4i (2.2)

from the homogeneity of the vacuum for rotations in space-
time and color space.

For Zq defined by Eq. (1.2), we get at tree level the

following nonperturbative contribution due to hA2i:

�Zq ¼ g2

12

hA2i
p2

: (2.3)

2. The Wilson coefficients at Oð�4Þ
The Wilson coefficient of hA2i for the quark propagator

has been computed up to Oð�4Þ in [9] in the MS scheme.
Our lattice data refer naturally to the RI’-MOM scheme.
Some work is needed to derive the correct analytic formula
which allows a fitting of our lattice data. We have derived
this in the Appendix.

III. THE LATTICE COMPUTATIONS

The results presented here are based on the gauge field
configurations generated by the European Twisted Mass
Collaboration (ETMC) with the tree-level improved
Symanzik gauge action [16] and the twisted mass fermi-
onic action [17] at maximal twist.
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A. The lattice action

A very detailed discussion about the twisted mass and
tree-level improved Symanzik gauge actions, and about the
way they are implemented by ETMC, can be found in
Refs. [18–21]. Here, for the sake of completeness, we
will present a brief reminder of the twisted action and the
run parameters for the gauge configurations that will be
exploited in the present work (see Table I.)

TheWilson twisted mass fermionic lattice action for two
flavors of mass degenerate quarks reads (in the so-called
twisted basis [17,22])

SFtm ¼ a4
X
x

f ��x½DW þm0 þ i�5�3�q��xg;

DW ¼ 1

2
��ðr� þr�

�Þ � ar

2
r�r�

�;
(3.1)

wherem0 is the bare untwisted quark mass and�q the bare

twisted quark mass, �3 is the third Pauli matrix acting in
flavor space, and r is the Wilson parameter, which is set to
r ¼ 1 in the simulations. The twisted Dirac operator is
defined as

Dtw � DW þm0 þ i�5�3�q: (3.2)

The operators r� and r�
� stand for the gauge covariant

nearest neighbor forward and backward lattice derivatives:

r�ðx; yÞ � ½�y;xþ�̂U�ðxÞ � �x;y�;
r?

�ðx; yÞ ¼ ½�x;y � �y;x��̂U
y
�ðx� �̂Þ�;

D� � 1

2
½r�ðx; yÞ þ r?

�ðx; yÞ�

¼ 1

2
½�y;xþ�̂Wðx; yÞ � �y;x��̂Wðx; yÞ�;

(3.3)

defining the operator D� as the discretized covariant de-

rivative. The bare quark mass m0 is related as usual to the
so-called hopping parameter 	, by 	 ¼ 1=ð8þ 2am0Þ.
Twisted mass fermions are said to be at maximal twist if
the bare untwisted mass is tuned to its critical value, mcrit.
This is in practice done by setting the so-called untwisted
partially conserved axial current (PCAC) mass to zero.

In the gauge sector, the tree-level Symanzik improved
gauge action (tlSym) [16] is applied. This action also
includes, besides the plaquette term U1�1

x;�;
, rectangular

(1� 2) Wilson loops U1�2
x;�;
. It reads

Sg ¼ �

3

X
x

�
b0

X4
�;
¼11��<


f1� Re TrðU1�1
x;�;
Þg

þ b1
X4

�;
¼1��


f1� Re TrðU1�2
x;�;
Þg

�
; (3.4)

where � � 6=g20, g0 being the bare lattice coupling, and it

is set b1 ¼ �1=12 (with b0 ¼ 1� 8b1 as dictated by the
requirement of continuum limit normalization). Note that,
at b1 ¼ 0, this action becomes the usual Wilson plaquette
gauge action. The run parameters for � and �q of the

gauge configurations that will be exploited in the following
can be found in Table I.

B. The computation of the quark propagator

Computing the renormalization constants for the quark
propagator and the operators containing quark fields de-
mands that we first compute the gauge-fixed two-point
quark Green functions from the lattice. We exploited
ETMC gauge configurations [23] obtained for � ¼ 3:9,
� ¼ 4:05, and � ¼ 4:2. After checking the small depen-
dence of Zq on the dynamical and valence quark masses,

we decided to use only one mass for every � (Table I). The
lattice gauge configurations are transformed to Landau
gauge by minimizing the following functional of the SU
(3) matrices, U�ðxÞ,

FU½g�¼Re

�X
x

X
�

Tr

�
1� 1

N
gðxÞU�ðxÞgyðxþ�Þ

��
; (3.5)

with respect to the gauge transform g, by applying a
combination of overrelaxation algorithm and Fourier
acceleration.2

We compute quark propagators with a local source on
gauge configurations separated by 20 trajectories in order
to have them decorrelated.3 To be even safer, we take the
source at a random point x0 on the lattice during the
inversion:

Sðy; x0Þa;�;b0;�0

i ¼ D�1
tw ðy; xÞa;�;b;�;i;jsob;�j ðx; x0Þ;

sob;�j ðx; x0Þ ¼ �x;x0�b;b0��;�0
;

(3.6)

where the equation is solved for every b0 ¼ 1, 3 and �0 ¼
1, 4, and j ¼ u, d labels the isospin. The aim of taking a
random source is to prevent that the inversion of all the

TABLE I. Run parameters of the exploited data from the
ETMC Collaboration for the present study of Zq. The second

column lists the lattice spacings which we have used in this
study.

� a fm a�1 GeV a�q Volume # confs

3.9 0.083 2.373 0.004 243 � 48 100

4.05 0.0675 2.897 0.006 243 � 48 100

4.2 0.055 3.58 0.002 243 � 48 100

2We end when j@�A�j2 < 10�11 and when the spatial integral
of A0 is constant in time to better than 10�6.

3As explained in Ref. [23], at least 1500 trajectories for
equilibration were allowed in generating the configurations
analyzed here and, as can be seen in Table 2 of Ref. [23],
some integrated autocorrelation time checks were applied to
these configurations and clearly indicate their decorrelation.
We also confirmed directly the decorrelation for a sample of
our configurations by computing the time correlation function
for the propagators with either fixed or random point sources.
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configurations with the same fixed point for the source
might introduce some new correlations. We perform the
Fourier transform, which is a 12� 12 complex matrix:

SiðpÞ �
X
y

e�ipðy�x0ÞSiðy; x0Þ: (3.7)

This is the Fourier transform of the quark incoming to the
source (the arrow pointing towards the source). The
Fourier transform of the quark outgoing from the source is

Sy5i ðpÞ ¼ �5S
y
�i
ðpÞ�5; (3.8)

where �u � d; �d � u. From Eq. (1.2), the lattice quark
renormalization constant Zq is given by

ZqðpÞ � �i

12~p2
hTr½S�1ðpÞ~p�i; (3.9)

where < . . .> means here the average over the chosen
ensemble of thermalized configurations and ~p� ¼ 1

a �
sinap�. The reason for using ~p� ¼ 1

a sinap� is to get

Zq ¼ 1 for a free fermion, or, in other words, to eliminate

hypercubic artefacts at tree level.

C. The method of nonperturbative
hypercubic Hð4Þ correction

The lattice estimates of the quark field renormalization
constant and the vertex functions lead to dimensionless
quantities that, because of general dimensional arguments,
depend on the strong interaction scale �QCD and on the

lattice momentum ap�. We have computed the Fourier

transforms for the following momenta:

pi ¼ 2�ni
NLa

ni ¼ �NL=4; � � � ; NL=4;

p4 ¼ �ð2n4 þ 1Þ
NTa

n4 ¼ �NT=4; � � � ; NT=4;

(3.10)

where pi ¼ 1, 3 are the spatial momenta and p4 the time-
like ones. The antiperiodic boundary condition in the time
direction explains the �ð2n4 þ 1Þ factor.

The lattice action Eqs. (3.1) and (3.4) is invariant under
the hypercubic group Hð4Þ. However, the boundary con-
ditions and the difference between the spatial size NL and
the timelike one NT ¼ 2NL generate finite volume correc-
tions to the hypercubic symmetry. Only the cubic symme-
try is exact. We define cubic invariant quantities and
compute their average over the cubic group. We have
thus a set of measures for every orbit of the cubic group,
labeled by

� X
i¼1;3

pm
i ; p4

�
; (3.11)

where m ¼ 2, 4, 6.
The first kind of artefacts that can be systematically

cured [12,24,25] are those due to the breaking of the

rotational symmetry of the Euclidean space-time when
using a hypercubic lattice, where this symmetry is re-
stricted to the discrete hypercubic Hð4Þ isometry group.
However, as already mentioned, we also have finite volume
effects which break Hð4Þ. We therefore need to adapt the
method. One idea could be to generalize it to a cubic
symmetry. This happens not to be practical due to too
few cubic symmetric orbits for a given ~p 2. We choose
another approach motivated by the fact that the lattice
action is indeed Hð4Þ symmetric and that finite volume
effects are expected to be small at large momenta com-
pared to finite lattice spacing artefacts. We therefore use a
slight variation of the method described in [24,25]: we
apply it to the cubic orbits of Eq. (3.11), keeping track of
p4 which is not an Hð4Þ symmetric quantity.
Defining the Hð4Þ invariants to be

p½4� ¼ X4
�¼1

p4
�; p½6� ¼ X4

�¼1

p6
�; p½8� ¼ X4

�¼1

p8
�; (3.12)

it happens that every cubic orbit in Eq. (3.11) has a well-
defined set of values for these Hð4Þ invariants, but several
cubic orbits may have the same Hð4Þ invariants. We will

neglect p½8�, which plays no role on small lattices. We can
thus define the quantity Zqðap�Þ averaged over the cubic

orbits as

Zlatt
q ða2p2; a4p½4�; a6p½6�; ap4; a

2�2
QCDÞ: (3.13)

We expect the hypercubic effects to be Oða2Þ lattice
artefacts and therefore to be expandable into powers of
a2. This would of course trivially be the case if a2p2 	 1

since then, for example, � ¼ a2p½4�=p2 � a2p2 	 1. (We
take on purpose this quantity which will be seen to be
dominant.) Then a Taylor expansion of Eq. (3.13) will
ensure the artefact to be Oða2Þ. However, aiming at mea-
suring Zq at large momentum, we go up to a2p2 � 3–4. We

will assume, and then check, that the Zlatt
q in Eq. (3.13) can

be Taylor-expanded around p½4� ¼ 0 up to � significantly
larger than 1:

Zlatt
q ða2p2; a4p½4�; a6p½6�; ap4; a

2�2
QCDÞ

¼ Z
hypcorrected
q ða2p2; ap4; a

2�2
QCDÞ

þ Rða2p2; a2�2
QCDÞa2

p½4�

p2
þ � � � ; (3.14)

where

Rða2p2;a2�2
QCDÞ¼

dZlatt
q ða2p2;0;0;0;a2�2

QCDÞ
d�

���������¼0
:

(3.15)

Of course, terms proportional to p½6�, p½4�2, etc., can be
added analogously to the formula, as well as terms break-
ing Hð4Þ. However, we have found that our data were not
accurate enough to allow fitting them, and that using only
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Eqs. (3.14) and (3.15) gave satisfactory fits. Now we must
describe how we fit the functions appearing in the right-
hand side (rhs) of Eq. (3.14).

1. The sliding-windows fit (SWF)

We consider all values of a2p2 in the range a2p2
minin

�
a2p2 � a2p2

maxin , each of which contains a set of cubic

orbits. We choose an integer width w (we will use w ¼ 10
in numerical applications) and define a window as the set
of 2wþ 1 values of a2p2 around an a2p2

center (w contigu-
ous values below a2p2

center and as many above). There are
as many windows as values of a2p2

center such that all of
them are in the range ½a2p2

minin
; a2p2

maxin�. This defines the
range of interest a2p2

minout
� a2p2

center � a2p2
maxout .

For every window, we use for the fit all cubic orbits
corresponding to the values of a2p2 in the window. We fit,
according to Eq. (3.14), 2wþ 2 parameters which are the

2wþ 1 values of Zhypcorrected
q ða2p2; a2�2

QCDÞ within the win-

dow, and one common value of Rða2p2
center; a

2�2
QCDÞ. The

dependence in these parameters is linear, and thus the fit
amounts to invert a matrix. It is clear that, for any a2p2, the

Z
hypcorrected
q ða2p2; a2�2

QCDÞ is fitted every time a2p2 is within

a window, i.e., 2wþ 1 times. We keep as the final result
only the result of the fit when a2p2 is the center of the
window. At the end of the fit, for every a2p2

center in the
range a2p2

minout
� a2p2

center � a2p2
maxout we have, as

expected, a fitted value for both functions of the rhs
of Eq. (3.14).

We can then study the function Rða2p2; a2�2
QCDÞ.

As will be reported later (see, for instance, Fig. 6), we
find that a reasonable approximation for R is

Rða2p2; a2�2
QCDÞ ¼ ca2p4 þ ca4p4a

2p2: (3.16)

This leads to the one-window fit.

2. The one-window fit (OWF)

We tune w such that only one window (or at worst two)
is included in the range ½a2p2

minin
; a2p2

maxin�. We

then perform the fit for that window according to the
equation

Zlatt
q ða2p2; a4p½4�; a6p½6�; ap4; a

2�2
QCDÞ

¼ Z
hypcorrected
q ða2p2; a2�2

QCDÞ þ ca2p4a
2 p

½4�

p2

þ ca4p4a
4p½4�: (3.17)

This fit gives 2wþ 3 parameters which are

Z
hypcorrected
q ða2p2; a2�2

QCDÞ for all a2p2 in the window, i.e.,

in the range ½a2p2
minin

; a2p2
maxin� (or, if the range size is

even, one value is eliminated), and the parameters ca2p4
and ca4p4.

D. Other lattice artefacts

There are ultraviolet artefacts which are functions of
a2p2 and are thus insensitive to hypercubic biases and
not corrected by the above-mentioned method. They will
be corrected simply by assuming a term linear in a2p2 in
the final fit and checking that the coefficient scales cor-
rectly for different lattice spacings. Then, after curing the
hypercubic artefacts and removing such a linear term in
a2p2, we will assume to be left with nonperturbative
estimates of Zq free of ultraviolet lattice artefacts and apply

the same continuum formula (see Sec. V) for the results
obtained from the three lattice data sets with different �.
Of course, the results have to be converted from lattice to
physical units with the appropriate lattice spacings before
fitting with the continuum formula. Thus, if any noncured
ultraviolet lattice artefacts still remain, they should emerge
as a residual dependence of the fitting parameters on
the lattice spacing that will be tested for our three lattice
data sets.
To take into account the space-time anisotropy, which is

a finite volume artefact, we can check the dependence of
Zq on a anisotropic quantity such as p

2
4 � ~p2=3. We did not

see any sizeable effect of this parameter.
Finite volume artefacts are also studied as usual by a

comparison of runs at different volume. We expect a small
effect at large momenta, and our checks confirmed it, as
well as the analysis of [7]. Wewill not consider this artefact
anymore.

IV. LATTICE RESULTS AND
HYPERCUBIC CORRECTIONS

The hypercubic artefacts generate on the raw lattice
data, Zlatt

q , the so-called half-fishbone structure [12] shown

in Fig. 1. In this figure, all the points labeled as explained in
Eqs. (3.10) and (3.11) are plotted. The color code shows the

value of the ratio p½4�=ðp2Þ2, which is between 0.25 and 1.
The values closer to 1 are the ‘‘less democratic’’ or ‘‘ty-
rannic’’ ones. We see, as expected, that the tyrannic points
are more affected by the artefacts. We also see that the gap

between Zlatt
q ða2p2; a4p½4�; a6p½6�; ap4; a

2�2
QCDÞ at a given

p2 can be as large as 0.07, i.e, about 10%. Taking a naı̈ve
average without a correct treatment of this artefact would
leave a systematic upward shift of about 5%. In Sec. III C
we developed a nonperturbative method to cure this arte-
fact (this method being split in two options, the SWF and
the OWF). There also exist two other methods. The oldest
one is the ‘‘democratic selection.’’ It amounts to keeping
only, say, the points with ratio � 0:3 in Fig. 1. One sees
that it eliminates a lot of data, and it is still far from the
egalitarian result (the lowest curve in Fig. 1) which we
consider as better. We will thus not consider this demo-
cratic selection further. The second additional method for
correcting hypercubic artefacts, which uses perturbative
calculation, is detailed in the next section.
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A. Perturbative correction

The perturbative method [26] consists of computing at
one loop in lattice perturbation theory [27], and then,
assuming that the lattice spacing artefacts are reliably
described by the Oðg2a2Þ terms thus obtained, subtracting
them from the lattice data. This method has been applied to
quark bilinear operators in [28]. For comparison, we have

applied this method here following the prescription de-
scribed in Sec. 3.2.2 of [28] and also a variant of it.
Equation 24 in [26] may be written in Landau gauge as

Z
pert
q ða2p2Þ ¼ Ztree

q ða2p2Þ þ ~g2ðbq1 þ cq1a
2p2

þ cq2a
2p2 logða2p2Þ þ cq3

a2p½4�

p2

þ cq4
a2p½4�

p2
logða2p2ÞÞ; (4.1)

where, to follow [28], ~g2 ¼ g2boosted=ð12�2Þ, with

g2boosted ¼ g2bare=hplaquettei. The coefficients are defined

using the notations of Eq. (24) in [26]:

cq1 ¼ �ð2;4Þ; cq2 ¼ 59

240
þ c1

2
þ C2

60
;

cq3 ¼ �ð2;1Þ � 3

80
� C2

10
; cq4 ¼ 101

120
� 11

30
C2:

1. Prescription with ~p�

Using the prescription of Eq. (35) in [28], for every
cubic orbit we define the subtracted quantity as

Z
perttilde
q ða2p2; a4p½4�; a6p½6�; ap4; a

2�2
QCDÞ

¼ Zlatt
q ða2p2; a4p½4�; a6p½6�; ap4; a

2�2
QCDÞ

� ~g2ðcq1a2 ~p2 þ cq2a
2 ~p2 logða2 ~p2Þ

þ cq3
a2 ~p½4�

~p2
þ cq4

a2 ~p½4�

~p2
logða2 ~p2ÞÞ: (4.2)

The result of this subtraction is plotted in the left-hand side
(lhs) of Fig. 2. The half-fishbone structure is still clearly
visible for a2p2 > 1:6. We then try another prescription.

0.78
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0.82
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0.88
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0.92
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.9 =< ratio
.8 =< ratio < .9
.7 =< ratio < .8
.6 =< ratio < .7
.5 =< ratio < .6
.4 =< ratio < .5
.3 =< ratio < .4
.2 =< ratio < .3

hyp corrected OWF

FIG. 1 (color online). This plot shows the raw data for � ¼
3:9, Zlatt

q ða2p2; a4p½4�; a6p½6�; ap4; a
2�2

QCDÞ in Eq. (3.15), in

terms of a2p2 in the horizontal axis. The ‘‘half-fishbone’’
structure due to hypercubic artefacts is clearly seen. There is
one point for every cubic (three-dimensional) orbit. The data-
point [and color] code classifies the data according to their
degree of ‘‘democracy’’ measured by the ratio ¼ p½4�=ðp2Þ2.
The lowest plot corresponds to the nonperturbatively hypercubic
corrected data (or ‘‘egalitarian result’’) resulting from the one-

window fit Z
hypcorrected
q ða2p2; a2�2

QCDÞ in Eq. (3.17). The data

correspond to � ¼ 3:9, a� ¼ 0:004, but the same features
appear for all �’s.
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FIG. 2 (color online). Left-hand side: Data of Fig. 1 corrected by the perturbative subtraction formula of Eq. (4.2), Sec. IVA1. Right-
hand side: Same exercise with the prescription Eq. (4.3) with Eq. (4.1). The data-point [and color] code is the same as in Fig. 2, as is the
ratio ¼ p½4�=ðp2Þ2. The horizontal axis is a2p2 for both sides.
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2. Prescription with p�

The trace of Eq. (3.9), which introduces ~p�, had to be

applied in Eq. (24) of [26] to obtain Eq. (4.1). We will now
expand in p� before performing the trace and then keep the

Oðg2a2Þ terms for subtraction. This gives, using again,

Zpertnotilde
q ða2p2; a4p½4�; a6p½6�; ap4; a

2�2
QCDÞ

¼ Zlatt
q ða2p2; a4p½4�; a6p½6�; ap4; a

2�2
QCDÞ

� ~g2
�
cq1a

2p2 þ cq2a
2p logða2p2Þ

þ c0q3
a2p½4�

p2
þ cq4

a2p½4�

p2
logða2p2Þ

�
; (4.3)

where

c0q3 ¼
�ð0;1Þ

6
þ �ð2;1Þ � 3

80
� C2

10
¼ cq3 þ �ð0;1Þ

6
: (4.4)

This result is plotted in the rhs of Fig. 2. With this variant,
the half-fishbone is significantly reduced, but a linear
behavior on a2p2, not compatible with the logarithmic
behavior predicted by perturbation theory, appears to
emerge for the domain of larger a2p2. (This is clearly
visible in the right plot of Fig. 2 for a2p2 * 2–2:5.) This
should be interpreted as an overcorrection for the dominant
Oð4Þ artefact. The same is not manifest (not so clearly, at
least) when applying the first prescription for the perturba-
tive hypercubic correction, as can be concluded after com-
paring left and right plots in Fig. 2.

3. Lessons about the perturbative method

We see that the two prescriptions start differing signifi-
cantly at a2p2 ’ 1, which is not surprising since higher-

order terms become significant; for example, an a4p½4� is
also of order 1 for tyrannic points, while a2p2 � a2 ~p2 ’
0:3. The perturbative method goes in the right direction,
but it is impossible to know a priori its quality without
performing the tests we propose here. The method contains
several ambiguities: What to take for the coupling con-
stant? Use p� or ~p�? Contrary to the nonperturbative

method, this method provides both the hypercubic correc-
tions and the Oða2p2Þ ones. Conceptually, the perturbative
method is very useful as it exhibits qualitative aspects
which may guide the use of the nonperturbative one; for
example, it justifies the smoothness of the variation of the
derivative R, Eq. (3.15), as a function of a2p2 as well as
that of the slope in a2p2. Finally, we shall see that it gives
results similar to the nonperturbative ones.

B. Nonperturbative hypercubic correction

We now apply the nonperturbative correction. First of
all, we check that the lattice estimates of Zq for any fixed

value of a2p2, within our momentum range, show a regular

behavior as a function of the onlyHð4Þ-invariant, p½4�, that
we will expand in: a linear fit gives proper account of our
estimates for any a2p2 & 3:5. This can be seen in the plots
in Fig. 3, obtained for some representative values of a2p2.

Thus, we only expand in p½4� since the higher-order terms

FIG. 3 (color online). We show the lattice estimates of Zq in terms of a2p½4�=p2 for some representative values of the fixed lattice
momentum, a2p2 ¼ 1:100, 2.367, 2.883, 3.15 7, 3.294, 3.431. Only for the last one, corresponding to the maximum lattice momentum
we used for our analysis, some small deviation from the linear behavior seems to appear at large values of a2p½4�=p2.
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turn out to be negligible in our momentum range. We also

check that introducing a cutoff, a2p½4�=p2 & 1:5–2:0, for
the data to be used in the linear extrapolation does not
modify our extrapolated results for Zq at any a2p2, apart

from statistical fluctuations. This is also clear from Fig. 3,
where only for the largest lattice momentum, a2p2 ¼
3:431, does there appear to be some small deviation from

the linear behavior above a2p½4�=p2 ¼ 2:0. Even for this
case, the slope computed through the OW fit appears not to
be essentially affected by these deviated data.

1. Sliding-windows fit versus one-window fit

In Sec. III C we presented two types of fits, similar in
spirit: the sliding-windows fit (SWF) described in
Sec. III C 1, which amounts to using Eq. (3.14) combined
with Eq. (3.15), and the one-window fit (OWF) described
in Sec. III C 2, which amounts to using Eq. (3.16). In the lhs
of Fig. 4 we show, in the case of � ¼ 3:9, the comparison
of hypercubic corrected data after applying OWF and
SWF. The difference does not appear to be large, which
is rather encouraging. The OWF gives a slightly smoother
result. For this value of �, the chi-squared is not good
(see Table II), but remember that it uses only two hyper-
cubic parameters. Chi-squared for the other �’s are better.

2. Half-fishbone reduction test

We need also to apply the half-fishbone reduction
test as in the perturbative case, i.e., to subtract the hyper-
cubic correction to the raw data of every cubic orbit. We
present the OWF result. From Eq. (3.17), the subtraction
amounts to

Z
nonpertOWF
q ða2p2; a4p½4�; a6p½6�; ap4; a

2�2
QCDÞ

¼ Zlatt
q ða2p2; a4p½4�; a6p½6�; ap4; a

2�2
QCDÞ

� ca2p4a
2 p

½4�

p2
� ca4p4a

4p½4�: (4.5)

The result is shown in the rhs of Fig. 4, one point
per cubic orbit. The nonperturbatively corrected

Zhypcorrected
q ða2p2; a2�2

QCDÞ of Eq. (3.17) is represented by

the black line in the rhs of Fig. 4. It is well in the middle
of the subtracted points, as we would expect.
It is seen that the half-fishbones have been strongly

reduced. One sees a remainder of these artefacts due to
the less democratic, or tyrannic points. These have only
one nonvanishing component or one large and a very small
one. These points are not so many as seen in the plot; their
orbits are small, which explains the larger error bars. We
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hypercubic corrected

FIG. 4 (color online). On the left-hand side, we compare, for � ¼ 3:9, a� ¼ 0:004, the nonperturbatively corrected Zq from the
sliding-windows fit (SWF), Sec. III C 1 and from the one-window fit (OWF), Sec. III C 2. To better show the running, we have also
subtracted theOða2p2Þ artefact, which will be computed below. On the right-hand side, we show, using the OWF, the nonperturbatively
subtracted data Eq. (4.5). There is one point for every cubic (three-dimensional) orbit. The data-point [and color] code and the
definition of the parameter ratio are the same as in Fig. 2. The black line corresponds to the OWF’s nonperturbatively corrected result:

Zhypcorrected
q ða2p2; a2�2

QCDÞ� of Eq. (3.17). The Oða2p2Þ has also been subtracted. The horizontal axis is a2p2.

TABLE II. Results for the slope in a2p½4�=p2 and a4p½4� and the same divided by g2 in the one-window fit.

� a2 fm2 ca2p4 ca4p4 ca2p4=g
2 ca4p4=g

2 �2=d:o:f

3.9 0.00689 0.067(4) �0:0149ð10Þ 0.044(3) �0:0097ð7Þ 4.1

4.05 0.00456 0.065(3) �0:0144ð5Þ 0.044(2) �0:0097ð3Þ 0.53

4.2 0.00303 0.055(11) �0:0124ð4Þ 0.039(8) �0:0089ð3Þ 0.98
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have checked that these tyrannic points have indeed a small
impact on the hypercubic corrected result.

Finally, for the sake of comparison of results obtained
after applying perturbative and nonperturbative hypercubic
corrections, we plot together in Fig. 5 the perturbatively
subtracted results defined in Sec. IVA2 and the nonper-
turbatively corrected ones with OWF, at � ¼ 3:9.

3. The slopes in p½4�

The sliding-windows fit solves for every window a value
for the slope Rða2p2Þ [Eq. (3.15)], i.e., the derivative

@Zlatt
q =@ða2p½4�=p2Þ. This allows for a study of the shape

of this function R. In Fig. 6 we plot this slope R defined in
Eq. (3.15) for the three values of �. We also plot the
equivalent slope using the perturbative formula with the
p� prescription for � ¼ 3:9, Sec. IVA2: Rpert ¼
c0q3 þ cq4 logða2p2Þ, c0q3 defined in Eq. (4.4) and cq4 in

Eq. (4.2). We see that this perturbative slope is in fair
agreement with the nonperturbative one, explaining the
good elimination of half-fishbones in the rhs in Fig. 2.

The three nonperturbative data in Fig. 6 give the im-
pression to be affine (a constant minus a linear term) over a
rather large momentum interval. This is what is expressed
in Eq. (3.16) from where we have deduced the one-window
fit: a fit over the full range (0.5–3.5) with only two hyper-
cubic parameters.4

The fitted values for ca2p4 and ca4p4 from the one-

window fit are given in Table II as well as the same divided
by g2, since perturbation theory expects at least for ca2p4 to

be / g2. Before dividing by g2, a small scaling violation is
apparent, which corresponds to the nonoverlap of the
curves at different �’s in Fig. 6. It appears on Table II
that dividing by g2 improves the scaling significantly. The
�2 in Table II is not good for � ¼ 3:9, apparently due to
some structure at the lower end of the plot.

V. RUNNING INCLUDING hA2i
CORRECTIONS FROM OPE

In this section, we will check the running of Zq. For this

purpose, we shall use both the formula Eq. (A24) derived
in the Appendix, to which we add a lattice artefact term
/a2p2 not yet subtracted:

Z
hypcorrected
q ða2p2Þ

¼ Z
pert RI0
q ð�02ÞcRI00Zq

�
p2

�02 ; �ð�0Þ
�

�
0
@1þ cMS

2Zq

�
p2

�2 ; �ð�Þ
�

cRI
0

0Zq

�
p2

�2 ; �ð�Þ
� c

WMS
2Zq

�
p2

�2 ; �ð�Þ
�

cMS
2Zq

�
p2

�2 ; �ð�Þ
� hA2iMS;�2

32p2

1
A

þ ca2p2a
2p2; (5.1)

and a formula including only an OPE correction with a
tree-level Wilson coefficient,

Zhypcorrected
q ða2p2Þ ¼ ZpertRI0

q ð�02ÞcRI00Zq

�
p2

�02 ; �ð�0Þ
�

�
�
1þ c1=p2

p2

�
þ ca2p2a

2p2; (5.2)

FIG. 5 (color online). We plot together, for comparison, � ¼
3:9, the perturbatively subtracted results defined in Sec. IVA2,
i.e., all the points of the right-hand side of Fig. 2 [here in green],
and the nonperturbatively corrected ones with OWF, i.e., the
line-with-X [green] points of the left-hand side of Fig. 4 [this
time in blue].
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FIG. 6 (color online). The three lattice slopes R defined in
Eq. (3.15) for the three lattice spacings and the perturbative one
Rpert ¼ c0q3 þ cq4 logða2p2Þ for � ¼ 3:9, in terms of a2p2 in the

horizontal axis.

4Of course, there are additionally as many hypercubic insen-
sitive parameters as there are values of p2 in the range, which are
simply the values of Z

hypcorrected
q ða2p2; a2�2

QCDÞ.
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where c1=p2 ¼ g2hA2i=12. We use �0 ¼ � ¼ 10 GeV as

the renormalization scale; cRI
0

0Zq
ðp2; �2Þ is computed from

the four-loop perturbative running of Zq [13],

cRI
0

0Zq
ðp2; �2Þ � Z

pert RI0
q ðp2; g2bareÞ

Z
pert RI0
q ð�2; g2bareÞ

; (5.3)

cMS
2Zq

ðp2; �2Þ is the three-loop Wilson coefficient of hA2i in
the expansion of Zq [9]; and the ratio

cWMS
2Zq

�
p2

�2 ;�ð�Þ
�

cMS
2Zq

�
p2

�2 ;�ð�Þ
� ¼1�0:1317�2ð�Þ�0:5155�3ð�Þ

1�0:1317�2ðpÞ�0:5155�3ðpÞ (5.4)

is obtained in the Appendix. We express the lattice spacing
(cutoff) dependence as a dependence in g2bare.

Z
pert RI0
q ð�2; g2bareÞ is the perturbative contribution to Zq at

the scale � in the RI’-MOM scheme. In other words,

ZRI0
q ðp2; g2bareÞ
¼ ZpertRI0

q ðp2; g2bareÞ

�
0
@1þ cMS

2Zq

�
p2

�2 ; �ð�Þ
�

cRI
0

0Zq

�
p2

�2 ; �ð�Þ
� c

WMS
2Zq

�
p2

�2 ; �ð�Þ
�

cMS
2Zq

�
p2

�2 ; �ð�Þ
� hA2iMS;�2

32p2

1
A:

(5.5)

From now on, Z
pert
q will refer to Z

pertRI0
q . We fit three

parameters: Z
pert
q , ca2p2 and alternatively c1overp2 (which

amounts to a tree-level treatment of the c2Zq
coefficient) or

the vacuum expectation value (VEV) g2hA2i. In order to
estimate the systematic errors, we will treat in parallel the
one-window fit and the sliding-windows one. The results
are reported in Tables III and IV and Figs. 7 and 8. The
coefficient ca2p2 obviously refers to an Oð4Þ invariant

lattice-spacing artefact which is not detected by our non-
perturbative hypercubic correction method. We see in the
right plot of Fig. 7 as well as in the tables that this
coefficient scales very well when expressed in lattice units,
as it should be. The coefficient of 1=p2, if it is related to a
VEV hA2i, should rather scale in physical units. We see in
the left plot of Fig. 7 that a constant value is rather well
verified although with large errors. The results presented in
Tables III and IV show that the estimates for g2hA2i from
OPE expressions with Wilson coefficient from the
Chetyrkin-Maier (CM) three-loop expression are system-
atically about 20% below the ones from the tree-level one.

A. Residual lattice artefacts

Equation (5.1) to be applied for the fits of our three
lattice data sets, after the hypercubic lattice artefacts
have been properly cured, describes the running of Zq by

a continuum formula and removes any nonhypercubic
lattice artefacts by a linear term in a2p2. Thus, we are
initially left with three free parameters: g2hA2i and �MS

from the continuum formula and ca2p2 from the linear

term. To fit the lattice data, everything is converted to
physical units by applying the lattice spacings given in
Table I and taken from Ref. [7], and we also borrow the
estimate provided by the same paper to fix the value of
�MS. Then, as long as hypercubic and nonhypercubic

lattice artefacts are properly removed, the same continuum
formula has to work for the three lattices, and the three
fitted values of g2hA2i are expected to be compatible. The
same should happen for the three fitted values of ca2p2. In

other words, as we previously emphasized, a final check of
the procedure we followed to cure ultraviolet lattice
artefacts will result from studying the impact of the
residual dependence, if any, on the lattice spacing for
g2hA2i and ca2p2. This is done in Fig. 9, where we extrapo-
late to zero lattice spacing through a linear fit of the three
estimates for both parameters in Tables III and IV with OW
and SW fits. The results of the extrapolations appear in

TABLE III. Results for Z
pert
q (10 GeV) and ca2p2 Eq. (5.1) from

the one-window fit and the estimated g2hA2i VEV from the 1=p2

term and from the Chetyrkin-Maier [9] (CM) Wilson coefficient.
Notice that Z

pert
q and ca2p2 from these two fits are very close.

� a2 fm2 Zpert
q ca2p2 g2hA2itree g2hA2iCM

3.9 0.00689 0.726(5) 0.0201(13) 3.20(38) 2.62(31)

4.05 0.00456 0.742(5) 0.0200(15) 3.09(65) 2.57(54)

4.2 0.00303 0.760(3) 0.0194(8) 3.23(55) 2.74(47)

Average 0.0197(6) 3.18(28) 2.64(23)

TABLE IV. The same calculations as in Table III using the data from the sliding-windows fit to hypercubic corrections.

� a2 fm2 Z
pert
q ca2p2 g2hA2itree g2hA2iCM

3.9 0.00689 0.741(3) 0.0161(9) 2.07(37) 1.70(31)

4.05 0.00456 0.753(5) 0.0168(14) 2.13(52) 1.78(43)

4.2 0.00303 0.771(3) 0.0164(9) 1.59(60) 1.36(51)

Average 0.0165(6) 1.99(26)(27) 1.65(22)(27)
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Table V compared to the averaged values: they are com-
patible within the range of statistical errors.5

We can thus conclude that no sizeable ultraviolet arte-
fact remains after applying our H(4)-extrapolation and

removing the linear term in a2p2. The same conclusion
can be obtained by invoking the merged analysis in
Sec. VE, and notice in Fig. 11 that, after converting to

physical units and rescaling with the ratios of Z
pert
q given in

Table III, the data from the three lattices corrected for all
lattice artefacts match pretty well. This scaling in physical
units can be also taken as a good indication for the negli-
gible impact of finite-volume artefacts within our momen-
tum range.

B. Analysis from the nonperturbative
hypercubic corrections

1. Comparison of the running from the
OWF and the SWF

From Tables III and IV, we see that g2hA2i is systemati-
cally larger for the OWF than for the SWF. At first sight,
that seems surprising since the OWF and SWF hypercubic
corrected data are very similar (see Fig. 4). One reason is
the correlation between ca2p2 and g2hA2i: ca2p2 is also

systematically larger for the OWF than for the SWF. This
correlation is understandable as the a2p2 increases with p2

while 1=p2 decreases. This is compensated by a Z
pert
q

smaller for the OWF than for the SWF. We will consider
these differences as a systematic uncertainty in our fits and
count them in the errors.

2. Dependence on the fitting range

An additional test is to look for the effect of the fitting
range. The results are shown in Table VI and Fig. 10. One
sees again a correlation between the ca2p2 slope and

g2hA2i. Both decrease when the fitting range shortens while

FIG. 7 (color online). We plot the values of the fitted slopes ca2p2 (on the right-hand side) and the condensate g2hA2i (on the left) as
extracted from the 1=p2 contribution to the fit; see Tables III, IV, and VIII. In the left plot, we show the results from the OWF and from
the SWF. It can be seen that the Oð�4Þ formula for the Wilson coefficient computed by Chetyrkin and Maier [9] of hA2i (indicated by
the ‘‘CM’’ initials) is about 20% below the tree level result. We show the value obtained from the merged results of the three lattice
spacings, Table VIII. Finally, for the sake of comparison we show the result from the strong coupling constant of [7]. The horizontal
axis is a2 in fm2.

FIG. 8 (color online). We show the value of Z
pert
q defined in

Eq. (5.1) for all three lattice spacings as a function of the bare
coupling constant g2 ¼ 6=�. The points with X were obtained
through the SWF procedures and fitted linearly (upper solid
line); the lower points and lower solid line correspond to the
OWF procedure.

5Furthermore, we underestimate the statistical error for the
extrapolated value because it is computed by applying the
optimal slope without errors.
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correlatively Z
pert
q increases. The lhs of Fig. 10 explains

how this happens: when the range is shorter, the error bars
allow for a less curved fit. But the fit never reaches a value
such that g2hA2i disappears. The shortest window 0:5<
a2p2 < 2:0 gives the smallest value for g2hA2i but still 4
sigmas away from 0.

C. Analysis from the perturbative
hypercubic corrections

It is then useful to check if similar results are obtained
after a perturbative correction to the hypercubic artefacts
has been applied.

We have used two prescriptions to apply the perturbative
corrections. With the data obtained from the ~p� prescrip-

tion, Sec. IVA1, we perform an average on all the cubic

orbits of every p2 after a democratic selection p½4�=ðp2Þ2 <
0:3. This leaves us with not too many points, and it results
in rather large statistical errors. We then perform the same
running fit on the nonperturbatively hypercubic corrected
results: we fit with one perturbative running contribution,
one 1=p2 contribution, and one / a2p2 artefact. With the
data from the p� prescription, Sec. IVA2, we perform the

same fit over an average on all the cubic orbits of every p2

without any democratic selection, since the hypercubic
artefacts have already been efficiently reduced. The results
are shown in Table VII.

A first remark is that the ca2p2 coefficients are

compatible with zero, indicating that the perturbative
correction has efficiently eliminated this artefact.
The coefficient of the 1=p2 nonperturbative contribution
is found to be different from zero, in the same ballpark as
the results from the nonperturbative hypercubic correction,
in Tables III and IV. The ~p� prescription has too-large

errors to be conclusive but the p� is five sigmas away from

zero, very similar to the results in Table IV. The value of

Zpert
q for the ~p� prescription is rather low but compatible

within less than two sigmas from the result for � ¼ 3:9 in
Table IV.

D. Running of Zpert
q

It is interesting to consider the dependence of Zpert
q

as a function of g2. This is plotted in Fig. 8 both for the
OWF and the SWF. It is strikingly linear, especially
for the OWF. Indeed, from Eq. (24) of [26] perturbation
theory gives a linear dependence with a slope ’ �0:19.
This comes from the coefficient bq1 in Eq. (4.1)

which is multiplied by g2. In our case, we find from
the OWF
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FIG. 9 (color online). Linear extrapolation to zero lattice spacing for g2hA2i (left) and ca2p2 (right) obtained by OW (black circles)
and SW (paler [orange] circles) fits. The dotted lines correspond to the averaged values from OW (upper [brown]) and SW (lower
[magenta]) fits.

TABLE V. Results from the linear extrapolation and averages
of the values of g2hA2i obtained by the OW and SW fits.

g2hA2iðGeV2Þ ca2p2

OW Linear fit 2.77(23) 0.0189(6)

Average 2.64(23) 0.0197(6)

SW Linear fit 1.34(22) 0.0167(6)

Average 1.65(22) 0.0165(6)

TABLE VI. For � ¼ 3:9, results for the Z
pert
q (� ¼ 10 GeV)

and ca2p2 Eq. (5.1) from the one-window hypercubic corrected

data and the estimated g2hA2i VEV from the 1=p2, plotted as a
function of the upper bound of the fitting range (in GeV).

Upper bound Z
pert
q ca2p2 g2hA2itree g2hA2iCM

2.0 0.754(6) 0.0089(21) 1.58(39) 1.28(32)

2.5 0.745(6) 0.0130(18) 2.05(37) 1.67(30)

3.0 0.733(5) 0.0175(15) 2.73(36) 2.22(30)

3.5 0.726(5) 0.0201(13) 3.20(38) 2.62(31)
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Z
pert
q ðð10GeVÞ2;g2bareÞ¼0:737ð3Þ�0:313ð6Þðg2bare�1:5Þ;
Zpert
q ðð2GeVÞ2;g2bareÞ¼0:766ð3Þ�0:324ð6Þðg2bare�1:5Þ;

(5.6)

and from the SWF

Z
pert
q ðð10 GeVÞ2; g2bareÞ ¼ 0:751ð2Þð7Þ � 0:273ð6Þð0:002�0:038Þ

� ðg2bare � 1:5Þ;
Zpert
q ðð2 GeVÞ2; g2bareÞ ¼ 0:780ð3Þð7Þ � 0:284ð6Þð0:002�0:040Þ

� ðg2bare � 1:5Þ: (5.7)

We see that the coefficients of g2,

@Z
pert
q ðð2GeVÞ2; g2bareÞ

@g2
¼

��0:324ð6Þ OWF
�0:284ð6Þ SWF

; (5.8)

are significantly larger than the perturbatively expected
�0:19. But the linear behavior predicted by perturbation
theory is well verified, especially for OWF.

E. Merging the three lattice spacings

From Eqs. (5.1) and (5.5) it is clear that

ZRI0
q ðp2; g2bareÞ ¼ Zhypcorrected

q ða2p2Þ � ca2p2a
2p2: (5.9)

In this section, we use the one-window fit, Sec. III C 2, and
the momentum p2 is now expressed in physical units. For
the coefficient ca2p2, we use the values in Table III. The

three ZRI0
q for the three �’s do not match due to the running

of Zq as a function of the lattice spacing. To make them

match, it turns out that it is enough to take into account the

ratios of Z
pert
q ’s given in Table III. We plot on the lhs of

Fig. 11 the three sets of data where the � ¼ 4:05, 4.2 ones
have been rescaled to the � ¼ 3:9 scale. We see a rather
good overlap. There is, however, a flattening at the right
end of every�which stays within one sigma from the other
�’s. We understand it as a failure of the hypercubic arte-
facts treatment. On the rhs side of Fig. 11, we plot the same
number corrected for perturbative running by the multi-

plicative factor 0:726=Z
pert
q ðp2; 6=3:9Þ, where 0.726 is

taken from Table VIII. The black line is just the non-
perturbative contribution added to 0.726. The comparison
of both plots in Fig. 11 is enlightening. We see that the
nonperturbative term contributes about one-half of the
change between the smallest momenta and the largest
ones. Both the perturbative running and the nonperturba-
tive contribution are convex, which makes it difficult to
disentangle them. But we also see that the perturbative
running cannot account for the full variation of the data.
The best-fit parameters resulting from this merged analysis
can be found in Table VIII, where we use g2bare ¼ 6:0=3:9
since we have rescaled all the data to the � ¼ 3:9 scale.
The values in Table VIII for g2ð�2ÞhA2i�2merged turn out to

FIG. 10 (color online). In the right-hand plot we show how g2hA2i, fitted with the CMWilson coefficient, depends on the upper range
of our fits, always starting at a2p2 ¼ 0:5 for � ¼ 3:9. The points correspond to a2p2 < 2:0, 2.5, 3.0, 3.5. The right-hand side plot also
shows the a2p2 artefact slope. We find again a positive correlation between both series of data. The left-hand side of the plot illustrates
this, showing for the same data how the fitting function depends on the upper bound of the range.

TABLE VII. For � ¼ 3:9, results for the Z
pert
q ð�2; g2bareÞ (� ¼

10 GeV) and ca2p2 Eq. (5.1) and g2hA2i from the lattice data

after a perturbative hypercubic correction. g2hA2i is estimated at
tree level (fourth column) and at the order Oð�4Þ (fifth column)
from the 1=p2 contribution.

Prescription Zpert
q ca2p2 g2hA2itree g2hA2iCM

~p� 0.712(11) �0:0026ð23Þ 2.98(1.49) 2.53(1.23)

p� 0.745(3) �0:0061ð8Þ 1.76(35) 1.45(29)
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be rather central in the set of values of Tables III and IV.

The value for Z
pert
q ð10 GeV; 6:=3:9Þ is in very good agree-

ment with Eq. (5.6): Z
pert
q ð10 GeV; 6:=3:9Þ ¼ 0:725ð3Þ.

F. Summarizing

Many of our results for g2hA2i are shown in the lhs of
Fig. 7. We did not plot the range-dependent data to not
overload the plot, but they fall in the range covered by the
data plotted in Fig. 7. To summarize our results and esti-
mate the systematic uncertainty, we consider the set of
values in Tables III, IV, VI, and VIII. We will make a
separate average for the tree-level data and the Oð�4Þ
(CM) ones since the comparison with estimates from other
quantities, such as the coupling constant, need to be per-
formed in the same scheme, expansion, order, and scale.

The scheme is MS, and the precise implementation is
detailed in the Appendix. We computed an average of all
above-listed data, weighted by their inverse-squared error.
The inverse-squared statistical error is the sum of the
inverse-squared errors. The systematic error is taken so
as to incorporate the central values within the error bars.

This is rather conservative. For Z
pert
q , we average Eqs. (5.6)

and (5.7) with a similar method. We get:

g2ð�2ÞhA2i�2tree¼2:45ð14Þðþ0:78
�0:87ÞGeV2 �¼10GeV;

g2ð�2ÞhA2i�2CM¼2:01ð11Þðþ0:61
�0:73ÞGeV2�¼10GeV;

Zpert
q ðð10GeVÞ2;g2bareÞ¼0:744ð2Þð7Þ�0:311ð6Þðþ0:002

�0:038Þ
�ðg2bare�1:5Þ;

Zpert
q ðð2GeVÞ2;g2bareÞ¼0:773ð3Þð7Þ�0:323ð6Þðþ0:002

�0:040Þ
�ðg2bare�1:5Þ; (5.10)

where the first error is statistical and the second is the

systematic one. The values of ZRI0
q ðp2; g2bareÞ may then be

derived from Eq. (5.5):

ZRI0
q ðð2GeVÞ2;g2bareÞ¼0:805ð14Þ�0:336ð6Þðþ0:002

�0:042Þ
�ðg2bare�1:5Þ ½CM�: (5.11)

The results obtained from the perturbative hypercubic
correction, Table VII, have not been used in the final
estimate (because we did not compute them for all �0s),
but they fall within the bounds at less than one sigma.
Finally, two lines in the lhs plot of Fig. 7 show the results

for g2hA2i obtained from those in Table 3 of Ref. [7]:

g2hA2i10GeV ¼
�
4:1
 1:5 GeV2 leading log
2:5
 0:9 GeV2 Oð�4Þ : (5.12)

These values in Eq. (5.12) come from a totally different
quantity: they have been extracted from the running of the
ghost-gluon coupling constant. The results of Ref. [7] were
obtained by applying an OPE formula including a Wilson
coefficient approximated at the leading logarithm and at
the order Oð�4Þ but expanded in terms of �T . Then, in
order to be properly compared with the results of this work,

FIG. 11 (color online). The merged plot with the OWF results at � ¼ 4:05 and � ¼ 4:2, rescaled to the � ¼ 3:9 thanks to the ratios
of Z

pert
q given in Table III. The left-hand side shows the data corrected for all lattice artefacts. The right-hand side shows the same data

further corrected by the perturbative running factor up to 10 GeV. The horizontal axis is p2 in GeV2. The black line on the left
corresponds to the global fit with perturbative running and CM (three loops) Wilson coefficient for the 1=p2 term. The black line on the
right corresponds only to the 1=p2 times the three loops Wilson coefficient added to Zpert

q ðð10 GeVÞ2; 6=3:9Þ ¼ 0:726.

TABLE VIII. Merged data from three �’s: Results for the Z
pert
q

(� ¼ 10 GeV) rescaled to � ¼ 3:9, from the one-window hy-
percubic corrected data (OWF) with tree level and the three-loop
formula, Eq. (A24).

Z
pert
q g2hA2itree g2hA2iCM

0.726(2) 3.13(43) 2.55(36)
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the values of Eq. (5.12) incorporate the correction by the
effect of expanding the OPE formula in terms of the

running coupling in MS. The lattice spacing applied in
Ref. [7] to get a physical scale, að3:9Þ ¼ 0:0801 fm, was
also slightly smaller than the one used in this work (see, for
instance, Table I), and this has been also taken into account
in obtaining Eq. (5.12).

As a matter of fact, Eq. (5.12) exhibits a slower con-
vergence of the perturbative series of the Wilson coeffi-
cient as in the present paper. From Tables III, IV, VI, and
VIII, we see that the Oð�4Þ estimate is about 20% below
the tree level while in Table 3 of [7], it is about 45% below
the leading logarithm one. The two estimates agree rather
well within the present accuracy.

G. Conversion to MS

The conversion to MS can also be performed from Z
pert
q

or ZRI0
q which contains a nonperturbative contribution.

Usually, in the literature, the values are assumed to be

perturbative. The conversion of Z
pert
q into MS will use the

standard perturbative conversion formulae [13]. We get

Z
MSpert
q ðð2GeVÞ2;g2bareÞ=Zpert

q ðð2GeVÞ2;g2bareÞ¼0:97;

ZMSpert
q ðð2GeVÞ2;g2bareÞ¼0:750ð3Þð7Þ�0:313ð20Þ

�ðg2bare�1:5Þ: (5.13)

The central value of this result is about 2% systematically
below the results of [28]. Presumably, this can be inter-
preted as a small systematic correction due to our subtrac-

tion of the nonperturbative contribution in obtaining Zpert
q in

the RI’-MOM scheme and converting it to ZMS pert
q at 2 GeV.

FromEq. (A24), it is easy to see how to include the g2hA2i
nonperturbative contribution. Up to now, we have applied
the result of the Appendix using RI’-MOM for the perturba-

tive part and MS for the ratio in the corrective parenthesis.

Had we wished to use the MS scheme for the perturbative
contribution, we would have the main inconvenience of not

knowing the OPE contribution for Zq defined in the MS

scheme. However, only with the aim of roughly estimating
the nonperturbative correction, we can assume the OPE
corrective parentheses to remain the same and then get

Z
MSnon�pert
q ðð2GeVÞ2;g2bareÞ¼0:781ð6Þð21Þ�0:326ð21Þ

�ðg2bare�1:5Þ: (5.14)

Notice that the nonperturbative contribution is about 4% at
2 GeV. Nevertheless, the results of [28] have been obtained
at momenta larger than 2 GeV. Although their estimates and

our ZRI0
q may agree with each other, a subtraction of the

nonperturbative contribution in obtaining Z
pert
q , probably

still required at the fitting window of [28] but not applied,
could explain the small discrepancy of about 2% that we
discussed above. The discrepancy is anyhow affecting only

the conversion ofZRI0
q toZMS pert

q at 2 GeV. In Table 6 of [28],

one finds results for ZMS
q obtained at 2 GeV by applying the

standard perturbative conversion formulae [13]. Indeed, as
can be seen in Table IX, they turn out to fall between our
results in Eqs. (5.13) and (5.14).

H. Comparison of different estimates for
the gluon condensate

Let us now compare the present estimate of g2hA2i to
previous ones at Nf ¼ 2 and Nf ¼ 0, all taken at the

renormalization scale of 10 GeV and, when needed, trans-
formed to the very precise renormalization scheme for the
OPE expansion defined in the Appendix.
In [4], a quenched study of Zq using Wilson-Clover and

overlap fermions ended with values of hA2iMOM in the
range 2:67–3:2 GeV2 with typical errors of 0:3 GeV2.
Notice that this computation was performed only up to
leading logarithm for the Wilson coefficient and that the
choice was to expand the perturbative series in terms of the
coupling renormalized in the MOM scheme. (This is why
we use the label MOM for the VEV.) Then, we can apply
the expressions derived in the Appendix to obtain the
estimates for g2hA2i in the above-mentioned renormaliza-
tion scheme appearing in Table X. However, it is advocated
in [4] that the 1=p2 contribution only increases by 10%

when going fromMOM toMS. On the other hand, we have
seen that between tree level and three loops, a decrease of
20% was observed. In [4], an artefact / a=p2 was ob-
served. We do not see it in the present analysis since the
scaling of g2hA2i as a function of the lattice spacing
indicates no visible 1=p2 contribution dependent on a.
In [6], a summary was performed of different estimates

of g2hA2i from gluonic quantities at Nf ¼ 0: �s from the

three-gluon vertex with equal momenta on the three legs
(symmetric) and from the three-gluon vertex with one
vanishing momentum (asymmetric), the ratio between the
ghost and gluon propagators, and �s from the ghost and
gluon propagators, using Taylor’s theorem. The ones in-
volving gluon and ghost propagators agree fairly well, but
the latter is the most accurate. It gives g2ThA2i ¼ 5:1þ0:7

�1:1,

although the applied OPE formula was obtained by
expanding the involved perturbative series in terms of
�T . After the appropriate transformation, one obtains the
results shown in Table X. We also quote in the table the
estimate of g2hA2i from the symmetric three-gluon vertex,

TABLE IX. Comparison of ZMS
q ð2 GeVÞ given by Eqs. (5.13)

and (5.14), and taken by Ref. [28] for � ¼ 3:9, 4.05.

�
Z
MS pert
q ð2 GeVÞ
by Eq. (5.13)

ZMS
q ð2GeVÞ
in [28]

Z
MS nonpert
q ð2 GeVÞ
by Eq. (5.14)

3.9 0.738(8) 0.751(4) 0.769(22)

4.05 0.756(8) 0.780(5) 0.787(22)

B. BLOSSIER et al. PHYSICAL REVIEW D 83, 074506 (2011)

074506-16



more precise than the one coming from the asymmetric
vertex, and that appeared to be much higher than the
estimate from �T and compatible with that from the quark
propagator. In the case of the three-gluon estimates, no
available Oð�4Þ Wilson coefficient can help us to go
beyond the leading logarithm approximation. However,
comparing the leading logarithm estimates of the ones
approximated at the order Oð�4Þ, a clear discrepancy (by
a factor of about two) appears between the estimates from
ghost and gluon propagators and those from vertices or the
quark propagator. This discrepancy could imply that some
systematic uncertainty is not completely under control.
One might, for instance, guess that 1=p4- contributions
can be invoked to reduce that discrepancy. For this to
happen, the 1=p4 contributions had to be negative, and
had to tend to increase the estimate of g2hA2i, for the OPE
formula of �T , while it had to be positive, and reduce
g2hA2i, for the quark propagator. Indeed, although no
stable fit including 1=p4 contributions can be performed,
the sign seems to be the right one for �T in [7]. Also the
right sign of the contributions to Zq is found in Ref. [4].

In [7], the strong coupling constant was computed along
lines similar to what is done here, on the same set of ETMC
gauge configurations with Nf ¼ 2. The necessity of a non-

perturbative / 1=p2 contribution was also found and the
resulting condensate, g2hA2i10 GeV ¼ 2:3ð8Þ, obtained
through an OPE formula approximated at the Oð�4Þ order
and expanded in �T , can be properly transformed6 to give
the value of Table X, also quoted in Eq. (5.12), which
agrees strikingly well with the result of Table VIII (the
one we also quote in Table X) or that of Eq. (5.10). The
value obtained through a leading-logarithm-approximated
formula is also displayed in Table X. In [10], Martinelli and
Sachrajda proposed a criterion to validate the use of op-
erator expansion which we apply in this paper. They con-
cluded that one should compare the difference of the
highest order of the perturbative expansion for two differ-
ent quantities with the nonperturbative contribution and
check that the former is small compared to the latter. We
have compared the highest order of the perturbative ex-
pansion of Zq with the 1=p2 contribution and find that the

ratio ranges between 1=10 and 1=3, depending on the
momentum. This is a good indication of the validity of
our use of the operator expansion. Had we used the per-
turbative expansion only up to Oð�Þ, this criterion would
not have been fulfilled.
Furthermore, all these estimates in Table X show a clear

tendency of a decrease of g2hA2i from Nf ¼ 0 to Nf ¼ 2.

This might support an interpretation of g2hA2i as originat-
ing in instantons [29], since the instanton density should
decrease with light dynamical masses.

VI. CONCLUSION

We have studied with care the twisted quark propagators
produced on the ETMC set of Nf ¼ 2 gauge configura-

tions. Our goal was to concentrate on two major issues: the
correction for lattice spacing artefacts, particularly the
hypercubic ones, and the presence of a sizeable nonpertur-
bative contribution of the A2 operator. The latter is ex-
pected to be sizeable because it was seen in the quenched
case [4] and in the unquenched study of the strong coupling
constant [7], and since the Wilson coefficient of g2hA2i is
not small in Zq [9]. This is an important issue since, from

our estimates, it gives an �4% contribution at 2 GeV. A
reliable estimate of this nonperturbative correction needs a
large enough fitting range, which allows us to distinguish
a 1=p2 contribution from perturbative logarithms. But the
fitting window is restricted below by infrared effects and
above by lattice spacing artefacts. We thus need to improve
our control on dominant lattice spacing artefacts which are
of two types: hypercubic ones and / a2p2 ones.
Concerning the hypercubic artefacts, we have summa-

rized the nonperturbative correcting method [24,25] which
we compared systematically with the perturbative results
of [26]. Zq has very large hypercubic artefacts which dis-

play, as a function of p2, a half-fishbone very far from a
smooth curve (see Fig. 1). We check carefully how these
fishbones are ‘‘swallowed’’ by the corrective methods. It is
worthwhile to emphasize that the democratic method,

prescribing, for instance, a cut on p½4�=p2 to drastically
reduce the number of allowed hypercubic orbits, is not
good enough to eliminate the fishbones and to leave us
with a smooth curve for Zq.

The perturbative method to correct hypercubic artefacts
suffers from some options left: what to take for the coupling
constant, use ofp� or ~p� ¼ a�1 sinðap�Þ ?We first tried to

stick to the prescription of [26] and use the boosted cou-
pling constant. This reduces the hypercubic artefacts only
up to a2p2 ’ 1:6 (see Fig. 2, lhs). Guided by the test on the
fishbone reduction, we then propose a prescription based on
the same perturbative formulae but using p�. For Zq, this

reduces the hypercubic artefacts up to a2p2 ’ 3:5 which
has been our upper bound in this work (see Fig. 2, rhs).
We test also the nonperturbative method to correct hy-

percubic artefacts. We use two prescriptions. The first one

TABLE X. Comparison of estimates of g2hA2i from different
quantities at Nf ¼ 0 and Nf ¼ 2. All are taken at the scale � ¼
10 GeV. LL means leading logarithm for the Wilson coefficient.
Oð�4Þ refers to the Chetyrkin and Maier computation.

Measurement ðGeV2Þ
Nf Order g2hA2i Zq �T 3-gluon

0 LL 9.4(3) 5.2(1.1) 10(3)

Oð�4Þ 9.0(3) 3.7(8)

2 LL 2.7(4) 4.1(1.5)

Oð�4Þ 2.55(36) 2.5(9)

6We have taken into account the different lattice spacing in [7].
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uses a sliding window and the second one uses only one
fitting window on the full momentum range.

We find that the hypercubic artefacts are sufficiently

well described and cured by two terms: / a2p½4�=p2 and

/ a4p½4�. We fit the coefficients of these quantities and
check their scaling with �.

From the resulting hypercubic corrected function
Zqða2p2; a2�2

QCDÞ we perform fits which incorporate the

perturbative running, a nonperturbative 1=p2 term, pre-
sumably related to g2hA2i through the Wilson expansion,
and a hypercubic insensitive lattice spacing artefact pro-
portional to a2p2. This local operator A2 should be prop-
erly renormalized and, as will be explained in the

Appendix, we choose the MS scheme for the renormaliza-
tion procedure and thus obtain Eq. (5.5). The fits are good.
The a2p2 term scales almost perfectly in lattice units, as
expected. The g2hA2i term also scales rather well in physi-
cal units, as expected. The accuracy on g2hA2i is reduced
by some correlations in the fits: we see a correlation
between the method used to correct hypercubic artefacts
and the estimated value of g2hA2i. We also see a correlation
between the fitting range and the resulting g2hA2i. But all
values of g2hA2i fall into the same ballpark and none of
these fits can be made without such a positive contribution.
To estimate the systematic uncertainty, we have considered

a large panel of fitting methods, all at more than four
sigmas from zero, except at � ¼ 4:2 with the sliding
window, where they are only 2.5 sigmas above zero.
Comparing the fitted hA2i using the tree level Wilson
coefficient and that using the three loops one, we find
that the latter is about 20% below the former.

The perturbative contribution to Zq, Z
pert
q has a linear

dependence in the bare lattice coupling: see Fig. 8 and
Eq. (5.10), as expected from perturbation theory, but with a
larger coefficient, even when the boosted coupling constant
is used in perturbation theory.
We also merge all three �’s after having subtracted the

a2p2 term and rescaled the � ¼ 4:05, 4.2 to 3.9, using the

ratios of Z
pert
q ð�Þ. The overlap of the three data sets is

rather good. The need of a nonperturbative contribution
is also visible there. Both perturbative and nonperturbative
contributions decrease with the momentum and are
convex. This makes the separation difficult. Grossly speak-
ing, they share the decrease between 4 and 40 GeV2 in
equal parts.

We have converted our results for ZRI0
q and its perturba-

tive part Z
pert
q ð�Þ into the MS scheme.

Combining all the results, we find, using the three loop
Wilson coefficient:

g2ð�2ÞhA2i�2CM ¼ 2:01ð11Þðþ0:61
�0:73ÞGeV2� ¼ 10 GeV;

Zpert
q ðð2GeVÞ2; g2bareÞ ¼ 0:773ð3Þð7Þ � 0:323ð6Þðþ0:002

�0:040Þðg2bare � 1:5Þ;
ZRI0
q ðð2 GeVÞ2; g2bareÞ ¼ 0:805ð14Þ � 0:336ð6Þðþ0:002

�0:040Þðg2bare � 1:5Þ;
Z
MS pert
q ðð2 GeVÞ2; g2bareÞ ¼ 0:750ð3Þð7Þ � 0:313ð20Þðg2bare � 1:5Þ;

Z
MS nonperturbative
q ðð2 GeVÞ2; g2bareÞ ¼ 0:781ð6Þð21Þ � 0:326ð21Þðg2bare � 1:5Þ;

(6.1)

where the systematic error is estimated from the scattering
of the results in Tables III, IV, VI, and VIII. We use the
lattice spacings listed in Table I.

Furthermore, Table X also shows a nice agreement
between the condensates for Nf ¼ 2, although some sys-

tematics appear not to be under control for Nf ¼ 0. This

supports the interpretation of the / 1=p2 contribution as
being due to a condensate of the only dimension-two
operator in Landau gauge: A2. Another confirmation comes
from the validity of Martinelli-Sachrajda’s criterion [10].
The accuracy on g2hA2i is limited, however, due to several
correlations in the fits. Further and more accurate checks of
the consistency of g2hA2i from other renormalization con-
stants will be very welcome.
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APPENDIX: THE WILSON COEFFICIENTS
AT Oð�4Þ

The purpose of this Appendix is to describe briefly the
OPE analysis of the quark propagator renormalization
constant defined in Eq. (1.2) that leads us to Eq. (5.1),
where the four-loops results in Ref. [9] are exploited
to derive the Wilson coefficients with the appropriate
renormalization prescription. This OPE analysis is
analogous to the one performed in Refs. [2,3,5,6].
The starting point is the OPE of the inverse of the quark
propagator:
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S�1ðp2;�2Þ
¼Z�1

q ð�2ÞS�1
bareðp2Þ

¼ ðSpertÞ�1ðp2;�2Þþ ip
c2Zq

ðp2

�2 ;�ð�ÞÞ
p2

hA2iR;�2

4ðN2
c�1Þ

¼ ðSpertbareÞ�1ðp2Þ
Zpert
q ð�2Þ þ ip

c2Zq
ðp2

�2 ;�ð�ÞÞ
p2

hA2iR;�2

4ðN2
c�1Þ ; (A1)

where only the leading term in p is kept, the quark mass
being assumed to be negligible or to vanish. The cutoff
regularization dependence is omitted for the bare quanti-
ties, but that on the renormalization momentum, �, is
explicitly written for the renormalized ones. In the RI’-

MOM scheme, we define ZRI0
q such that ðSbareÞ�1ðp2Þ ¼

ip�abZ
RI0
q ðp2Þ and Z

pertRI0
q such that ðSpertbareÞ�1 �

ðp2Þ ¼ ip�abZ
pertRI0
q ðp2Þ. Then, the renormalization mo-

mentum, �2, taken to lie on the perturbative regime, one
can apply Eq. (1.2) and obtain

ZRI0
q ðp2Þ

Zpert
q ð�2Þ ¼

Z
pertRI0
q ðp2Þ
Zpert
q ð�2Þ þ c2Zq

�
p2

�2
; �ð�Þ

� hA2iR;�2

4ðN2
c � 1Þp2

¼ c0Zq

�
p2

�2
; �ð�Þ

�
þ c2Zq

�
p2

�2
; �ð�Þ

�

� hA2iR;�2

4ðN2
c � 1Þp2

; (A2)

which implies a definition of c0Zq
and where c2Zq

ðp2; �2Þ is
the Wilson coefficient of g2hA2i. Although not yet specify-
ing the renormalization scheme of Z

pert
q ð�2Þ, we know that

c0Zq
ð1; �ð�ÞÞ ¼ 1þOð�2Þ; (A3)

while c2Zq
is known up toOð�4Þ in theMS scheme [9] and,

in particular, cMS
2Zq

ð1; �ð�ÞÞ is given in Eq. (18) of that paper
using q2 ¼ �2. Let us keep in mind, however, that

c2Zq
ð1; �ð�ÞÞ ¼ 32�

3
�ð�Þð1þOð�ð�ÞÞÞ

¼ 8g2ð�Þ
3

ð1þOð�ð�ÞÞÞ: (A4)

Now, with the help of the appropriate renormalization
constants, one can also write Eq. (A2) in terms of bare
quantities:

ZRI0
q ðp2Þ¼Zpert

q ð�2Þc0Zq

�
p2

�2
;�ð�Þ

�

þZ
pert
q ð�2ÞZ�1

A2 ð�2;�2Þc2Zq

�
p2

�2
;�ð�Þ

�

� hA2i
4ðN2

c�1Þp2
; (A5)

where A2
R ¼ Z�1

A2 A
2. Then, as the �-dependence of both

the lhs and rhs of Eq. (A5) should match each other for any
p, one can take the logarithmic derivative with respect to�

and the infinite cutoff limit, term by term, on the rhs and
obtain:

�qð�ð�ÞÞþ
�

@

@log�2
þ�ð�ð�ÞÞ @

@�

	
lnc0Zq

�
q2

�2
;�ð�Þ

�
¼0;

��A2ð�ð�ÞÞþ�qð�ð�ÞÞþ
�

@

@log�2
þ�ð�ð�ÞÞ @

@�

	

� lnc2Zq

�
q2

�2
;�ð�Þ

�
¼0; (A6)

where the �-function, chosen to be in MS, is defined as

�ð�ð�ÞÞ ¼ d

d log�2
�ð�Þ ¼ �4�

X
i¼0

�i

�
�ð�Þ
4�

�
iþ2

(A7)

and where �qð�ð�ÞÞ and �A2ð�ð�ÞÞ are the anomalous

dimensions for the fermion propagator and local operator
A2, respectively, which are formally defined as

�Xð�ð�ÞÞ ¼ d

d log�2
logZX ¼ �X

i¼0

�X
i

�
�ð�Þ
4�

�
iþ1

; (A8)

where X stands for q or A2. The scheme for the anomalous
dimension of ZA2 is imposed through the renormalization
of the local operator A2, as was done in Ref. [2] to obtain its
leading logarithm contribution, and it is only known in the

MS at the order Oð�4Þ [30]. Then that is the only possible

choice of scheme for �A2 in Eqs. (A6). Concerning Zpert
q , its

scheme is determined by the renormalization prescription
for the nonperturbative propagator in the left-hand-side

of Eq. (A1). Both MS and RI’-MOM are possible. Our
aim is to obtain a nonperturbative formula to confront the
lattice estimate of the RI’-MOM quark renormalization
constant, and it is thus convenient also to prescribe the

RI’-MOM scheme for Z
pert
q . Thus, Eqs. (A6) must be

rewritten as

�RI0
q ð�ð�ÞÞþ

�
@

@log�2
þ�ð�ð�ÞÞ @

@�

	
lncRI

0
0Zq

�
q2

�2
;�ð�Þ

�
¼0;

��MS
A2 ð�ð�ÞÞþ�RI0

q ð�ð�ÞÞþ
�

@

@log�2
þ�ð�ð�ÞÞ @

@�

	

�lncWMS
2Zq

�
q2

�2
;�ð�Þ

�
¼0; (A9)

where

cRI
0

0Zq

�
p2

�2
; �ð�Þ

�
� Z

pertRI0
q ðp2Þ

ZpertRI0
q ð�2Þ

(A10)

and cWMS
2Zq

is in theWMS scheme,7 explicitly defined by the

second equation of (A9), after the RI’-MOM prescription

for Zpert
q , that ofMS for A2, and by the choice of a boundary

7We define this scheme by imposing that the local operator of
the Wilson expansion be renormalized in MS, while the ex-
panded operator (the quark propagator, in our case) is in an
MOM scheme. We called this ‘‘Wilson MS.’’
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condition, cWMS
2Zq

ð1; �ðqÞÞ. Then, from Eq. (A2), one

obtains

ZRI0
q ðp2Þ¼ZpertRI0

q ð�2ÞcRI00Zq

�
p2

�2
;�ð�Þ

�

�
�
1þ

cWMS
2Zq

ðp2

�2 ;�ð�ÞÞ
cRI

0
0Zq

ðp2

�2 ;�ð�ÞÞ
hA2iR;�2

4ðN2
c�1Þp2

�
; (A11)

and, in practice, both Eqs. (A9) can be combined to give
the following differential equation:

�
��MS

A2 ð�ð�ÞÞ þ @

@ log�2
þ �ð�ð�ÞÞ @

@�

	

�
cWMS
2Zq

ðp2

�2 ; �ð�ÞÞ
cRI

0
0Zq

ðp2

�2 ; �ð�ÞÞ
¼ 0; (A12)

that can be solved to provide us with the ratio of Wilson
coefficients, c2Zq

=c0Zq
, required to implement Eq. (A11).

For the purpose of the best comparison with the results
from the analysis performed in Ref. [6], we applied

cWMS
2Zq

ð1; �ðpÞÞ � cMS
2Zq

ð1; �ðpÞÞ; (A13)

where cMS
2Zq

ð1; �ð�ÞÞ is taken from Eq. (18) of Ref. [9] using

q2 ¼ �2 as a boundary condition which is equivalent to the
one applied in the analysis of Ref. [6].

On the other hand, if we take Z
pert
q to be renormalized in

MS, the equations in (A6) read

�MS
q ð�ð�ÞÞþ

�
@

@log�2
þ�ð�ð�ÞÞ @

@�

	

� lncMS
0Zq

�
q2

�2
;�ð�Þ

�
¼0;

��MS
A2 ð�ð�ÞÞþ�MS

q ð�ð�ÞÞþ
�

@

@log�2
þ�ð�ð�ÞÞ @

@�

	

� lncMS
2Zq

�
q2

�2
;�ð�Þ

�
¼0; (A14)

where cMS
2Zq

is the Wilson coefficient computed in Ref. [9],

provided that the boundary condition, cMS
2Zq

ð1; �ð�ÞÞ, is

taken again from Eq. (18) of the same paper using q2 ¼
�2. Then we can again combine Eqs. (A14) to obtain, for

cMS
2 =cMS

0 , the same equation Eq. (A12) that, with the same

boundary condition, leads to

cWMS
2Zq

ðp2

�2 ; �ð�ÞÞ
cRI

0
0Zq

ðp2

�2 ; �ð�ÞÞ
¼

cMS
2Zq

ðp2

�2 ; �ð�ÞÞ
cMS
0Zq

ðp2

�2 ; �ð�ÞÞ
: (A15)

On the other hand, we can also combine the second
equation of (A9) with the second one of Eq. (A14) and
obtain

�
�RI0
q ð�ð�ÞÞ��MS

q ð�ð�ÞÞþ @

@log�2
þ�ð�ð�ÞÞ @

@�

	

�
cWMS
2Zq

ðp2

�2 ;�ð�ÞÞ
cMS
2Zq

ðp2

�2 ;�ð�ÞÞ
¼0; (A16)

that, according to Eq. (A13), can be solved with the bound-

ary condition cMS
2Zq

ð1; �ðpÞÞ=cMS
2Zq

ð1; �ðpÞÞ � 1 and leaves

us with a relation of WMS and MS Wilson coefficients
which allows Eq. (A11) to be rewritten as

ZRI0
q ðp2Þ¼Z

pertRI0
q ð�2ÞcRI00Zq

�
p2

�2
;�ð�Þ

�

�
0
@1þcMS

2Zq
ðp2

�2 ;�ð�ÞÞ
cRI

0
0Zq

ðp2

�2 ;�ð�ÞÞ
cWMS
2Zq

ðp2

�2 ;�ð�ÞÞ
cMS
2Zq

ðp2

�2 ;�ð�ÞÞ

� hA2iMS;�2

4ðN2
c�1Þp2

1
A; (A17)

where, furthermore, cMS
2Zq

is to be taken from Ref. [9] and

cRI
0

0Zq
from Ref. [13]. Thus we can use either Eq. (A11) with

the solution of Eq. (A9) or Eq. (A17) with that of Eq. (A16)

to confront the lattice estimates of ZRI0
q . Both expressions

are equivalent. In the first case, one can proceed as was
done in Ref. [7] to solve Eq. (A9). To illustrate this first
method, let us remind the reader that Eq. (A9) can be
solved at the leading logarithm by applying the following
ansatz,

cWMS
2Zq

ðp2

�2 ;�ð�ÞÞ
cRI

0
0Zq

ðp2

�2 ;�ð�ÞÞ
¼32�

3
�ðpÞ

�
�ð�Þ
�ðpÞ

�
að1þOð�ÞÞ; (A18)

where we apply Eq. (A4), and the exponent a, required to
satisfy Eq. (A9), should be

a ¼ �A2

0

�0

¼ 105� 8Nf

132� 8Nf

: (A19)

In the second case, to solve Eq. (A16), a similar ansatz
extended to three-loops order can be applied,

cWMS
2Zq

ðp2

�2 ; �ð�ÞÞ
cMS
2Zq

ðp2

�2 ; �ð�ÞÞ
¼

�
�ð�Þ
�ðpÞ

�
b
�1þP

i
rið�ð�Þ

4� Þi

1þP
i
rið�ðpÞ4� Þi

�
; (A20)

where we use Eq. (A13) for the boundary condition. Then,
by requiring that the ansatz Eq. (A20) verifies Eq. (A16),
the coefficients b and ri will be obtained in terms of those

for the fermion propagator MS and RI’-MOM anomalous

dimensions and for the MS �-function. However, in this
case,
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b ¼ �qMS
0 � �qRI0

0

�0

¼ 0; (A21)

because the first-loop coefficient for the anomalous dimen-
sion is scheme independent. (In the particular Landau
gauge, this scheme-independent first-loop coefficient is
also zero for any scheme [13].) Furthermore, as can be
seen in Appendix C of Ref. [13], one is also left with

�qMS
1 � �qRI0

1 in the Landau gauge. Then,

r1 ¼ �qMS
1 � �qRI0

1

�0

¼ 0; (A22)

and theWilson coefficients forMS and RI’-MOMwill thus
differ only at the order Oð�2Þ, with the nonzero ri’s
coefficients to be applied in Eq. (A20) given by

r2 ¼ �qMS
2 � �qRI0

2

2�0

¼ �25:4642þ 2:3333Nf;

r3 ¼ �qMS
3 � �qRI0

3

3�0

� �1

�qMS
2 � �qRI0

2

3�2
0

¼ �1489:9796þ 246:4424Nf � 6:4609N2
f; (A23)

where the three- and four-loop coefficient in MS and
RI’-MOM for the fermion propagator anomalous dimen-
sion have again been obtained from Ref. [13]. This leads,
using Eqs. (A17) and (A20)–(A23) with N2

c � 1 ¼ 8 and
Nf ¼ 2, to our final formulae for the free-of-artefacts

lattice determination of Zq:

ZLatt artefree
q ðp2; �Þ ¼ ZpertRI0

q ð�02ÞcRI00Zq

�
p2

�02 ; �ð�0Þ
�0@1þ cMS

2Zq
ðp2

�2 ; �ð�ÞÞ
cRI

0
0Zq

ðp2

�2 ; �ð�ÞÞ
1� 0:1317�2ð�Þ � 0:5155�3ð�Þ
1� 0:1317�2ðpÞ � 0:5155�3ðpÞ

hA2iMS;�2

32p2

1
A:
(A24)

In this last equation, we exploited the fact that the
expression in parentheses in Eqs. (A17) and (A24) does
not vary with the renormalization momentum for the local
operator A2, as can be inferred from Eq. (A12). Thus,
once a given momentum, �02, is fixed for the renormaliza-
tion of the fermion propagator in the lhs of Eq. (A1), the
one appearing in Z

pertRI0
q in front of the expression in

parentheses, one is still left with the freedom of choosing
a renormalization momentum, �2, which does not need
to be the same, for the local operator A2 inside the
parentheses.

In Eq. (A24), the coefficients cRI
0

0Zq
and cMS

2Zq
are known

from perturbation theory; the former can be obtained from
Ref. [13] and the latter from Ref. [9]. Two parameters are

to be fitted: ZpertRI0
q ð�02Þ and the nonperturbative conden-

sate g2ð�ÞhA2iR;�2 . It is important to underline that the

condensate is defined via the OPE, i.e., from Eqs. (A17)

and (A24). Its precise definition depends on the renormal-
ization scheme, the renormalization scale, as well as the
order in perturbation theory to which the coefficients c0Zq

and c2Zq
are used. In Eqs. (A17) and (A24), the renormal-

ization scheme for g2ð�ÞhA2iR;�2 is MS and the scale is �

(10 GeV in our calculations). The coupling we use for the
perturbative expansions of these coefficients, c0Zq

and c2Zq
,

is also chosen to be theMS one. These choices are kept all
along in the present paper. If we now wish to compare
g2ð�ÞhA2iR;�2 from the present calculation to that from

another calculation, for example, from the strong coupling
constant [7], we must as far as possible use the same
precise definition in both cases. However, its dependence
on the scheme and on the order in perturbation theory is not
so important; as seen in Sec. V, other systematic uncertain-
ties are larger.
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