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programme, we calculate the first two moments of the light-cone distribution amplitudes of the

pseudoscalar mesons � and K and the (longitudinally polarized) vector mesons �, K�, and �. We obtain

the desired quantities with good precision and are able to discern the expected quark-mass dependence of

SU(3)-flavor breaking effects. An important ingredient of the calculation is the nonperturbative renor-

malization of lattice operators using a regularization-independent momentum scheme.

DOI: 10.1103/PhysRevD.83.074505 PACS numbers: 12.38.Gc, 11.15.Ha

I. INTRODUCTION

Light-cone distribution amplitudes (DAs) are important
nonperturbative quantities which (within the framework of
collinear factorization) parametrize in partonic terms the
components of the hadronic wave function that control
hard exclusive processes. Such processes provide hadron
structure information complementary to that obtained from
hard inclusive reactions.

The structure functions for inclusive processes are more
accessible both experimentally and theoretically, owing to
their larger cross sections and branching ratios, simpler
final-state detection, and more straightforward factoriza-
tion properties. They do not specify the phases and corre-
lations which would constitute amplitude-level hadron
structure information, but probe instead the bound states’
partonic content. Deep-inelastic scattering processes, for
example, are controlled by the charge and momentum of
the struck parton and are insensitive to its relation to the
other hadronic constituents. The associated parton distri-
bution functions (PDFs) are therefore single-particle prob-
abilities, which reveal nothing about the role of particular
Fock states or of correlations between quarks and gluons.

Distribution amplitudes, involved in exclusive pro-
cesses, always appear in convolutions and, unlike the
PDFs, are not directly measurable. These exclusive pro-
cesses are dominated by specific partonic configurations.
The outgoing quarks and gluons are unlikely to form a
given final-state hadron unless they are approximately col-
linear with small transverse separation, or one of the
partons carries almost all of the hadron’s momentum (the
soft overlap or Feynman mechanism). In the former case,
the basis for collinear factorization [1], hard gluon ex-
change must occur to allow the struck or decaying parton
to communicate with the others, turning them to the final
direction. Since more partons require more hard gluons,
exclusive cross sections and decay rates are dominated by
the valence Fock state at leading order in Q2, up to soft
effects.
Hard exclusive processes are therefore controlled at

leading order by the distribution amplitudes of leading
twist (an operator’s twist is the difference between its
dimension and its spin): essentially the overlap of the
hadronic state with the valence Fock state in which, for a
meson, the collinear quark-antiquark pair has small trans-
verse separation and carries longitudinal momentum frac-
tions u and �u ¼ 1� u. The pion’s electromagnetic form
factor at large Q2, for example, can be written as a con-
volution of distribution amplitudes ��ðu;Q2Þ for the in-
coming and outgoing pions with a perturbatively
calculable hard-scattering kernel. Higher-twist DAs asso-
ciated with power-suppressed contributions originate in,
for example, higher Fock states [2]. We consider only
leading, twist-2 DAs in this paper.
The phenomenological importance of hard exclusive

processes has grown since collinear factorization was first
established for cases such as the pion’s electromagnetic
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form factor and the ���� transition form factor around
30 years ago [1,3–5]. Of particular importance is the
theoretical description of hadronic B decays, which have
been studied in detail by BABAR and Belle and will be
studied by LHCb and at super-B factories in order to
constrain the Cabibbo-Kobayashi-Maskawa (CKM) matrix
and to understand CP violation. Factorization is more
difficult to establish in B physics because the hard-
collinear and soft mechanisms contribute at the same order
in 1=mb. Two approaches have been developed. In the
QCD factorization framework it has been shown that col-
linear factorization can be applied to leading order in 1=mb

to a large class of nonleptonic B decays [6–8]. Soft-
collinear effective theory (SCET) [9–11] aims to provide
a unified theoretical framework for the factorization of
both hard-collinear and soft effects. In both cases, distri-
bution amplitudes play an important role as nonperturba-
tive inputs in flavor physics.

In this paper we focus on the distribution amplitudes of
the light pseudoscalar and longitudinally polarized vector
mesons, since, as we shall discuss in Sec. I B, their lowest
moments are of phenomenological interest and are calcu-
lable on the lattice. For pseudoscalars, these quantities are
relevant for decays such as B ! �� and B ! �K; they
also appear in light-cone sum rule (LCSR) expressions for
the form factors of semileptonic decays such as B ! �l�.
For hard exclusive processes involving the light vector
mesons �, K�, and �, polarization dependence can reveal
much about the underlying dynamics, with the longitudi-
nally and transversely polarized final vector meson states
often involving different aspects of weak interaction phys-
ics [12]. Examples are the exclusive semileptonic
B ! �l�l, rare radiative B ! ��, or nonleptonic, e.g.
B ! ��, decays of B mesons, which are important for
extracting CKM matrix elements.

A. Definitions

Mesonic light-cone DAs are defined from meson-to-
vacuum matrix elements of quark-antiquark light-cone
operators, which are nonlocal generalizations of those
used to define the decay constants. For example, for pions

h0j �q2ðzÞ���5Pðz;�zÞq1ð�zÞj�ðpÞiz2¼0

� if�p�

Z 1

0
dueiðu� �uÞp�z��ðu;�Þ (1)

and for longitudinally polarized rho mesons

h0j �q2ðzÞ��Pðz;�zÞq1ð�zÞj�ðp;�Þiz2¼0

� f�m�p�

"ð�Þ � z
p � z

Z 1

0
dueiðu� �uÞp:z�k

�ðu;�Þ; (2)

where

P ðz;�zÞ ¼ P exp

�
�ig

Z z

�z
dw�A�ðwÞ

�
(3)

is the path-ordered exponential needed to maintain gauge
invariance, � is a renormalization scale, u is the momen-

tum fraction of a quark, �u ¼ 1� u, and "ð�Þ is the polar-
ization vector for a vector meson with polarization state �.
The distribution amplitudes are normalized by

Z 1

0
du�ðu;�Þ ¼ 1: (4)

The definitions above involve the pion and rho-meson
decay constants defined by

h0j �q2���5q1j�ðpÞi ¼ if�p�; (5)

h0j �q2��q1j�ðp;�Þi ¼ f�m�"
ð�Þ
� : (6)

The vector meson decay constant f� and its coupling to

the tensor current, fT� , are of interest in their own right, and

we have previously calculated [13] the ratios fTV=fV , for
V 2 f�;K�; �g, as part of our domain-wall fermion (DWF)
phenomenology programme.

B. Moments

Moments of light-cone DAs are defined by

h�ni�ð�Þ ¼
Z 1

0
du�n�ðu;�Þ; (7)

where � � u� �u ¼ 2u� 1 is the difference between the
longitudinal momentum fractions.
Since the moments are obtained frommatrix elements of

local operators [14], we can study them using lattice QCD.
The light-cone matrix elements which define the DAs
themselves are not amenable to standard lattice techniques,
since in Euclidean space the light cone has been rotated to
the complex direction. By expanding the nonlocal opera-
tors on the light cone, we obtain symmetric, traceless twist-
2 operators. With the following conventions for continuum
covariant derivatives,

~D� ¼ ~@� þ igA�;

DQ � ¼ @Q� � igA�;

D
$

� ¼ DQ � � ~D�;

(8)

the expressions relating the moments of DAs to the corre-
sponding local matrix elements are
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h0j �qð0Þ���5D
$

�sð0ÞjKðpÞi ¼ h�1iKfKp�p�; (9a)

h0j �qð0Þ���5D
$

�D
$

�qð0Þj�ðpÞi ¼ �ih�2i�f�p�p�p�; (9b)

h0j �qð0Þ��D
$

�sð0ÞjK�ðp; �Þi ¼ h�1ikK�fK�mK�1
2ðp�"

ð�Þ
� þ p�"

ð�Þ
� Þ; (9c)

h0j �qð0Þ��D
$

�D
$

�qð0Þj�ðp; �Þi ¼ �ih�2ik�f�m�
1
3ð"ð�Þ� p�p� þ "ð�Þ� p�p� þ "ð�Þ� p�p�Þ: (9d)

The operators in the matrix elements above are all to be
considered symmetric and traceless in the free Lorentz
indices. Meson-meson rather than meson-vacuum matrix
elements of the same operators lead to moments of gener-
alized parton distributions (GPDs).

Recent analyses, especially those based on QCD sum
rules, deal instead with the Gegenbauer moments, which
arise from a conformal expansion [15,16], in which the
conformal invariance of (classical) massless QCD is used
to separate longitudinal and transverse degrees of freedom,
analogous to the partial wave expansion in ordinary quan-
tum mechanics. All dependence on the longitudinal
momentum fractions is described by orthogonal polyno-
mials that form an irreducible representation of the col-
linear subgroup of the conformal group, SLð2;RÞ. The
transverse-momentum dependence is represented as the
scale dependence of the relevant operators and is governed
by renormalization-group equations. The different ‘‘partial
waves,’’ labeled by different conformal spins, do mix but
not to leading-logarithmic accuracy. Conformal spin is thus
a good quantum number in hard processes up to small
corrections of order 	2

s .
The asymptoticQ2 ! 1DA is known from perturbative

QCD: �as ¼ 6u �u. For the leading-twist quark-antiquark
DAs that we are interested in, the conformal expansion can
then be conveniently written as

�ðu;�Þ ¼ 6u �u

�
1þ X1

n¼1

anð�ÞC3=2
n ð2u� 1Þ

�
; (10)

where C3=2
n are Gegenbauer polynomials. To one-loop

order the Gegenbauer moments an renormalize multipli-
catively [16]:

anð�Þ ¼ anð�0Þ
�
	sð�Þ
	sð�0Þ

�ð�ðnÞ��ð0ÞÞ=
0

: (11)

The one-loop anomalous dimensions are

�ðnÞ ¼ �k
ðnÞ ¼ CF

�
1� 2

ðnþ 1Þðnþ 2Þþ 4
Xnþ1

j¼2

1=j

�
; (12)

where CF ¼ 4=3. Since the moments are positive and
increase with n, the effects of higher-order Gegenbauer
polynomials are damped at higher scales as the DAs ap-
proach their asymptotic form. The conformal expansion
can thus be truncated. Quantities such as the pion’s elec-
tromagnetic form factor, for example, are given by con-
volutions in which the kernels are slowly varying and the

strongly oscillating Gegenbauer polynomials are washed
out. The same conclusion is reached by considering,
rather than the conformal expansion, the diagonalization
of the Efremov-Radyushkin-Brodsky-Lepage equations
[1,4,17,18] which govern the evolution of the DAs much
as the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equa-
tions [19–22] govern the evolution of PDFs.
We can obtain values for the Gegenbauer moments from

lattice simulations since the Gegenbauer moments are
combinations of ordinary moments of equal and lower
order, e.g.

a1 ¼ 5

3
h�1i; a2 ¼ 7

12
ð5h�2i � 1Þ: (13)

C. Status

In this section, we summarize what is currently known
about leading-twist light-meson distribution amplitudes.
For mesons of definite G parity, there is a symmetry under
the interchange u $ �u of the two momentum fractions. In
these cases, the distribution amplitude is an even function
of � ¼ u� �u and the odd moments therefore vanish. Thus,

h�1i�, h�1ik�, and h�1ik� all vanish, while h�1iK and h�1ikK�

are SU(3)-flavor breaking effects.
Since h�1iK is the average difference between the frac-

tions of longitudinal momentum carried by the strange and
light quarks,

h�1iKð�Þ ¼
Z 1

0
duð2u� 1Þ�Kðu;�Þ ¼ h2u� 1i; (14)

we may expect from the constituent quark model that the
sign of h�1iK ¼ 3

5 a
K
1 is positive, and this is indeed the case.

In fact, h�1iK is an important SU(3)-breaking parameter
and is relevant for predictions of B-decay transitions such
as B ! K, K� [23]. For example, a light-cone sum rule
analysis leads to [24]

fBKþ ð0Þ
fB�þ ð0Þ ¼ fK

f�
ð1þ c1a

K
1 Þ þ . . . ; (15)

where fBPþ ð0Þ is the vector B ! P form factor at zero
momentum transfer and c1 �Oð1Þ. Other examples in-
clude the ratio of the weak radiative decay amplitudes
B ! �� and B ! K��, where the main theoretical error
originates from such SU(3)-breaking effects. The mea-
sured ratio of these decay rates allows for the determina-
tion of the ratio of CKM matrix elements jVtsj=jVtdj.
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There have been three main approaches to the study of
DAs: extraction from experimental data, calculations using
QCD sum rules, and lattice calculations. The overall nor-
malizations are given by local hadronic matrix elements,
essentially the decay constants, which have already been
discussed and are partly accessible experimentally, and
partly have to be calculated theoretically. The shapes of
the leading-twist distribution amplitudes, in the form of the
Gegenbauer moments, can be determined from experi-
ments by analyzing data on form factors such as F����,

which was studied by the CLEO experiment [25], and the
pion’s electromagnetic form factor, Fem

� [26]. There is a
lack of sufficiently accurate data, however, and it is diffi-
cult to avoid contamination from other hadronic uncertain-
ties and higher-twist effects. As a result, the existing
experimental constraints are not very stringent.

Moments of DAs, then, must largely be determined from
theory. Lattice [23,27–32] and sum rule [33–36] studies
have usually focused on the second moment of the pion’s
distribution amplitude. However, the early lattice results
were largely exploratory while sum rule results have an
irreducible error of �20% because it is not possible to
properly isolate the hadronic states.

The first moment of the kaon’s distribution amplitude,
for example, has, in the past, been determined mainly from
QCD sum rules, and representative results include

aK1 ð1 GeVÞ ¼

8>>>><
>>>>:

0:05ð2Þ ½37�
0:10ð12Þ ½38�
0:050ð25Þ ½39�
0:06ð3Þ ½40�:

(16)

These results all have the expected sign, but the uncertain-
ties are around 50%. The reduction of such uncertainties
is the chief motivation of the lattice programme. In an
earlier publication [41,42], we obtained h�1iKð2 GeVÞ �
3=5a1Kð2 GeVÞ ¼ 0:032ð3Þ. We note that in addition to the
UKQCD/RBC programme for the calculation of DA
moments on the lattice using Nf ¼ 2þ 1 domain-wall

fermions, there is a UKQCD/QCDSF programme using
Nf ¼ 2 improved Wilson quarks [23]. QCDSF have also

published results for moments of baryon DAs [28]. Lattice
results for hadronic distribution amplitudes are considered
in a recent review of hadron structure from lattice QCD
in [43].

The plan for the remainder of this paper is as follows. In
Sec. II we discuss the extraction of bare moments of
distribution amplitudes from Euclidean lattice correlation
functions (we use ‘‘bare’’ or ‘‘latt’’ to denote quantities
before matching from the lattice to the continuum). In
Sec. III we give the details of our numerical calculations
and present the bare results. The renormalization of those
bare results is described in Sec. IV. We then present our
summary in Sec. V.

II. BARE MOMENTS FROM LATTICE
CORRELATION FUNCTIONS

In this section, we describe our general strategy for the
lattice calculation of the unrenormalized lowest moments
of light-meson distribution amplitudes. We obtain expres-
sions for the first and second moments h�1i and h�2i for
pseudoscalar mesons and for the longitudinal moments

h�1ik and h�2ik for vector mesons, in terms of Euclidean
lattice correlation functions which can be computed by
Monte Carlo integration of the QCD path integral. In
each case, we consider a generic meson having valence
quark content �q2q1, where the subscripts indicate that the
flavors of the two quarks may be different. We will see
below that we can obtain all of these moments from ratios
of two-point correlation functions, and thus we expect to
benefit from a significant reduction of the statistical
fluctuations.

A. Lattice operators

We now define the lattice operators used in the correla-
tion functions from which we extract the moments of the
distribution amplitudes. We use the following interpolating
operators for the pseudoscalar and vector mesons:

PðxÞ � �q2ðxÞ�5q1ðxÞ; (17a)

V�ðxÞ � �q2ðxÞ��q1ðxÞ; (17b)

A�ðxÞ � �q2ðxÞ���5q1ðxÞ: (17c)

Although we have written P, V, and A as local operators in
Eq. (17), in the numerical simulations we use smeared
operators at the source of our correlation functions in order
to improve the overlap with the lightest meson states. Since
the effects of smearing cancel in the ratios constructed
below, the discussion in this section holds for both smeared
and local interpolating operators. We explain the details of
our smearing procedures in Sec. III A. The operators in
Eqs. (9) from which the moments of the distribution am-
plitudes are obtained are of course local operators.
In constructing the lattice operators of Eqs. (9), we use

the following symmetric left- and right-acting covariant
derivatives:

~D�c ðxÞ ¼ 1

2a
½Uðx; xþ �̂Þc ðxþ �̂Þ

�Uðx; x� �̂Þc ðx� �̂Þ�; (18)

�c ðxÞDQ � ¼ 1

2a
½ �c ðxþ �̂ÞUðxþ �̂; xÞ

� �c ðx� �̂ÞUðx� �̂; xÞ�; (19)

where Uðx; yÞ is the gauge link going from site x to site y,
and �̂ is a vector of length a in the direction � (a denotes
the lattice spacing). The operators of interest are then
defined by
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Of��gðxÞ � �q2ðxÞ�f�D
$

�gq1ðxÞ; (20a)

Of���gðxÞ � �q2ðxÞ�f�D
$

�D
$

�q1ðxÞ; (20b)

O5
f��gðxÞ � �q2ðxÞ�f��5D

$
�q1ðxÞ; (20c)

O5
f���gðxÞ � �q2ðxÞ�f��5D

$
�D
$

�D�gq1ðxÞ; (20d)

where the braces in the subscripts indicate symmetrization
of the enclosed Lorentz indices, f�1 . . .�ng �P

permssf�sð1Þ . . .�sðnÞg=n!.

B. Operator mixing

In the continuum the operators in Eq. (20) transform as
second- or third-rank tensors under the Lorentz group. On
the lattice, however, we must consider their transformation
properties under the hypercubic group H 4 of reflections
and �=2 rotations, together with the discrete symmetries
parity P and charge-conjugation C, where the possibilities
for operator mixing are increased. A detailed study of the
transformations of these operators under H 4 has been
performed in [44].

The choice of Lorentz indices in the operators used in
simulations is important both to keep the operator mixing
simple and also to enable the extraction of matrix elements
using as few nonzero components of momentum as pos-
sible. The latter is to avoid the associated discretization
effects and statistical degradation. Of��g and O5

f��g renor-
malize multiplicatively under H 4 when � � �. In the
notation of [45], these operators transform under the six-

dimensional 6ðþÞ (forO5
f��g) or 6

ð�Þ (forOf��g) irreducible
representations of H 4. The choice � � � is the most
convenient one for the extraction of the first moment of
the distribution amplitudes. Charge-conjugation symmetry
combined with H 4 ensures that there is no mixing with
operators containing total derivatives.

It is also possible to obtain the first moment from the
four operators Of��g (or O5

f��g), which each transform as

four-dimensional reducible representations containing a
singlet. The three traceless operators transform as the

three-dimensional irreducible representation ð3; 1ÞðþÞ

(without �5) or ð3; 1Þð�Þ (with �5). Subtracting the trace
involves the subtraction of a power divergence, so for the
first moment of the distribution amplitude of the K and K�,
we avoid this by evaluating the matrix elements of O5

f��g
and Of��g, respectively, with � � �.

Similarly, for the second moment of the distribution
amplitudes the most convenient choice is to use O5

f���g
or Of���g with all three indices different, which transform

as the ð1=2; 1=2ÞðþÞ and ð1=2; 1=2Þð�Þ four-dimensional
irreducible representations, respectively. Charge-
conjugation symmetry allows mixing of O5

f���g and

Of���g with operators containing total derivatives:

O5
f���gðxÞ mixes with @f�@�ð �q2ðxÞ��g�5q1ðxÞÞ;

Of���gðxÞ mixes with @f�@�ð �q2ðxÞ��gq1ðxÞÞ:

The moments of the distribution functions are obtained
from nonforward matrix elements between a meson at
nonzero four-momentum and the vacuum, so the total-
derivative operators must be included in the analysis.

C. h�1iP and h�2iP from correlation function ratios

To obtain the first and second moments of the pseudo-
scalar meson distribution amplitude, h�1i and h�2i, we
consider the following two-point correlation functions:

CA�Pðt;pÞ �
X
x

eip�xh0jA�ðt; xÞPyð0Þj0i; (21a)

C5
f��gðt;pÞ �

X
x

eip�xh0jO5
f��gðt; xÞPyð0Þj0i; (21b)

C5
f���gðt;pÞ �

X
x

eip�xh0jO5
f���gðt; xÞPyð0Þj0i: (21c)

For a generic pseudoscalar meson P, we define
ZP � hPðpÞjPyj0i and the bare decay constant by
h0jA�jPðpÞi � ip�f

bare
P . The operators Pyð0Þ in Eqs. (21)

are smeared, as explained below. At large Euclidean times t
and T � t, the correlation functions defined above tend
towards

CA�Pðt;pÞ !
ZPf

bare
P e�EPT=2 sinhððt� T=2ÞEPÞ

EP

ip�;

(22)

C5
f��gðt;pÞ !

ZPf
bare
P e�EPT=2 sinhððt� T=2ÞEPÞ

EP

� ip�ip�h�1ibare; (23)

C5
f���gðt;pÞ !

ZPf
bare
P e�EPT=2 sinhððt� T=2ÞEPÞ

EP

� ip�ip�ip�h�2ibare: (24)

We can extract bare values for the first and second mo-
ments of the pseudoscalar meson distribution amplitudes
from the following ratios of correlation functions:

RP
f��g;�ðt;pÞ �

C5
f��gðt;pÞ

CA�Pðt;pÞ
! i

p�p�

p�

h�1ibare; (25a)

RP
f���g;�ðt;pÞ �

C5
f���gðt;pÞ
CA�Pðt;pÞ

! �p�p�p�

p�

h�2ibare: (25b)

Keeping in mind the operator mixing outlined above, we
obtain the first moment from RP

f�4g;4ðt;pÞ (the index 4
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corresponds to the time direction) with � ¼ 1, 2, or 3
and a single nonzero component of momentum,
jp�j ¼ 2�=L. The second moment is extracted from

RP
f��4g;4ðt;pÞ with at least two nonzero components of

momentum. We take �, � ¼ 1, 2, or 3 with � � � and
jp�j ¼ jp�j ¼ 2�=L. We present more details in

Sec. III B.
Apart from isolating the moments of the DAs as much as

possible by canceling ZP, f
bare
P , and most of the energy

dependence from Eqs. (23) and (24), the ratios also sim-
plify the effect of mixing with total-derivative operators.
These operators have matrix elements proportional to (22)
with which we build a ratio similar to (25b). Hence the
contribution of the mixing term becomes trivial and does
not have to be computed explicitly. It enters as an additive
constant when renormalizing the bare moments, as we will
discuss later.

D. h�1ikV and h�2ikV from correlation function ratios

The treatment of the vector meson’s longitudinal distri-
bution amplitude is analogous. We consider the following
two-point correlation functions:

CV�V�
ðt;pÞ � X

x

eip�xh0jV�ðt; xÞVy
� ð0Þj0i; (26a)

Cf��g�ðt;pÞ �
X
x

eip�xh0jOf��gðt; xÞVy
� ð0Þj0i; (26b)

Cf���g�ðt;pÞ �
X
x

eip�xh0jOf���gðt; xÞVy
�ð0Þj0i: (26c)

Again, the source operators Vyð0Þ are smeared. We define
the bare longitudinal decay constant of a vector meson V,

with polarization index � and polarization vector "ð�Þ� , by

h0jV�jVðp; �Þi � fbareV mV"
ð�Þ
� . Then, at large Euclidean

times t and T � t, the correlation functions defined above
may be written

CV�V�
ðt;pÞ ! �ðfbareV mVÞ2e�EVT=2 coshððt� T=2ÞEVÞ

EV

�
�g�� þ

p�p�

m2
V

�
; (27a)

Cf��g�ðt;pÞ ! �iðfbareV mVÞ2e�EVT=2h�1ikbare sinhððt� T=2ÞEVÞ
EV

1

2

�
�g��p� � g��p� þ

2p�p�p�

m2
V

�
; (27b)

Cf���g�ðt;pÞ ! ðfbareV mVÞ2e�EVT=2h�2ikbare sinhððt� T=2ÞEVÞ
EV

1

3

�
�g��p�p� � g��p�p� � g��p�p� þ 3p�p�p�p�

m2
V

�
;

(27c)

where we have used the completeness relation for the polarization vectors of massive vector particles,
P

�"
ð�Þ
� "�ð�Þ� ¼

�g�� þ p�p�=m
2
V . We extract bare values for the first and second moments from the following ratios:

RV
f��g�ðt;pÞ �

Cf��g�ðt;pÞ
1
3

P
i CViVi

ðt;p ¼ 0Þ ! �ih�1ikbare tanhððt� T=2ÞEVÞ 12
�
�g��p� � g��p� þ

2p�p�p�

m2
V

�
; (28a)

RV
f���g�ðt;pÞ �

Cf���g�ðt;pÞ
1
3

P
i CViVi

ðt; pi ¼ 0; jpj ¼ 2�
L Þ

! h�2ikbare tanhððt� T=2ÞEVÞ

� 1

3

�
�g��p�p� � g��p�p� � g��p�p� þ 3p�p�p�p�

m2
V

�
; (28b)

where the index i runs over spatial dimensions only. We
obtain the first moment from RV

f�4g�ðt;pÞ at p ¼ 0 by taking
� ¼ � ¼ 1, 2, or 3. The second moment is obtained from
RV
f���g�ðt;pÞ by taking, for example, � ¼ 4, � ¼ 1,

� ¼ � ¼ 2, and a single nonzero component of p in the
1-direction.

III. NUMERICAL SIMULATIONS AND RESULTS

A. Simulation details

Our numerical calculations are based upon gauge field
configurations drawn from the joint data sets used for the

broader UKQCD/RBC domain-wall fermion phenomenol-
ogy programme. Configurations were generated with
Nf ¼ 2þ 1 flavors of dynamical domain-wall fermions

and with the Iwasaki gauge action, using the rational
hybrid Monte Carlo (RHMC) [46] algorithm on QCDOC
computers [47–49] running the Columbia Physics System
(CPS) software [50] and the BAGEL [51,52] assembler
generator.
Our set of gauge configurations includes data with two

different volumes but at a single lattice spacing, thus giving
us some indication of the size of finite volume effects
but no ability to perform a continuum extrapolation. We
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therefore have an unavoidable systematic error which is,
however, formally of Oða2�2

QCDÞ due to the automatic

OðaÞ improvement of the DWF action and operators. In
the future, this limitation will be overcome by performing
the analysis with a data set with a finer lattice spacing with
the same action. In the meantime, following the UKQCD/
RBC procedure for these configurations [13], we ascribe a
4% uncertainty as the discretization error on the moments.
For both volumes, we have a single dynamical strange-
quark mass, close to its physical value. We use several
independent ensembles with different light-quark masses
(mu ¼ md), all heavier than those found in nature. The
hadronic spectrum and other properties of these configu-
rations have been studied in detail, and the results
have been presented in [53] [for the lattice volume
ðL=aÞ3 � T=a ¼ 163 � 32] and [13] (for the lattice vol-
ume 243 � 64). In both cases the length of the fifth dimen-
sion is Ls ¼ 16.

The choice of bare parameters in our simulations is

 ¼ 2:13 for the bare gauge coupling, ams ¼ 0:04 for
the strange-quark mass, and amq ¼ 0:03, 0.02, 0.01, and,

in the 243 case only, 0.005 for the bare light-quark masses.
A posteriori, the strange-quark mass is found to be about
15% larger than its physical value. The lattice spacing is
found to be a�1 ¼ 1:729ð28Þ GeV [13], giving physical
volumes of ð1:83 fmÞ3 and ð2:74 fmÞ3. The lattice spacing
and physical quark masses were obtained using the masses
of the � and K pseudoscalar mesons and the triply strange
� baryon. The quark masses obtained in the 243 study are
shown in Table I. Owing to the remnant chiral symmetry
breaking, the quark mass has to be corrected additively by
the residual mass in the chiral limit, amres ¼ 0:003 15ð2Þ
[13]. The physical pion masses are as follows:

m� ’

8>>>>><
>>>>>:

670 MeV amq ¼ 0:03

555 MeV amq ¼ 0:02

415 MeV amq ¼ 0:01

330 MeV amq ¼ 0:005:

(29)

Measurements were performed using the UKHADRON

software package that makes use of both the BAGEL DWF
inverter [51,52] and elements of the SciDAC software
library stack, including the CHROMA LQCD library [54]
and QDP++. The details are summarized in Tables II and III.
We restrict our analysis to the unitary data for which the
valence- and sea-quark masses are the same (partially
quenched data were used extensively in the studies of the
chiral behavior of the spectrum and decay constants in
[13]). On the 163 lattice, our data set differs from that
used in [53] in that the Markov chains have been extended
for the heaviest light-quark mass to give additional statis-
tics, using an improved algorithm that decorrelated topol-
ogy rather more quickly.
In order to improve the statistical sampling of the corre-

lation functions, on each configuration we have averaged
the results obtained from either two, three, or four sources
spaced out along a lattice diagonal. In the 163 case, for
example, the sources used are at the origin, at (4, 4, 4, 8),
(8, 8, 8, 16), and (12, 12, 12, 24). Statistical errors for
observables are estimated using single-elimination jack-
knife, with measurements made on the same configuration
but at different source positions put in the same jackknife
bin because of the correlations expected between them. In
order to lessen the effect of autocorrelations, we follow the
same blocking procedures as in [13,53]. In the 163 case, the
span of the measurements in each block covers 50 molecu-
lar dynamics time units. In the 243 case, for the mqa ¼
0:005 and amq ¼ 0:01 ensembles, each jackknife bin con-

tains measurements from every 80 molecular dynamics
time units, while for the amq ¼ 0:02 and amq ¼ 0:03

TABLE I. Lattice scale and unrenormalized quark masses in lattice units, from the 244 lattices
[13]. Note ~mX � mX þmres. Only the statistical errors are given here.

a�1 (GeV) a (fm) amud a ~mud ams a ~ms a ~mud:a ~ms

1.729(28) 0.1141(18) �0:001 847ð58Þ 0.001 300(58) 0.034 3(16) 0.0375(16) 1:28:8ð4Þ

TABLE II. Parameters for our 163 data set, which corresponds
largely to that of [53]. The range and measurement separation �
are specified in molecular dynamics time units. Nmeas is the
number of measurements for each source position tsrc. The total
number of measurements is therefore Nmeas � Nsrc, where Nsrc is
the number of different values for tsrc. In the rightmost column,
XY-XY denotes contraction of two quark propagators with
X-type smearing at source and Y-type smearing at sink:
G ¼ Gaussian wave function, L ¼ point.

ml Range � Nmeas tsrc locations Smearing

0.01 500–3990 10 350 0, 8, 16, 24 GL-GL

0.02 500–3990 10 350 0, 8, 16, 24 GL-GL

0.03 4030–7600 10 358 0, 16 GL-GL

TABLE III. Parameters for our 243 data set, which corre-
sponds to the unitary part of the data set of [13]. Columns are
the same as in Table II, with the addition of H ¼ gauge-fixed
hydrogen S-wave smearing.

ml Range � Nmeas tsrc locations Smearing

0.005 900–4480 20 180 0, 32, 16 HL-HL

0.01 800–3940 10 315 0, 2 GL-GL

0.02 1800–3580 20 90 0, 32 HL-HL

0.03 1260–3040 20 90 0, 32 HL-HL
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ensembles, each bin contains measurements from every 40
molecular dynamics time units in order to have a reason-
able number of bins for the analysis.

We use source smearing to improve the overlap with
the mesonic states, either gauge-fixed hydrogen
S-wavefunction smearing [55] with radius r ¼ 3:5 in lat-
tice units or gauge invariant Gaussian smearing [56] with
radius r ¼ 4.

B. Results

In order to extract h�1iK from the ratio RP
f��g;�ðt;pÞ

defined in (25a), we need the two correlation functions to
be measured at jpj � 0. Since we expect hadronic observ-
ables with larger lattice momenta to have larger lattice
artefacts and statistical errors, we restrict the choice of
indices to � ¼ � ¼ 4 and � ¼ 1, 2, or 3, with jpj ¼
2�=L (i.e., p� ¼ �2�=L, with the remaining two compo-

nents of p equal to 0). h�1ibareK can then be obtained from
the ratio at large times:

RP
f4kg;4ðt; pk ¼ �2�=LÞ ¼ �i

2�

L
h�1ibare; (30)

with jpj ¼ 2�=L and k ¼ 1, 2, 3. The plots in Fig. 1 show
our results for h�1ibareK as a function of t obtained from the
ratio RP

f4kg;4ðt; pk ¼ �2�=LÞ for the four values of the

light-quark mass, combining results at t with those at
T � t� 1. The results have been averaged over the three
values of k and, in total, the six equivalent lattice momenta
with jpj ¼ 2�=L.
To obtain h�2ibare�;K from the ratio RP

f���g;�ðt;pÞ defined in
(25b), we need two nonzero components of momentum, so
we use

RP
f4jkg;4ðt; pj ¼ �2�=L; pk ¼ �2�=LÞ

¼ �
�
� 2�

L

��
� 2�

L

�
h�2ibare (31)

with jpj ¼ ffiffiffi
2

p
2�=L, k, j ¼ 1, 2, 3 and k � j. We average

over all four momentum combinations appropriate to each
of the three possible Lorentz index choices.

We may extract h�1ikbareK� from the ratio RV
f��g�ðt;pÞ

defined in (28a) by considering only zero-momentum
correlation functions. In the denominator, we average

(a)

(b)

FIG. 1 (color online). Results for h�1ibareK as a function of time,
on the 163 (top panel) and 243 (bottom panel) lattices. The
shaded band shows the fit range, and the fitted value and its error.

(a)

(b)

FIG. 2 (color online). Results for h�1ikbareK� as a function of
time, on the 163 (top panel) and 243 (bottom panel) lattices.
Symbols are the same as in Fig. 1.
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CViVi
ðt;p ¼ 0Þ over all three spatial directions. In

the numerator, we average over Cf41g1ðt;p ¼ 0Þ,
Cf42g2ðt;p ¼ 0Þ, and Cf43g3ðt;p ¼ 0Þ. Results are shown

in Fig. 2. h�2ikbareK�;�;� is extracted from the ratio defined in

(28b) by averaging CViVi
ðt; pi ¼ 0; jpj ¼ 2�

L Þ over all four
appropriate momenta for all three spatial directions in the
denominator. In the numerator we average over all possible
combinations of Cf4ijgiðt; pj ¼ � 2�

L ; jpj ¼ 2�
L Þ with i � j.

There are no disconnected contributions for the K and K�
correlation functions. The � and � are isospin triplets and
therefore have no disconnected contributions in our
isospin-conserving calculations (for the neutral � and �
there is an explicit cancellation of disconnected diagrams
with u and d quarks when the quarks have the same mass).
In principle, we should include disconnected contributions
for the �. However, we argue that these contributions are
Zweig suppressed and can be neglected. We are not aware
of existing computations of these terms. It would be of
great interest to evaluate them in future work, but this is a
challenging computation.

If picking the fit range was not straightforward, we
considered the correlation functions in the numerator and
denominator separately. We identified and excluded from
our fits the region where the excited states still contributed.
We then chose the fit range, aiming for a good �2=d:o:f:
and a stable fit with respect to small variations of the lower

bound of the range. Owing to the increasing noise when t
gets larger, the fits are insensitive to the upper bound of the
fit range.
The 163 and 243 bare results are given in Tables IV and

V, respectively, complete with linear chiral extrapolations
which, as we shall discuss in the next section, can be
justified using chiral perturbation theory (at least in the
pseudoscalar case).

C. Quark-mass extrapolations

In leading-order SU(3) chiral perturbation theory [57],
h�1iK is proportional to ms �mu=d without chiral loga-

rithms:

h�1iK ¼ 8B0

f2
ðms �mu=dÞb1;2; (32)

where f and B0 denote the usual chiral perturbation theory
parameters and b1;2 is a Wilson coefficient introduced in

[57]. Our data show clearly the effects of SU(3) symmetry
breaking and are compatible with this expectation.
However, our results are at fixed ms and we wish to
extrapolate in the light-quark massmq. Our collaboration’s

recent experience is that the physical strange-quark mass is
rather large for low-order chiral perturbation theory and so
we should perform SU(2) chiral fits in the light quarks at
fixed (large) ms. For the first moment this implies a fit

TABLE IV. Summary of results for the bare values of the distribution amplitude moments on the 163 lattices. The chiral
extrapolations are discussed in Sec. III C, and the errors are statistical and (in the first-moment case) due to the uncertainty in the
physical point for the chiral extrapolation.

amud 0.03 0.02 0.01 0.005 � limit

h�2ibare� 0.110(2) 0.109(2) 0.113(4) � � � 0.112(5)

h�1ibareK 0.005 43(27) 0.011 74(71) 0.0194(15) � � � 0.0228(14)(11)

h�2ibareK 0.109(2) 0.107(2) 0.113(3) � � � 0.112(4)

h�2ikbare� 0.113(4) 0.100(5) 0.116(6) � � � 0.109(10)

h�1ikbareK� 0.006 10(24) 0.012 75(51) 0.0207(10) � � � 0.024 43(96)(107)

h�2ikbareK� 0.111(4) 0.101(4) 0.113(4) � � � 0.110(6)

h�2ikbare� 0.109(3) 0.100(3) 0.109(3) � � � 0.107(5)

TABLE V. Summary of results for the bare values of the distribution amplitude moments on the 243 lattices.

amud 0.03 0.02 0.01 0.005 � limit

h�2ibare� 0.103(9) 0.104(6) 0.114(3) 0.121(9) 0.125(7)

h�1ibareK 0.005 66(33) 0.012 54(72) 0.019 46(65) 0.0231(15) 0.023 77(71)(110)

h�2ibareK 0.103(8) 0.106(4) 0.112(2) 0.113(6) 0.117(5)

h�2ikbare� 0.110(9) 0.093(10) 0.112(3) 0.120(13) 0.118(7)

h�1ikbareK� 0.006 19(35) 0.0139(10) 0.0225(13) 0.0311(30) 0.0281(13)(14)

h�2ikbareK� 0.109(12) 0.095(8) 0.108(3) 0.117(5) 0.118(7)

h�2ikbare� 0.108(7) 0.097(7) 0.105(2) 0.107(3) 0.107(4)
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function linear in the light-quark mass with coefficients
depending on the strange-quark mass. The complete SU(2)
chiral perturbation theory expression for the first moment
must vanish when mq ¼ ms but this need not be so for the

leading terms. We therefore perform a linear extrapolation
in aðms �mqÞ to the physical point aðms �mudÞ, without
constraining the fit to vanish in the SU(3) limit, as shown in
Fig. 3. The second error quoted in the results in the chiral
limit for the first moments in Tables IV and V is due to the
uncertainty in this physical point (determined using the
quark masses in Table I). In this way we deal simulta-
neously with the usual light-quark-mass extrapolation and
with the strange-quark-mass extrapolation which is
necessitated by our strange-quark mass being approxi-
mately 15% too heavy.

A similar linear behavior is seen for h�1ikbareK� (see Fig. 3),

so we follow the same extrapolation procedure. We note a
hint of a finite volume effect in the K� case but not in the K

case, which is contrary to what we would expect. Where
we have K� results for both volumes at the same light-
quark mass, however, they agree within the statistical
uncertainties.
For the second moments, we also have some guidance

from chiral perturbation theory [58]; there is no nonana-
lytic dependence at one loop, and we should fit linearly in
m2

�. The dependence on the quark masses is very mild in
any case, and in fact our results for the �, K�, and � agree
within the statistical errors. Therefore, we perform a linear
extrapolation in the light-quark masses and neglect the
effect of the too-heavy strange-quark mass (see Fig. 4).
We see no indication for finite size effects in the second
moments when we compare the data points on the two
different lattice volumes. They agree within their statistical
errors.

IV. RENORMALIZATION OF THE LATTICE
COMPOSITE OPERATORS

We now discuss the conversion of our bare lattice results

to results in the MS scheme. To reduce systematic uncer-
tainties we have determined the renormalization factors
nonperturbatively in the modified regularization-
independent momentum (RI0=MOM) scheme, continuing

the work in [59], and we convert to MS using three-loop
continuum perturbation theory [60,61]. We begin, how-
ever, with a perturbative calculation of the renormalization
factors. The perturbative results have been used previously
in [62,63] and will provide a comparison to the nonpertur-
bative results. The contribution to the second moment from
mixing with a total-derivative operator is calculated per-
turbatively only. We will see that this contribution is small
and is not accessible within the current nonperturbative
scheme.

A. Perturbative renormalization

The perturbative matching from the lattice to MS
schemes is performed by comparing one-loop calculations
of quark two-point one particle irreducible (1PI) functions
with an insertion of the relevant bare lattice operator. This
requires the evaluation of the diagrams shown in Fig. 5,
together with wavefunction renormalization factors, Fig. 6.
For the first-moment operator, we define

OMS
f��gð�Þ ¼ ZOf��g ð�aÞOlatt

f��gðaÞ: (33)

For the second-moment calculation we must take account
of mixing with a total-derivative operator (cf. Sec. II B).
Adopting the notation

ODD ¼ �c�f��5D
$

�D
gD
$


c ;

O@@ ¼ @f�@
 �c��g�5c ;
(34)

(a)

(b)

FIG. 3 (color online). Chiral extrapolations for h�1ibareK and

h�1ikbareK� . The extrapolation to the physical point is shown by

the vertical solid line, with uncertainty, dominated by the uncer-
tainty in the physical strange mass, indicated by the dotted lines.
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with all Lorentz indices distinct and symmetrized, we need
to determine

OMS
DDð�Þ ¼ ZDD;DDð�aÞOlatt

DDðaÞ þ ZDD;@@ð�aÞOlatt
@@ ðaÞ:

(35)

The renormalization factors are given by

ZOf��g ð�aÞ ¼ 1

ð1� w2
0ÞZw

�
1þ 	CF

4�

�
� 16

3
lnð�aÞ

þ �MS
1 � �1 þ VMS � V

��
; (36)

(a)

(b)

(c)

(d)

(e)

FIG. 4 (color online). Chiral extrapolations for h�2ibare� , h�2ibareK , h�2ikbare� , h�2ikbareK� , and h�2ikbare� . The physical value for amq þ amres

is shown by the solid vertical line in each case.

LATTICE RESULTS FOR LOW MOMENTS OF LIGHT . . . PHYSICAL REVIEW D 83, 074505 (2011)

074505-11



ZDD;DDð�aÞ ¼ 1

ð1� w2
0ÞZw

�
1þ 	CF

4�

�
� 25

3
lnð�aÞ

þ �MS
1 ��1 þ VMS

DD � VDD

��
; (37)

ZDD;@@ð�aÞ ¼ 1

ð1� w2
0ÞZw

	CF

4�

�
5

3
lnð�aÞ þ VMS

@@ � V@@

�
:

(38)

In the equations above ð1� w2
0ÞZw is a characteristic nor-

malization factor for the physical quark fields in the
domain-wall formalism. Zw represents an additive renor-
malization of the large Dirac mass or domain-wall height
M ¼ 1� w0, which can be rewritten in multiplicative
form at one loop as

Zw ¼ 1þ 	CF

4�
zw; zw ¼ 2w0

1� w2
0

�w: (39)

The one-loop correction zw becomes very large for certain
choices of M [64,65], including that used in our numerical
simulations, so that some form of mean-field improvement
is necessary, as discussed below.

Terms with superscriptsMS in Eqs. (36)–(38) arise from
the continuum calculations, while unsuperscripted terms
come from the computations in the lattice scheme. To
shorten some expressions, below we will define

c ¼ �MS
1 ��1 þ VMS � V; (40)

cDD ¼ �MS
1 ��1 þ VMS

DD � VDD; (41)

c@@ ¼ VMS
@@ � V@@: (42)

The terms �MS
1 and �1 come from quark wavefunction

renormalization, while VMS, VMS
DD, V

MS
@@ and V, VDD, V@@

come from the one-loop corrections to the amputated two-
point function. They are given by ‘‘vertex’’ and ‘‘sail’’
diagrams, plus an operator tadpole diagram in the lattice

case. VMS
DD and VDD can be isolated by computing the one-

loop correction with equal incoming and outgoing quark

momenta. Likewise, VMS
@@ and V@@ are found by setting the

incoming and outgoing quark momenta equal and opposite
(the lattice tadpole diagram does not contribute in this
case). Using naive dimensional regularization (NDR) in
Feynman gauge with a gluon mass IR regulator,

�MS
1 ¼ 1

2
; VMS ¼ � 25

18
; (43)

VMS
DD ¼ � 121

72
; VMS

@@ ¼ 41

72
: (44)

The lattice contributions are evaluated for domain-wall
fermions with the Iwasaki gluon action (c1 ¼ �0:331),
also choosing Feynman gauge and using a gluon mass IR
regulator. �1 has been evaluated in [65], while we calcu-
lated the vertex term V for the first-moment operator in
[41]. Here we have calculated the vertex terms VDD and
V@@ for the second-moment operator. Perturbative calcula-
tions with domain-wall fermions are explained in [64,65],
and the form of the Iwasaki gluon propagator can be found
in [66]. Values for �1, V, VDD, and V@@ are given as
functions of M in Table VI, along with c, cDD, and c@@.
Chiral symmetry of the domain-wall action implies that
these results also apply for the operators which are like
those used here, but without the �5. We note that the
perturbative renormalization factor for the first-moment
operator using alternative fermion and gauge formulations
can be found in [67] (domain-wall fermions and plaquette
action), [68] (overlap fermions and Lüscher–Weisz action),
and [69] (clover fermions and plaquette action). Second-
moment calculations with clover and Wilson fermions

FIG. 5. One-loop vertex diagrams evaluated in the perturbative renormalization of the first- and second-moment operators.

FIG. 6. One-loop diagrams for the quarks’ wavefunction re-
normalization.
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have been performed in [69,70], respectively (in both cases
using the plaquette action).

Our numerical simulations use M ¼ 1:8. For this value
of M, with the Iwasaki gluon action, the one-loop coeffi-
cient in the physical quark normalization is zw 	 112

(extracted from �w in Table III of [65]), making it clear
that mean-field improvement is necessary. We follow the
prescription given in [65]. The first step is to define a mean-
field value for the domain-wall height,

MMF ¼ M� 4ð1� P1=4Þ ¼ 1:3029; (45)

where P ¼ 0:588 13ð4Þ is the average plaquette value in
the chiral limit in our simulations. The physical quark
normalization factor becomes ½1� ðwMF

0 Þ2�ZMF
w , with

ZMF
w ¼ 1þ 	CF

4�
zMF
w ;

zMF
w ¼ 2wMF

0

1� ðwMF
0 Þ2 ð�w þ 32�2TMFÞ ¼ 5:2509;

(46)

where TMF ¼ 0:052 566 4 [65] is a mean-field tadpole
factor and �w is evaluated at MMF. Values for zMF

w as a
function of M are quoted in Table VII, extracted from the
results in [65]. Likewise, �1 ¼ 3:9731, V ¼ �4:1907,
VDD ¼ �10:045, and V@@ ¼ �0:1696 are evaluated at
MMF.
For the operator ODD with two covariant derivatives,

mean-field improvement introduces a factor upt=u, where u

is the mean link (here taken to be u ¼ P1=4) and

upt ¼ 1� 	CF

4�
8�2TMF

is its perturbative expansion. For O@@ with two ordinary
derivatives, in contrast, the extra factor is u=upt. The mean-

field-improved matching factors are thus

TABLE VI. Constants needed for the perturbative renormalization of the first- and second-moment operators using domain-wall

fermions and the Iwasaki gauge action (c1 ¼ �0:331). M is the domain-wall height, c ¼ �MS
1 ��1 þ VMS � V, cDD ¼ �MS

1 �
�1 þ VMS

DD � VDD, and c@@ ¼ VMS
@@ � V@@. �1, V, VDD, and V@@ are dependent on the gauge and the infrared regulator: Feynman gauge

and a gluon mass are used here. V was calculated in [41], while VDD and V@@ have been calculated as part of this work.

M �1 V c VDD cDD V@@ c@@

0.1 4.6519 �4:6297 �0:9110 �10:816 4.9838 0.5415 0.0279

0.2 4.5193 �4:5614 �0:8468 �10:698 4.9982 0.4285 0.1409

0.3 4.4093 �4:5101 �0:7881 �10:608 5.0179 0.3433 0.2262

0.4 4.3158 �4:4678 �0:7369 �10:533 5.0362 0.2729 0.2966

0.5 4.2354 �4:4311 �0:6932 �10:467 5.0509 0.2119 0.3575

0.6 4.1665 �4:3980 �0:6574 �10:407 5.0603 0.1573 0.4122

0.7 4.1079 �4:3673 �0:6295 �10:352 5.0639 0.1070 0.4625

0.8 4.0593 �4:3381 �0:6101 �10:300 5.0604 0.0597 0.5098

0.9 4.0204 �4:3097 �0:5996 �10:250 5.0489 0.0142 0.5552

1. 3.9915 �4:2816 �0:5988 �10:200 5.0283 �0:0303 0.5998

1.1 3.9731 �4:2529 �0:6090 �10:151 4.9970 �0:0749 0.6443

1.2 3.9664 �4:2232 �0:6321 �10:100 4.9528 �0:1205 0.6899

1.3 3.9727 �4:1916 �0:6700 �10:047 4.8933 �0:1682 0.7376

1.4 3.9943 �4:1571 �0:7261 �9:9895 4.8147 �0:2195 0.7889

1.5 4.0343 �4:1182 �0:8050 �9:9267 4.7119 �0:2764 0.8458

1.6 4.0974 �4:0728 �0:9135 �9:8551 4.5771 �0:3418 0.9112

1.7 4.1905 �4:0176 �1:0618 �9:7700 4.3989 �0:4205 0.9899

1.8 4.3249 �3:9462 �1:2676 �9:6627 4.1572 �0:5211 1.0905

1.9 4.5209 �3:8447 �1:5651 �9:5140 3.8125 �0:6631 1.2325

TABLE VII. Values for zw, z
MF
w extracted from the results in

[65], and df extracted from [71].

M zw zMF
w df

0.1 �243:86 �86:579 �0:023 03
0.2 �113:29 �39:501 �0:017 98
0.3 �69:404 �23:830 �0:014 97
0.4 �47:077 �15:949 �0:012 74
0.5 �33:278 �11:142 �0:010 90
0.6 �23:648 �7:8365 �0:009 315
0.7 �16:300 �5:3538 �0:007 896
0.8 �10:263 �3:3459 �0:006 589
0.9 �4:9617 �1:6078 �0:005 379
1.0 0.0 0.0 �0:004 261
1.1 4.9442 1.5902 �0:003 227
1.2 10.192 3.2748 �0:002 290
1.3 16.136 5.1900 �0:001 485
1.4 23.346 7.5350 �0:000 865 0
1.5 32.784 10.648 �0:000 536 0
1.6 46.322 15.194 �0:000 656 6
1.7 68.294 22.720 �0:001 570
1.8 111.69 37.901 �0:004 014
1.9 241.55 84.270 �0:010 20
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ZMF
Of��g

¼ 1

1�ðwMF
0 Þ2

1

ZMF
w

�
1þ	CF

4�

�
�16

3
lnð�aÞþ cMF

��
;

(47)

ZMF
DD;DD ¼ 1

u

1

1� ðwMF
0 Þ2

1

ZMF
w

�
1þ 	CF

4�

�
� 25

3
lnð�aÞ

þ cMF
DD � 8�2TMF

��
; (48)

ZMF
DD;@@¼u

1

1�ðwMF
0 Þ2

1

ZMF
w

	CF

4�

�
5

3
lnð�aÞþcMF

@@

�
; (49)

with cMF ¼ �0:6713, cMF
DD � 8�2TMF ¼ 0:7408, and

cMF
@@ ¼ 0:7391. To evaluate these expressions, we make
two choices for the coupling. The first is a mean-field
improved coupling defined using the measured plaquette
value P, according to [71]

1

g2MFð�Þ ¼
P

g20
þ dg þ cp þ 22

16�2
lnð�aÞ

þ Nf

�
df � 4

48�2
lnð�aÞ

�
; (50)

whereNf is the number of dynamical quark flavors. For the

Iwasaki gauge action with c1 ¼ �0:331, the values dg ¼
0:1053 and cp ¼ 0:1401 are given in [65], while values for

df as a function of M were calculated in [71] and are

quoted in Table VII. In our simulations, 
 ¼ 6=g20 ¼
2:13 with Nf ¼ 3 and a�1 ¼ 1:729 GeV. The second

choice is the continuum MS coupling, calculated as out-
lined in Appendix A of [59]. At �a ¼ 1, we find 	MF ¼
0:1769 and 	MS ¼ 0:3138. We use these two values to
evaluate the renormalization factors above. We also evalu-
ate the mean-field improved expression for the axial-vector
current renormalization [65], interpolating to our mean-
field MMF. The values are shown in Table VIII. The ratios
of the renormalization factors, from which the factor
1=ð1� ðwMF

0 Þ2ÞZMF
w cancels, are also shown in the table.

We take the mean value of the results with the two
different choices for the coupling as the best answer for
the renormalization factors. The difference between the
two choices will form the error. The relevant factors for
the perturbative renormalization of the ratios in Eqs. (25)
and (28) are given in Table IX. Chiral symmetry here
ensures that we do not have to distinguish between vector

and axial-vector operators. We note that the contribution
from the mixing term ZDD;@@ is smaller than the error on

ZDD;DD itself.

B. Nonperturbative renormalization

In order to renormalize the correlation functions non-
perturbatively we make use of the Rome-Southampton
RI0=MOM scheme [72], which we now briefly review
and discuss refinements to [59]. The starting point and
definition of the RI0=MOM scheme is a simple renormal-
ization condition that can be imposed independently of the
regularization used, thus on the lattice as well as in the
continuum. This facilitates scheme changes, which is im-

portant for the matching to MS. The renormalization con-
dition has the form

�OðpÞ ¼ ZOð�ÞZ�1
q ð�Þ�bare

O ðpÞjp2¼�2 ¼ �tree
O ðpÞ; (51)

where �O (�bare
O ) is the renormalized (bare) vertex ampli-

tude. Together with the quark field renormalization Z1=2
q ,

defined by c ¼ Z1=2
q c bare, this defines the renormalization

constant ZO for the operator O. The renormalization scale
� is set by the momentum of the external states entering
the vertex amplitude. In the original RI0=MOM scheme
these momenta are exceptional, that is, equal incoming and
outgoing quark momenta, p and p0. For some renormal-
ization factors it is advantageous to use a nonexceptional
symmetric choice of momenta p2 ¼ p02 ¼ q2, where q ¼
p� p0, leading to the distinct regularization-independent
momentum scheme with a symmetric choice of momenta.
This suppresses unwanted infrared effects in the vertex
amplitude, pion poles for example, and suggests a better-
behaved accompanying continuum perturbation theory
[73]. Exceptional momenta with q ¼ 0 also cause matrix
elements of operators with total derivatives to vanish,
making ZDD;@@ inaccessible in our nonperturbative

analysis.
The vertex amplitude is constructed from the unampu-

tated Green’s function

GOðpÞ ¼ hc ðpÞOð0Þ �c ðpÞi;
Oð0Þ ¼ X

x;x0
�c ðxÞJOðx; x0Þc ðx0Þ:

(52)

The external quark lines need gauge fixing, for which we
use Landau gauge. The current J has the appropriate Dirac
structure and may be nonlocal if the operator contains

derivatives. For example, a single right derivative ~D� in
the vector case would correspond to

TABLE VIII. Perturbative renormalization factors and their
ratios for two choices of the strong coupling, evaluated at
�a ¼ 1.

ZMF
Of��g

ZMF
DD;DD ZMF

DD;@@ ZMF
A

ZMF
Of��g
ZMF
A

ZMF
DD;DD

ZMF
A

ZMF
DD;@@

ZMF
A

	MF 0.9896 1.1604 0.0122 0.8009 1.2356 1.4488 0.0152

	MS 0.9162 1.0966 0.0202 0.6934 1.3214 1.5815 0.0291

TABLE IX. Perturbative renormalization factors to match the
lattice results to MS at a� ¼ 1.

ZOf��g
ZA

ZDD;DD

ZA

ZDD;@@

ZA

1.28(4) 1.52(7) 0.022(7)
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JO��
ðx; x0Þ ¼ ��

1
2ðUðx; x0Þ�x0;xþ�̂ �Uðx; x0Þ�x0;x��̂Þ (53)

matching the definition in Eq. (18).
The vertex amplitude itself is found after amputating the

Green’s function and tracing with a suitable projector PO,

�OðpÞ ¼ Tr½�OðpÞPO�; (54)

�OðpÞ ¼ hSðpÞi�1hGOðpÞihSðpÞi�1: (55)

We have used the quark propagator SðpÞ, and the angle
brackets indicate the gauge average. The projector PO
depends on the particular operator and includes an overall
normalization factor to account for the color and Dirac
trace. In a simple example PO would isolate the tree-level
contribution to the vertex amplitude; we will detail our
choices below. We have now defined the renormalization
procedure and will turn to details of the implementation
before discussing the results.

1. Momentum sources

One refinement to our previous work [59] is the use of
momentum sources [74]. In contrast to the point sources
used before, this effectively amounts to a volume average
over the lattice, resulting in much smaller statistical errors
[63]. Starting from (52) the Green’s function in momentum
space is

GOðpÞ ¼
X
x;x0

h�5S
yðpÞx�5JOðx; x0ÞSðpÞx0 i; (56)

where rather than using the quark propagator SðxjyÞ ob-
tained by inverting the Dirac matrix M on a point sourceX

x

Mðx0; xÞSðxjyÞ ¼ �x0;y; (57)

we use SðpÞx ¼ P
ySðxjyÞeipy, which can be found by

inverting with a momentum source [74]

X
x

Mðx0; xÞSðpÞx ¼ eipx
0
; (58)

and is defined on all lattice sites corresponding to the off-
shell quarks used in the Green’s function. The gain in
statistical accuracy is paid for with a separate inversion
for every momentum used in the simulation. However, this
is more than compensated by a much reduced number of
necessary configurations. Limiting ourselves to a few care-
fully chosen momenta, statistical fluctuations are reduced
with lower overall computational cost.

The momenta we use are, first of all, constrained to be
within a range �QCD 
 p2 
 1=a for the RI0=MOM
scheme [72]. We use our previous results [59] to identify
suitable values and focus on momenta which are expected
to have reduced hypercubic lattice artefacts by trying to
limit

P
p4
� for fixed p2 [63] (see also [75,76]). The values

used are

163�32: ð1;1;2;3Þ;ð1;1;2;4Þ;ð1;2;2;1Þ;ð1;2;2;3Þ;ð1;2;2;4Þ
and

243�64: ð2;2;2;7Þ;ð2;2;2;8Þ;ð2;2;3;7Þ;ð2;2;3;8Þ;ð2;3;3;7Þ;
where we have given nT� for momenta p� ¼ 2�n�=L

(with L ! T for time components).

2. Projectors

We extend the set of operators considered previously in
[59]. We now require operators with up to two derivatives,

Oð5Þ
f�1...�ng (n � 3), making the necessary projectors PO

slightly more involved than for bilinears. Since we resort
to readily available calculations [60,61,77] for the final

conversion to MS, as well as to account for running, we
have to tailor the projectors to match the RI0=MOM
scheme and vertex functions used in the continuum calcu-
lations. Decomposing the amputated Green’s function into
terms allowed by Lorentz symmetry and remembering that
we are taking all indices to be distinct, we find [60,61,77]

GOðpÞ ¼ �1ðpÞ�f�1
p�2

. . .p�ng þ �2ðpÞp�1
. . .p�n

6p:
(59)

For simplicity, we limit the discussion to the vector case
here; axial-vector operators are analogous. The RI0=MOM
scheme uses the contribution from �1ðpÞ only in (59).
The required projector PO will depend on the momentum
entering the Green’s function and its (fixed) directions �i

(i ¼ 1 . . . n). In general, multiplying GO with ��i
picks up

combinations of both terms �1 and �2. On the other hand,
projecting with ��, where � =2 f�ig, is sensitive only to �2

(note that we have n � 3). Thus multiplying with the
difference of the two Dirac matrices with appropriate
normalization and momentum factors ensures that the
vertex amplitude in (54) contains �1ðpÞ only. There are
simpler special cases in which one or more components of
the momentum p are zero, causing the second term in (59)
to vanish. However, since we tried to choose our momen-
tum directions close to the diagonal of the lattice, we do not
have momentum components that are zero.
For fixed indices�i (i ¼ 1 . . . n) of the Green’s function,

we can construct n different projectors PO;i by starting

from any of the ��i
:

PO;i ¼
��i

� ��
�p�i

�p�

N
Q

n
j�i;j¼1 �p�j

; with i ¼ 1 . . . n: (60)

The normalizationN is chosen such that for the tree-level
vertex amplitude we find �tree

O ðpÞ ¼ 1. The index � is

different from any of the �i, such that its momentum
component �p� is as small as possible to reduce discretiza-

tion errors. We use �p� ¼ sinp� to better account for lattice

momenta. The case of axial-vector operatorsO5 is straight-
forward, with �5 inserted in the appropriate places.
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Combining the n different PO;i with the possible index

combinations of the Green’s functions results in a total of
4, 12, and 12 (n ¼ 1, 2, 3) choices to compute the vertex
amplitude �OðpÞ in Eq. (54), all of which should provide
the same result for the final renormalization constant in the
absence of lattice artefacts. Because of the different sized
momentum components in different lattice directions, the
expected discretization errors vary depending on the direc-
tions selected by the indices of the projector. These arte-
facts arise from breaking continuum O(4) symmetry to
lattice hypercubic symmetry and are accounted for in the
systematic error of our final results. With additional lattice
spacings and the use of partially twisted boundary condi-
tions, we could eliminate hypercubic lattice artefacts in the
continuum limit [78,79].

3. Quark field renormalization

In general, the renormalization condition Eq. (51) re-
quires knowledge of the field renormalization Zq to obtain

ZO. However, in the present calculation only ratios of
renormalization factors of operators with one, two, or no
derivatives appear, Eqs. (25) and (28). Combining this with
our renormalization condition leads to

ZO;n¼2;3ð�Þ
ZO;n¼1ð�Þ ¼ �bare

O;n¼1ðpÞ
�bare

O;n¼2;3ðpÞ
��������p2¼�2

; (61)

where the explicit Zq dependence drops out. As mentioned

earlier, we can use either the vector or axial-vector
bilinears in this ratio thanks to chiral symmetry. We follow

our earlier procedure [59] and average ���
and �ð5Þ

��

(�V=�A in the reference) to obtain our best answer. The

analysis is also performed using �ð5Þ
��

only, and the differ-

ence between the two results enters our systematic error.

4. Results for renormalization factors

Compared to [59] the reduced statistical errors make
previously hidden systematic effects apparent and quanti-
fiable [63] and affect the way we extract the renormaliza-
tion factors. We start by considering different projectors for
a fixed momentum p� of the external quarks; see Fig. 7.

The results should be independent of the rotation and size
of the momentum components used for the projector. The
smaller statistical errors now reveal a disagreement due to
lattice artefacts. We combine all choices for our best
answer and account for the spread in our systematic error,
improving previous estimates. Our general recipe to obtain
the renormalization factors follows. The ratio of bare ver-
tex amplitudes is extrapolated linearly to the chiral limit
mq ! �mres for each momentum. Only in the chiral limit

can we remove the running of our data points and match
them to a continuum scheme. So by using [60,61,77] we
take our results from the RI0=MOM scheme at the scale

�2 ¼ p2 to a common scale �2 ¼ 4 GeV2 and convert to

MS at that scale. The values thus obtained are then linearly
interpolated to p2 ¼ ð2 GeVÞ2 within our momentum win-
dow to obtain ZO;n¼2;3=ZO;n¼1 at a scale � ¼ 2 GeV.
The central value is computed from the averaged values

from all projectors and index combinations. A standard
bootstrap analysis provides the statistical error which is

inflated with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2=d:o:f:

p
(the PDG scale factor [80]) from

the interpolation. Several effects are taken into account for
the systematic error. Lattice artefacts are the dominant
effect. To estimate those, we perform the analysis for all
projectors separately as indicated above, and we choose the
highest and lowest results for each momentum for the
interpolation. From the two fits, the larger deviation from
the central value then constitutes the systematic error from
discretization effects ( labeled ‘‘spread’’ in the final table).
This is a conservative approach for the discretization error.
Taking random choices of projectors (or, rather, their
direction) for each momentum and looking at the 1�width

(a)

(b)

FIG. 7 (color online). Results for �bare
O;n¼2 (�bare

O;n¼3) are shown
on the top (bottom) panel for a fixed momentum ðapÞ2 ¼
1:782 01, pT ¼ ð2; 2; 3; 8Þ. The labels above and below the plots
show the indices of the Green’s function in brackets, f�ig, with
the index of the projector below. The disagreement between the
different projections is due to lattice artefacts.
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of the range of results for many of those picks would lead
to a smaller error. We account for missing higher-order
terms in the continuum perturbative calculation via the
slope of the momentum interpolation, using the difference
of our results at p2 ¼ ð2 GeVÞ2 and ð0 GeVÞ2, indicated by
‘‘slope,’’ as a measure. We note, however, that we cannot
disentangle perturbative and discretization errors here and
thus double count some of the discretization effects.
Another source of systematic error is the strange-quark
mass, kept fixed at ms ¼ 0:04 in our simulation. We deal
with that as described at the end of Sec. IV.F in [59],
estimating an error from half the linear dependence (slope)
multiplied by the strange-quark mass ms. This error is
labeled ‘‘�ms.’’ The last contribution to the systematic
error is from the chiral symmetry breaking evident when
comparing our vector and axial-vector operators
[59,73,81]. This is estimated by the difference of the final
results when taking the axial-vector bilinear (n ¼ 1) or the
averaged vector and axial-vector bilinear for the ratio in
Eq. (61) ( labeled ‘‘V-A’’). Adding the four contributions in
quadrature gives our systematic error.

To illustrate some of the steps mentioned above, we
include in Fig. 8 two examples of the extrapolation to the
chiral limit. Shown are extrapolations for all of our five
momenta, for the renormalization factors for one and two
derivatives. In Fig. 9 we show the renormalization factors
before and after we remove the running, again for one and
two derivatives. Once at a common scale, the data points
are much flatter, indicating the validity of the scale con-
version and the momentum window. Also included is the
linear fit and our final result.
Our final values for the ratios of renormalization factors

are given in Table X. These have been obtained using
vectorlike operators. Results from the axial-vector opera-
tors are almost identical and show no low energy effects
from breaking chiral symmetry, as for bilinears. We note
that the renormalization factors are significantly different
from 1 and deviate substantially from the perturbative
results. Thus nonperturbative renormalization looks im-
perative here.

(b)

(a)

FIG. 9 (color online). These plots show both the scale-
dependent Z’s and the Z’s for a fixed scale � ¼ 2 GeV with the
running successfully removed (both in RI0=MOM). The top (bot-
tom) plot is for the one (two) derivative case. Also included is the
linear interpolation to the final result, with the statistical error
indicated by the error band. Our result at � ¼ 2 GeV is then
shown with error bars for the statistical and systematic errors.

(b)

(a)

FIG. 8 (color online). Linear extrapolations of the renormal-

ization factors to the chiral limit. The top panel shows ZRI0=MOM
O;n¼2 ,

and the bottom plot is for ZRI0=MOM
O;n¼3 . The momenta are increasing

from top to bottom, and we have ðapÞ2 ¼ 1:2947, 1.4392,
1.6374, 1.7820, and 1.9801.
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C. Renormalized results

We now use the renormalization factors from the pre-

vious section to convert our bare lattice results to MS at
� ¼ 2 GeV. The local matrix elements in Eq. (9) require
the renormalization factors ZOf��g , ZDD;DD, and ZDD;@@ as

defined in Eqs. (33) and (35). The first two are computed
nonperturbatively, while for the last one we use the pertur-
bative result. From Eq. (35) we see that the mixing term
requires the computation of a matrix element with an
operator insertion of O@@. This is simplified since we use
the ratios (25) and (28) to extract the moments of the
distribution amplitudes. Within the ratios, the matrix ele-
ment with the operator O@@ differs from the denominator
only by the momentum factors and thus does not have to be
computed separately. It contributes a constant shift to the
result. To summarize,

h�1iMS ¼ ZOf��g

ZA

h�1ibare; (62a)

h�2iMS ¼ ZDD;DD

ZA

h�2ibare þ ZDD;@@

ZA

: (62b)

With our best nonperturbative results from Table X and the
perturbative result for the mixing term from Table IX

[computed at the same scale of � ¼ 2 GeV,
ZDD;@@

ZA
¼

0:027ð8Þ], we arrive at the renormalized moments of the
distribution amplitudes given in Table XI. The contribution
from the mixing term in Eq. (62b) is small, so using the
perturbative result for ZDD;@@ is not a drawback. Even if the

correction of a nonperturbative result for ZDD;@@ is as

sizable as for ZOf��g or ZDD;DD, the overall contribution

remains comparable to our present error on ZDD;DD=ZA.

Hence our results are essentially renormalized
nonperturbatively.

V. SUMMARY

We have computed the first or first two lowest non-
vanishing moments of the distribution amplitudes of the
�, K, K�, �, and � mesons, using nonperturbative renor-
malization of the lattice operators, with final numbers
given in Table XI. Apart from the uncertainty in ms for
the first moments, systematic errors mainly come from the
renormalization procedure. Within the current statistical
errors on our data we do not see any finite size effects. With
only one lattice spacing we can also only estimate a formal
discretization error of Oða2�2

QCDÞ 	 4% from the

OðaÞ-improved DWF action and operators; this is included
in our systematic error. The result for h�1iK in Table XI
supersedes but is compatible with our earlier result in
[41,42], which was obtained on the 163 � 32 ensembles
only and used perturbative renormalization.
Converting the lowest moment of the kaon

distribution amplitude to the first Gegenbauer moment
a1K ¼ 0:061ð2Þð4Þ, we find it in agreement with sum rule
results from Eq. (16) but with a much reduced uncertainty.
We compare our results to those from the QCDSF
Collaboration [23] in Table XII (preliminary results for
the first moment of the vector meson distribution ampli-
tudes are also available from QCDSF [27]). The results for
h�1iK differ significantly. However, we observe that our
measurements correspond to pion masses in the range
330–670 MeV and are for 2þ 1 dynamical flavors,
whereas the QCDSF results are for pion masses around

TABLE X. Final results for the renormalization factors in MS at � ¼ 2 GeV. Results are given for both lattice sizes with all
systematic errors. The perturbative results are also shown for comparison.

ZOf��g=ZA ZDD;DD=ZA

163 � 32 243 � 64 163 � 32 243 � 64

Central value 1.545 75 1.528 93 2.060 64 2.028 00

Statistical error 0.002 49 0.000 81 0.004 82 0.001 49

Spread 0.029 68 0.018 09 0.037 02 0.015 34

Slope 0.004 70 0.007 43 0.000 97 0.022 85

�ms 0.000 89 0.002 32 0.004 69 0.009 92

V-A 0.007 23 0.006 02 0.009 38 0.007 60

Total error 0.031 02 0.020 61 0.038 79 0.030 26

Best result 1.5289(8)(206) 2.028(1)(30)

Perturbative result 1.24(3) 1.45(5)

TABLE XI. Final results in the chiral limit in MS at � ¼ 2 GeV for both of our lattice volumes. The first error is statistical, and the
second includes systematic errors from ms, discretization, and renormalization.

h�2i� h�1iK h�2iK h�2ik� h�1ikK� h�2ikK� h�2ik�
163 � 32 0.25(1)(2) 0.035(2)(2) 0.25(1)(2) 0.25(2)(2) 0.037(1)(2) 0.25(1)(2) 0.24(1)(1)

243 � 64 0.28(1)(2) 0.036(1)(2) 0.26(1)(2) 0.27(1)(2) 0.043(2)(3) 0.25(2)(2) 0.25(2)(1)
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600 MeV and higher, with two dynamical flavors. For one
data point from each collaboration where the pion and kaon
masses are comparable, the h�1iK values differ by about 1
standard deviation. These points occur for the smallest
values of m2

K �m2
� from each collaboration; for larger

values the points, and therefore slopes in m2
K �m2

�, differ.
We plan to improve our results in the near future by
reducing the systematic uncertainties. We will improve
the nonperturbative calculation of the renormalization
factors by including the total-derivative mixing term. We
will also have an additional lattice spacing, allowing us to
estimate the continuum results, including using partially
twisted boundary conditions to remove hypercubic lattice
artefacts [78,79]. Increased statistics on the 243 � 64 lat-
tice should also improve our conclusions about finite vol-
ume effects.
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