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In calculations of the hyperfine splitting in charmonium, the contributions of the disconnected diagrams

are considered small and are typically ignored. We aim to estimate nonperturbatively the size of the

resulting correction, which may eventually be needed in high precision calculations of the charmonium

spectrum. We study this problem in the quenched and unquenched QCD cases. On dynamical ensembles

the disconnected charmonium propagators contain light modes which complicate the extraction of

the signal at large distances. In the fully quenched case, where there are no such light modes, the

interpretation of the signal is simplified. We present results from lattices with a � 0:09 fm and

a � 0:06 fm.
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I. INTRODUCTION

Lattice calculations of the hyperfine splitting in charmo-
nium usually ignore the contributions of the annihilation
(disconnected) diagrams to both the vector J=c and the
pseudoscalar �c states. This simplification leads to an
error, and our goal is to determine the actual value of the
contributions. Perturbatively, the contribution of these dia-
grams in charmonium is expected to be small due to the
Okubo-Zweig-Iizuka suppression, especially for the vector
state [1]. However, nonperturbative effects, such as the
UAð1Þ anomaly [2] and mixing with glueball and light
hadronic states, might enhance it enough so that it becomes
a nonnegligible fraction of the hyperfine splitting. Previous
calculations [3,4] using two-flavor gauge ensembles very
roughly estimated the contribution to be within�20 MeV.
They both confirm that there are significant difficulties in
obtaining a signal for the disconnected diagrams due to
noise, especially for heavy quarks.

In our work, the charm quarks are simulated with the
clover fermion action with �c tuned to the physical charm
quark mass. The disconnected diagrams are calculated
stochastically with spin- and color-diluted sources. Our
calculation improves on the previous ones in a number
of ways. First, we use larger lattice volumes (283 � 96,
483 � 144, and 403 � 96) and point-to-point (PTP) propa-
gators, which significantly improve our statistics and
signal-to-noise ratio. Point-to-point propagators reduce
the relative standard error over time-slice-to-time-slice
(TTT) propagators by one to 3 orders of magnitude.
Second, our gauge ensembles have much finer lattice spac-
ings a. We work with lattices with a � 0:09 fm (fine
ensembles) and a � 0:06 fm (superfine ensemble).
Table I gives the parameters of the ensembles. And finally,
we employ the unbiased subtraction technique [5] in the
stochastic estimators used to determine the disconnected
correlators. The success of this technique depends on the
fast convergence of the hopping parameter expansion of
the clover Dirac operator used in the subtraction.
Considering that �c is still small for the charm quark at

these lattice spacings, we use the terms of the expansion
only up to third order in �c, which reduces the standard
deviation of the disconnected correlator by an additional
factor of about four.
In this study we attempt to determine the size of the

effects of the disconnected diagrams on the mass of the �c

only. Our previous studies [6,7] and our current work show
that the effect of the charm annihilation on the vector state
are much smaller than 1 MeV; thus we ignore it here and
equate the hyperfine effects with the effects in the pseudo-
scalar only. Our calculations are done on two fully
quenched and one dynamical ensemble with two light
degenerate quarks and one strange quark (2þ 1 dynamical
flavors) in the asqtad formulation [8]. In the fully quenched
case, the disconnected �c correlator can have at most
additional contributions from the UAð1Þ anomaly and
close-lying glueball states. In the 2þ 1 flavor dynamical
case, the disconnected correlator can also couple to light
hadronic states, which complicates the task at hand sig-
nificantly. In both the 2þ 1 flavor dynamical and fully
quenched cases we ignore contributions to the discon-
nected correlators from sea charm quark loops. To the
extent that the disconnected contribution is small (first
order), the sea charm quark effects are second order and
so negligible at our level of precision. Our result that the
contribution is, indeed, small makes the calculation self
consistent.
This paper is organized as follows. Section II outlines

the analytic framework in which we interpret our lattice

TABLE I. Run parameters of the quenched fine (QF),
quenched superfine (QSF) and dynamical fine (DF) ensembles
are shown. The bold values of �c are the ones obtained by tuning
the �c mass and are used in this study. The nonbold �c values are
from our previous studies [6,7] and are listed for comparison.

Ensemble a [fm] ml=ms Volume �c # config.

QF � 0:085 � � � 283 � 96 0:120, 0.127 410

QSF � 0:063 � � � 483 � 144 0:125, 0.130 415

DF � 0:086 0:0031=0:031 403 � 96 0:125, 0.127 766
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data. Section III discusses some general properties of the
disconnected propagators which follow from our analyses.
In Sec. IV we give our fitting method for the disconnected
propagator. Section V is dedicated to the specifics of the
tuning of the charm quark mass. The final section, VI,
contains our results and conclusions.

II. GENERAL ANALYTIC FRAMEWORK

In this section we derive the shift of the mass of a flavor
singlet state due to the contribution of the disconnected
diagrams to its full propagator. Figure 1 shows the dia-
grammatic expansion of the full propagator, where with
continuous lines we represent the charm quark propaga-
tors. The first term in this expansion is the connected piece
and the rest are disconnected propagators containing charm
quark loops. We denote the momentum-space connected
propagator of a (pseudo)scalar meson as

Cðp2Þ ¼ A

p2 þm2
c

; (1)

where A is a constant, and mc is the ‘‘connected’’ mass of
the meson. [The vector meson propagator has the same
form as Eq. (1), if we neglect the spin degrees of freedom.]
Then the full propagator is the infinite sum:

Fðp2Þ ¼ A

p2 þm2
c

þ
ffiffiffiffi
A

p
p2 þm2

c

�ðp2Þ
ffiffiffiffi
A

p
p2 þm2

c

þ
ffiffiffiffi
A

p
p2 þm2

c

�ðp2Þ 1

p2 þm2
c

�ðp2Þ
ffiffiffiffi
A

p
p2 þm2

c

þ . . . ;

(2)

where the first term is the connected piece Cðp2Þ and the
rest are terms which consist of disconnected quark loops of
the same flavor as the meson’s constituent quarks (see
Fig. 1 for the diagrammatic representation of the three
explicitly given terms). The function �ðp2Þ effectively
describes all possible interactions between the quark loops
in the disconnected pieces and the gauge fields, quarks of
other flavors or effects such as the UAð1Þ anomaly, if
relevant for the specific meson state. The disconnected
propagator Dðp2Þ is naturally the sum of all terms in
Eq. (2), except the first one. After we sum the geometric
progression in Eq. (2), we obtain

Fðp2Þ ¼ A

p2 þm2
c � �ðp2Þ ¼

A

p2 þm2
f

; (3)

where mf is the ‘‘full’’ meson mass we could calculate if

we knew all terms that contribute to the full propagator.

Thus, the difference between the mass that is usually
computed from only the connected propagator and the
actual mass is approximately1

�m ¼ mc �mf � �ð�m2
cÞ

2mc

: (4)

In the last expression for simplicity we replaced the func-
tion �ðp2Þ with the value of its largest contribution in
Eq. (2) at the pole p2 ¼ �m2

c. Hence the sign of �m
depends on the sign of �ð�m2

cÞ. The mass shift �m due
to the disconnected quark loops can be treated as a pertur-
bation, in which case, to first order, both the connected and
disconnected contributions can be computed without
dynamical sea quarks of the constituent’s flavor (heavy-
quark-quenched case). In this case, only the first two terms
in Eq. (2) survive and the disconnected propagator is
reduced to the second term only (shown diagrammatically
in Fig. 1, middle).

III. PROPERTIES OF THE DISCONNECTED
PROPAGATOR

The asymptotic behavior at large times t of the full
charmonium propagator, FðtÞ, is
FðtÞ ¼ CðtÞ þDðtÞ

¼ X
n

h�jOjnihnjOj�ie�Ent !
t!1h�jOj0i2e�E0t; (5)

where the sum is over all eigenstates jni of the Hamiltonian
with corresponding energy eigenvalues En and j�i is the
vacuum state. In the last part of the above expression E0 is
the mass of the lightest state contributing to FðtÞ. The
operator O is defined to be Hermitian, in which case
FðtÞ � 0 for all t. This is also true if we consider the
PTP propagator FðrÞ instead, where r is the Euclidian
distance. The matrix defining the spin structure in the
operator O is � ¼ i�5, i�i for the �c and J=c states,
respectively, in terms of Hermitian �5 and �i. At large
distances r, the lightest possible modes that couple to the
operator O should dominate in FðrÞ. The origin of these
can be light glueballs and, in the dynamical case, the
propagation of hadronic modes consisting of quarks lighter
than the charm quark. Since FðrÞ is nonnegative for all r, it
follows that, when it dominates, DðrÞ should also be non-
negative in the large distance limit. The sign of Dðr ¼ 0Þ,

FIG. 1. Connected and disconnected diagrams contributing to the full propagator on lattices unquenched with respect to the charm
quark are shown.

1The momentum dependence in �ðp2Þ leads to a first-order
(in �) renormalization of the connected pole residue, so there is a
second order correction in our result that we safely ignore.
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with the above hermiticity condition on O, is strictly
negative for the pseudoscalar (and positive for the vector).
It follows that in the dynamical case, where DðrÞ is domi-
nant at large distances, DðrÞ changes sign for the pseudo-
scalar. In the quenched case this sign flip occurs if there are
glueballs lighter than the charmonium state studied. On the
lattice, the TTT disconnected propagator is calculated as

DðtÞ ¼ c�hLð0Þ?LðtÞi; where LðtÞ ¼ Trð�M�1Þ; (6)

and M is the charm quark matrix. The trace in LðtÞ is
over the Dirac, color and space indices. For the vector
we have � ¼ i�i, c� ¼ 1 and for the pseudoscalar
� ¼ i�5, c� ¼ �1. On the other hand, the PTP discon-
nected propagator is obtained in the following manner:

DðrÞ ¼ c�
Nr

X
r¼jx�yj

hLðxÞ?LðyÞi; (7)

where x and y are lattice coordinates, the sum is over all
pairs of lattice points at Euclidean distance r ¼ jx� yj, Nr

is the number of these pairs and there is a trace only over
spins and colors in LðxÞ (but not over space). From the
previous studies [3,4] it is known that the DðtÞ signal
disappears very quickly around t ¼ 2� 3. We work with
the PTP disconnected propagator instead, since this way
we benefit from both the additional data at noninteger
distances and the much improved statistics. The correlator
DðrÞ has from one to 3 orders of magnitude smaller relative
errors than the TTT disconnected propagator in the region
where we have a signal. Figure 2 illustrates this statement
by comparingDðrÞ andDðtÞ for �c for two different ranges
of r and t. Both propagators are calculated with
�c ¼ 0:127 on the dynamical lattices from Table I. In the
right panel of Fig. 2, the comparison is done on a shorter
range in order to emphasize the fact that we do have a clear
signal for DðrÞ in the range where the DðtÞ signal is
completely obscured by the noise. The result that the

DðrÞ signal is so much better than the one for DðtÞ can
be explained by the fact that in the calculation ofDðtÞ there
are a great number of contributions from points, which,
although not far from each other in the t direction, are far in
the 4d Euclidean space. For the disconnected correlator,
the noise increases strongly with the distance and such
points contribute nothing to DðtÞ but noise. This problem
is avoided when working with DðrÞ instead. We also note
that as predicted in the previous paragraphs, both DðrÞ and
DðtÞ undergo a sign flip for the �c state.

IV. FITTING THE DISCONNECTED
PROPAGATORS

To determine �m for the �c we use Eq. (4), which means
that we have to obtain �ðp2Þ from our data for the PTP
disconnected propagator. In order to fit our data for DðrÞ,
we need a fitting model which satisfies the requirement that
the charmonium disconnected propagator is treated as a
composite object, which has contributions not only from
the studied charmonium ground state, but also possible
effects from excited charmonium states, states lighter
than the charmonioum ground state, and possibly the
UAð1Þ anomaly. We also have to take into account that
our data exhibits rotational symmetry violations at short
distances, due to the finite lattice spacing.
To define such a fitting model it is easiest to start from

the momentum-space description of the disconnected
propagator. A simplified form which describes its behavior
in momentum space is

Dðp2Þ ¼ �ðp2Þ
� ffiffiffiffi

A
p

p2 þm2
c

þ XN
n¼1

ffiffiffiffiffiffi
An

p
p2 þ ðmn

cÞ2
�
2
; (8)

where we have included in the quark loops one ground
state, characterized by mass mc and N excited states with
masses mn

c (the index n ¼ 1; . . . ; N). Here we also make

FIG. 2 (color online). The comparison of DðtÞ and DðrÞ for �c for two different ranges of t and r is shown. The results are from the
calculation on the dynamical ensemble at �c ¼ 0:127. The data for DðrÞ was averaged in small bins in r for r > 5.
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the assumption that the interactions for all states are de-
scribed by the same function �ðp2Þ. In the fully quenched
case, we model the function �ðp2Þ as

�ðp2Þ ¼ Uþ f

p2 þm2
g

; (9)

where U stands for possible effects of the UAð1Þ anomaly,
so it is negative, and f=ðp2 þm2

gÞ is an effective light

glueball term with mg being the glueball mass. We assume

that U, f, A, and An¼1...N change little for a wide range of
momenta and will approximate them with constants in our
model. In the 2þ 1 flavor dynamical case, the expression
for �ðp2Þ could be more complicated. For example, we
need to take into account the existence of both light glue-
balls and light hadronic modes in order to describe our
data:

�ðp2Þ ¼ Uþ f

p2 þm2
g

þ l

p2 þm2
l

þ . . . : (10)

In the above l is a constant and ml is the mass of one of the
light hadronic modes. In practice we keep only one light
hadronic mode in the above with an effective mass ml that
(we hope) describes well the long distance behavior of the
PTP propagator.

We want to limit the number of free parameters in our
model to as few as possible, since although our data is of
much higher quality than in other studies, it is still difficult
to resolve all of the parameters in Eq. (8) from the dis-
connected propagator data. The masses mc and mn¼1...N

c ,
for example, can be determined from fits to the TTT
connected charmonium propagator CðtÞ, and then be used
as constants in our fits. We obtain the ground state massmc

with a very small fitting error, but the excited states masses
mn¼1...N

c are less well known. We can also determine with
varying degrees of precision the constants A and An¼1...N

from fits to CðtÞ, since they are proportional to the ampli-
tudes of the ground and the excited states, respectively. We
relate the PTP amplitude A to the corresponding TTT
amplitude as follows: We Fourier transform the ground
Cðp2Þ propagator and then integrate over space:

Z
d3x

Z d4p

ð2�Þ4
A

p2 þm2
c

eipr ¼ A

2mc

e�mct: (11)

The right-hand side in the above is the TTT propagator,
which implies a relation between the amplitude of the
ground state in CðtÞ ¼ Ate

�mct þ . . . , denoted by At, and
the factor A:

A ¼ 2mcAt: (12)

Another parameter that we can fix in our model using
prior knowledge is the glueball massmg. We use the results

for the lightest 0�þ glueball from Ref. [9], namely, we set
mg ¼ 2563 MeV, which is the value extrapolated to the

continuum limit. We use this value for all of our lattice

spacings, since in Ref. [9] it was found that the glueball
mass does not vary much at fine lattice spacings and is
compatible with the continuum extrapolated result. On the
dynamical ensembles we have to take into account also the
contribution of the light hadronic modes, and preferably
we want also to set the mass ml to an appropriate constant.
In our previous work [6,7] we found that the long distance
behavior of the PTP pseudoscalar propagator on the dy-
namical ensemble can be fitted well with a light state of
mass aml � 0:42. This is very close to the physical mass of
the �0 of 958 MeV; thus we fix ml to the mass of the �0.
Although there are states lighter than the �0 contributing as
well (such as the �, multipion states etc.), this approxima-
tion is probably satisfactory, because the modes lighter
than the �0 would mix even less with the heavy �c state,
and we cannot distinguish their signal at our level of
statistics. Thus, the only free parameters in our model
remain U, f, and l (the last one is present only in the
dynamical case).
The summary of our fitting strategy in the simpler fully

quenched case is as follows:
(i) On a given lattice ensemble we calculate the TTT

connected propagator of the �c state. From fits to
it with the asymptotic form CðtÞ ¼ Ate

�mct þP
N
n¼1 A

n
t e

�mn
ct we determine mc, m

n¼1...N
c , At, and

An¼1...N
t . Using Eq. (12) with the substitution mðnÞ

c !ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðcoshðmðnÞ

c Þ � 1Þ
q

in order to take into account

lattice discretization effects, we obtain A and
An¼1...N . We use the central values of all of the above
parameters as constants in our model function
Eq. (8).

(ii) We also fix the parameter mg in Eq. (9), using prior

knowledge.
(iii) In Eq. (8) we replace p2 with

P
i2ð1� cosðpiÞÞ and

all the masses with the appropriate expression as

done in the first item above for mðnÞ
c , to account for

the lattice discretization effects. Equation (8) can
be rewritten in a form linear in the two parameters
U and f, which is more convenient for fitting
purposes:

Dðp2Þ ¼ UT1ðp2Þ þ fT2ðp2Þ: (13)

Next, we do a discrete Fourier transformation of
T1;2ðp2Þ on a lattice of an appropriate size and

obtain the functions T1;2ðrÞ at discrete values of r.
We tabulate T1;2ðrÞ at each distance r � 15. This
range of r is sufficient, since our signal is too noisy
for r > 15. Thus, using the linear model

DfitðrÞ ¼ UT1ðrÞ þ fT2ðrÞ; (14)

we fit our data for the PTP disconnected charmo-
nium propagator DðrÞ in order to extract U and f.

(iv) With the fit values ofU and f at hand, we determine
�ð�m2

cÞ and �m from Eqs. (4) and (9). The fitting
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procedure in the 2þ 1 flavor dynamical case is
quite similar. In addition there we fix appropriately
the light mass ml and use a fitting form with three
tabulated terms:

DfitðrÞ ¼ UT1ðrÞ þ fT2ðrÞ þ lT3ðrÞ: (15)

After we extract the parameters U, f, and l, we
solve again for �m with the appropriate �ð�m2

cÞ
from Eq. (10).

The error due to the assumption that the participating
masses and the amplitudes A and An¼1...N in our model are
constants is discussed in Sec. VI. The success of our fitting
model depends on how well it approximates the interaction
dynamics on the lattice and on the quality of our data. An
essential part of the construction of the fitting model for the
PTP disconnected propagator turned out to be the number
of excited states N which we have to include. The excited
states have larger contributions to the disconnected propa-
gator at a given distance than they have in the case of the
connected propagator. This means that a good knowledge
of the spectrum of excited states is required in order to fit
the disconnected propagator. In the disconnected diagram
with net propagation distance r the connected �c propa-
gates on average less than half the distance before annihi-
lating and again less than half after reappearing. This
means that a reliable fit to the connected propagator yields
masses and amplitudes which we can use in fits to the
disconnected propagator at least at twice the distance,
where the signal may be too noisy. Thus, we are limited
to fits of the connected propagator with tmin ¼ 2 or 3 and
use the extracted parameters in the disconnected fits from
rmin ¼ 4 or 6.

To obtain the charmonium spectrum from the fits to the
connected propagator, we employ a fitting model which
forces the splittings between the states to be positive,
essentially creating a ‘‘tower of states.’’ The priors for
the logarithms of all the splittings are the same (i.e., we
assume the states are equidistant as a first approximation)
and so are their widths. We used a set of different values for
the splitting priors and their widths to check the stability of
the resulting spectrum. We found that the extracted masses
were stable for a relatively wide range of priors. Our best
fits have the splitting priors in the range of 570–770 MeV.
Still, this approach is not intended to provide a reliable
determination of the masses of excited quarkonium.
Rather, we use this heuristic model to understand the role
played by excited states in our result.

In our fitting model we also require (through the use of
priors) that the amplitudes of the excited states are no
larger than the ground state amplitude. Without this re-
striction, we noticed that the amplitudes of the excited
states grow noticeably larger than that of the ground state
(where we define this to mean difference larger than 1:5�).
The assumption that this should not happen stems from
general considerations: The wave function at the origin is
smaller for an excited state than the ground state, simply

because the excited state wave function spreads out more.
This is a characteristic of nonrelativistic potential models.
There is also some support from experiment: The decay
constant of c 0 is smaller than that of the J=c [Particle
Data Group values: 279(8) MeV vs 411(7) MeV, respec-
tively]. Lattice studies of the light-light [10] and heavy-
heavy [11] meson sectors also confirm this expectation.
But other lattice calculations, such as in Ref. [12] for the
heavy-light meson case, show the first excited state decay
constant growing larger than the ground state one. A
possible explanation for this discrepancy in the last study
is that the contributions of the neglected higher excited
states became lumped into the amplitude of the first excited
state.
In our fitting model, the requirement that the amplitudes

of the excited states do not grow much larger than the
ground state amplitude, we hope, prevents the ‘‘clumping’’
of states with similar masses into an effective state with a
large effective amplitude. However, since we use only a
Gaussian prior to constrain the logarithm of the excited
state amplitudes, it still often happens, depending on the
number of states included, that the highest state in the fit
and sometimes the next highest end up with large ampli-
tudes. We interpret this outcome as a clumping of multiple
unresolved states of similar mass. How we count them
affects our result for �m. To compensate for this effect
we represent the resulting contribution as a sum of states of
similar mass:

AN

ðp2 þ ðmN
c Þ2Þ

� XM
k¼1

A0

ðp2 þ ðmN
c Þ2Þ

; (16)

where M � AN=A0 	 AN
t =At (the ratio of the highest

excited state amplitude to the ground state one). Each of
the states in the sum above should contributeffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AN=M

p
=ðp2 þ ðmN

c Þ2Þ in Eq. (8). Since there are M of
them, the contribution of the effective N-th state in Eq. (8)

is modified to
ffiffiffiffiffiffiffiffiffiffiffi
ANM

p
=ðp2 þ ðmN

c Þ2Þ. In effect, we multiply
the amplitude AN by the number M of its contributing
states before using it in Eq. (8) in order to correctly account
for the possibility that the N-th state is an effective one.
Note that increasing the multiplicity in this way always
decreases �m. Thus in our analysis of systematic effects,
we explore the sensitivity of our result to this assumption.

V. TUNING THE CHARM QUARK MASS

As we already stated in the Introduction, we use clover
fermions to generate the connected and disconnected char-
monium propagators. This means that we have to tune the
hopping parameter, �c, to correspond to the physical charm
quark mass. In our preliminary work [6,7] we tuned �c

using the kinetic mass of Ds i.e., we used the Fermilab
interpretation of the clover fermions. For the fully
quenched ensembles this tuning was rather approximate.
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In this work we adopt a different approach, namely, we
tune �c by matching the rest mass of the �c to its physical
mass instead with an accuracy of several percent. Our
current approach is more appropriate for the purposes of
determining �m, since it positions the charmonium �c

state correctly with respect to the lightest glueball with
which it might mix. This is important, because, depending
on whether the mass of the charmonium state is heavier or
lighter than the lightest glueball, �m might change in
absolute value or even undergo a sign flip. Figure 3 illus-
trates this statement by showing the masses of the �c, �

0
c

and the lightest 0�þ glueball on the superfine quenched
(left) and the dynamical fine ensembles (right), for values
of �c obtained by our previous and current tuning methods.
In the quenched superfine case, for example, using the
value �c ¼ 0:130 from the kinetic mass tuning ofDs, gives
a rest mass of the �c lighter than its physical value and
lighter than the lightest glueball. This implies that their
mixing will ‘‘push’’ the �c mass to lower values on the
lattice. However, if the �c rest mass assumes its correct
physical value (achieved at �c ¼ 0:125), the effect of the
glueball mixing would be exactly the opposite. We con-
clude that although the kinetic mass �c tuning is the correct
method in cases when we want to determine various mass
spectrum splittings in the charmonium system, for our
study the appropriate method is to tune the charm quark
mass using the rest mass of the charmonium state we are
interested in. (An alternative method which could render
both the charmonium splittings and the rest masses correct,
is to have different values for the spatial and temporal
hopping parameters, a strategy which we do not employ
here.)

VI. RESULTS AND CONCLUSIONS

In this section we present our results for the mass shift
�m due to the contribution of the disconnected diagrams
for the �c on all of the ensembles from Table I. We use 72
Z2 random sources per lattice with spin and color dilution

to compute the disconnected propagators on all of our
ensembles (which means there are 72� 12 quark matrix
inversions per lattice performed). To explore the system-
atic effects which arise in the determination of �m due to
our incomplete knowledge of the charmonium spectrum,
we studied in more detail the data from the quenched fine
ensemble. We fitted the connected propagator using 4, 5, 6,
and 7 states and used the extracted masses and amplitudes
to fit the disconnected propagator D�c

ðrÞ, as described in

Sec. IV, in each case.
Table II shows the results from the fits to the connected

propagator in its upper and middle subtables. All of the fits
were performed on the same time range (t ¼ 2� 45).
We see that the �2=DOF (degrees of freedom) improves
with adding more states to the fitting model and the am-
plitudes of the excited states become smaller at the same
time. The extracted masses of the ground and the two
lowest excited states appear to be quite independent of
the number of states included in the fit. The third and
higher excited states on the other hand do depend on the
number of states. This is not very surprising; these states
are much more difficult to extract and are likely to be
effective states. Their amplitudes also are more likely to
grow large, lending support to this interpretation.
The effect of the number of states in each fit on �m is

shown in the lower part of Table II. We also show there the
corrected value of the mass shift �mcorr, which is obtained
by modifying the amplitudes that are significantly larger
than the ground state one (i.e., the amplitudes of the second
and third excited states for the 4- and 5-state fits and the
highest excited state one in the case of 6- and 7-state fits),
in the manner described at the end of Sec. IV. The differ-
ence between �m and �mcorr gives some idea of the
systematic error. This systematic error grows when there
are fewer states in the fitting model, possibly because the
charmonium spectrum is not well represented by it over the
fitting range. This effect is also signaled by a growing
�2=DOF in these cases. It is encouraging that �mcorr is
very consistent between the different fits.

FIG. 3 (color online). (Left panel) Relative positions of the charmonium states with respect to the 0�þ glueball mass with
mg ¼ 2563 MeV on the quenched superfine ensemble, for different kc, are shown. (Right panel) Same for the dynamical ensemble.
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Among these results for �m, the one we consider best
is the one obtained using the 6-state fit to the connected
propagator, for two reasons. First, this is the fit with the
fewest excited states to achieve�2=DOF below 1.5, a value
we consider to be on the boundary between ‘‘good’’ and
‘‘bad’’ fits. Second, the excited state spectrum is close to
the picture where all amplitudes but that of the highest
included state are not much larger than the ground state
amplitude. We expect the highest excited state to reflect the
fact that we work with finite number of states in the fitting
model, and thus likely to have a large effective amplitude.

We apply the same criteria when we repeat the whole
calculation on the rest of the ensembles in this study. We
adopt the results for �m from the best of our fits as the final
answer and report the difference between �m and �mcorr as

an asymmetric systematic error. Results for all three en-
sembles are summarized in Table III. The number of states
in the preferred fit is chosen according to the criteria
described above, resulting in six states for the quenched
ensembles and nine for the dynamical one. For the
quenched superfine ensemble however we did not obtain
a good �2=DOF for tmin ¼ 2 or 3, even when we included
more than six states.
To complete our results for each ensemble, we fit

our D�c
ðrÞ data, as described in Sec. IV, with the values

for the model parameters taken from Table III, respec-
tively. The glueball mass in our model is the constant
mg ¼ 2563 MeV, and in the dynamical case we also fix

ml ¼ 958 MeV. Figs. 4 (both panels) and 5 (left panel)
show our results for the �c disconnected propagator for

TABLE III. Parameters extracted from fits to the TTT connected �c propagator CðtÞ for each ensemble are shown. Masses and
amplitudes are in lattice units. The �2=DOF for the fits is 1.4, 2.2, and 1.4 for the QF, QSF, and DF ensembles, respectively. The tmin

for these fits is 2, 3, and 2. The central values of the masses and amplitudes are used as constants in the fitting model for the
disconnected �c propagator.

Ensemble m�c
m1

c m2
c m3

c m4
c m5

c m6
c m7

c m8
c

QF 1.3708(2) 1.67(3) 1.94(7) 2.16(9) 2.42(10) 2.67(11) � � � � � � � � �
QSF 0.9734(2) 1.22(2) 1.41(7) 1.63(9) 1.87(10) 2.10(10) � � � � � � � � �
DF 1.2749(4) 1.58(3) 1.88(7) 2.08(9) 2.26(8) 2.43(8) 2.62(10) 2.83(11) 3.05(12)

Ensemble At A1
t A2

t A3
t A4

t A5
t A6

t A7
t A8

t

QF 0.589(3) 0.56(18) 1.06(33) 0.93(35) 0.86(34) 4.55(50) � � � � � � � � �
QSF 0.270(2) 0.32(10) 0.39(13) 0.33(13) 0.33(13) 4.44(24) � � � � � � � � �
DF 0.822(7) 0.84(21) 1.00(37) 1.30(47) 1.40(49) 1.30(47) 1.17(43) 1.07(40) 0.98(38)

TABLE II. Masses (top) and amplitudes (middle) in lattice units extracted from fits to the connected propagator on the QF ensemble
with different numbers of states (4, 5, 6, and 7) are shown. The lowest part of the table shows the mass shift �m, calculated using the
results from the upper two parts of the table. Also shown is the ‘‘corrected’’ mass shift �mcorr, which is obtained using the systematic
error estimation method described at the end of Sec. IV.

#states m�c
m1

c m2
c m3

c m4
c m5

c m6
c �2=DOF

4 1.3708(2) 1.67(3) 1.98(6) 2.59(5) � � � � � � � � � 1.6

5 1.3708(2) 1.68(3) 1.98(7) 2.56(5) 2.81(13) � � � � � � 1.6

6 1.3708(2) 1.67(3) 1.94(6) 2.16(9) 2.42(10) 2.67(11) � � � 1.4

7 1.3709(2) 1.67(3) 1.93(7) 2.13(8) 2.34(9) 2.54(9) 2.74(9) 1.3

#states At A1
t A2

t A3
t A4

t A5
t A6

t

4 0.589(3) 0.58(19) 1.63(34) 5.64(31) � � � � � � � � �
5 0.589(3) 0.59(19) 1.58(35) 4.81(45) 0.91(36) � � � � � �
6 0.589(3) 0.56(18) 1.06(33) 0.93(35) 0.86(34) 4.55(50) � � �
7 0.588(3) 0.56(17) 0.90(31) 0.95(35) 0.95(37) 0.97(38) 3.74(60)

#states �m [MeV] �mcorr [MeV]

4 �3:61ð24Þ �1:59ð15Þ
5 �3:31ð29Þ �1:62ð15Þ
6 �2:74ð24Þ �1:75ð20Þ
7 �2:45ð22Þ �1:88ð18Þ
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each of the studied ensembles and the best fits to the data.
In Table IV we give the fitting parameters, ranges, �2 per
degree of freedom and our final result for the mass shift �m
for each ensemble.

All of our results consistently show �m< 0 (meaning an
increase on the �c mass). It is notable that this is opposite
the prediction of perturbation theory [13]. Even without a
quantative calculation of the mass shift �m one might
expect that it will be negative. First, according to the
mixing models [14], if the UAð1Þ anomaly has an effect
on the �c, it should make its mass larger. In our model this

is reflected in the fact that we obtain U < 0. Second, the
light glueball happens to be lighter than the �c, and
when they mix, similarly, the mass of the �c is pushed
up. This is reflected in our finding that f=ð�m2

c þm2
gÞ< 0.

The same is valid for the effect of light hadronic modes on
mf in the dynamical case. The mass shift itself is similar

for the two quenched ensembles: �m ¼ �2:74ð24Þ and
�2:18ð47Þ MeV for the fine and the superfine one, respec-
tively, where the errors are statistical only. We estimate
the systematic effects stemming from our limited knowl-
edge of the charmonium excited states as described in

FIG. 4 (color online). (Left panel) The �c disconnected propagator vs the Euclidean distance r in lattice units for the quenched fine
ensemble at �c ¼ 0:120 is shown. Fluctuations in the data larger than the statistical errors are due to rotational symmetry violations.
(Right panel) Same for the superfine quenched ensemble at �c ¼ 0:125.[A Fourier transform of a monotonic function performed on a
discrete lattice (which violates rotational symmetry) may exhibit nonmonotonic ‘‘fluctuations’’.]

FIG. 5 (color online). (Left panel) The �c disconnected propagator vs the Euclidean distance r in lattice units for the dynamical fine
ensemble at �c ¼ 0:125 is shown. (Right panel) The mass shift �m for the QF, QSF, and DF ensemble. The black error bars denote the
statistical errors for the QF and QSF results. For the DF ensemble, the black error bar also includes the error due to specific
assumptions in the fitting model as described in the text. The asymmetric red error bar originates from the systematic error due to our
incomplete knowledge of the excited charmonium spectrum. The asymmetric green error bar is due to the �c mistuning in the QF case.
The band between the two slashed blue lines encompasses the most likely range of �m based on the quenched data.
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Sec. IV, to be around 1 MeV, applied in the direction of
decreasing the absolute value. This estimate is based on the
difference between the above values for �m and their
corresponding �mcorr, the latter being �1:75ð20Þ MeV
and �1:15ð28Þ MeV, respectively. The quenching of the
light quarks is, of course, another source of systematic
error which might not be negligible.

The dynamical ensemble yields a larger value for the �c

mass shift: �m ¼ �8:52ð24Þ MeV (the error is statistical
only). We did not determine the systematic effects of the
excited states (through �mcorr) in this case, because the
amplitudes of the excited states in the connected propaga-
tor did not grow much larger than the ground state one (i.e,
they differ less than 1:5�). This is not too surprising
considering that we already use 8 excited states in our fit
to the connected propagator in order to achieve a good
�2=DOF. The discrepancy in the determined values of �m
in the quenched and the dynamical cases is most likely due
to much larger systematic errors (other than the excited
states contribution) in the latter case. For example, our
simplified model does not account for the complications
due to the mixing with the open charm threshold. Above
this threshold there are numerous close-lying open-charm
states. These discretized (in finite volume) continuum
states do not fit the tower-of-states model: At our lattice
size their level spacing is approximately 10 times smaller
than the typical level spacing in our tower-of-states model,
and they have a degeneracy that grows rapidly with S-wave
phase space. Further, their amplitudes are likely to be much
smaller than the amplitudes of the ‘‘bound’’ states. They
would appear as clumped, effective states in the tower-of-
states model. To the extent they are important in our
analysis, correcting for their clumping would tend to re-
duce the absolute value of �m.

In Table IV we also present separately the contribution
of the anomaly �mU to the total mass shift for each of
the ensembles. The values of �mU are roughly the same
as the one predicted in Ref. [14] using mixing models.
Our numerical results show that the contributions in
MeV of the UAð1Þ anomaly is about half to 2=3 of the
final value. The effect of mixing of the �c with light
hadronic modes in the dynamical case is much smaller
than 1 MeV and is practically negligible. This is not
unexpected considering the large mass difference between
them. Figure 5 (right panel) shows the values of �m for
each ensemble.

In addition to the statistical error in these values, another
source of uncertainty in �m is the �c tuning. We have
negligible �c-tuning errors for the superfine quenched (and
the dynamical) case where the tuning is done to 1%–2%,
but the �c mass in the case of the quenched fine ensemble
is about 7% heavier than the physical one. This leads to an
asymmetric correction to the �m in the case of the
quenched fine ensemble by about 1 MeV in the direction
of increasing its absolute value. We obtained this correc-
tion by assuming that the parameters U and f change
negligibly for small mass fluctuations and there is only
an explicit dependence on mc in Eq. (4). Then we equate
the systematic error with the difference in �mwhen we use
the physical and the measured value of the mass of the �c.
Finally, the last source of uncertainty in �m originates

from the assumption that the masses and amplitudes in the
fitting model Eq. (8) are constant, when in reality we know
them up to their statistical errors. We estimate the effect of
this assumption by varying these masses and the ampli-
tudes within their statistical errors when fitting the discon-
nected propagator and recalculating �m. We found that the
resulting error for the quenched ensembles is within the
statistical uncertainty and we neglect it in the final error
budget for these ensembles. For the dynamical ensemble
this error turned out to be 2 MeV. In this case we add it to
the statistical error for this ensemble in Fig. 5 (right panel).
We mentioned in the Introduction that we equate the

effects of the disconnected diagrams on the hyperfine
splitting in charmonium with the mass shift they induce
in the �c only. In other words, we ignore the possible mass
shift they cause in the J=c . We base this approximation on
our attempt to estimate the effect on the vector using a
fitting procedure similar to the one we used for the �c. Our
data for the vector is more noisy and the signal in the PTP
propagator dies out at shorter distances than in the pseu-
doscalar case, due to the larger mass of the J=c . We found
the effects of the disconnected diagrams for the vector is
much smaller than 1 MeV and thus, they are within the
statistical error of �m for �c.
In conclusion, based on our results for the mass shift in

�c in the quenched case, the charmonium hyperfine split-
ting is decreased by 1–4 MeV when we take into account
the disconnected diagrams. This range is represented
visually by the band between the slashed blue lines in
Fig. 5 (right panel). In this final range for �m we ignore
the dynamical result on the basis of its much larger and

TABLE IV. Fitting results for the disconnected �c propagators for each ensemble are shown. The parametersU, f, and l are in lattice
units. The total mass shift is �m as defined in the text; the first error on the values is statistical, the second originates from various
systematic effects as explained in the last section. The mass shift due exclusively to the effects of the anomaly is �mU.

Ensemble U� 103 f� 103 l� 104 �m [MeV] �mU [MeV] rmin � rmax �2=DOF

QF �2:31ð36Þ 1.00(14) � � � �2:74ð24Þþ1:0
�1:0 �1:81ð28Þ 4–7 36=32

QSF �6:53ð35Þ 0.240(65) � � � �2:18ð47Þþ1:0
�0 �1:01ð53Þ 6–10 60=63

DF �5:29ð41Þ 2.28(15) 0:413ð52Þ �8:52ð24Þþ2:0
�2:0 �4:45ð21Þ 4–10 111=82
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much less reliably estimated systematic effects, which
require further study.
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