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We give a factorization formula for the eþe� thrust distribution d�=d� with � ¼ 1� T based on the

soft-collinear effective theory. The result is applicable for all �, i.e. in the peak, tail, and far-tail regions.

The formula includes Oð�3
sÞ fixed-order QCD results, resummation of singular partonic �j

slnkð�Þ=� terms

with N3LL accuracy, hadronization effects from fitting a universal nonperturbative soft function defined

with field theory, bottom quark mass effects, QED corrections, and the dominant top mass dependent

terms from the axial anomaly. We do not rely on Monte Carlo generators to determine nonperturbative

effects since they are not compatible with higher order perturbative analyses. Instead our treatment is

based on fitting nonperturbative matrix elements in field theory, which are moments �i of a non-

perturbative soft function. We present a global analysis of all available thrust data measured at center-of-

mass energies Q ¼ 35–207 GeV in the tail region, where a two-parameter fit to �sðmZÞ and the first

moment�1 suffices. We use a short-distance scheme to define�1, called the R-gap scheme, thus ensuring

that the perturbative d�=d� does not suffer from an Oð�QCDÞ renormalon ambiguity. We find �sðmZÞ ¼
0:1135� ð0:0002Þexpt � ð0:0005Þhadr � ð0:0009Þpert, with �2=dof ¼ 0:91, where the displayed 1-sigma

errors are the total experimental error, the hadronization uncertainty, and the perturbative theory

uncertainty, respectively. The hadronization uncertainty in �s is significantly decreased compared to

earlier analyses by our two-parameter fit, which determines �1 ¼ 0:323 GeV with 16% uncertainty.

DOI: 10.1103/PhysRevD.83.074021 PACS numbers: 12.38.�t, 12.38.Cy, 13.66.Jn

I. INTRODUCTION

A traditional method for testing the theory of strong
interactions (QCD) at high precision is the analysis of jet
cross sections at eþe� colliders. Event shape distributions
play a special role as they have been extensively measured
with small experimental uncertainties at LEP and earlier
eþe� colliders and are theoretically clean and accessible to
high-order perturbative computations. They have been fre-
quently used to make precise determinations of the strong
coupling �s; see e.g. Ref. [1] for a review. One of the most
frequently studied event shape variables is thrust [2]:

T ¼ max
t̂

P
i jt̂ � ~pijP
i j ~pij ; (1)

where the sum i is over all final-state hadrons with mo-

menta ~pi. The unit vector t̂ that maximizes the right-hand
side of Eq. (1) defines the thrust axis. We will use the more
convenient variable � ¼ 1� T. For the production of a
pair of massless quarks at tree level d�=d� / �ð�Þ, so the
measured distribution for � > 0 involves gluon radiation
and is sensitive to the value of �s. The thrust value of an
event measures how much it resembles two jets. For �
values close to zero the event has two narrow, pencil-
like, back-to-back jets, carrying about half the center-of-
mass (c.m.) energy into each of the two hemispheres

defined by the plane orthogonal to t̂. For � close to
the multijet end point 1=2, the event has an isotropic

multiparticle final state containing a large number of
low-energy jets.
On the theoretical side, for � < 1=3 the dynamics is

governed by three different scales. The hard scale
�H ’ Q is set by the eþe� c.m. energy Q. The jet scale

�J ’ Q
ffiffiffi
�

p
is the typical momentum transverse to t̂ of the

particles within each of the two hemispheres, or the jet
invariant mass scale if all energetic particles in a hemi-
sphere are grouped into a jet. There is also uniform soft
radiation with energy �S ’ Q�, called the soft scale.
The physical description of the thrust distribution can be
divided into three regions:

peak region: �� 2�QCD=Q;

tail region: 2�QCD=Q � � & 1=3;

far-tail region: 1=3 & � � 1=2:

(2)

In the peak region the hard, jet, and soft scales are Q,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q�QCD

q
, and �QCD, respectively, and the distribution

shows a strongly peaked maximum. Theoretically, since
� � 1 one needs to sum large (double) logarithms,

ð�j
slnk�Þ=�, and account for the fact that �S ’ �QCD, so

d�=d� is affected at leading order by a nonperturbative
distribution. We call this distribution the nonperturbative
soft function. The tail region is populated predominantly
by broader dijets and 3-jet events. Here the three scales are
still well separated and one still needs to sum logarithms,
but now�S � �QCD, so soft radiation can be described by
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perturbation theory and a series of power correction pa-
rameters �i. Finally, the far-tail region is populated by
multijet events. Here the distinction of the three scales
becomes meaningless, and accurate predictions can be
made with fixed-order perturbation theory supplemented
with power corrections. The transition to this region must
be handled carefully since including a summation of

ð�j
slnk�Þ=� terms in this region spoils the cancellations

that take place at fixed-order multijet thresholds and hence
would induce uncertainties that are significantly larger than
those of the fixed-order results.

Recently two very important achievements were made
improving the theoretical description of event shape dis-
tributions in eþe� annihilation. First, in the work of
Gehrmann et al. in Refs. [3,4] and Weinzierl in
Refs. [5,6] the full set of Oð�3

sÞ contributions to the
2-, 3-, and 4-jet final states was determined. These results
were made available in the program package EERAD3 [3].
Second, soft-collinear effective theory (SCET) [7–11] pro-
vides a systematic framework to treat nonperturbative
corrections [12,13] and to factorize and compute hard,
collinear, and soft contributions for jet production to all
orders in �s [14–16], building on earlier all-orders QCD
factorization results [17–19]. The SCET framework allows
for the summation of large logarithms at higher orders, as
demonstrated by the analytic calculation of the thrust
distribution at N3LL order by Becher and Schwartz in
Ref. [20].1 In contrast, the classic exponentiation tech-
niques of Ref. [21] for event shapes have so far only
been carried out to NLL (next-to-leading-log) order.
Also, the anomalous dimensions in SCET relevant for
thrust are valid over perturbative momentum scales, and
there are no Landau pole ambiguities in the resummation at
any order. In addition, as we will discuss in the body of our
paper, SCET provides a rigorous framework for including
perturbative and nonperturbative contributions, which can
be used to connect power corrections in factorization

theorems to those in an operator expansion for thrust mo-
ments. Moreover it provides a simple method to simulta-
neously treat the peak, tail, and far-tail regions.
Several determinations of �s in the tail region have been

carried out incorporating the fixed-order Oð�3
sÞ results,

which we have collected in Table I. They differ on which
event shape data have been used for the fits, on the accu-
racy of the partonic resummation of logarithms in the
theory formula, the approach for nonperturbative hadroni-
zation effects, and how the theory errors are estimated. It is
instructive to compare the analyses by Dissertori et al.
[22,25] and by Becher and Schwartz [20], which both
used the error band method [26] to determine theoretical
uncertainties. The improved convergence and reduced
theoretical uncertainty for �sðmZÞ obtained by Becher
and Schwartz indicates that the summation of logarithms
beyond NLL order level is important. Both the analyses by
Dissertori et al. and Becher and Schwartz are limited by the
fact that they used Monte Carlo (MC) generators to esti-
mate the size of nonperturbative corrections.
The use of eþe� MC generators to estimate power

corrections is problematic since the partonic contributions
are based on LL parton showers with at most one-loop
matrix elements, complemented by hadronization models
below the shower cutoff that are not derived from QCD.
The parameters of these models have been tuned to LEP
data and thus unavoidably encode both nonperturbative
effects as well as higher order perturbative corrections.
Hence, one must worry about double counting, and this
makes MC generators unreliable for estimating nonpertur-
bative corrections in higher order LEP analyses. Moreover,

purely perturbative results for event shapes in the MS
scheme such as those in Refs. [6,20,22,25] suffer from
infrared effects known as infrared renormalons (see
Ref. [27] for a review of the early literature). These infra-
red effects arise because fluctuations from large angle soft
radiation down to arbitrarily small momenta are included

in the MS perturbative series and can cause unphysical
large corrections already in low-order perturbative QCD
results. On the other hand, the hard shower cutoff protects

TABLE I. Recent thrust analyses which use the Oð�3
sÞ fixed-order results. The theoretical

components of the errors were determined as indicated, by either the error band method,
variation of the renormalization scale �, or by a simultaneous fit to �sðmZÞ and �0 (see text
for more details). The analyses of Refs. [20,23] used thrust data only, while Refs. [22,24,25]
employed six different event shapes.

Ref. Sum logs Power corrections �sðmZÞ
[22] No MC 0:1240� 0:0034a

[20] N3LL Uncertainty from MC model 0:1172� 0:0021a

[23] NLL Effective coupling model 0:1164� 0:0028c

[24] NLL MC 0:1172� 0:0051b

[25] NLL MC 0:1224� 0:0039a

aThe error band method.
bVariation of the renormalization scale �.
cSimultaneous fit to �sðmZÞ and �0.

1The calculation of Ref. [20] also revealed a numerical prob-
lem at small � in the initial fixed-order results of Refs. [3,4].
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the parton level MC from infrared renormalons. Hence one
cannot rigorously combine MC hadronization effects with

strict perturbative MS results. From the two points raised
above, we conclude that the �sðmZÞ results obtained in
Refs. [20,22,25] contain a systematic theoretical error
from nonperturbative effects that can be quite sizable.
We emphasize that this criticism also applies in part to
the numerous earlier event shape analyses which estimated
nonperturbative corrections using MC generators; see
Ref. [1] for a review.

The presence of �QCD=ðQ�Þ power corrections in

d�=d� have been discussed in earlier literature [28–34],
where it has been argued that the leading effect is a shift in
the thrust distribution: � ! �� 2�=Q with ���QCD.

The analyses with the Oð�3
sÞ results that discuss nonper-

turbative effects in the thrust tail region without relying on
MC generators are Ref. [20], which examined a 1=Q power
correction in a simple soft function model but due to the
large induced uncertainty on �sðmZÞ does not use it for
their final error analysis, and Ref. [23], which uses the
effective coupling model.

For the most accurate data at Q ¼ mZ the change to the
extracted �sðmZÞ from including the leading power cor-
rection can be quite significant, at the 10% level. We can
derive this estimate by a simple calculation. We first write
the cross section with a shift due to the power correction:
ð1=�Þd�=d� ¼ hð�� 2�=QÞ. Assuming h is proportional
to �s, and expanding for �=ðQ�Þ � 1, one can easily
derive that the change in the �s value extracted from
data due to the existence of the power correction is

��s

�s

’ 2�

Q

h0ð�Þ
hð�Þ : (3)

The expression in Eq. (3) gives a scaling estimate for the
fractional change in �s from an analysis with the power
correction compared to one without, using data at �. To the
extent that the assumptions stated above are realized, the
slope factor h0ð�Þ=hð�Þ should be constant. In Fig. 1 we
show the slope factor computed from experimental data at
Q ¼ mZ. The figure shows that the slope factor is indeed
only weakly depending on � in the tail region and we get
h0ð�Þ=hð�Þ ’ �14� 4. The remaining visible variation in
� is related to subleading nonperturbative and higher power
�s effects that are not accounted for in our simple scaling
estimate. For a QCD power correction of natural size,� ¼
0:3 GeV, Eq. (3) gives ��s=�s ’ �ð9� 3Þ% forQ ¼ mZ.
The magnitude of this effect makes it important to treat
power corrections as accurately as possible in a fit to thrust
data. We will show in later sections of this work that the
relative downward shift in the fitted �sðmZÞ due to non-
perturbative effects is indeed at the level of the scaling
estimate of �10%.

In theNLL=Oð�3
sÞ analysis by Davison andWebber [23]

the nonperturbative effects are incorporated through a
power correction �0 which is fit together with �s to the

experimental data. The power correction is formulated
from the low-scale effective coupling model of Ref. [35],
which modifies �sð�Þ below � ¼ �I ¼ 2 GeV, and
defines �0 as the average value of the coupling between
� ¼ 0 and �I. It is important that the effective coupling
model correctly predicts the Q dependence of the leading
nonperturbative power correction in factorization [17,35].
This model also induces a subtraction of perturbative con-
tributions below the momentum cutoff �I (based on the
running coupling approximation) and thus removes infra-
red renormalon ambiguities.2 However the model is not
based on factorization, and hence this treatment of non-
perturbative corrections is not systematically improvable.
It is therefore not easy to judge the corresponding uncer-
tainty. Another problem of the effective coupling model is
that its subtractions involve large logs, lnð�I=QÞ, which
are not resummed. This affects the Q dependence in the
interplay between perturbative and nonperturbative effects.
In this paper we extend the event shape formalism to

resolve the theoretical difficulties mentioned above. Our
results are formulated in the SCET framework and hence
are rigorous predictions of QCD. The formula we derive
has aN3LL order summation of logarithms for the partonic

singular �j
slnkð�Þ=� terms and Oð�3

sÞ fixed-order contribu-
tions for the partonic nonsingular terms. Our theoretical
improvements beyond earlier work include:
(i) A factorization formula that can be simultaneously

applied to data in the peak and the tail regions of the
thrust distribution and for multiple c.m. energies Q,
as well as being consistent with the multijet thresh-
olds in the far-tail region.

FIG. 1 (color online). Plot of h0ð�Þ=hð�Þ, the slope of
ln½ð1=�Þd�=d��, computed from experimental data at Q ¼ mZ.
The derivative is computed using the central difference with
neighboring experimental bins.

2Another thrust analysis where infrared renormalon contribu-
tions have been removed from the partonic contributions is by
Gardi and Rathsman in Refs. [36,37], which used a principal
value prescription for the inverse Borel transformation of the
thrust distribution. Their analysis was prior to the new Oð�3

sÞ
fixed-order computations and hence was not included in Table I.
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(ii) In the factorization formula a nonperturbative soft
function defined from the field theory is imple-
mented using the method of Ref. [16] to incorporate
hadronization effects. To achieve independence of a
particular analytic ansatz in the peak region, the
nonperturbative part of the soft function uses a
linear combination of orthogonal basis functions
that converge quickly for confined functions [38].

(iii) In the tail region the leading power correction to
d�=d� is determined by a nonperturbative parame-
ter�1 that appears through a factorization theorem
for the singular distribution. �1 is a field theory
matrix element of an operator and is also related to
the first moment of the nonperturbative soft func-
tion. In the tail region the effects of �1 hadroniza-
tion corrections are included for the nonsingular
corrections that are kinematically subleading in the
dijet limit, based on theoretical consistency with
the far-tail region.

(iv) Defining the matrix element ��1 in MS, the pertur-
bative cross sections suffer from an Oð�QCDÞ renor-
malon. In our analysis this renormalon is removed by
using an R-gap scheme for the definition of�1 [16].
This scheme choice induces subtractions on the lead-

ing power MS cross section which simultaneously
remove the renormalon there. Large logarithms in
the subtractions are summed to all orders in �s using
R-evolution equations given in Refs. [39,40].

(v) Finite bottom quark mass corrections are included
using a factorization theorem for event shapes in-
volving massive quarks, derived in Refs. [14,41].

(vi) QED corrections at NNLL order are incorporated,
counting �em � �2

s . This includes QED Sudakov
effects, final-state radiation, and QED/QCD renor-
malization group interference.

(vii) The 3-loop finite term h3 of the quark form factor

inMS is extracted using the results of Ref. [42] and
is included in our analysis.

(viii) The most important corrections from the axial
anomaly are included. The anomaly modifies the
axial-vector current contributions at Oð�2

sÞ by
terms involving the top quark mass.

Electroweak loop effects from virtual W and Z loops
mostly affect the normalization of the cross section, and
so their dominant contribution drops out of ð1=�Þd�=d�
[43,44]. These corrections are not included in our analysis.

For the numerical analyses carried out in this work we
have created within our collaboration two completely in-
dependent codes. One code within MATHEMATICA [45]
implements the theoretical expressions exactly as given in
this paper, and one code is based on theoretical formulas in
Fourier space and realized as a fast FORTRAN code suitable
for parallelized runs on computer clusters. These two codes
agree for the thrust distribution at the level of 10�6.

While the resulting theoretical code can be used for all
values of �, in this paper we focus our numerical analysis
on a global fit of eþe� thrust data in the tail region, for c.m.
energies Q between 35 and 207 GeV, to determine
�sðmZÞ.3 Our global fit exhibits consistency across all
available data sets and reduces the overall experimental
uncertainty. For a single Q we find a strong correlation
between the effect of �sðmZÞ and �1 on the cross section.
This degeneracy is broken by fitting data at multiple Q’s.
The hadronization uncertainty is significantly decreased by
our simultaneous global fit to �sðmZÞ and �1. To estimate
the perturbative uncertainty in the fit we use a random scan
in a 12-dimensional theory parameter space. This space
includes 6 parameters for � variation, 3 parameters for
theory uncertainties related to the finite statistics of
the numerical fixed-order results, one parameter for the
unknown 4-loop cusp anomalous dimension, and two pa-
rameters for unknown constants in the perturbative 3-loop
jet and 3-loop soft functions. The scan yields a more
conservative theory error than the error band method
[26]. Despite this we are able to achieve smaller perturba-
tive uncertainties than earlier analyses due to our removal
of the Oð�QCDÞ renormalon and the inclusion of h3. We

also analyze in detail the dependence of the fit results on
the range in � used in the fit.
The outline of the paper is as follows. In Sec. II we

introduce the theoretical framework and discuss the vari-
ous theoretical ingredients in our final d�=d� formula. In
Sec. III we present the profile functions which allow us to
simultaneously treat multiple � regions and discuss the 6
parameters used for � variation in the analysis of the
perturbative uncertainty. In Sec. IV we review the parame-
trization of the nonperturbative function. In Sec. V we
discuss the normalization of our distributions and compare
results at different orders in perturbation theory for fixed-
order results, adding the log resummation, adding the non-
perturbative corrections, and adding the renormalon sub-
tractions. In Sec. VI we discuss the experimental data and
the fit procedure. Our results for �sðmZÞ and the soft
function moment �1 from the global fit are presented in
Sec. VII, including a discussion of the theory errors. In
Sec. VIII we use our tail fit results to make predictions
in the far-tail and peak regions and compare with data.
Cross-checks on our code are discussed in Sec. IX, includ-
ing using it to reproduce the earlier lower precision fits of
Dissertori et al. [22] and Becher and Schwartz [20].
Section X contains our conclusions and outlook, including
prospects for future improvements based on the universal-
ity of the parameter �1. The analytic theoretical expres-
sions that went into our analysis for massless quarks
and QCD effects are presented in condensed form in
Appendix A. In Appendix B we use the operator product

3Throughout this paper we use theMS scheme for �s with five
light flavors.
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expansion (OPE) for the soft function in the tail region,
discussing uniqueness and deriving an all-order relation for
the Wilson coefficient of �1. In Appendix C we use an
OPE for the first moment of the thrust distribution to show
that it involves the same �1 at lowest order. Readers most
interested in our numerical results can skip directly to
Secs. VI and VII.

II. FORMALISM

A. Overview

The factorization formula we use for the fits to the
experimental thrust data is

d�

d�
¼
Z

dk

�
d�̂s

d�
þ d�̂ns

d�
þ �d�̂b

d�

��
�� k

Q

�

	 Smod
� ðk� 2 ��ðR;�SÞÞ þO

�
�0�s

�QCD

Q

�
: (4)

Here d�̂s=d� contains the singular partonic QCD correc-

tions �j
s½lnkð�Þ=��þ and �j

s�ð�Þ with the standard plus
functions as defined in Eq. (A17). It also contains the
singular partonic QED corrections depending on �em

which are discussed in Sec. II H. This d�̂s=d� term ac-
counts for matrix element corrections and the resummation
of ln� terms within the SCET formalism up to N3LL order,
which we discuss in Sec. II C. Our definition of N3LL,

N3LL0, and other orders is discussed in detail in Sec. II B
(see also Table II).
The term d�̂ns=d�, which we call the nonsingular

partonic distribution, contains the thrust distribution in
strict fixed-order expansion with the singular terms

/ �j
slnkð�Þ=� subtracted to avoid double counting. The

most singular terms in d�̂ns=d� scale as lnk� for � ! 0.4

Our implementation of nonsingular terms is discussed in
detail in Sec. II E.
Finally, �d�̂b=d� contains corrections to the singular

and nonsingular cross sections due to the finite mass of the
bottom quark. The b-mass corrections are implemented as
a difference of the massive and massless cross sections
computed at NNLL order as discussed in Sec. II G.
The function Smod

� that is convoluted with these partonic
cross sections in Eq. (4) describes the nonperturbative
effects from soft gluons including large angle soft radiation
[17,46]. The definition of Smod

� also depends on the hemi-
sphere prescription inherent to the thrust variable. This is a
hadronic function that enters in a universal way for both
massless and massive cross sections and is independent of
the value of Q. The universality of Smod

� in Eq. (4) follows

TABLE II. Perturbative and nonperturbative corrections included in our analysis. (a) Loop orders j for perturbative corrections of
Oð�j

sÞ. Here cusp, noncusp, and �
�;R
� refer to anomalous dimensions, while matching, nonsingular, and the gap subtraction � refer to

fixed-order series. For convenience in our numerical analysis we use the four-loop beta function for the �s running in all orders
displayed. (b) Nonperturbative corrections included in d�=d� with implicit sums over i and k. All powers �k=ðQ�Þk can be included
in the peak region with the function Smod

� , while only a fixed set of power correction parameters are included in the tail and far-tail
regions. The row labeled p.c. shows the scaling of the first power correction that is not entirely determined by the earlier rows and
hence yields corrections to Eq. (4).

(a) Perturbative corrections

Cusp Noncusp Matching �½�s� Nonsingular �
�;R
� �

LL 1 None Tree 1 None None None

NLL 2 1 Tree 2 None 1 None

NNLL 3 2 1 3 1 2 1

N3LL 4pade 3 2 4 2 3 2

NLL0 2 1 1 2 1 1 1

NNLL0 3 2 2 3 2 2 2

N3LL0 4pade 3 3 4 3 3 3

(b) Nonperturbative corrections with �k ��k
QCD

Peak (any k) Tail and far-tail (k ¼ 0; 1; 2)

d�̂s

d� �i
s
lnj�
�

�k

ðQ�Þk �i
s
lnj�
�

�k

ðQ�Þk

d�̂ns

d� �i
sfikð�Þ �k

ðQ�Þk �i
sfikð�Þ �k

ðQ�Þk

d�̂b

d� �i
sgik

�
�; mb

Q

�
�k

ðQ�Þk �i
sgik

�
�; mb

Q

�
�k

ðQ�Þk

p.c. �s
�QCD

Q �s
�QCD

Q

4For d�̂ns=d� the resummation of ln� terms is currently
unknown. These terms could be determined with subleading
factorization theorems in SCET.
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from the leading power thrust factorization theorem
[14,15,17] and the thrust factorization theorem for massive
quarks in Refs. [14,41]. Our treatment of the convolution
of Smod

� with d�̂ns=d� yields a consistent treatment of
multijet thresholds and the leading power correction to
the operator expansion for the first moment of thrust.
Details of our implementation of power corrections and
nonperturbative corrections are discussed in Secs. II D and
IV. The function Smod

� is normalized to unity and can be
determined from experimental data. Its form depends on a

gap parameter �� and additional moment parameters �i

which are discussed below.
The factorization formula given in Eq. (4) can be applied

simultaneously in the peak, tail, and far-tail regions of
Eq. (2), i.e. for all � values. In the peak region d�̂ns=d�
is significantly smaller than d�̂s=d�, and the full analytic
form of the soft nonperturbative function Smod

� ðkÞ is relevant
to determine the � distribution since �S ’ �QCD. Because

�H � �J � �S, the summation of logarithms of � is also
crucial to achieve an accurate theoretical description.

For much of the tail region the summation of ln� terms
remains important, although this is no longer the case when
we reach � ’ 1=3. Likewise, the dominance of the singular
partonic contributions remains as long as � < 1=3, but the
nonsingular terms become more important for increasing �
(see Fig. 7 below). Near � ’ 1=3 the nonsingular terms
become equal in size to the singular terms with opposite
sign. Since �S � �QCD in the tail region the effects of

Smod
� can be parameterized in terms of the moments

�i ¼
Z

dk

�
k

2

�
i
Smod
� ðk� 2 ��Þ; (5)

where �0 ¼ 1 since Smod
� is normalized. Their importance

is determined by�i=ðQ�Þi as discussed in Sec. II D, so the
first moment �1 parameterizes the dominant power cor-
rection and higher moments provide increasingly smaller
corrections. The first moment is defined by

�1 
 ��þ 1

2Nc

h0jtr �YT
�n ð0ÞYnð0Þi@̂Yy

n ð0Þ �Y�
�nð0Þj0i; (6)

where Yy
n ð0Þ ¼ P expðigR1

0 dsn � AðnsÞÞ, �Yy
�n is similar but

in the �3 representation, and we trace over color. Here

i@̂
 	ði �n �@� in �@Þin �@þ	ðin �@� i �n �@Þi �n �@; (7)

is a derivative operator5 involving lightlike vectors

n ¼ ð1; t̂Þ and �n ¼ ð1;�t̂Þ. �1 is the field theory analog
of the parameter �0 employed in the low-scale effective
coupling approach to power corrections. Since the renor-
malon subtractions depend on a cutoff scale R and the
renormalization scale �S, all moments �iðR;�SÞ as well

as ��ðR;�SÞ are scale- and scheme-dependent quantities.
The scheme we use to define �1ðR;�SÞ is described in
Sec. II F. In our fit to experimental data we use the R-gap
scheme and extract the first moment at a reference scale

R� ¼ �� ¼ 2 GeV; i.e. we use ��ðR�; ��Þ and hence
�1 ¼ �1ðR�; ��Þ. In the factorization theorem the gap

appears evaluated at ��ðR;�SÞ and the scales ðR;�SÞ are
connected to the reference scales ðR�; ��Þ using renor-
malization group equations.
Finally, in the far-tail region � ’ 0:3 the singular and the

nonsingular partonic contributions d�̂s=d� and d�̂ns=d�
become nearly equal with opposite signs, exhibiting a
strong cancellation. This is due to the strong suppression
of the fixed-order distribution in the three- and four-jet end
point regions at � * 1=3 in fixed-order perturbation theory.
In this region the summation of logarithms of � must be
switched off to avoid messing up this cancellation. Here
our Eq. (4) reduces to the pure fixed-order partonic thrust
distribution supplemented with power corrections coming
from the convolution with the soft function. All three
regions are smoothly joined together in Eq. (4). The proper
summation (or nonsummation) of logarithms is achieved
through �-dependent renormalization scales �Jð�Þ, �Sð�Þ,
and Rð�Þ which we call profile functions. They are dis-
cussed in detail in Sec. III.
In the following subsections various ingredients of the

factorization formula of Eq. (4) are presented in more
detail. Compact results for the corresponding analytic ex-
pressions for massless quarks in QCD are given in
Appendix A. In Secs. II G and IIH we describe how finite
bottom mass and QED corrections are included in our
analysis. The full formulas for these corrections will be
presented in a future publication.

B. Order counting

In the classic order counting used for fits to event shape
distributions it is common to separately quote orders for
the summation of logarithms and the fixed-order matching
contributions. For fixed-order contributions theOð�sÞ con-
tributions are called LO, theOð�2

sÞ contributions are called
NLO, etc. This counting is motivated from the fact that at
tree level the fixed-order thrust distribution vanishes for
� > 0. For the summation one refers to LL (leading-log)
summation if the one-loop cusp anomalous dimension is
used to sum the double Sudakov logs and NLL if the two-
loop cusp and the one-loop noncusp anomalous dimension
terms are also included.
In our analysis the summation orders (LL, NLL, . . .)

match the classical language. For the fixed-order contribu-
tions we account for the tree level �ð�Þ in LL and NLL, and
we include Oð�sÞ corrections at NLL0 and NNLL, etc., as
shown in Table II(a). In SCET the summation can be
carried out at both NNLL and N3LL [20]. The correspond-
ing loop orders for the anomalous dimensions are also
shown in Table II(a). Within SCET the summation of

5Note that i@̂ is defined in the c.m. frame of the colliding
eþe�. One may also write i@̂ ¼ R

d
e�j
jÊTð
Þ, where ÊTð
Þ
measures the sum of absolute transverse momenta at a given
rapidity 
 with respect to the thrust axis t̂ [17,47].
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logarithms is achieved by renormalization group evolution
and the fixed-order corrections enter as series evaluated at
each of the transition scales �H, �J, and �S which we
refer to as matching or matrix element corrections. The
logs in the singular thrust cross section exponentiate to all
orders if we use y, the Fourier-transformed variable to �.
The orders we consider correspond to summing the terms

ln

�
d~�s

dy

�
�
�
L
X1
k¼1

ð�sLÞk
�
LL

þ
�X1
k¼1

ð�sLÞk
�
NLL

þ
�
�s

X1
k¼0

ð�sLÞk
�
NNLL

þ
�
�2
s

X1
k¼0

ð�sLÞk
�
N3LL

; (8)

where L ¼ lnðiyÞ, and the series in the exponent makes
clear the structure of the large logs that are summed at each
order.

The nonsingular counting in Table II(a) for the fixed-
order series in d�̂ns=d� must be the same as for the
matching and matrix element corrections to ensure that
we exactly reproduce the fixed-order cross section when
the resummed result is expanded. Since the relative im-
portance of the log resummation and the nonsingular
terms varies depending on the � region, we also consider
an alternative ‘‘primed’’ counting scheme. In the primed
counting all series for fixed-order quantities are included to
one higher order in �s. In this counting scheme the Oð�3

sÞ
fixed-order results occur in N3LL0, which is the order we
use for our final analysis.

Also shown in Table II(a) are columns for the fixed-
order gap subtractions � ¼ �ðR;�Þ and the gap anomalous

dimensions �
�;R
� . These terms are required to remove the

leading Oð�QCDÞ renormalon from the perturbative cor-

rections while still maintaining the same level of log
resummation for terms in the cross section. The resumma-
tion of these large logarithms is missing in the recent
analysis of Ref. [23] and is discussed further in Sec. II F.

A crucial aspect of our analysis is the inclusion of power
corrections in a rigorous manner through field theoretic
techniques. In the effective theory there are several types of
power corrections which arise from the possible ratios of
the scales �H, �J, �S, and �QCD:

ð1Þ�QCD

�S

¼�QCD

Q�
; ð2Þ�

2
S

�2
J

¼�; ð3Þ�QCD

�H

¼�QCD

Q
: (9)

Any �QCD=�J power correction can be taken as a cross

term between types 1 and 2 for the purpose of enumeration.
The type 1 power corrections are enhanced by the presence
of the soft scale and are encoded by the moments �k �
�k

QCD of the soft function. Type 2 are kinematic power

corrections that occur because of the expansion about
small � and can be computed with perturbation theory.
The importance of these first two types depends on the
region considered in Eq. (2), with all terms in type 2
becoming leading order for the far-tail region. Type 3 are
nonenhanced power corrections that are of the same size in

any region. There are also cross terms between the three
types.
In our analysis we keep all power corrections of types 1

and 2 and the dominant terms of type 3. Our treatment of the
nonsingular cross section also includes cross terms between
1 and 2 in a manner that is discussed in Sec. IID. For the
different thrust regions we display the relevant terms kept in
our analysis in Table II(b). The nonsingular cross-section
corrections fully account for the power corrections of type
2. The factor ½�QCD=ðQ�Þ�k in the peak region denotes the

fact that we sum over all type 1 power corrections from the
leading soft function. In the tail and multijet regions we
only consider the first three orders: k ¼ 0 (partonic result),
k ¼ 1 (power correction involving �1), and k ¼ 2 (power
correction involving�2). Here k ¼ 2 terms are used in our
error analysis for our simultaneous fit to �sðmZÞ and �1.
The leading power correction that is not fully captured in all
regions is of type 3 and is of Oð�s�QCD=QÞ. Since our

analysis is dominated by Q ¼ mZ or larger, parametrically
this gives an uncertainty of�

��s

�s

�
p:c:

��QCD

Q
’ 0:3% (10)

in our final fit (taking �QCD ¼ 0:3 GeV to obtain the

number here). This estimate has been validated by running
our fits in the presence of an additional �s�QCD=Q power

correction.6

C. Singular partonic distribution

The singular partonic thrust distribution d�̂s=d� con-

tains the most singular terms / �j
slnkð�Þ=� and �j

s�ð�Þ that
arise from perturbation theory. Using SCETone can derive
a factorization theorem for these terms which allows for
the resummation of the logarithmic terms to all orders in
perturbation theory. In massless QCD the factorization
formula for the perturbative corrections involving �s reads

d�̂QCD
s

d�
ð�Þ ¼ Q

X
I

�I
0H

I
QðQ;�HÞUHðQ;�H;�Þ

	
Z

dsds0J�ðs0; �JÞU�
Jðs� s0; �;�JÞ

	
Z

dk0U�
Sðk0; �;�SÞe�2ð�ðR;�sÞ=QÞð@=@�Þ

	 S
part
�

�
Q�� s

Q
� k0; �S

�
: (11)

Here �I
0 is the total partonic e

þe� cross section for quark

pair production at tree level from a current of type
I ¼ fuv; dv; bv; ua; da; bag as explained below. Large

6To perform this test we include an �sð�nsÞ�1=Q correction in
the normalized thrust cross section, vary �1 ¼ �1:0 GeV, and
perform our default fit to �sðmZÞ and�1 as described in Sec. VI.
This variation causes only a �0:1% change to these fit parame-
ters, which is smaller than the estimate in Eq. (10).
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logs are summed by the renormalization group factors UH

between the hard scale and�,U�
J between the jet scale and

�, andU�
S between the soft scale and�. The choice of� is

arbitrary and the dependence on � cancels out exactly
when working at any particular order in the resummed
expansion. Short-distance virtual corrections are contained
in the hard function HI

Q. The term J� is the thrust jet

function. The term S
part
� is the partonic soft function and

the �ðR;�SÞ-dependent exponential implements the per-
turbative renormalon subtractions. There are four renor-
malization scales governing the factorization formula: the
hard scale �H �Q, the jet scale �J, the soft scale �S, and
the renormalon subtraction scale R. We have R��S to
properly sum logarithms related to the renormalon sub-
tractions, and there is also a renormalization group evolu-
tion in R. The typical values for�J,�S, and R depend on �
as discussed in Sec. III.

The total tree level partonic eþe� cross section
�I

0 ¼ �I
0ðQ;mZ;�ZÞ depends on the c.m. energy Q, the Z

mass, and the Z width and has six types of components:
�uv

0 , �ua
0 , �dv

0 , �da
0 , �bv

0 , and �ba
0 , where the first index

denotes flavor, u ¼ upþ charm, d ¼ downþ strange,
and b ¼ bottom, and the other index denotes production
through the vector (v) and axial-vector (a) currents.
For QCD corrections we have the hard functions

Hv
Q 
 Huv

Q ¼ Hdv
Q ¼ Hbv

Q , Hua
Q , Hda

Q , and Hba
Q , where the

vector current terms do not depend on the flavor of the
quark. For massless quark production the axial-vector hard
functions differ from the vector due to flavor singlet con-
tributions. All six �I

0’s and HI
Q’s are relevant for the

implementation of the b-mass and QED corrections.
Since we use data taken for energies close to the Z pole
we adopt i=ðq2 �m2

Z þ iQ2�z=mZÞ as the Z-boson propa-
gator which is the form of the width term used for thrust
data analyses. The modifications of Eq. (11) required to
include QED effects are discussed in Sec. II H.
The hard factor HQ contains the hard QCD effects

that arise from the matching of the two-jet current in
SCET to full QCD. For �H ¼ Q we have Hv

QðQ;QÞ ¼
1þP3

j¼1 hj½�sðQÞ=4��j, and the full hard function with

lnð�H=QÞ dependence is given in Eq. (A6). For the flavor
nonsinglet contributions where the final-state quarks are
directly produced by the current, one can obtain the match-
ing coefficient from the on-shell quark vector current form
factor, which is known to Oð�3

sÞ [42,48–52]. Converting
the bare result in Ref. [52] (see also Refs. [42,53]) to the

MS scheme and subtracting 1=�kIR divergences present in
SCET graphs, the three-loop nonsinglet constant, which is
one of the new ingredients in our analysis, is

h3 ¼ C3
F

�
�460ð3Þ � 140�2ð3Þ

3
þ 32ð3Þ2 þ 1328ð5Þ � 5599

6
þ 4339�2

36
� 346�4

15
þ 27 403�6

17 010

�

þ CAC
2
F

�
� 52 564ð3Þ

27
þ 1690�2ð3Þ

9
þ 592ð3Þ2

3
� 5512ð5Þ

9
þ 824 281

324
� 406 507�2

972
þ 92 237�4

2430
� 1478�6

1701

�

þ C2
ACF

�
505 087ð3Þ

243
� 1168�2ð3Þ

9
� 2272ð3Þ2

9
� 868ð5Þ

9
� 51 082 685

26 244
þ 596 513�2

2187
� 4303�4

4860
þ 4784�6

25 515

�

þ C2
Fnf

�
26 080ð3Þ

81
� 148�2ð3Þ

9
� 832ð5Þ

9
� 56 963

486
þ 13 705�2

243
� 1463�4

243

�

þ CACFnf

�
� 8576ð3Þ

27
þ 148�2ð3Þ

9
� 8ð5Þ

3
þ 3 400 342

6561
� 201 749�2

2187
� 35�4

243

�

þ CFn
2
f

�
� 832ð3Þ

243
� 190 931

6561
þ 1612�2

243
þ 86�4

1215

�
¼ 20 060:0840� 2473:4051nf þ 52:2009n2f: (12)

For nf ¼ 5 we have h3 ¼ 8998:080, which is the value
used for our analysis.7

The axial-vector hard functions Hua
Q and Hda

Q are equal

to Hv
Q up to additional singlet corrections that enter at

Oð�2
sÞ and Oð�3

sÞ. The fact that the SCET hard functions
have these singlet corrections was discussed in Ref. [55].
At Oð�2

sÞ only the axial-vector current gets a singlet

correction. It arises from the axial-vector anomaly, from
suitable cuts of the graph shown in Fig. 2 where each axial
current is connected to a triangle. Summing over the light
quarks u, d, s, and c gives a vanishing contribution from
this graph, but it does not vanish for heavy quarks due to
the large bottom-top mass splitting [56]. Since for the Q’s
we consider top pairs are never produced, the required
terms can be obtained in the limit mb=mt ! 0. For the
axial current the hard correction arises from the b �b cut and

gives Hua
Q ¼ Hda

Q ¼ Hv
Q, and Hba

Q ¼ Hv
Q þHsinglet

Q , where
7The analytic expression for h3 in Eq. (12) is consistent with

Eq. (7.3) given in Ref. [54].

ABBATE et al. PHYSICAL REVIEW D 83, 074021 (2011)

074021-8



Hsinglet
Q ðQ; rt; �HÞ ¼ 1

3

�
�sð�HÞ

�

�
2
I2ðrtÞ: (13)

Here rt ¼ Q2=ð4m2
t Þ and the function I2ðrtÞ from Ref. [56]

is given in Eq. (A7). Throughout our analysis we use mt ¼
172 GeV. H

singlet
Q is a percent level correction to the cross

section at the Z peak and hence is non-negligible at the
level of precision of our analysis. (The uncertainty in the
top mass is numerically irrelevant.) At Oð�3

sÞ the singlet
corrections for vector currents are known [42], but they are
numerically tiny. We therefore neglect the Oð�3

sÞ vector
current singlet corrections together with the unknown
Oð�3

sÞ singlet corrections for the axial-vector current.
Likewise we do not account for Oð�3

sÞ singlet corrections
to the nonsingular distributions discussed in Sec. II E.

The full anomalous dimension of HI
Q is known at three

loops: Oð�3
sÞ [49,51,57]. It contains the cusp anomalous

dimension, responsible for the resummation of the
Sudakov double logarithms, and the noncusp anomalous
dimension. To determine the corresponding hard renormal-
ization group factor UH at the orders N3LL0 and N3LL we
need the Oð�4

sÞ cusp anomalous dimension �
cusp
3 which is

still unknown and thus represents a source of theory error
in our analysis. We estimate the size of �

cusp
3 from the order

[1=1] Padé approximant in �s built from the known lower
order coefficients, which is within 13% of the two other
possible Padé approximants [0=2] and [0=1]. For our the-
ory error analysis we assign 200% uncertainty to this
estimate and hence scan over values in the range �cusp

3 ¼
1553:06� 3016:12.

The thrust jet function J� is the convolution of the two
hemisphere jet functions that describe collinear radiation
in the t̂ and �t̂ directions:

J�ðs; �Þ ¼
Z

ds0Jðs0; �ÞJðs� s0; �Þ

¼ 1

�2

X1
n¼�1

Jn½�sð�Þ�Lnðs=�2Þ: (14)

Here the coefficients Jn are multiplied by the functions

L�1ðxÞ ¼ �ðxÞ; LnðxÞ ¼
�
lnnx

x

�
þ
; (15)

where n � 0. HereLn�0ðxÞ are the standard plus functions;
see Eq. (A17). At Oð�3

sÞ only J�1ð�sÞ through J5ð�sÞ are
nonzero. The results are summarized in Eq. (A16). In SCET
the inclusive jet function is defined as

JðQrþ;�Þ¼ �1

4�NcQ
Im

�
i
Z
d4xeir�xh0jTf ��nð0Þ �n�nðxÞgj0i

�
;

(16)

where the �n are quark fields multiplied by collinear
Wilson lines. The hemisphere jet function has been com-
puted at Oð�sÞ [58,59] and Oð�2

sÞ [60]. Its anomalous
dimension is known at three loops and can be obtained
from Ref. [61]. At the order N3LL0 we need the Oð�3

sÞ
corrections to the jet function. From the anomalous dimen-
sion we know the logarithmic terms, J0 to J�5 in Eq. (14),
at three loops. In the nonlogarithmic term J�1 at Oð�3

sÞ
there is an unknown coefficient j3 (which we define as the
constant nonlogarithmic 3-loop coefficient in the position
space hemisphere jet function). We estimate a range for j3
from the largest value obtained from the three Padé approx-
imations for the position space hemisphere jet function that
one can construct from the available results. This gives
j3 ¼ 0� 3000 for the range of variation in our theory error
analysis. We note that for the Oð�3

sÞ coefficient h3 the
corresponding Padé estimate h3 ¼ 0� 10 000 covers the
exact value given in Eq. (12).
The renormalization group factors of the thrust jet func-

tion U�
J and thrust soft function U�

S sum up large logs

involving the jet and the soft scales. The required cusp
and noncusp anomalous dimensions are fully known at
three loops, but again there is dependence on the four-
loop cusp anomalous dimension �cusp

3 . This dependence is

included when we scan this parameter as described above
in our description of the hard evolution.
The hadronic thrust soft function S� describes soft

radiation between the two jets. It is defined by

S�ðk;�Þ ¼ 1

Nc

h0jtr �YT
�nYn�ðk� i@̂ÞYy

n �Y�
�nj0i; (17)

where Yn ¼ Ynð0Þ and �Y �n ¼ �Y �nð0Þ are defined below
Eq. (6). The soft function factorizes into a partonic pertur-

bative part Spart� and a nonperturbative part Smod
� , S� ¼

Spart�  Smod
� , as discussed in detail in Sec. II D. This facto-

rization has already been used above in Eqs. (4) and (11).
At the partonic level the soft function is

S
part
� ðk;�Þ ¼ 1

�

X1
n¼�1

Sn½�sð�Þ�Lnðk=�Þ; (18)

where S�1 to S5 are the only nonzero coefficients atOð�3
sÞ,

and LnðxÞ is defined in Eq. (15). Results for these Skð�sÞ
are summarized in Eq. (A14). Spert� was calculated at
Oð�sÞ in Ref. [14,15]. At Oð�2

sÞ the nonlogarithmic cor-
rection was determined in Refs. [20,62] using numerical
output from EVENT2 [63,64]. The numerical constant that
appears in the nonlogarithmic Oð�2

sÞ term S�1 is referred
to as s2 (which is defined as the constant 2-loop coefficient
in the logarithm of the position space soft function).

FIG. 2. Two-loop singlet correction to the axial current. Its
cuts contribute to the hard coefficient and nonsingular terms.
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We use s2 ¼ �39:1� 2:5 [62], and this uncertainty is
taken into account in our theory error analysis.8 The
anomalous dimension of the soft function is a linear com-
bination of the anomalous dimensions of the hard and jet
functions which can be obtained from the consistency
conditions [20,41]. As for the jet function we need the

Oð�3
sÞ corrections to S

part
� . From its anomalous dimension

we know the logarithmic terms at three loops, namely, S0 to
S5 in Eq. (18). The only unknown is the Oð�3

sÞ nonlogar-
ithmic correction in S�1, referred to as s3 (which is defined
as the constant nonlogarithmic term in the logarithm of the
position space hemisphere soft function). Just like for the
constant j3 we estimate a value for s3 from the largest value
obtained from the three possible Padé approximations to
the position space soft function that one can construct from
the available results. This yields the range s3 ¼ 0� 500,
which we scan over in our theory error analysis.

As already mentioned, in Ref. [20] an analytic expres-
sion for the resummed singular thrust distribution was
presented. Their derivation relies on the Laplace transform
of the jet and soft functions. In our analysis we have
derived the resummed cross section using two independent
procedures, performing all convolutions either in momen-
tum space (as presented in Appendix A) or in Fourier
space. These two approaches have been implemented in
two independent codes and we have checked that they give
exactly the same results. We note that the Fourier transform
method is equivalent to the Laplace procedure used by
Becher and Schwartz in Ref. [20] through a contour de-
formation, and we find agreement with their quoted N3LL
formula including matrix elements and anomalous dimen-
sions. Furthermore, we also agree with their result for the
fixed-order singular terms up to Oð�3

sÞ.
In summary, the singular terms in the thrust factorization

theorem are known at N3LL order, up to the unknown
constant �cusp

3 . The effect of the cusp anomalous dimension

at 4 loops is much smaller than one might estimate, so for
numerical purposes the cross section is known at this order.
The constants s3 and j3 only enter for our N

3LL0 order. For
the singular terms they predominantly affect the peak
region with spread into the tail region only due to renor-
malization group evolution. Thus in the tail region the
numerically dominant N3LL0 terms are all known. The
uncertainties from �cusp

3 , s3, and j3 are discussed more

explicitly in Sec. VII.

D. �1 and nonperturbative corrections

In this section we discuss nonperturbative corrections to
the thrust distribution included in our analysis, as shown in
Table II(b). We focus, in particular, on those associated to
the first moment parameter �1. Our analysis includes the
OPE for the soft function in the tail region and combining
perturbative and nonperturbative information to smoothly

connect the peak and tail analyses. We also discuss our
treatment of nonperturbative corrections in the far-tail
region and for the nonsingular terms in the cross section.
In the tail region where k�Q� � �QCD we can per-

form an operator product expansion of the soft function in
Eq. (17). At tree level this gives [65,66]

S�ðk;�Þ ¼ �ðkÞ � �0ðkÞ2 ��1 þ � � � ; (19)

where the nonperturbative matrix element ��1 is defined in

the MS scheme as

�� 1 ¼ 1

2Nc

h0jtr �YT
�n ð0ÞYnð0Þi@̂Yy

n ð0Þ �Y�
�nð0Þj0i: (20)

Dimensional analysis indicates that ��1 ��QCD. When the

OPE is performed beyond tree level we must add pertur-
bative corrections at a scale � ’ k to Eq. (19). The first
operator in the OPE is the identity, and its Wilson coeffi-

cient is the partonic soft function. Thus �ðkÞ ! Spart� ðk;�Þ
when the matching of the leading power operator is per-
formed at any fixed order in the perturbation theory. Here

we derive the analog for the Wilson coefficient of the ��1

matrix element and prove that

S�ðk; �Þ ¼ S
part
� ðkÞ � dSpart� ðkÞ

dk
2 ��1 þ � � � : (21)

This result implies that the leading perturbative corrections
that multiply the power correction are determined by the
partonic soft function to all orders in the perturbation
theory. The proof of Eq. (21) is given in Appendix B.

The uniqueness of the leading power correction ��1 to all
orders in the perturbative matching can be derived follow-
ing Ref. [65], and we carry out an all-orders matching
computation to demonstrate that the Wilson coefficient is

dSpart� ðkÞ=dk. At first order in ��1=k � 1 Eq. (21) shows
that the perturbative corrections in the OPE are consistent

with a simple shift to S�ðk� 2 ��1; �Þ. This type of shift
was first observed in the effective coupling model [35].
To smoothly connect the peak and tail regions we use a

factorized soft function [16,18,38]

S�ðk;�Þ ¼
Z

dk0Spart� ðk� k0; �ÞSmod
� ðk0Þ; (22)

where S
part
� is a fixed-order perturbative MS expression for

the partonic soft function and Smod
� contains the nonpertur-

bative ingredients. In the tail region this expression can be
expanded for k0 � k and reduces to precisely the OPE in
Eq. (21) with the identification

2 ��1 ¼
Z

dk0k0Smod
� ðk0Þ; (23)

and normalization condition
R
dk0Smod

� ðk0Þ ¼ 1 [16]. All

moments of Smod
� ðk0Þ exist so it has an exponential tail,

whereas the tail for Spart� ðkÞ is a power law. In the peak
region the full nonperturbative function Smod

� ðkÞ becomes8Note that in Ref. [62] our s2 was called s1.
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relevant, and Eq. (22) provides a nonperturbative function

whose � dependence satisfies the MS renormalization
group equation (RGE) for the soft function. In position
space the convolution in Eq. (22) is a simple product,
making it obvious that Eq. (22) provides a completely
general parametrization of the nonperturbative corrections.
The complete basis of functions used to parameterize
Smod
� ðkÞ in the peak region is discussed in Sec. IV.
The expression in Eq. (22) also encodes higher order

power corrections of type 1 from Eq. (9) through the mo-

ments 2i ��i ¼
R
dkkiSmod

� ðkÞ, which for tree level match-

ing in the OPE can be identified as the matrix elements

h0jtr �YT
�n ð0ÞYnð0Þði@̂ÞiYy

n ð0Þ �Y�
�nð0Þj0i=Nc. For i � 2 perturba-

tive �s corrections to the soft function OPE would have to
be treated in a manner similar to Appendix B to determine
the proper Wilson coefficients and whether additional

operators beyond the powers ði@̂Þi start contributing. The
treatment of perturbative corrections to these higher order
nonperturbative corrections is beyond the level required for
our analysis.

Using Eq. (22) the hadronic version of the singular
factorization theorem which involves S� immediately
yields Eq. (11) and the first term in Eq. (4). The conversion

of S
part
� ðkÞ and ��1 fromMS to a renormalon-free scheme is

discussed in Sec. II F.
Next we turn to the effect of �QCD power corrections on

the nonsingular terms in the cross section in Eq. (4). The
form of these power corrections can be constrained by
factorization theorems for subleading power corrections
when � � 1 and by carrying out an OPE analysis for
power corrections to the moments of the thrust distribution.
In the following we consider both of these.

Based on the similarity of the analysis of power
corrections to thrust with those in B ! Xs� [67,68], the
factorization theorems for the nonsingular corrections
involve subleading hard functions, jet functions, and
soft functions. They have the generic structure

Hða;bÞ
Q ðQ; �; xiÞ  JðaÞ� ðsj; xiÞ  SðbÞ� ðQ�; sj=QÞ, where the

xi and sj are various convolution variables. Here SðbÞ�

includes the leading order soft function in Eq. (17) as
well as power suppressed soft functions. Neglecting non-
perturbative corrections the nonsingular cross section
yields terms we refer to as kinematic power corrections
of type 2 in Eq. (9). If we do not wish to sum large logs
in the nonsingular partonic terms, they can be treated in
fixed-order perturbation theory and determined from the
full fixed-order computations. In the tail region these
�-suppressed terms grow and become much more impor-
tant than the �QCD=Q power corrections of type 3 from

subleading soft functions. In the transition to the far-tail
region, near � ¼ 1=3, they become just as important as the
leading perturbative singular terms. In this region there are
large cancellations between the singular and nonsingular
terms (shown below in Fig. 7), and one must be careful

with the treatment of the nonsingular terms not to spoil
this.
We require the nonsingular cross-section terms to yield

perturbative corrections at leading power in �QCD that are

consistent with the fixed-order results and with multijet
thresholds. Our treatment of power corrections in the non-
singular terms is done in a manner consistent with these
goals and with the OPE for the first moment of the thrust
distribution. To achieve this we use

Z
dk0

d�̂ns

d�

�
�� k0

Q
;
�ns

Q

�
Smod
� ðk0Þ; (24)

where d�̂ns=d� is the partonic nonsingular cross section in
the fixed-order perturbation theory, whose determination
we discuss in Sec. II E. Equation (24) is independent of the
renormalization scale �ns order by order in its series
expansion in �sð�nsÞ. The convolution with the same
Smod
� ðk0Þ as the singular terms allows the perturbative cor-

rections in d�̂s=d�þ d�̂ns=d� to smoothly recombine into
the fixed-order result in the far-tail region as required by
the multijet thresholds. Equation (24) yields the second

term in Eq. (4). Wewill treat the conversion of ��1 and S
mod
�

to a renormalon-free scheme in the same manner as for the
singular cross section, which again for consistency requires
a perturbative subtraction for the partonic d�̂ns=d� that we
treat in Sec. II F.
Note that Eq. (24) neglects the fact that not all of

the � dependence in d�̂ns=d� must necessarily be convo-
luted with Smod

� . This causes a deviation which is
��s��QCD=ðQ�Þ and hence is at the same level as other

power corrections that we neglect. The largest uncertainty
from our treatment of d�̂ns=d� arises from the fact that we
do not sum ln� terms, which would require anomalous
dimensions for the subleading soft and hard functions for
these nonsingular terms. These logs are most important in
the peak region and less relevant in the tail region. The size
of missing higher order nonsingular terms such as log
enhanced terms will be estimated by varying the scale �ns.
Our setup is also consistent with the OPE for the first

moment of the thrust distribution. Equation (4) yields

Z
d� �

d�

d�
¼
Z

d� �

�
d�̂s

d�̂
þ d�̂ns

d�̂

�
þX

I

�I
0

2 ��1

Q
þ � � � ;

(25)

where the ellipses denote Oð�s�QCD=QÞ and

Oð�2
QCD=Q

2Þ power corrections. In Appendix C we dem-

onstrate that a direct OPE computation for the thrust mo-
ment also gives the same result and, in particular, involves

precisely the same matrix element ��1 at this order. The
theoretical expression in Eq. (4) simultaneously includes
the proper matrix elements that encode power corrections
in the peak region and tail region and for moments of the
thrust distribution. This implies a similar level of precision
for the multijet region. Although Eq. (4) does not encode
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all �s�QCD=Q corrections, it turns out that the ones it does

encode, involving �1, numerically give an accurate de-
scription of the multijet cross section. (This is visible in
Fig. 18 and will be discussed further in Sec. VII.) This
agreement provides additional support for our treatment of
nonperturbative corrections in the nonsingular cross sec-
tion in Eq. (24).

E. Nonsingular distribution

The nonsingular partonic thrust distribution d�̂ns=d�
accounts for contributions in the thrust distribution that
are kinematically power suppressed. We write

d�̂ns

d�
ð�Þ ¼X

I

�I
0e

�2ð�ðR;�sÞ=QÞð@=@�ÞfI
�
�;
�ns

Q

�
; (26)

with the same superscript I notation for different currents
as in Eq. (11). The presence of the �ðR;�SÞ-dependent
exponent arises because Smod

� depends on �1 and we use
the same renormalon-free definition for �1 as for the
singular terms. In our numerical evaluation we integrate
by parts so that the @=@� derivative acts on Smod

� in Eq. (4).
This exponent is discussed in detail in Sec. II F.

In this section we discuss our determination of the
functions fI in pure QCD with massless quarks, while
the generalization to include mb effects is discussed in
Sec. II G and to include QED effects in Sec. II H. For
pure QCD there is one function fvqcd ¼ fuvqcd ¼ fdvqcd ¼
fbvqcd for the vector current and functions fuaqcd ¼ fdaqcd and

fbaqcd for the axial-vector currents. In general fI is the

partonic fixed-order distribution where the singular terms
which are already contained in d�̂s=d� are subtracted to
avoid double counting. Setting the renormalization scale
�ns ¼ Q they have the form

fvqcdð�; 1Þ ¼
�s

2�
f1ð�Þ þ �2

s

ð2�Þ2 f2ð�Þ þ
�3
s

ð2�Þ3 f3ð�Þ þ � � � ;
fuaqcdð�; 1Þ ¼ fdaqcdð�; 1Þ ¼ fvqcdð�; 1Þ;

fbaqcdð�; 1Þ ¼ fvqcdð�; 1Þ þ
�2
s

ð2�Þ2 fsingletð�; rtÞ; (27)

where �s ¼ �sðQÞ and rt ¼ Q2=ð4m2
t Þ. The required re-

sults for fIð�;�ns=QÞ can be obtained by shifting �sðQÞ to
�sð�nsÞ using the fixed-order relation between these cou-
plings at Oð�2

sÞ.
The full Oð�sÞ partonic thrust distribution has been

known analytically for a long time [69]. For the one-loop
nonsingular distribution it gives

f1ð�Þ ¼ 4

3�ð�� 1Þ
�
ð�6�2 þ 6�� 4Þ log

�
1

�
� 2

�
þ 9�3

� 3�2 � 9�þ 3

�
	

�
1

3
� �

�
þ 4

3�
½3þ 4 logð�Þ�:

(28)

This result is plotted in Fig. 3. The kink at � ¼ 1=3 appears
because the full one-loop distribution vanishes at this value
with a nonzero slope, and there is an exact cancellation
between the fixed-order singular and nonsingular one-loop
expressions. For � > 1=3 the one-loop nonsingular distri-
bution is precisely the negative of the one-loop fixed-order
singular distribution.
TheOð�2

sÞ andOð�3
sÞQCD distributions are available in

numeric form from the FORTRAN programs EVENT2 [63,64]
and EERAD3 [3] (see also Refs. [4–6]), respectively. These
programs are used to derive results for our f2ð�Þ and f3ð�Þ
nonsingular distributions in a manner discussed below. At
Oð�2

sÞ there is also the singlet correction fsingletð�; rÞ for
the axial-vector contribution arising from the large bottom-
top mass splitting. The three-parton quark-antiquark-gluon
cut from Fig. 2 contributes to the nonsingular distribution,
and we have included this contribution analytically [70].
The formula for fsingletð�; rÞ is given in Eq. (A30). There is
also a contribution from the four-parton cut. Its contribu-
tion to fsingletð�; rÞ is unknown, but it is tiny for the total

cross section [56] and can therefore be safely neglected.
At Oð�2

sÞ we use linear binned EVENT2 results for � >
0:095 and log-binning results for � < 0:095 each obtained
from runs with 1010 events and infrared cutoff y0 ¼ 10�8.
For � > 0:095 (using a 0.005 bin size) the resulting statis-
tical uncertainties in the nonsingular distribution are al-
ways below the percent level and negligible and we can use
an interpolation of numerical tables for f2ð�Þ. For � <
0:095 the singular terms dominate the distribution which
leads to large cancellations and an enhancement of the
statistical uncertainties. Here we use the ansatz f2ð�Þ ¼P

3
i¼0 ailn

i�þ �
P

3
i¼2 biln

i� and fit the coefficients ai and
bi to the EVENT2 output, including the constraint that the
integral over the full distribution reproduces the known
Oð�2

sÞ coefficient for the total cross section. The result has
the form f2ð�Þ þ �2�2ð�Þ, where f2 represents the best fit
and �2 is the 1-sigma error function with all correlations
included. The term �2 is a parameter which we vary during
our �s-�1 fit procedure to account for the error. Here f2

FIG. 3 (color online). Oð�sÞ nonsingular thrust distribution.
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and �2 also depend on the coefficient s2 in the partonic soft
function S� which is known only numerically. In Fig. 4 we
plot the EVENT2 data we used, along with our f2ð�Þ with
s2 ¼ �39:1. The dashed curves show the result for
�2 ¼ �1, with the region in between corresponding to
the 1-sigma error band.

For the determination of f3 at Oð�3
sÞ we implement a

similar approach as for f2, using results from EERAD3 [3]
computed with 6	 107 events for the three leading color
structures and 107 events for the three subleading ones,
using an infrared cutoff y0 ¼ 10�5. We employ linearly
binned results with 0.01 bin size for � > 0:315 (keeping the
statistical error below the percent level) and with 0.005 bin
size for � < 0:315. For the fit for � < 0:315 our ansatz
function has the form f3ð�Þ ¼

P
5
i¼1 ciln

i� and the result

has the form f3ð�Þ þ �3�3ð�Þ, with f3 being the best fit and
�3 the 1-sigma error function. The constant �3 is the analog
of �2 and is varied in the error analysis. We note that f3 and
�3 depend on the constant s2 and on the constants s3 and j3
that account for the unknown nonlogarithmic terms in the
Oð�3

sÞ soft and jet functions. This dependence is included

in our error analysis. In Fig. 5 we plot the EERAD3 data
with bin size 0.01, along with our f3ð�Þ with s2 ¼ �39:1,
h3 ¼ 8998:08, and j3 ¼ s3 ¼ 0. The dashed curves show
the result for �3 ¼ �1, with the region in between corre-
sponding to the 1-sigma error band.
In our analysis we use the values�1, 0, and 1 for �2 and

�3 to account for the numerical uncertainties of our fit
functions in the small � region. The nonsingular partonic
distribution depends on one common renormalization scale
�ns which is varied in our theory error analysis as given
in Sec. III.

F. Gap formalism

The partonic soft function S
part
� ðkÞ computed perturba-

tively in MS has an Oð�QCDÞ renormalon ambiguity. The

same renormalon is present in the partonicMS thrust cross
section with or without resummation. This is associated

with the fact that the partonic threshold at k ¼ 0 in Spart� ðkÞ
is not the same as the physical hadronic threshold for the
distribution of soft radiation that occurs in S�ðkÞ. One can
see this explicitly in the large-�0 approximation, where it
is associated to a pole at u ¼ 1=2 in the Borel transform
[16]

B½Spart� ðk;�Þ�
�
u� 1

2

�
¼�

16CFe
�5=6

��0ðu� 1
2Þ

@

@k
S
part
� ðk;�Þ: (29)

This result shows that Spart� ðkÞ in the MS scheme suffers

from the renormalon ambiguity for all k � 0. The MS

matrix element ��1 defined in Eq. (20) also has an
Oð�QCDÞ renormalon ambiguity. Together, the renorma-

lons in this power correction and in the perturbative series

for S
part
� ðkÞ combine to give a soft function S�ðkÞ that is free

from this Oð�QCDÞ renormalon. If left unsubtracted, this

renormalon ambiguity leads to numerical instabilities in
perturbative results for the thrust distribution and in the
large order dependence for the determination of the soft
nonperturbative function Smod

� . In this section we resolve
this problem by switching to a new scheme for �1. This
scheme change induces subtractions on d�part=d� that
render it free of this renormalon. We start by reviewing
results from Ref. [16].
Consider a class of soft nonperturbative functions with a

gap parameter �, which only have support for k � �, so

Smod
� ðkÞ ! Smod

� ðk� 2�Þ. Here theMSmoment relation in
Eq. (23) becomes

2�þ
Z

dk kSmod
� ðkÞ ¼ 2 ��1; (30)

where � accounts for the complete renormalon ambiguity

contained in ��1. We can now obtain a renormalon-free
definition for �1 by splitting � into a nonperturbative

component ��ðR;�SÞ that is free of the Oð�QCDÞ renorma-

lon and a suitably defined perturbative series �ðR;�SÞ that

FIG. 4 (color online). Oð�2
sÞ nonsingular thrust distribution.

FIG. 5 (color online). Oð�3
sÞ nonsingular thrust distribution.

For simplicity we only show the data binned with 0.01 bin size.
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has the same renormalon ambiguity as ��1. The parameter

� is scheme and renormalization group invariant, while ��
and � individually depend on the subtraction scale R and in
general also on the soft scale �S. Writing

� ¼ ��ðR;�SÞ þ �ðR;�SÞ; (31)

the factorization of perturbative and nonperturbative com-
ponents in Eq. (22) becomes

S�ðk;�SÞ ¼
Z

dk0Spart� ðk� k0 � 2�;�SÞSmod
� ðk0 � 2 ��Þ

¼
Z

dk0½e�2�ð@=@kÞSpart� ðk� k0;�SÞ�Smod
� ðk0 � 2 ��Þ:

(32)

Here the exponential operator induces perturbative sub-

tractions [in powers of �sð�SÞ] on theMS series in S
part
� ðkÞ

that render it free of the renormalon. This exponential
modifies perturbative results for the cross section in the
manner we have shown earlier in Eqs. (11) and (26). The
convolution of the nonsingular cross section with Smod

� in
Eq. (24) now becomesZ

dk0
d�̂ns

d�

�
�� k0

Q
;
�ns

Q

�
Smod
� ðk0 � 2 ��Þ: (33)

Furthermore, with Eq. (32) the result in Eq. (30) becomes

2 ��ðR;�SÞ þ
Z

dk k Smod
� ðkÞ ¼ 2�1ðR;�SÞ; (34)

where�1ðR;�SÞ is renormalon-free. Combining Eqs. (34)
and (30) we see that the scheme conversion formula from

MS to the new scheme is

�1ðR;�SÞ ¼ ��1 � �ðR;�SÞ: (35)

Thus, the precise scheme for �1ðR;�SÞ is specified by the
choice of the subtraction series �ðR;�SÞ. Note that in

general the gap parameter �� is an additional nonperturba-
tive parameter that can be determined together with other
parameters in the function Smod

� from fits to experimental
data. However, in the tail region the power corrections are
dominated by a single parameter, �1ðR;�SÞ, which enc-

odes the dependence on ��.
In Ref. [62] a convenient scheme for �ðR;�SÞ was

derived (based on a scheme proposed in Ref. [71]) where

�ðR;�Þ ¼ R

2
e�E

d

d lnðixÞ ½lnS�ðx;�Þ�jx¼ðiRe�E Þ�1 : (36)

Here S�ðx;�Þ is the position space partonic soft function,
and the fact that we write this result for S� rather than for
the hemisphere soft function explains the extra factor of
1=2 relative to the formula in Ref. [62]. The cutoff parame-
ter R, having mass dimension 1, is a scale associated with
the removal of the infrared renormalon. To achieve the
proper cancellation of the renormalon in Eq. (32) one

has to expand �ðR;�SÞ together with Spart� ðk;�SÞ order

by order in �sð�SÞ. The perturbative series for the sub-
traction is

�ðR;�SÞ ¼ e�ER
X1
i¼1

�i
sð�SÞ�iðR;�SÞ; (37)

where the �i�2 depend on both the adjoint Casmir CA ¼ 3
and the number of light flavors in combinations that are
unrelated to the QCD beta function. For five light flavors
the one-, two-, and three-loop coefficients are [62]

�1ðR;�SÞ ¼�0:848826LR;

�2ðR;�SÞ ¼�0:156279� 0:46663LR � 0:517864L2
R;

�3ðR;�SÞ ¼ 0:0756831þ 0:01545386s2 � 0:622467LR

� 0:777219L2
R � 0:421261L3

R; (38)

with LR ¼ lnð�S=RÞ. We will refer to the scheme defined
by Eq. (36) as the R-gap scheme for �1.

From the power counting ��1 ��QCD one expects that a

cutoff R� 1 GeV should be used, such that �1 ��QCD

and the perturbation theory in �sðRÞ remains applicable.
We refer to this as the power counting criterion for R. Since
in the tail region �S �Q� � 1 GeV the factors of LR in
Eq. (38) are then large logs. To avoid large logarithms in
the subtractions �iðR;�SÞ it is essential to choose R��S,
so that the subtraction scale R is dependent on � much like
the soft scale �S. We refer to this as the large-log criterion
for R. To resolve the conflict between these two criteria

and sum the large logs while keeping ��ðR;�S � RÞ
renormalon-free, we make use of R evolution [39,40].
Formulas for the gap case were given in Ref. [62] and

are reviewed here. In this scheme ��ðR;�Þ satisfies an
R-RGE and �-RGE

R
d

dR
��ðR; RÞ ¼ �R

X1
n¼0

�R
n

�
�sðRÞ
4�

�
nþ1

;

�
d

d�
��ðR;�Þ ¼ 2Re�E

X1
n¼0

�cusp
n

�
�sð�Þ
4�

�
nþ1

;

(39)

so that �
�
� ¼ �2e�E�cusp½�s�. For five flavors the anoma-

lous dimension coefficients up to three loops are

�R
0 ¼ 0;

�R
1 ¼ �43:954 260;

�R
2 ¼ 1615:422 28þ 54:619 554 1s2;

(40)

while the coefficients �
cusp
n are given in Eq. (A26). The

solution of Eq. (39) at NkLL is

��ðR;�Þ ¼ ��ðR�; ��Þ þ Re�E!½�cusp; �; R�
þ R�e

�E!½�cusp; R�; ���
þ�ðkÞ

QCDD
ðkÞ½�sðRÞ; �sðR�Þ�; (41)
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where the resummed !½�cusp; �;�0� is given in Eq. (A23)

and the resummed DðkÞ½�sðRÞ; �sðR�Þ� is given in
Eq. (A31). Both the gap subtraction and R-evolution equa-
tions at Oð�3

sÞ depend on the constant s2 which we vary
within its errors in our theory error scan. In our analysis,
when quoting numerical results, we always use the pa-

rameter ��ðR�; ��Þ at the reference scales R� ¼ �� ¼
2 GeV to satisfy the power counting criterion for R. We
then use Eq. (41) to run up to the scale R��S in order to
satisfy the large-log criterion. The precise R value is a
function of �, R ¼ Rð�Þ, and given in Sec. III with our
discussion of the profile functions. The RGE solution for
��ðR;�SÞ in Eq. (41) yields a similar solution for a running
�1ðR;�SÞ using Eq. (34). In Fig. 6 we show the result
for the running �1ðR;RÞ with the boundary value
�1ðR�; ��Þ ¼ 0:323 GeV. The anomalous dimension
and Rð�Þ profile function cause an increase in the size of
the power correction for increasing � and for increasing Q.

Note that our R-gap subtraction scheme differs from the
subtractions in the low-scale effective coupling model of
Ref. [35], which is not based on the factorization of the
soft large angle radiation but on the assumption that
the Oð�QCDÞ renormalon ambiguity is related entirely to

the low-energy behavior of the strong coupling �s. In the
effective coupling model the subtractions involve loga-
rithms lnð�=�IÞ, where � is the usual renormalization
scale of perturbation theory and �I is the low-momentum
subtraction scale, which is set to �I ¼ 2 GeV. The
scale �I plays a role very similar to the scale R in the
R-gap scheme. These logarithms are the analogs of LR in
Eq. (38), and, since � / Q, these logarithms also become
large. In the effective coupling model an appropriate re-
summation formalism for large logs in the subtractions
remains an open question.

In Fig. 7 we plot the absolute value of four components
of our cross section for our complete QCD result at N3LL0
order in the R-gap scheme at Q ¼ mZ. The cross-section

components include the singular terms (solid blue line),
nonsingular terms (dashed blue line), and separately the
contributions from terms that involve the subtraction co-
efficients �i, for both singular subtractions (solid red line)
and nonsingular subtractions (dashed red line). The sum of
these four components gives the total cross section (solid
black line). The subtraction components are a small part of
the cross section in the tail region but have an impact at the
level of precision obtained in our computation. In the peak
region at very small � the solid red singular subtraction
grows to be the same size as the solid blue singular term
and is responsible for yielding a smooth positive definite
total cross section. In both the peak and tail regions the
singular cross section dominates over the nonsingular cross
section. But as we approach the threshold �� 1=3 for the
far-tail region they appear with opposite signs and largely
cancel. This is clear from the figure where individually the
singular and nonsingular lines are larger than the total cross
section in this region. The same cancellation occurs for the
singular subtraction and nonsingular subtraction terms.

G. Bottom mass effects

In this work we implement bottom mass effects using
the SCET factorization framework for massive quarks
[14,41]. We include mb dependence in the kinematics,
which starts at tree level, and in the Oð�sÞ corrections in
the partonic singular and nonsingular distributions. We
also account for the resummation of large logs and for
hadronization effects in themb-dependent terms. The mass
dependent factorization theorem implies that the renormal-
ization group summation of logarithms is identical to the
one for massless quarks and that all power corrections of
type 1 from Eq. (9) are described by the nonperturbative
soft function Smod

� already defined for the massless
case [14,41]. We have already indicated this with the

FIG. 7 (color online). Components of the pure QCD cross
section. Here �1 ¼ 0:35 GeV and �sðmZÞ ¼ 0:114.

FIG. 6 (color online). The running of�1ðR;RÞ with R ¼ Rð�Þ,
plotted as a function of � for Q ¼ 35; 91:2; 207 GeV.
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convolution �d�̂b=d�  Smod
� shown in Eq. (4). Since for

the numerical analysis in this work we fit to data in the tail
region, where Q� > 6 GeV, and since the massive quark
thrust factorization theorem implies for the soft scale�S �
Q� > 6 GeV, we do not have to account for any flavor
threshold in the renormalization group evolution and can
always use nf ¼ 5. The mass dependent factorization

theorem further implies that the only nontrivial mb depen-
dence in the singular distribution arises in the thrust jet
function. Thus the jet scale �J �Q

ffiffiffi
�

p � mb for the re-

gion of our fit and we use the MS bottom mass �mbð�JÞ to
parameterize the mb corrections with �mbð �mbÞ ¼ 4:2 GeV

as our input value. Using the MS mass rather than the pole
mass avoids the appearance of large higher order effects
related to the Oð�QCDÞ pole mass renormalon.

We implement the partonic bottom mass corrections as
an additive term to the massless partonic N3LL0 cross
section. These corrections come from the production of
bottom quarks by the virtual � or Z:

�d�̂b

d�
¼ d�̂b

d�
� d�̂

�mb¼0
b

d�
; (42)

where both d�̂b=d� and d�̂ �mb¼0
b =d� are computed at

NNLL. Because the effect of �mb � 0 in �d�̂b=d� is
expected to be a percent level correction to the tail cross
section, we anticipate that the NNLL level of precision
suffices. (This is also justified a posteriori by the relatively
small effect of the mb corrections on our fit results.)

An important aspect in the discussion of the finite quark
mass effects is in which way hadron and heavy quark
masses need to be accounted for in the definition of thrust
in Eq. (1). In the experimental analyses Monte Carlo gen-
erators are used to convert the actual measurements to the
momentum variables needed to compute �, and this con-
version depends on hadron masses. Since the final-state
stable hadrons are light, these effects are related to non-
perturbative physics. Theoretically they are therefore im-
plicitly encoded within our fit of the nonperturbative
corrections. In the partonic theoretical computation light
hadron masses are neglected in the computation of the �
distribution, and it is consistent to set

P
ij ~pij ¼ Q in the

denominator of Eq. (1).
To understand how the heavy quark masses affect the

definition of thrust in Eq. (1) we recall that the partonic
computation relies on the inclusive nature of the measure-
ments and that, experimentally, only light and long-lived
hadrons reach the detectors and are accounted for in the ~pi

momenta that enter in computing �. Thus for heavy had-
rons containing bottom (or charm) quarks, it is their light
and long-lived hadronic decay products that enter the
particle sum

P
i. Because of energy conservation it is

therefore necessary to set
P

ij ~pij ¼ Q in the denominator
of the thrust definition of Eq. (1) for the leading power
partonic computations involving heavy quarks. On the
other hand, due to three-momentum conservation, it is

consistent to use the heavy quark three-momentum in the
numerator of Eq. (1) for the partonic computations. This
makes the partonic thrust computations involving heavy
quarks simple because we do not need to explicitly account
for the heavy quark decay in the calculations. Together
with the relation

P
ij ~pij ¼ Q in the denominator of Eq. (1)

this induces a shift of the observed thrust distribution for b
quarks to larger � values. Comparing to the massless quark
situation, the small-� end point is moved from 0 to

�min
b ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4 �m2

b=Q
2

q
; (43)

where �mb ¼ �mbð�JÞ. At tree level this shifts �ð�Þ !
�ð�� �min

b Þ. For the fixed-order result at Oð�sÞ the

three-jet end point is moved from 1=3 to �3jetb ¼ 5=3�
4=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3 �m2

b=Q
2

q
. At leading order in �m2

b=Q
2 � 1 we

have �min
b ¼ 2 �m2

b=Q
2 þOð �m4

b=Q
4Þ and �

3jet
b ¼

1=3þ 2 �m2
b=Q

2 þOð �m4
b=Q

4Þ, so the shift is the same for

both end points. Numerically, for �mb ¼ 4:2 GeV and Q ¼
ð35; 91:2; 207Þ GeV, � is shifted by ð0:029; 0:004; 0:0008Þ.
This shift is also observed experimentally in flavor tagged
thrust analyses [72–74].
In the following we outline the method used to compute

the partonic d�̂b=d�. Like for the massless case the distri-
bution is divided into singular and nonsingular parts:

d�̂b

d�
¼ d�̂s

b

d�
þ d�̂ns

b

d�
: (44)

The implementation of the bottom mass effects into the
singular distribution d�̂s

b=d� follows the NLL0 analysis in
Ref. [41], except that the evolution in the present work is
incorporated fully at NNLL order and that the exact par-
tonic threshold at � ¼ �min

b is accounted for:

d�̂s
b

d�
¼ Q�b

0

�
�mb

Q

�
Hv

QðQ;�HÞUHðQ;�H;�Þ

	
Z

dsds0J�bðs0; �mb;�JÞU�
Jðs� s0; �;�JÞ

	
Z

dkU�
Sðk;�;�SÞe�2ð�ðR;�sÞ=QÞð@=@�Þ

	 S
part
�

�
Q��Q�min

b � s

Q
� k;�S

�
þ ðMS-pole mass scheme change termsÞ; (45)

where �b
0ðxÞ ¼�bv

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x2

p
ð1þ 2x2Þþ�ba

0 ð1� 4x2Þ3=2.
Perturbative bottom mass effects in the soft function start

at two loops, so at Oð�sÞ Spart� remains unchanged. Since
we have �mb=Q � 1, only the thrust jet function for bottom
quark production, J�bðs; �mb;�Þ [75], receives modifica-
tions from the finitemb. These modifications lead to a shift
of the partonic threshold of the thrust jet function from
invariant mass p2 ¼ 0 to p2 ¼ �m2

b. In J�bðs; �mb;�Þ the

variable s ¼ p2 � �m2
b, and the presence of the mass leads
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to �min
b in Eq. (45). It also gives a more complicated form

for Oð�sÞ corrections in J�b involving regular functions
of m2

b=s in addition to singular terms / �ðsÞ and

½lnkðs=�2Þ=ðs=�2Þ�þ familiar from the massless quark jet
function. More details and explicit formulas can be found
in Refs. [14,41].

The bottom quark mass effects in the nonsingular par-
tonic distribution d�̂ns

b =d� are more complicated since

finite mass effects at Oð�sÞ differ for vector and axial-
vector current induced jet production:

d�̂ns
b

d�
¼ e�2ð�ðR;�sÞ=QÞð@=@�Þ

�
�bv

0 fvb

�
�;

�mb

Q
;
�ns

Q

�

þ �ba
0 fab

�
�;

�mb

Q
;
�ns

Q

��
þ ðMS-pole mass scheme change termsÞ: (46)

In our analysis we implement analytic expressions for the
nonsingular functions fvb and fab. The full Oð�sÞ distribu-
tions for � > 0 can be obtained from integrating the known
double differential b �b energy distribution for vector-
induced and axial-vector-induced production, respectively;
see e.g. Refs. [76,77].9 The corresponding Oð�sÞ coeffi-
cient of the �ð�� �min

b Þ term is obtained using the one-loop

correction to the total b �b cross section as a constraint. To
determine the nonsingular distributions fv;ab we proceed

much like for the massless case and subtract the singular
contributions expanded to Oð�sÞ from the full Oð�sÞ dis-
tribution. Further details and explicit formulas for fv;ab will

be given in a future publication.

H. QED corrections

For the electroweak corrections to the thrust distribution
we can distinguish purely weak contributions and QED
effects. The dominant effects to jet production from the
purely weak interactions are given by virtual one-loop
corrections to the hard Wilson coefficient HQ. Since the

contribution of the singular thrust distribution d�̂s=d�
dominates in the � ranges we use for our fits as well as in
the total cross section �tot ¼

R
d�d�=d� (see Fig. 7), the

purely weak corrections largely drop out when the distri-
bution is normalized to the total cross section. This is
consistent with the explicit computations carried out in
Refs. [43,44], where purely weak corrections were found
to be tiny. In our analysis we therefore neglect purely weak
loop effects.

For QED corrections the situation is more complicated
because, apart from virtual effects which again largely
cancel in the normalized distribution, one also has correc-
tions due to initial-state and final-state radiation. In addi-
tion, one has to account for the fact that the treatment of

QED effects in the thrust measurements depends on the
experiment. In general, using Monte Carlo simulations, all
experimental data were corrected to eliminate the effects
from initial-state radiation. However, they differ concern-
ing the treatment of final-state photon corrections, which
were either eliminated or included in the corrected data
sets. In Sec. VI we review information on the approach
followed by the various experimental collaborations. Since
many experiments did not remove final-state radiation, we
have configured a version of our code that adds final-state
photons and QED Sudakov effects and does so on an
experiment by experiment basis. A parametric estimate
of the potential impact of these QED effects on the mea-
surement of �sðmZÞ is �� 0:244�em=ðCF�sÞ � �1%,
where 0.244 is the average of the square of the electromag-
netic charges for the five lightest flavors.
We implement the leading set of QED corrections to all

components that go into the main factorization formula of
Eq. (4) in the massless quark limit counting �em � �2

s to
make a correspondence with Table II and remembering to
include cross terms such as terms ofOð�em�sÞ. Exceptions
where QED corrections are not included are the gap sub-
traction �ðR;�SÞ and the R-evolution equation for the gap

parameter ��. This is because QED effects do not lead to
Oð�QCDÞ infrared renormalon ambiguities. Most of the

required QED results can be obtained in a straightforward
manner from modifications of the known QCD corrections.
Our implementation of QED effects is briefly described

as follows: For the evolution of the strong coupling we
included the Oð�2

s�emÞ corrections to the QCD beta func-
tion. There are also effects from the evolution of the QED

coupling�emð�Þwhich we define in theMS scheme. In the
beta function for the QED coupling �em we account for the
dominant Oð�2

emÞ and the next-to-leading Oð�2
em�sÞ con-

tributions. For the full singular partonic distribution which
includes both QCD and QED effects we have

d�̂s

d�
¼ Q

X
I

�I
0H

I
QðQ;�HÞUI

HðQ;�H;�Þ

	
Z

dsds0JI�ðs0; �JÞU�I
J ðs� s0; �;�JÞ

	
Z

dkU�I
S ðk;�;�SÞe�2ð�ðR;�sÞ=QÞð@=@�Þ

	 SpartI�

�
Q�� s

Q
� k;�S

�
; (47)

where all factors now depend on the index I due to their
dependence on the electromagnetic charges qI¼uv;ua ¼
þ2=3 and qI¼dv;da;bv;ba ¼ �1=3. We implement one-
loop QED corrections in the hard factor HI

Q, the jet func-

tion JI�, and the soft functions S
partI
� . In the renormalization

group evolution factors UI
H, U

�I
J , and U�I

S we account for

the one-loop QED corrections to the cusp and the noncusp
anomalous dimensions. In the nonsingular partonic distri-
bution d�̂ns=d� the same approach is employed. Here the

9Results for bottom mass corrections at Oð�2
sÞ were deter-

mined in Refs. [78–80] but are not used in our analysis due to the
small effect the bottom mass corrections have in our fits.
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Oð�emÞ contributions that are analogous to the Oð�sÞ
terms are included by writing the full functions fI to be
used in Eq. (26) as

fI
�
�;
�ns

Q

�
¼ fIqcd

�
�;
�ns

Q

�
þ 3�ð�ÞðqIÞ2

8�
f1ð�Þ: (48)

The 1% parametric estimate and the moderate size of the
QED effects we observe from the results of our fits justifies
the neglect of higher order QED effects. A more precise
treatment of QED effects is also not warranted given the
level of accuracy of the Monte Carlo generators used to
correct the experimental data. More details and explicit
formulas for the QED corrections discussed here will be
given in a future publication.

III. PROFILE FUNCTIONS

The factorization formula for the singular partonic dis-
tribution d�̂s=d� in Eq. (11) is governed by three renor-
malization scales: the hard scale �H, the jet scale �J, and
the soft scale �S. To avoid large logarithms appearing in
the corrections to the hard coefficient HQ, the jet function

J�, and the soft function S�, the corresponding scales must
satisfy the following theoretical constraints in the three �
regions:

ð1Þ peak: �H �Q; �J �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�QCDQ

q
; �S * �QCD;

ð2Þ tail: �H �Q; �J �Q
ffiffiffi
�

p
; �S �Q�;

ð3Þ far tail: �H ¼ �J ¼ �S �Q: (49)

In the peak region, where the full nonperturbative function
Smod
� is relevant we have �H � �J � �S ��QCD. In the

tail region, where the nonperturbative effects are described
by a series of moments of the soft function we have �H �
�J � �S � �QCD. To achieve an accurate theoretical

description, we resum logarithms of � in the peak and
tail regions where �H, �J, and �S are separated. Finally,
in the far-tail region the partonic contributions are de-
scribed by usual fixed-order perturbation theory, and a
proper treatment of fixed-order multijet thresholds requires
that the three� parameters merge close together in the far-
tail region and become equal at � ¼ 0:5, with �H ¼ �J ¼
�S �Q � �QCD. Thus in the far-tail region logarithms of

� are not summed. The merging of �H, �J, and �S in the
far-tail region is of key importance for the cancellations
between singular and nonsingular cross sections shown in
Fig. 7. To obtain a continuous factorization formula that is
applicable in all three regions we use �-dependent renor-
malization scales, which we call profile functions. These
are smooth functions of � which satisfy the theoretical
constraints listed in Eq. (49).

In addition to the three renormalization scales of the
singular partonic distribution there are two more scales:
�ns and R. The renormalization scale �ns governs the
perturbative series for the function fI contained in the

nonsingular partonic distribution d�̂ns=d�. The subtraction
scale R arises when we implement the gap subtractions in
the R-gap scheme for �1 that remove the Oð�QCDÞ renor-
malon contained in the MS soft function. This R also
corresponds to the end point of the R evolution for
��ðR;�SÞ given in Eq. (41). To avoid large logarithms in
the subtraction �ðR;�SÞ, the value of R needs to be chosen
of order �S and is therefore also a function of �.
The factorization formula (4) is formally invariant under

Oð1Þ changes of the profile function scales, that is, changes
that do not modify the hierarchies. The residual depen-
dence on the choice of profile functions constitutes one part
of the theoretical uncertainties and provides a method to
estimate higher order perturbative corrections. We adopt a
set of six parameters that can be varied in our theory error
analysis which encode this residual freedom while still
satisfying the constraints in Eq. (49).
For the profile function at the hard scale, we adopt

�H ¼ eHQ; (50)

where eH is a free parameter which we vary from 1=2 to 2
in our theory error analysis.
For the soft profile function we use the form

�Sð�Þ ¼
8><
>:
�0 þ b

2t1
�2; 0 � � � t1;

b�þ d; t1 � � � t2;

�H � b
1�2t2

�
1
2 � �

�
2
; t2 � � � 1

2 :
(51)

Here, t1 and t2 represent the borders between the peak,
tail, and far-tail regions. �0 is the value of �S at � ¼ 0.
Since the thrust value where the peak region ends and
the tail region begins is Q-dependent, we define the
Q-independent parameter n1 ¼ t1ðQ=1 GeVÞ. To ensure
that �Sð�Þ is a smooth function, the quadratic and linear
forms are joined by demanding continuity of the function
and its first derivative at � ¼ t1 and � ¼ t2, which fixes
b ¼ 2ð�H ��0Þ=ðt2 � t1 þ 1

2Þ and d ¼ ½�0ðt2 þ 1
2Þ �

�Ht1�=ðt2 � t1 þ 1
2Þ. In our theory error analysis we vary

the free parameters n1, t2, and �0.
The profile function for the jet scale is determined by the

natural relation between the hard, jet, and soft scales:

�Jð�Þ ¼ ð1þ eJð12 � �Þ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�H�Sð�Þ

q
: (52)

The term involving the freeOð1Þ parameter eJ implements
a modification to this relation and vanishes in the multijet
region where � ¼ 1=2. We use a variation of eJ to include
the effect of such modifications in our estimation of the
theoretical uncertainties.
For the subtraction scale R the choice R ¼ �Sð�Þ

ensures that we avoid large logarithms in the �iðR;�SÞ
subtractions for the soft function. In the peak region,
however, it is convenient to deviate from this choice
so that the Oð�sÞ subtraction term �1ðR;�SÞ ¼
�0:848 826 lnð�S=RÞ is nonzero [see Eq. (38)]. We there-
fore use the form
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Rð�Þ ¼
�
R0 þ�1�þ�2�

2; 0 � � � t1;
�Sð�Þ; t1 � � � 0:5:

(53)

Imposing continuity of Rð�Þ and its first derivative
at � ¼ t1 requires �1 ¼ ð2d� 2R0 þ bt1Þ=t1 and �2 ¼
ð�dþ R0Þ=t21. The only free parameter is R0, which sets
the value of R at � ¼ 0. We take R0 ¼ 0:85�0 to give the
one-loop subtraction �1ðR;�SÞ the appropriate sign to
cancel the renormalon in the peak region. Since our focus
here is not the peak region, we leave further discussion of
the appropriate choice of R0 to a future publication.

In our theory error analysis we vary �ns to account for
our ignorance on the resummation of logarithms of �
in the nonsingular corrections. We account for the
possibilities

�nsð�Þ ¼
8<
:
�H; ns ¼ 1;
�Jð�Þ; ns ¼ 0;
1
2 ð�Jð�Þ þ�Sð�ÞÞ; ns ¼ �1:

(54)

We do not include the choice �ns ¼ �S since we find that
the choice of this small scale enhances the nonsingular
contributions in an unnatural way.

In total, we have introduced six free parameters which
we vary to account for renormalization scale uncertainties.
In our analysis we use the following central values and
variations: �0 ¼ 2þ0:5

�0:5 GeV, n1 ¼ 5þ3
�3, t2 ¼ 0:25þ0:05

�0:05,

eJ ¼ 0þ1�1, eH ¼ 2h with h ¼ 0þ1�1, and ns ¼ ð�1; 0; 1Þ. In
Fig. 8 we show the form of the profile functions for Q ¼
mZ ¼ 91:2 GeV and all profile parameters at their central
values. The dashed lines represent the functions Q

ffiffiffi
�

p
and

Q� which were the central choices for �Jð�Þ and �Sð�Þ
used in Ref. [20] but which do not meet in the multijet
region. In order for our profile for �Sð�Þ to join smoothly
onto�H and�Jð�Þ it is necessary for�Sð�Þ to have a slope
�2Q� in the tail region. Since lnð2Þ is not large our profiles
sum the same ln�’s as with the choice in Ref. [20] but

satisfy the criteria necessary to treat the multijet
thresholds.10

IV. NONPERTURBATIVE MODEL FUNCTION

The soft nonperturbative function Smod
� ðkÞ parameterizes

the dominant nonperturbative hadronic effects in the
thrust distribution. It describes the hadronization con-
tributions that arise from how soft hadrons that are radiated
in between the jets enter the thrust variable in Eq. (1).
It is normalized, has the property S�ð0Þ ¼ 0, is positive
definite, and has support for k � 0. To keep the represen-
tation of Smod

� as much as possible independent of a par-
ticular analytic parametrization we adopt the approach of
Ref. [38] and write the soft nonperturbative function as a
linear combination of an infinite set of basis functions
which can in principle describe any function with the
properties mentioned above. The model function we use
has the form

Smod
� ðk; �; fcigÞ ¼ 1

�

�XN
n¼0

cnfn

�
k

�

��
2
; (55)

where the basis functions are [38]

fnðzÞ ¼ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z3ð2nþ 1Þ

3

s
e�2zPnðgðzÞÞ;

gðzÞ ¼ 2

3
ð3� e�4zð3þ 12zþ 24z2 þ 32z3ÞÞ � 1;

(56)

and Pn are Legendre polynomials. For
P

ic
2
i ¼ 1 the

norm of Smod
� ðkÞ is unity: �0 ¼ 1. The choice of basis in

Eqs. (55) and (56) depends on specifying one dimensionful
parameter � which is characteristic of the width of the soft
function. With N ¼ 1 the parameter � would be redun-
dant, but in practice we truncate the sum in Eq. (55) at a
finite N, and then � is effectively an additional parameter
of the model function.
In this work we fit to experimental thrust data in the tail

region where the predominant effects of the soft model

function are described by its first moment �1ð�; ��; fcigÞ.
As explained below, we use the second moment
�2ð�; ��; fcigÞ to validate our error analysis and confirm
the validity of neglecting this parameter in the fit. Since in
the tail region the exact form of the soft model function is
not relevant, we takeN ¼ 2 setting cn>2 ¼ 0. Variations of
the parameter c1 are highly correlated with variations of �
and are hence not necessary for our purposes, so we set
c1 ¼ 0. For this case

FIG. 8 (color online). Profile functions for the renormalization
scales �Jð�Þ and �Sð�Þ and subtraction scale Rð�Þ that appear in
the factorization theorem. Shown are results for the central
parameter values at Q ¼ mZ.

10In Ref. [23] where NLL resummation is achieved by expo-
nentiation, the log resummation is turned off at a predefined
threshold �max with the log-R method [21]. In this approach the
transition to fixed order results in the multijet region is linear and
hence different from ours.
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�1 ¼ ��þ �

2
½c20 þ 0:201 354c0c2 þ 1:100 31c22�;

�2 ¼ ��2 þ ���½c20 þ 0:201 354c0c2 þ 1:100 31c22�

þ �2

4
½1:25c20 þ 1:036 21c0c2 þ 1:788 59c22�; (57)

and the normalization condition c20 þ c22 ¼ 1 can be

used to eliminate c0 > 0. Recall that in the soft model
function in the factorization theorem we must use

Smod
� ðk� 2 ��ðR;�SÞ; �; fcigÞ, where R ¼ Rð�Þ and �S ¼

�Sð�Þ are determined by the profile functions. When we

quote numbers for parameters we use �� ¼ ��ðR�; ��Þ and
hence �1;2 ¼ �1;2ðR�; ��Þ with reference scales �� ¼
R� ¼ 2 GeV. The running between the scales ðR;�SÞ and
ðR�; ��Þ is determined by Eq. (41).

For our default fit in the tail region only the parameter
�1 is numerically relevant so without loss of generality

we can take c0 ¼ 1 and c2 ¼ 0 and set ��ðR�; ��Þ ¼
0:05 GeV. In this case all higher moments �n>1 are de-

termined as a function of�1 and
��. For example, we have

�2 ¼ ð ��2 � 2 ���1 þ 5�2
1Þ=4 for the second moment.

In Sec. VII we analyze the dependence of our fit results
on changes of �2. Because c2 has a rather strong correla-
tion to �2, we implement these �2 variations by using
Eq. (57) and setting c2 to nonzero values. In this case we
can hold �1 fixed by a suitable choice of � for a given c2.

To obtain results from our code that do not include
nonperturbative corrections we can simply turn them off

by setting Smod
� ðkÞ ¼ �ðkÞ and �� ¼ � ¼ 0.

V. NORMALIZATION AND CONVERGENCE

The experimental data are normalized to the total num-
ber of events. In our prediction we therefore need to
normalize the distribution to the total cross section; i.e.
we have to calculate ð1=�Þd�=d�. Since the factorization
formula in Eq. (4) is valid for all thrust values we have the
option to use either the integral of our d�=d� distribution
for the norm or the available fixed-order result for the total
hadronic cross section.

The fixed-order total cross section is

�FO
tot ¼

X
�I

0R
I; Ruv ¼ Rdv ¼ Rua ¼ Rda ¼ RHad;

Rba ¼ RHad þRA þ �2
s

3�2
IðrtÞ; Rbv ¼ RHadþRV: (58)

Here RHad is the pure QCD cross section for massless
quarks, RA;V are mass corrections depending on mb=Q,

and IðrtÞ is the isosinglet correction from the axial anomaly
and large top-bottom mass splitting [56]. Setting � ¼ Q
the QCD cross sections for massless quarks at three
loops is

RHad ¼ 1þ 0:318 309 9�sðQÞ þ 0:142 784 9�2
sðQÞ

� 0:411 757�3
sðQÞ: (59)

We refer to the review in Ref. [81] for a discussion of the
fixed-order hadronic cross section. We note that the �s

series for the fixed-order hadronic cross section exhibits an
excellent and fast convergence. At Oð�3

sÞ the perturbative
uncertainty is much below the per mille level and hence
entirely negligible for the purpose of our analysis.
In the R-gap scheme in pure QCD, from a numerical

analysis at Q ¼ mZ, we find at N3LL0 order that the inte-
grated norm of the thrust distribution for the default
setting of all theory parameters (see Table III) gives about
0:99�FO

tot at Oð�3
sÞ. However, we also find that the pertur-

bative uncertainty of the integrated norm (determined by
the theory scan as described in Sec. VI) is about �2:5%,
which is substantially larger than for the fixed-order cross
section. This larger uncertainty is due to the perturbative
errors of the thrust distribution in the peak region. AtN3LL0
order we therefore employ the fixed-order cross section to
normalize the thrust distribution we use for the fits.
At the lower orders in the R-gap scheme (N3LL, NNLL0,

NNLL, and NLL0) we find that the integrated norm for
central theory parameters is more appropriate since the
order-by-order convergence to �FO

tot is substantially slower
than that of the rapid converging fixed-order QCD result in
Eq. (59). Again we find that the large perturbative uncer-
tainties in the peak region render the perturbative errors of
the integrated norm larger than those of the fixed-order
norm. We therefore evaluate the integrated norms at the
lower orders with the theory parameters fixed at their
default values (see Table III). This means that to estimate
the theoretical errors in our fits to experimental data at
orders below N3LL0 in the R-gap scheme, we vary the
theory parameters only for the distribution and not for

the norm computation. In the MS scheme for ��1 we also

TABLE III. Theory parameters relevant for estimating the
theory uncertainty, their default values, and the range of values
used for the theory scan during the fit procedure.

Parameter Default value Range of values

�0 2 GeV 1.5 to 2.5 GeV

n1 5 2 to 8

t2 0.25 0.20 to 0.30

eJ 0 �1, 0, 1
eH 1 0.5 to 2.0

ns 0 �1, 0, 1

s2 �39:1 �36:6 to �41:6
�
cusp
3 1553.06 �1553:06 to þ4659:18

j3 0 �3000 to þ3000
s3 0 �500 to þ500

�2 0 �1, 0, 1
�3 0 �1, 0, 1
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adopt the integrated norm at all orders. When we evaluate
the thrust distribution with log resummation but without
nonperturbative effects we use the same normalization
choices as for the R-gap scheme, which makes comparison
to earlier work in Sec. IX easier. For the situation where the
cross section is evaluated at fixed order, without resumma-
tion or nonperturbative effects, we use the appropriate
fixed-order normalization at each order.

As discussed in Sec. VI, to compare with the binned
experimental data we integrate our theoretical expression
for the distribution ð1=�Þðd�=d�Þ over each bin ½�1; �2�.
A potential alternative is to use theoretical results for the
cumulant

�ð�Þ ¼
Z �

0
d�0

1

�

d�

d�
ð�0Þ: (60)

Here one sums large logs of � rather than �0, and the SCET-
based cumulant has �-dependent profiles �ð�;�ið�ÞÞ. The
presence of �ið�Þ implies that the derivative of the cumu-
lant is not precisely equal to the distribution:

d

d�
�ð�;�ið�ÞÞ ¼ 1

�

d�

d�
ð�;�ið�ÞÞ þ d�ið�Þ

d�

	 @

@�i

Z �

0
d�0

d�

d�0
ð�0; �ið�ÞÞ: (61)

The difference coming from the second term in Eq. (61)
can be numerically important for certain observables. To
test this we consider using for the cross section integrated
over the bin ½�1; �2� the theoretical expression

�ð�2; �ið~�2ÞÞ ��ð�1; �ið~�1ÞÞ; (62)

and will examine several choices for ~�1;2.
One simple possibility is to use ~�1 ¼ �1 and ~�2 ¼ �2, so

that �ð�2; �ið�2ÞÞ � �ð�1; �ið�1ÞÞ is used. In this case
there is a spurious contribution from outside the ½�1; �2�
bin associated to the second term in Eq. (61):

�ð�1;�ið�2ÞÞ��ð�1;�ið�1ÞÞ

’ ð�2 � �1Þd�ið�1Þ
d�

@

@�i

Z �1

0
d�0

d�

d�0
ð�0;�ið�1ÞÞ; (63)

where the ’ holds under the approximation that the deriva-
tives do not change very much across the bin. With our
default setup the deviation of this simple choice for the
cumulants from our integrated result for the distribution is
2%–8% for � 2 ½0:1; 0:3�, bin size �2 � �1 ¼ 0:01, and
Q ¼ 91:2 GeV.11 In the far-tail region �1 2 ½0:3; 0:45�,
where the cross section becomes small, the deviation grows
from 8% to 1000%. These deviations are dominated by the
spurious contribution. The size of the spurious contribution
is not reduced by increasing the bin size to �2 � �1 ¼ 0:05

and is only mildly dependent on Q. Any choice in Eq. (62)
where ~�1 � ~�2 leads to a spurious contribution from
� 2 ½0; �1�.
If we instead use ~�1 ¼ ~�2 ¼ ð�1 þ �2Þ=2, then the

spurious contribution is identically zero. In this case the
difference between Eq. (62) and our integrated thrust dis-
tribution is reduced to 0.5% for �1 2 ½0:1; 0:3� and for
�1 2 ½0:3; 0:45� grows from 0.5% to only 20%. Although
dramatically reduced, the difference to the integrated dis-
tribution in the far-tail region is still quite sizable. This
discrepancy occurs because only for the distribution
ð1=�Þðd�=d�Þ can the �ið�Þ profile functions be con-
structed such that they satisfy exactly the multijet region
criteria discussed in Sec. III. Because of the above issues,
and since the binned data sets are intended as representa-
tions of the thrust distribution, we have determined that our
approach of integrating the thrust distribution is concep-
tually the best.
In the rest of this section we discuss the perturbative

behavior of the thrust distribution in the tail region. The
values of the physical parameters used in our numerical
analysis are collected in Eq. (A4). For our lower order fits
we always use the four-loop beta function in the running of
the strong coupling constant, as mentioned in the caption
of Table II. Furthermore, we always consider five active
flavors in the running and do not implement bottom thresh-
old corrections, since our lowest scale in the profile func-
tions (the soft scale �S) is never smaller than 6 GeV in the
tail where we perform our fit.
In Fig. 9 we display the normalized thrust distribution in

the tail thrust range 0:15< �< 0:30 at the different orders
taking �sðmZÞ ¼ 0:114 and �1ðR�; ��Þ ¼ 0:35 GeV as
reference values and neglecting mb and QED corrections.
We display the case Q ¼ mZ where the experimental mea-
surements from LEP-I have the smallest statistical uncer-
tainties. The qualitative behavior of the results agrees with
other c.m. energies. The colored bands represent the theo-
retical errors of the predictions at the respective orders,
which have been determined by the scan method described
in Sec. VI.
In Fig. 9(a) we show the Oð�sÞ (light/yellow), Oð�2

sÞ
(medium/purple), and Oð�3

sÞ (dark/red) fixed-order thrust
distributions without summation of large logarithms. The
common renormalization scale is chosen to be the hard
scale �H. In the fixed-order results the higher order cor-
rections are quite large and our error estimation obviously
underestimates the theoretical uncertainty of the fixed-
order predictions. This panel including the error bands is
very similar to the analogous figures in Refs. [4,6]. This
emphasizes the importance of summing large logarithms.
In Fig. 9(b) the fully resummed thrust distributions at

NLL0 (yellow), NNLL (green), NNLL0 (purple), N3LL
(blue), and N3LL0 (red) order are shown but without im-
plementing the soft nonperturbative function Smod

� or the
renormalon subtractions related to the R-gap scheme.

11For the profile functions used by Becher and Schwartz [20],
discussed in Sec. IX, this deviation has similar size but opposite
sign.
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The yellowNLL0 error band is mostly covered by the green
NNLL order band, and similarly the purple NNLL0 band is
covered by the blue N3LL one. Moreover the blue N3LL
band is within the purple NNLL band. Compared to the
fixed-order results, the improvement coming from the
systematic summation of large logarithms is obvious. In
particular, we see that our way of estimating theoretical
uncertainties is appropriate once the logarithms are prop-
erly summed. At N3LL and at N3LL0 order the relative
uncertainties of these resummed thrust distributions in the
tail region � 2 ½0:1; 0:3� are about �7:8% and �4:6%,
respectively.

The results shown in Fig. 9(c) are very similar to Fig. 9
(b) but now include also the soft nonperturbative function

Smod
� without renormalon subtractions, where ��1 is defined

in the MS scheme. In the tail region the soft nonperturba-
tive function leads to a horizontal shift of the distribution

towards larger thrust values by an amount �� / 2 ��1=Q.
This is clearly visible by comparing the values at � ¼ 0:15

where the curves intersect the y axis. Concerning the
uncertainty bands and the behavior of predictions at the
different orders the results are very similar to those in
Fig. 9(b).
Finally, in Fig. 9(d) we show the results with summation

of large logarithms including the soft model function with
renormalon subtractions, where�1 is defined in the R-gap
scheme. In the R-gap scheme the convergence of perturba-
tion theory is improved, and correspondingly the size of the
uncertainties from the same variation of the theory parame-
ters is decreased. The decrease of the uncertainties is
clearly visible comparing the blue N3LL and the red
N3LL0 uncertainty bands with Fig. 9(c). The relative un-
certainties of the thrust distribution at N3LL and at N3LL0
order in the tail region � 2 ½0:1; 0:3� are now about�3:4%
and �1:7%, respectively. This improvement illustrates the
numerical impact of theOð�QCDÞ renormalon contained in

the partonic soft function and shows the importance of
eliminating the Oð�QCDÞ renormalon.

FIG. 9 (color online). Theory scan for errors in pure QCD with massless quarks. The panels are (a) fixed-order, (b) resummation with
no nonperturbative function, (c) resummation with a nonperturbative function using the MS scheme for ��1 without renormalon
subtraction, and (d) resummation with a nonperturbative function using the R-gap scheme for �1 with renormalon subtraction.
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VI. EXPERIMENTAL DATA AND FIT PROCEDURE

Experimental data for thrust are available for various
c.m. energies Q between 14 and 207 GeV. In our analysis
we fit the factorization formula (4) in the tail region to
extract �s and�1. As our default data set we use the thrust
range 6=Q � � � 0:33, and we only employ data from
Q � 35 GeV. The lower boundary 6=Q removes data in
the peak where higher order moments �i�2 become im-
portant, while the upper boundary of 0.33 removes data in
the far-tail region where the �s�QCD=Q power corrections

become more important. We take Q � 35 GeV since a
more sophisticated treatment of b quark effects is required
at lower energies. The data we use are from TASSO with
Q ¼ f35; 44g GeV [82], AMY with Q ¼ 55:2 GeV [83],
JADE with Q ¼ f35; 44g GeV [84], SLD with Q ¼
91:2 GeV [85], L3 with Q ¼ f41:4; 55:3; 65:4; 75:7;
82:3; 85:1; 91:2; 130:1; 136:1; 161:3; 172:3; 182:8; 188:6;
194:4; 200:0; 206:2g GeV [72,86], DELPHI with Q ¼
f45; 66; 76; 89:5; 91:2; 93; 133; 161; 172; 183; 189; 192;
196; 200; 202; 205; 207g GeV [87–90], OPAL with Q ¼
f91; 133; 161; 172; 177; 183; 189; 197g GeV [91–93], and
ALEPH with Q ¼ f91:2; 133; 161; 172; 183; 189; 200;
206g GeV [94]. (For TASSO and AMY we have separated
statistical and systematic errors using information from the
experimental papers.) All data are given in binned form,
and we therefore integrate Eq. (4) over the same set of bins
to obtain appropriate theory results for the fit to the experi-
mental numbers. For the case that either � ¼ 6=Q or
� ¼ 0:33 are located within an experimental bin, that bin
is excluded from the data set if more than half of it lies
outside the chosen interval. For the Q>mZ data we re-
moved five bins with downward fluctuations that were
incompatible at the>10-sigma level with the cross section
implied by neighboring data points and other experimental
data in the same region. The list of these bins is L3
(136.1 GeV): [0.25, 0.275]; DELPHI (161 GeV): [0.32,
0.40]; DELPHI (183 GeV): [0.08, 0.09]; DELPHI
(196 GeV): [0.16, 0.18]; and ALEPH (200 GeV): [0.16,
0.20].12 Our default global data set contains a total of 487
bins. In the numerical analysis performed in Sec. VII we
also examine alternative global data sets with different �
ranges.

The data sets were corrected by the experiments to
eliminate the QED effects from initial-state radiation using
bin-by-bin correction factors determined from
Monte Carlo simulations. The primary aim of these cor-
rections was to eliminate the effective reduction of the c.m.
energy available for the production of the hadronic final
state. In addition, in the data sets from the TASSO, L3, and

ALEPH Collaborations the effects from final-state radia-
tion of photons were eliminated, while they have been fully
included in the data sets from the AMY, JADE, SLD,
DELPHI, and OPAL Collaborations. It should also be
noted that the approaches used by the experiments to treat
photon radiation were dependent on the c.m. energyQ. For
the Q ¼ mZ data any radiation of initial-state photons is
naturally suppressed as the effective c.m. energy for the
hadronic final state gets shifted away from the Z pole.
Therefore no specific photon cuts were applied for the
Q ¼ mZ data prior to the application of the bin-by-bin
correction factors. For the data taken off the Z pole for
either Q<mZ or Q>mZ the effects of initial-state radia-
tion are substantial and explicit hard photon cuts were
applied in the data taking prior to the application of the
bin-by-bin correction procedure. We therefore consider
the Q ¼ mZ data sets as more reliable concerning the
treatment of QED effects.
Since the size of the QED effects we find in the mea-

surements of �s and the soft function moment �1 is
comparable to the experimental uncertainties (see the re-
sults and discussions in Sec. VII), a less Monte Carlo
dependent treatment of QED radiation would be certainly
warranted. (See Ref. [44] for a recent discussion of QED
radiation based on full one-loop matrix elements.)
However, given that the impact of QED corrections we
find for �s and �1 is still smaller than the current theo-
retical uncertainties from QCD, we use for our default
numerical analysis the theory code with QED effects
switched on, as described in Sec. II H. In Sec. VII we
also present results when QED corrections are neglected
for all data sets and for the case when they are neglected
only for the TASSO, L3, and ALEPH data sets.
For the fitting procedure we use a �2 analysis, where we

combine the statistical and the systematic experimental
errors into the correlation matrix. We treat the statistical
errors of all bins as independent. The systematic errors of
the bins are correlated, but—unfortunately—practically no
information on the correlation is given in the experimental
publications. We therefore have to rely on a correlation
model. For our analysis we assume as the default that
within one thrust data set, i.e. for the set of thrust bins
obtained by one experiment at one Q value, the systematic
experimental errors are correlated in the minimal overlap
model used by the LEP QCD working group [91,94]. In the
minimal overlap model the off-diagonal entries of the
experimental covariance matrix for the bins i and j within
one data set are equal to ½minð�sys

i ;�
sys
j Þ�2, where �sys

i;j are

the systematic errors of the bins i and j. This model implies
a positive correlation of systematic uncertainties within
each thrust data set. As a cross-check that our default
correlation model does not introduce a strong bias we
also carry out fits where the experimental systematic errors
are assumed to be uncorrelated. Details are given in
Sec. VII.

12Four out of these bins lie in our � 2 ½6=Q; 0:33� default fit
range. If they are included in the default data set, then for our
final fit in Eq. (68) the �2 ¼ 439 increases by þ81 and the
central fit values show a slight decrease to �sðmZÞ ¼ 0:1132 and
a slight increase to �1 ¼ 0:336 GeV.
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To estimate the theoretical errors in the �s-�1 plane at
any order and for any approximation used for the factori-
zation formula (4), we carry out independent fits for 500
different sets of theory parameters which are randomly
chosen in the ranges discussed in the previous sections
and summarized in Table III. We take the area covered

by the points of the best fits in the �s-�1 plane as the
theory uncertainty treated like 1-sigma.13 We emphasize
that this method to estimate theoretical errors is more
conservative than the error band method [26] employed,
for example, in Refs. [20,22]. However, our method re-
quired considerably more computer power and it was
necessary to use the Tier-2 centers at Garching and the
Massachusetts Institute of Technology, as well as clusters
at the Max Planck Institut and the University of Arizona. In
Sec. VII we also present the outcome of other ways to
estimate the theoretical error.
It is an important element of our analysis that we

carry out global fits to the data from all values of Q � 35
(and all experiments). This is motivated by the strong
degeneracy between �s and �1 in the tail region which
can only be lifted when data from different Q values are
simultaneously included in the fits.14 In Fig. 10 the differ-
ence d�=d�� ðd�=d�Þdefault is displayed for 0:08 � � �
0:30 andQ ¼ 35, 91.2, and 206 GeV. Here ðd�=d�Þdefault is
the cross section for the default setting of the theory
parameters with �sðmZÞ ¼ 0:114 and �1 ¼ 0:35 GeV,
and for d�=d� we vary either �sðmZÞ by �0:001 (solid
red curves) or 2�1 by �0:1 GeV (dashed blue curves)
from their default values. The figures show that in the
tail region changes in �s can be compensated by changes
in �1. This degeneracy makes it impossible to determine
�s and �1 simultaneously with small uncertainties from
tail fits that use data from one Q value (or from a narrow
range of Q values). On the other hand, we see that the
correlation is Q-dependent when considering a large
enough range of Q values. In our fits it is particularly
important to include, apart from the data from Q ¼ mZ,
the low-energy data from JADE, TASSO, and AMY and
the high energy data from the LEP-II experiments.
Although the errors in these analyses are larger than from
the high-statistics Q ¼ mZ run at LEP-I these data sets are
essential for breaking the degeneracy and simultaneously
extracting �s and �1.

VII. NUMERICAL ANALYSIS

Having explained all ingredients of the factorization
formula (4) and the fit procedure we are now in the position
to discuss the numerical results of our analysis based on a
global fit to the experimental data for Q � 35 GeV in the
tail region. In the tail region the dominant power correc-
tions are encoded in the first moment �1 [see Eq. (6)], so
we can determine �sðmZÞ and �1 from a simultaneous fit.
In this section we examine in detail the numerical results of

FIG. 10 (color online). Difference between default cross sec-
tion and the cross section varying only one parameter as a
function of �. We vary �sðmZÞ by �0:001 (solid red curves),
2�1 by �0:1 GeV (dashed blue curves), and c2 by �0:5 (dash-
dotted green curves). The plot is shown for three different values
of the center-of-mass energy: (a) Q ¼ 35 GeV,
(b) Q ¼ 91:2 GeV, and (c) Q ¼ 206 GeV.

13This corresponds to a 1-sigma error (68% C.L.) in �s as well
as in �1.
14The presence of this degeneracy is presumably also related to
why Monte Carlo generators that are tuned to LEP data tend to
have smaller hadronization corrections at Q ¼ mZ than at larger
Q values. See Sec. IX.
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our fits concerning the treatment of the perturbative,
hadronization, and experimental errors, QED and bottom
mass corrections, and their dependence on the choice of the
data set. We note that the values quoted for�1 in the R-gap
scheme are given for reference scales R� ¼ �� ¼ 2 GeV;
see Sec. II F.

A. Theory scan

In Fig. 11 the best fit points of the theory parameters
scan in the �s-2�1 plane are displayed at NLL0 (brown),
NNLL (magenta), NNLL0 (green), N3LL (blue), and
N3LL0 (red) order. The fit results at N3LL0 order include
bottom mass and QED corrections. In Fig. 11(a) the results

FIG. 11 (color online). Distribution of best fit points in the �sðmZÞ-2�1 and �sðmZÞ-2 ��1 planes. Panel (a) shows results including
perturbation theory, resummation of the logs, the soft nonperturbative function, and �1 defined in the R-gap scheme with renormalon
subtractions. Panel (b) shows the results as in panel (a) but with ��1 defined in theMS scheme without renormalon subtractions. In both
panels the respective total (experimentalþ theoretical) 39% C.L. standard error ellipses are displayed (thick dark red lines), which
correspond to 1 sigma (68% C.L.) for either one-dimensional projection.

FIG. 12 (color online). Distribution of best fit points in the �sðmZÞ-�2=dof plane. Panel (a) shows the �2=dof values of the points
given in Fig. 11(a). Panel (b) shows the �2=dof values of the points given in Fig. 11(b).
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in the R-gap scheme with renormalon subtractions are

shown, and in Fig. 11(b) the results in the MS scheme
without gap subtractions are given.

At each order 500 fits were carried out with the theory
parameters randomly chosen in the ranges given in
Table III. As described in Sec. VI, we take the size of the
area in the �s-2�1 plane covered by the best fit points as a
measure for the theoretical uncertainties. To visualize the
theoretical uncertainties we have colored the respective
areas according to the orders. The fit results clearly show
a substantial reduction of the theoretical uncertainties with
increasing orders. Explicit numerical results for the respec-
tive central values (determined by the mean of the respec-
tive maximal and minimal values) and the theory errors
(determined by half of the difference between maximal and

minimal values) for �s and �1 are given in Tables IV and
V, respectively. We will consider these theory errors as
1-sigma. At N3LL0 order with �1 in the R-gap scheme
the theory error for �sðmZÞ is �0:0009 compared to

�0:0021 with ��1 in the MS scheme. Also at NNLL0 and
N3LL we see that the removal of the Oð�QCDÞ renormalon

leads to a reduction of the theoretical uncertainties by

about a factor of 2 in comparison to the results with ��1

in the MS scheme without renormalon subtraction. The
proper treatment of the renormalon subtraction is thus a
substantial part of a high-precision analysis for �1 as well
as for �s.
It is instructive to analyze the minimal �2 values for the

best fit points shown in Fig. 11. In Fig. 12 the distributions
of the best fits in the �s-�

2
min=dof plane are shown using

the color scheme of Fig. 11. Figure 12(a) displays the
results in the R-gap scheme, and Fig. 12(b) the ones in

the MS scheme. For both schemes we find that the �2
min

values and the size of the covered area in the �s-�
2
min=dof

plane systematically decrease with increasing order. While

the analysis in the MS scheme for ��1 leads to �2
min=dof

values around unity and thus an adequate description of the
entire global data set at N3LL0 order, we see that account-
ing for the renormalon subtraction in the R-gap scheme
leads to a substantially improved theoretical description
having �2

min=dof values below unity already at NNLL0 and
N3LL orders, with the N3LL0 order result slightly lower at
�2
min=dof ’ 0:91. This demonstrates the excellent descrip-

tion of the experimental data contained in our global data
set. It also validates the smaller theoretical uncertainties we
obtain for �s and �1 at N

3LL0 order in the R-gap scheme.
As an illustration of the accuracy of the fit, in Fig. 13 we

show the theory thrust distributions at Q ¼ mZ for the full
N3LL0 order with the R-gap scheme for�1, for the default
theory parameters and the corresponding best fit values
shown in bold in Tables IV and V. The pink band displays
the theoretical uncertainty from the scan method. The fit

FIG. 13 (color online). Thrust distribution at N3LL0 order and
Q ¼ mZ including QED and mb corrections using the best fit
values for �sðmZÞ and�1 in the R-gap scheme given in Eq. (68).
The pink band represents the perturbative error determined from
the scan method described in Sec. VI. Data from DELPHI,
ALEPH, OPAL, L3, and SLD are also shown.

TABLE V. Theory errors from the parameter scan and central
values for�1 defined at the reference scales R� ¼ �� ¼ 2 GeV
in units of GeV at various orders. The N3LL0 value above the
blank row is our final scan result, while the N3LL0 values below
the blank row show the effect of leaving out the QED corrections
and leaving out both the b mass and QED, respectively. The
central values are the average of the maximal and minimal
values reached from the scan.

Order ��1 (MS) �1 (R-gap)

NLL0 0:264� 0:213 0:293� 0:203
NNLL 0:256� 0:197 0:276� 0:155
NNLL0 0:283� 0:097 0:316� 0:072
N3LL 0:274� 0:098 0:313� 0:071
N3LL0 (full) 0:252� 0:069 0:323� 0:045

N3LL0
ðQCDþmbÞ 0:238� 0:070 0:310� 0:049

N3LL0
ðpure QCDÞ 0:254� 0:070 0:332� 0:045

TABLE IV. Theory errors from the parameter scan and central
values for �sðmZÞ at various orders. The N3LL0 value above the
blank row is our final scan result, while the N3LL0 values below
the blank row show the effect of leaving out the QED corrections
and leaving out both the b mass and QED, respectively. The
central values are the average of the maximal and minimal
values reached from the scan.

Order �sðmZÞ (with ��MS
1 ) �sðmZÞ (with �

Rgap
1 )

NLL0 0:1203� 0:0079 0:1191� 0:0089
NNLL 0:1222� 0:0097 0:1192� 0:0060
NNLL0 0:1161� 0:0038 0:1143� 0:0022
N3LL 0:1165� 0:0046 0:1143� 0:0022
N3LL0 (full) 0:1146� 0:0021 0:1135� 0:0009

N3LL0
ðQCDþmbÞ 0:1153� 0:0022 0:1141� 0:0009

N3LL0
ðpure QCDÞ 0:1152� 0:0021 0:1140� 0:0008
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result is shown in comparison with data from DELPHI,
ALEPH, OPAL, L3, and SLD and agrees very well. (Note
that the theory values displayed are actually binned accord-
ing to the ALEPH data set and then joined by a smooth
interpolation.)

B. Band method

It is useful to compare our scan method to determine
the perturbative errors with the error band method [26] that
was employed in the analyses of Refs. [20,22,25]. In the
error band method first each theory parameter is varied
separately in the respective ranges specified in Table III
while the rest are kept fixed at their default values. The
resulting envelope of all these separate variations with the
fit parameters �sðmZÞ and �1 held at their best fit values
determines the error bands for the thrust distribution at the
different Q values. Then, the perturbative error is deter-
mined by varying �sðmZÞ keeping all theory parameters to
their default values and the value of the moment �1 to its
best fit value. The resulting perturbative errors of �sðmZÞ
for our full N3LL0 analysis in the R-gap scheme are given
in the first line of Table VI. In the second line the corre-

sponding errors for �sðmZÞ in the MS scheme for ��1 are
displayed. The left column gives the error when the band
method is applied such that the �sðmZÞ variation leads to
curves strictly inside the error bands for all Q values. For
this method it turns out that the band for the highest Q
value is the most restrictive and sets the size of the error.
The resulting error for the N3LL0 analysis in the R-gap
scheme is more than a factor of 2 smaller than the error
obtained from our theory scan method, which is shown in
the right column. Since the highQ data have a much lower
statistical weight than the data from Q ¼ mZ, we do not
consider this method to be sufficiently conservative and
conclude that it should not be used. The middle column
gives the perturbative error when the band method is
applied such that the �sðmZÞ variation minimizes a �2

function which puts equal weight to allQ and thrust values.
This second band method is more conservative, and for the

N3LL0 analyses in the R-gap and the MS schemes the

resulting errors are only 10% smaller than in the scan
method that we have adopted. The advantage of the scan
method we use is that the fit takes into account theory
uncertainties including correlations.

C. Effects of QED and the bottom mass

Given the high precision we can achieve at N3LL0 order
in the R-gap scheme for �1, it is a useful exercise to
examine also the numerical impact of the corrections aris-
ing from the nonzero bottom quark mass and the QED
corrections. In Fig. 14 the distributions of the best fit points
in the �s-2�1 plane at N3LL0 in the R-gap scheme are
displayed for pure massless QCD (light green points),
including the bottom mass corrections (medium blue
points) and the bottommass as well as the QED corrections
(dark red points). The distribution of the best fit points with
bottom mass and QED corrections (dark red points) was
already shown in Fig. 11(a). The large black dots represent
the corresponding central values. The corresponding nu-
merical results are shown at the bottom of Tables IVand V.
We see that the QED and bottom quark mass effects are

somewhat smaller than the theoretical errors of the N3LL0
analysis but not negligible. Moreover we find that the
qualitative impact of the QED and the bottom quark
mass effects is quite intuitive: The nonzero bottom quark
mass primarily causes a horizontal shift of the thrust dis-
tribution towards larger � values, since the small-� thresh-
old for massive quark production is moved to a finite �
value. Here this is compensated primarily by a reduced
value of �1. Concerning QED effects, they cause an
effective increase of the coupling strength in the final-state
interactions leading primarily to a decrease of �s in the fit.
As explained in Sec. VI the experimental correction

procedures applied to the AMY, JADE, SLD, DELPHI,
and OPAL data sets were designed to eliminate initial-state
photon radiation, while those of the TASSO, L3, and
ALEPH Collaborations eliminated initial- and final-state
radiation. It is straightforward to test for the effect of these
differences in the fits by using our theory code with QED
effects turned on or off depending on the data set. Since our

TABLE VI. Theoretical uncertainties for �sðmZÞ obtained at N3LL0 order from two versions of
the error band method and from our theory scan method. The uncertainties in the R-gap scheme
(first line) include renormalon subtractions, while the ones in the MS scheme (second line) do
not and are therefore larger. The same uncertainties are obtained in the analysis without the
nonperturbative function (third line). Larger uncertainties are obtained from a pure Oð�3

sÞ fixed-
order analysis (lowest line). Our theory scan method is more conservative than the error band
method.

Band method 1 Band method 2 Our scan method

N3LL0 with �
R gap
1 0.0004 0.0008 0.0009

N3LL0 with ��MS
1 0.0016 0.0019 0.0021

N3LL0 without Smod
� 0.0018 0.0021 0.0034

Oð�3
sÞ fixed-order 0.0018 0.0026 0.0046
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�2 procedure treats data from different experiments as
uncorrelated it is also easy to implement this technically.
Using ourN3LL0 order code in the R-gap schemewe obtain
the central values�sðmZÞ ¼ 0:1136 and�1 ¼ 0:318 GeV,
indicated by the hollow circle in Fig. 14. Comparing to our
default results given in Tables IVand V, which are based on
the theory code where QED effects are included for all data
sets, we see that the central value for �s is larger by 0.0001
and the one for �1 is smaller by 0.006 GeV. This shift is
substantially smaller than our perturbative error and justi-
fies our choice to use the theory code with QED effects
included as the default code for our analysis.

D. Hadronization and experimental error

An important element in the construction of the �2

function used for our fit procedure is the correlation model
for the systematic uncertainties given for the experimental
thrust bins. The results discussed above rely on the mini-
mal overlap model for the systematic experimental errors
explained in Sec. VI. The 1-sigma ellipse based on the
central values of Eq. (64) and centered around ð�s; 2�1Þ ¼
ð0:1135; 0:647 GeVÞ is shown in Fig. 15 by the red solid
ellipse. This ellipse yields the experimental errors and
hadronization uncertainty related to �1 in our analysis.
We find that the size and correlation coefficients of the
1-sigma error ellipses at N3LL0 order of all fits made in our
theory scan are very similar, and hence we can treat the

theory error and these hadronization and experimental
errors as independent.
The correlation matrix of the red solid error ellipses is

(i; j ¼ �s; 2�1)

Vij ¼ �2
�s

��s
�2�1

���

��s
�2�1

��� �2
2�1

 !

¼ 3:29ð16Þ	 10�7 �2:30ð12Þ	 10�5 GeV
�2:30ð12Þ	 10�5 GeV 1:90ð18Þ	 10�3 GeV2

� �
;

(64)

where the correlation coefficient is significant and reads

��� ¼ �0:9176ð60Þ: (65)

The numbers in the parentheses represent the variance
from the theory scan. From Eq. (64) it is straightforward
to extract the experimental error for �s and �1 and the
error due to variations of �1 and �s, respectively:

�exp
�s

¼ ��s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

��

q
¼ 0:0002;

�exp
�1

¼ ��1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

��

q
¼ 0:009 GeV;

��1
�s

¼ ��s
j���j ¼ 0:0005;

�
�s

�1
¼ ��1

j���j ¼ 0:020 GeV:

(66)

For �s, the error due to �1 variations is the dominant part
of the hadronization uncertainty. The blue dashed ellipse in
Fig. 15 shows the total error in our final result quoted in
Eq. (68) below.

FIG. 14 (color online). Distribution of best fit points at N3LL0
order with �1 in the R-gap scheme in pure QCD (light green),
includingmb effects (medium blue) and includingmb effects and
QED corrections (dark red). Solid circles indicate the central
points for these three cases. The hollow circle represents the
central point from the global fit with QED corrections neglected
for the data from TASSO, L3, and ALEPH but included for all
other data sets.

FIG. 15 (color online). Experimental 1-sigma standard error
ellipse (red solid) in the �s-2�1 plane. The larger ellipse shows
the total uncertainty including theory errors (blue dashed). The
fit is at N3LL0 order in the R-gap scheme for�1 using the central
values of the correlation matrix given in Eq. (64). The center
of the ellipse are the central values of our final result given in
Eq. (68).
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The correlation exhibited by the red solid error ellipse in
Fig. 15 is indicated by the line describing the semimajor
axis

�1

41:5 GeV
¼ 0:1213� �sðmZÞ: (67)

Note that extrapolating this correlation to the extreme
case where we neglect the nonperturbative corrections
(�1 ¼ 0) gives �sðmZÞ ! 0:1213. This value is consistent
with the fits in Refs. [22,25] shown in Table I, which are
dominated by Q ¼ mZ where the Monte Carlo hadroniza-
tion uncertainties are smallest.

E. Individual theory scan errors

It is a useful exercise to have a closer look at the size of
the theory uncertainties caused by the variation of each of
the theory parameters we vary in our fit procedure in order
to assess the dominant sources of theory errors. In Fig. 16
two bar charts are shown for the variation of the best fit
values for �sðmZÞ and �1ðR�; ��Þ at N3LL0 order in the
R-gap scheme with our default theory parameters. The bars
show individual up-down variations of each of the theory
parameters in the ranges given in Table III. The changes of
the best fit values related to up variations of the theory
parameters are given in dark blue, and those related to
down variations are given in light green.

We see that the dominant theory uncertainties are related
to variations of the profile functions ðn1; t2; eJ; eHÞ and the
renormalization scale parameter (ns) for the nonsingular
partonic distribution d�̂ns=d�. The uncertainties related to
the numerical errors of the perturbative constants (s2, s3,
and j3) as well as the numerical errors in the extraction of

the nonsingular distribution for small � values (�2 and �3)
are—with the exception of s2—much smaller and do
not play an important role. The theory error related to the
unknown 4-loop contribution to the cusp anomalous
dimension is negligible. Adding quadratically the symme-
trized individual errors shown in Fig. 16 for each parame-
ter, we find 0.0006 for �s and 0.029 for �1. This is about
2=3 of the theoretical uncertainty we have obtained by the
theory parameter scan, and it demonstrates that the theory
parameter scan represents a more conservative method to
estimate the theory error.
In Fig. 16 we have also shown the variation of the best fit

values for �sðmZÞ and�1ðR�; ��Þ due to variations of the
second soft function moment parameter �2. Our default
choice for the parametrization of the soft function Smod

�

uses c0 ¼ 1 and cn>0 ¼ 0 with ��ðR�; ��Þ ¼ 0:05 GeV.
In this case � is the only variable parameter of the soft
model function Smod

� , and �2 is predetermined by Eq. (57)
with c2 ¼ 0. As explained in Sec. IV we modify �2 by
setting c2 to nonzero values. It is instructive to discuss the
�2 values one should consider. From the Cauchy-Schwarz
inequality one can show that �2=�

2
1 � 1, giving a strict

lower bound on�2. This bound can only be reached if S
mod
�

is a delta function. Moreover, if Smod
� is positive definite,

vanishing at k ¼ 0, has a width of order �QCD, has its

maximum at a k value of order �QCD, and has an expo-

nential falloff for large k, then one finds�2=�
2
1 < 1:5. We

therefore adopt the range 1 � �2=�
2
1 � 1:5 as a conser-

vative �2 variation to carry out an error estimate. For our
default parametrization we have �2=�

2
1 ¼ 1:18 and

changing c2 between �0:5 gives a variation of �2=�
2
1

between 1.05 and 1.35. We find that the best fit values
for�s and�1 are smooth linear functions of�2=�

2
1 which

allows for a straightforward extrapolation to the conserva-
tive range between 1.0 and 1.5. The results for the varia-
tions of the best fit values for �sðmZÞ and �1 for
�2=�

2
1 ¼ 1:18þ0:32

�0:18 read ð��sðmZÞÞ�2
¼ þ0:00017

�0:00013 and

ð��1Þ�2
¼ þ0:011

�0:015 and are also shown in Fig. 16. The

symmetrized version of these errors are included in our
final results. For our final results for �sðmZÞ we add the
uncertainties from �1 and the one from �2 quadratically
giving the total hadronization error. For �1ðR�; ��Þ we
quote the error due to �2 separately.

F. Final results

As our final result for �sðmZÞ and�1ðR�; ��Þ, obtained
at N3LL0 order in the R-gap scheme for �1, including
bottom quark mass and QED corrections we obtain

�sðmZÞ ¼ 0:1135� ð0:0002Þexp � ð0:0005Þhadr
� ð0:0009Þpert;

�1ðR�; ��Þ ¼ 0:323� ð0:009Þexp � ð0:013Þ�2

� ð0:020Þ�sðmZÞ � ð0:045Þpert GeV; (68)

FIG. 16 (color online). Variations of the best fit values for
�ðmZÞ and �1 from up (dark shaded blue) and down (light
shaded green) variations for the theory parameters with respect
to the default values and in the ranges given in Table III. For the
variation of the moment �2 we use �2=�

2
1 ¼ 1:18þ0:32

�0:18 as

explained in the text.

THRUST AT N3LL WITH POWER CORRECTIONS AND . . . PHYSICAL REVIEW D 83, 074021 (2011)

074021-29



where R� ¼ �� ¼ 2 GeV and we quote individual
1-sigma errors for each parameter. Equation (68) is the
main result of this work. In Figs. 15 (blue dashed line) and
11(a) (thick dark red line) we have displayed the corre-
sponding combined total (experimentalþ theoretical)
standard error ellipse. To obtain the combined ellipse we
take the theory uncertainties given in Tables IV and V
together with the �2 uncertainties, adding them in quad-
rature. The central values in Eq. (68) are determined by the
average of the respective maximal and minimal values of
the theory scan and are very close to the central values
obtained when running with our default theory parameters.
The fit has �2=dof ¼ 0:91with a variation of�0:03 for the
displayed scan points. Having added the theory scan
and �2 uncertainties reduces the correlation coefficient
in Eq. (65) to �total

�� ¼ �0:212. As a comparison we

have also shown in Fig. 11(b) the combined total
(experimentalþ theoretical) error ellipse at N3LL0 in the

MS scheme for ��1 where the Oð�QCDÞ renormalon is not

subtracted.
Since our treatment of the correlation of the systematic

experimental errors is based on the minimal overlap model,
it is instructive to also examine the results treating all the
systematic experimental errors as uncorrelated. At N3LL0
order in the R-gap scheme the results that are analogous
to Eqs. (68) read �sðmZÞ ¼ 0:1141� ð0:0002Þexp �
ð0:0005Þhadr � ð0:0010Þpert and �1ðR�;��Þ ¼ 0:303�
ð0:006Þexp�ð0:013Þ�2

�ð0:022Þ�s
�ð0:055Þpert GeV with

a combined correlation coefficient of �total
�� ¼ �0:180. The

results are compatible with the results of Eqs. (68) and
indicate that the ignorance of the exact correlation of
the systematic experimental errors does not crucially affect
the outcome of the fit.

G. Data set choice

We now address the question to which extent the results
of Eqs. (68) depend on the thrust ranges contained in the
global data set used for the fits. Our default global data set
accounts for all experimental thrust bins for Q � 35 in the
intervals ½�min; �max� ¼ ½6=Q; 0:33�. (See Sec. VI for more
details.) This default global data set is the outcome of a
compromise that (i) keeps the � interval large to increase
statistics, (ii) sets �min sufficiently large such that the
impact of the soft function moments �i with i � 2 is
small, and (iii) takes �max sufficiently low to exclude the
far-tail region where the missing order �s�QCD=Q correc-

tions potentially become important.
In Fig. 17 the best fits and the respective experimental

39% and 68% C.L. error ellipses for the default values of
the theory parameters given in Table III are shown for
global data sets based on different � intervals. The results
for the various � intervals are each given in different colors.
The results for our default global data set is given in red,
and the subscript ‘‘strict’’ for some intervals means that
bins are included in the data set if more than half their

range is contained within the interval. For intervals without
a subscript the criterion for selecting bins close to the
boundaries of the � interval is less strict and generically,
if the �min and �max values fall in such bins, these bins are
included. The numbers in superscript for each of the �
intervals given in the figure refer to the total number of bins
contained in the global data set. We observe that the main
effect on the outcome of the fit is related to the choice of
�min and to the total number of bins. Interestingly all error
ellipses have very similar correlation and are lined up
approximately along the line

�1

50:2 GeV
¼ 0:1200� �sðmZÞ: (69)

Lowering �min increases the dependence on �2 and
leads to smaller �s and larger �1 values. On the other
hand, increasing �min leads to a smaller data set and to
larger experimental error ellipses and hence to larger
uncertainties.
It is an interesting but expected outcome of the fits that

the pure experimental error for �s (the uncertainty of �s

for fixed central �1) depends fairly weakly on the � range
and the size of the global data sets shown in Fig. 17. If we
had a perfect theory description, then we would expect that
the centers and the sizes of the error ellipses would be
statistically compatible. Here this is not the case, and one
should interpret the spread of the ellipses shown in Fig. 17
as being related to the theoretical uncertainty contained in

FIG. 17 (color online). The smaller elongated ellipses show
the experimental 39% C.L. error (1 sigma for �s) and best fit
points for different global data sets at N3LL0 order in the R-gap
scheme and including bottom quark mass and QED effects. The
default theory parameters given in Table III are employed. The
larger ellipses show the combined theoretical plus experimental
error for our default data set with 39% C.L. (solid line, 1 sigma
for one dimension) and 68% C.L. (dashed line).
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our N3LL0 order predictions. In Fig. 17 we have also dis-
played the combined (experimental and theoretical) 39%
C.L. standard error ellipse from our default global data
set which was already shown in Fig. 11(a) (and is 1-sigma,
68% C.L., for either one-dimensional projection). We also
show the 68% C.L. error ellipse by a dashed red line, which
corresponds to 1-sigma knowledge for both parameters. As
we have shown above, the error in both the dashed and
solid larger ellipses is dominated by the theory scan uncer-
tainties; see Eqs. (68). The spread of the error ellipses from
the different global data sets is compatible with the 1-sigma
interpretation of our theoretical error estimate and hence is
already represented in our final results.

H. Analysis without power corrections

Using the simple assumption that the thrust distribution
in the tail region is proportional to �s and that the main
effect of power corrections is a shift of the distribution in �,
we have estimated in Sec. I that a 300 MeV power correc-
tion will lead to an extraction of �s fromQ ¼ mZ data that
is ��s=�s ’ ð�9� 3Þ% lower than an analysis without
power corrections. In our theory code we can easily elimi-
nate all nonperturbative effects by setting Smod

� ðkÞ ¼ �ðkÞ
and �� ¼ � ¼ 0. At N3LL0 order and using our scan
method to determine the perturbative uncertainty a global
fit to our default data set yields �sðmZÞ ¼ 0:1241�
ð0:0034Þpert which is indeed 9% larger than our main result

in Eq. (68) which accounts for nonperturbative effects. It is
also interesting to do the same fit with a purely fixed-order
code, which we can do by setting �S ¼ �J ¼ �H to
eliminate the summation of logarithms. The corresponding
fit yields �sðmZÞ ¼ 0:1295� ð0:0046Þpert, where the dis-

played error has again been determined from the theory
scan which in this case accounts for variations of �H and
the numerical uncertainties associated with �2 and �3.

These results have been collected in Table VII together
with the �s results of our analyses with power corrections

in the R-gap and the MS schemes. For completeness we
have also displayed the respective �2=dof values which
were determined by the average of the maximal and the
minimum values obtained in the scan. A detailed compari-
son of central fit values with Refs. [20,22] is given below in
Sec. IX. Note that our fixed-order perturbative uncertainty

of �0:0046 is 60% larger than the �0:0029 perturbative
uncertainty quoted in Ref. [22] at this order. Also our
uncertainty of �0:0034 at N3LL0 without Smod

� is signifi-
cantly larger than the �0:0012 perturbative uncertainty of
Ref. [20] at this order. This highlights the more conserva-
tive nature of our scan method for perturbative errors.

VIII. FAR-TAIL AND PEAK PREDICTIONS

The factorization formula (4) can be simultaneously used
in the peak, tail, and far-tail regions. To conclude the
discussion of the numerical results of our global analysis
in the tail region, we use the results obtained from this tail
fit to make predictions in the peak and the far-tail regions.
In Fig. 18 we compare predictions from our full N3LL0

code in the R-gap scheme (solid red line) to the accurate
ALEPH data at Q ¼ mZ in the far-tail region. As input for
�sðmZÞ and �1 we use our main result of Eq. (68) and all
other theory parameters are set to their default values (see
Table III). We find excellent agreement within the theo-
retical uncertainties (pink band). Key features of our theo-
retical result in Eq. (4) that are important in this far-tail
region are (i) the nonperturbative correction from �1,
(ii) the merging of �Sð�Þ, �Jð�Þ, and �H toward �S ¼
�J ¼ �H at � ¼ 0:5 in the profile functions, which prop-
erly treats the cancellations occurring at multijet thresh-
olds, and (iii) integrating the theoretical distribution over
experimental bins, rather than taking the difference of
cumulants �ð�2; �ið�2ÞÞ � �ð�1; �ið�1ÞÞ, as discussed in
Sec. V. To illustrate the importance of �1 we show the
long-dashed red line in Fig. 18 which has the same value of
�sðmZÞ but turns off the nonperturbative corrections. To
illustrate the importance of the treatment of multijet thresh-
olds in our profile function, we take the Becher and
Schwartz (BS) profile which does not account for the
thresholds (the BS profile is defined and discussed below
in Sec. IX) and use the smaller �sðmZÞ and larger �1 that
are obtained from the global fit in this case. The result is
shown by the solid light blue line in Fig. 18, which begins
to deviate from the data for � > 0:36 and gives a cross
section that does not fall to zero at � ¼ 0:5. The fact that
�sðmZÞ is smaller by 0.0034 for the light blue line, relative
to the solid red line, indicates that the proper theoretical
description of the cross section in the far-tail region has an

TABLE VII. Comparison of global fit results for our full analysis to a fit where the renormalon
is not canceled with ��1, a fit without S

mod
� [meaning without power corrections with Smod

� ðkÞ ¼
�ðkÞ], and a fit at fixed order without power corrections and log resummation. All results include
bottom mass and QED corrections.

�sðmZÞ � ðpert: errorÞ �2=ðdofÞ
N3LL0 with �

R gap
1 0:1135� 0:0009 0.91

N3LL0 with ��MS
1 0:1146� 0:0021 1.00

N3LL0 without Smod
� 0:1241� 0:0034 1.26

Oð�3
sÞ fixed-order without Smod

� 0:1295� 0:0046 1.12
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important impact on the fit done in the tail region. The final
curve shown in Fig. 18 is the short-dashed green line, which
is the result at the level of precision of the analysis by
Becher and Schwartz in Ref. [20] (except that we integrate
the theory distribution over the experimental bins rather
than using a difference of cumulants). It uses the BS profile,
has no power corrections, and has the value of �s obtained
from the fit in Ref. [20]. It also misses the Q ¼ mZ data in
this region. The results of otherOð�3

sÞ thrust analyses, such
as Davison and Webber [23] and Dissertori et al. [22,25],
significantly undershoot the data in this far-tail region.15 To
the best of our knowledge, the theoretical cross section
presented here is the first to obtain predictions in this far-
tail region that agree with the data. Note that our analysis
does include some Oð�k

s�QCD=QÞ power corrections

through the use of Eq. (24). It does not account for the
full set ofOð�s�QCD=QÞ power corrections as indicated in
Eq. (4) [see also Table II(b)], but the agreement with the
experimental data seems to indicate that missing power
corrections may be smaller than expected.

Unbinned predictions for the thrust cross section at
Q ¼ mZ in the peak region are shown in Fig. 19. The green

dashed curve shows the result at the level of precision
in Becher and Schwartz, that is, N3LL0, with the BS
profile, without power corrections, and with the value of
�sðmZÞ ¼ 0:1172 obtained from their fit. This purely per-
turbative result peaks to the left of the data. With the smaller
value of �sðmZÞ obtained from our fit, the result with no
power corrections peaks even slightly further to the left, as
shown by the long-dashed red curve. In contrast, the red
solid curve shows the prediction from our fullN3LL0 code in
the R-gap scheme with our central fit values of �sðmZÞ and
�1 given in Eq. (68). It clearly indicates that the value of�1

obtained from the fit in the tail region shifts the theory
prediction in the peak region much closer to the experimen-
tal data. The residual difference between the solid red theory
curve and the experimental data can be attributed to the fact
that the peak is sensitive to power corrections from higher
moments, �k�2, which have not been fit in our analysis. In
our theoretical cross-section result this would correspond to

fitting ��ðR�; ��Þ and a subset of the higher coefficients
ci�1. The ci�1 were all set to zero in the curves shown here.
Perturbative uncertainties also must be accounted for in
analyzing the peak region. We leave the presentation of
results of this extended fit to a future publication.

IX. CROSS-CHECKS AND COMPARISONS

The result for �sðmZÞ we obtain from our global
N3LL0 analysis in the R-gap scheme with 487 bins
given in Eq. (68) is consistent at 1 sigma with the result
of Davison and Webber [23] [�sðmZÞ ¼ 0:1164�
ð0:0022Þhadrþexp � ð0:0017Þpert]. They also carried out a

FIG. 18 (color online). Thrust distributions in the far-tail re-
gion at N3LL0 order with QED and mb corrections included at
Q ¼ mZ together with data from ALEPH. The red solid line is
the cross section in the R-gap scheme using �sðmZÞ and �1

obtained from fits using our full code; see Eq. (68). The light red
band is the perturbative uncertainty obtained from the theory
scan method. The red dashed line shows the distribution with the
same �s but without power corrections. The light solid blue line
shows the result of a full N3LL0 fit with the BS profile that does
not properly treat the multijet thresholds. The short-dashed green
line shows predictions at N3LL0 with the BS profile, without
power corrections, and with the value of �sðmZÞ obtained from
the fit in Ref. [20]. All theory results are binned in the same
manner as the experimental data and then connected by lines.

FIG. 19 (color online). Thrust cross section for the result of the
N3LL0 fit, with QED andmb corrections included atQ ¼ mZ. The
red solid line is the cross section in theR-gap schemeusing�sðmZÞ
and�1 obtained fromfits using our full code; see Eq. (68). The red
dashed line shows the distribution with the same �s but without
power corrections. The short-dashed green line shows predictions
atN3LL0 with the BS profile, without power corrections, and with
the value of �sðmZÞ obtained from the fit in Ref. [20]. Data from
ALEPH, DELPHI, L3, SLD, and OPAL are also shown.

15See the top panel of Fig. 9 in Ref. [23], the top left panel of
Fig. 4 in Ref. [22], and the left panel of Fig. 2 in Ref. [25].
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global thrust analysis with a total of 430 experimental bins.
As explained in Sec. I, in their theory formula
nonperturbative effects were included as a power correc-
tion in the effective coupling model which was fit from the
experimental data, and their approach also accounts for a
renormalon subtraction of the perturbative distribution. In
these respects their analysis is similar to ours. However, it
differs as their theory formula contains only resummation
of logarithms at NLL order, and it also uses a different
renormalon subtraction scheme which is based on the
running coupling approximation for the subtraction cor-
rections and does not account for the resummation of large
logarithms. Moreover the separation of singular and non-
singular perturbative contributions and method to turn off
the log resummation at large � is not equivalent to the one
we employ. The difference between their central value and
perturbative error and our Eq. (68) can be attributed to
these items. Their combined hadronization and experimen-
tal uncertainty utilizes an error rescaling using the value
�2
min=dof ¼ 1:09 obtained for their best fit.

On the other hand, our main result for �sðmZÞ given in
Eq. (68) is smaller than the results of Dissertori et al. [22] by
2.9 sigma, of Dissertori et al. [25] by 2.2 sigma, and of
Becher and Schwartz [20] by 1.6 sigma. (These results are
displayed in Table I.) In these analyses �sðmZÞ was deter-
mined from fits to data for individual Q values and, as
explained in Sec. I, nonperturbative corrections and their
associated uncertainty were taken from Monte Carlo gen-
erators in Dissertori et al. or left out from the fit and used to
assign the hadronization uncertainty for the final result in
Becher and Schwartz. It is possible to turn off pieces of our
theoretical code to reproduce the perturbative precision of
the codes used in Refs. [22]16 and [20]. It is the main
purpose of the remainder of this section to show the outcome
of the fits based on these modified theory codes. We show, in
particular, that the main reason why the above results for
�sðmZÞ are higher than our result of Eq. (68) is related to the
fact that the nonperturbative corrections extracted from
Monte Carlo generators atQ ¼ mZ are substantially smaller
than and incompatible with the ones obtained from our fit of
the field theory power correction parameter�1. In Sec. I we
already discussed why the use of Monte Carlo generators to
estimate nonperturbative corrections in high-precision per-
turbative predictions is problematic.

We start with an examination related to the code used by
Becher and Schwartz [20], which has N3LL0 accuracy but
does not include power corrections or renormalon subtrac-
tions. This treatment can be reproduced in our factorization
formula by turning off the nonperturbative soft nonpertur-

bative function by setting Smod
� ðkÞ ¼ �ðkÞ and �� ¼ � ¼ 0.

Moreover they used the central scale setting �H ¼ Q,
�J ¼ Q

ffiffiffi
�

p
, and �S ¼ Q�. We can reproduce this from

our profile functions for�0 ¼ n1 ¼ eJ ¼ 0, t2 ¼ 3=2, and
eH ¼ ns ¼ 1, which we call the BS profile setting. The BS
profile functions for �Jð�Þ and �Sð�Þ are shown by dashed
curves in Fig. 8. (Note that the BS profile setting does not
cause �S, �J, and �H to merge in the far-tail region and
become equal at � ¼ 0:5, which is needed to switch off the
SCET resummation of logarithms in the multijet region to
satisfy the constraints from multijet thresholds.) Becher
and Schwartz set the Oð�3

sÞ nonlogarithmic correction in
the Euclidean hard factor Cð�q2Þ to zero [with HQ ¼
jCðq2Þj2 for q2 ¼ Q2 > 0], which in our notation corre-
sponds to h3 ¼ 11 771:50 (somewhat larger than the now
known h3). We also set s2 ¼ �40:1 (see Refs. [20,62]) and
s3 ¼ �324:631 for the nonlogarithmic Oð�2

sÞ and Oð�3
sÞ

constants in the soft function (both within our range of
uncertainties). The value for s3 corresponds to setting the
Oð�3

sÞ nonlogarithmic corrections in the expanded position
space soft function to zero. Finally, we also turn off our
QED and bottom quark mass corrections and the Oð�2

sÞ
axial singlet corrections and use the fixed-order normal-
ization from Eq. (59). For the fit procedure we follow
Becher and Schwartz and analyze all ALEPH and OPAL
data for individual Q values in the � ranges given in their
work and account only for statistical experimental errors in
the �2 functions. The outcome of the fits for �sðmZÞ at
N3LL0 order is given in the fourth column of Table VIII.
The third column shows their central values and the re-
spective statistical experimental errors as given in
Ref. [20]. The numbers we obtain are 0.0001–0.0011
higher than their central values, and we attribute this
discrepancy to the nonsingular contributions.17 [Becher
and Schwartz also used a difference of cumulants for their
fits, as in Eq. (62) with the choice ~�1 ¼ �1 and ~�2 ¼ �2,
rather than integrating d�=d� as we do for the table. The
spurious contribution induced by this choice has a signifi-
cant effect on the �2 values but a small effect on �sðmZÞ,
changing the values shown in the table by � 0:0003. For
cumulants that use ~�1 ¼ ~�2 ¼ ð�1 þ �2Þ=2 with no spuri-
ous contribution, the difference from our integrated distri-
bution results is reduced to � 0:0001 for �sðmZÞ, and �2

values are almost unaffected.]
The numbers obtained at N3LL0 above are significantly

larger than our central fit result �sðmZÞ ¼ 0:1135 shown in
Eq. (68) obtained from our full code. These differences are
mainly related to the nonperturbative power correction and
partly due to the BS profile setting. To distinguish these
two and other effects we can take the purely perturbative

16We do not attempt to reproduce the NLL=Oð�3
s Þ code of

Ref. [25] as the final outcome is similar to Ref. [22].

17Becher and Schwartz uncovered a numerical problem with
the original EERAD3 code at very small �, which correspondingly
had an impact on the nonsingular function used in their analysis
which was extracted from EERAD3. When their nonsingular
distribution is updated to results from the new EERAD3 code
they become significantly closer to ours, differing by & 0:0002.
We thank M. Schwartz for correspondence about this and for
providing us with their new fit values.
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code described above and turn back to our default setting
for the profile functions with the parameters given in
Table III. The results are shown in the fifth column in
Table VIII using again only statistical experimental errors
in the �2 functions. The �sðmZÞ values using our default
profile functions are by 0.0028–0.0058 larger than for the
BS profile setting in the fourth column.18 (The fifth column
results again integrate the distribution over each bin rather
than using differences of cumulants, which for our profile
is important for the reasons discussed in Sec. V.19) A
similar difference arises from a global fit to our default
data set of Sec. VI using the same fit procedure: For the BS
profile setting we obtain �sðmZÞ ¼ 0:1189, while the de-
fault profile setting gives �sðmZÞ ¼ 0:1242 (second to last
line of Table VIII). Using instead the �2 analysis of our
main analysis which includes the experimental systemati-
cal errors we obtain �sðmZÞ ¼ 0:1192 for the BS profile
setting and �sðmZÞ ¼ 0:1245 for the default profile setting
(last line of Table VIII). The latter result is by 0.0110 larger
than our 0.1135 central fit result in Eq. (68). This 10%

effect is almost entirely coming from the power correction
�1. The difference of 0.3% to the full perturbative result of
�sðmZÞ ¼ 0:1241 given in Table VII illustrates the com-
bined effect of the QED, the bottom quark mass, theOð�2

sÞ
axial singlet corrections, and the Oð�3

sÞ hard constant h3.
Finally, let us examine the results related to the code

used by Dissertori et al. in Ref. [22], which uses the
fixed-order Oð�3

sÞ results without a resummation of
logarithms but accounts for nonperturbative corrections
determined from the difference of running Monte Carlo
generators in parton and hadron level modes. Since in this
work we are not concerned with extracting the parton-
hadron level transfer matrix from Monte Carlo generators,
we use in the following our code neglecting power correc-

tions by setting Smod
� ðkÞ ¼ �ðkÞ, setting �� ¼ � ¼ 0, and

setting �H ¼ �J ¼ �S. The latter switches off the log-
resummation factors in Eq. (4) such that only the Oð�3

sÞ
fixed-order expression remains. We also include the mb

corrections but neglect QED effects. Since these modifica-
tions give us a code that does not contain nonperturbative
corrections, the differences to Ref. [22] we obtain will
serve as a quantitative illustration for the size of the
hadronization corrections obtained by a transfer matrix
from the Monte Carlo generators PYTHIA, HERWIG, and
ARIADNE, tuned to global hadronic observables at mZ.

For the fits for �sðmZÞ we follow Dissertori et al. [22]
analyzing ALEPH data for individual Q values in the �
ranges given in their work and accounting only for statistical
experimental errors in the �2 functions. The results of
Dissertori et al. and the outcome for our best fits are given

TABLE VIII. Comparison of the results for �sðmZÞ quoted by Becher and Schwartz in
Ref. [20] with results we obtain from our adapted code where power corrections, the mb and
QED corrections, and the Oð�2

sÞ axial singlet corrections are neglected. The Oð�3
sÞ nonlogar-

ithmic constants h3 and s3 are set to the values used in Ref. [20] as described in the text. We
follow the fit approach of Ref. [20] and employ their profile functions for the nonsingular, hard,
jet, and soft scales, with results shown in the column labeled ‘‘our BS profile.’’ In the last column
we show results with this same code but using our default profile functions. The errors in
parentheses in the third column are the statistical experimental uncertainty.

Experiment Energy BS result [20] Our BS profile Default profile

ALEPH 91.2 GeV 0.1168(1) 0.1170 0.1223

ALEPH 133 GeV 0.1183(37) 0.1187 0.1235

ALEPH 161 GeV 0.1263(70) 0.1270 0.1328

ALEPH 172 GeV 0.1059(80) 0.1060 0.1088

ALEPH 183 GeV 0.1160(43) 0.1166 0.1205

ALEPH 189 GeV 0.1203(22) 0.1214 0.1260

ALEPH 200 GeV 0.1175(23) 0.1182 0.1224

ALEPH 206 GeV 0.1140(23) 0.1149 0.1185

OPAL 91 GeV 0.1189(1) 0.1198 0.1251

OPAL 133 GeV 0.1165(38) 0.1175 0.1218

OPAL 177 GeV 0.1153(33) 0.1160 0.1200

OPAL 197 GeV 0.1189(14) 0.1197 0.1241

Average 0.1172(10) 0.1180 0.1221

Global fit (stat) All Q 0.1188 0.1242

Global fit (statþ syst) All Q 0.1192 0.1245

18With our full code, which accounts, in particular, for power
corrections and renormalon subtractions, the shift due to the
modified profile functions becomes smaller; shifts in �sðmZÞ of
0.005 become 0.003.
19Using the cumulant method with ~�1 ¼ �1 and ~�2 ¼ �2 in
Eq. (62), which has a spurious contribution, changes the values
in the fifth column of Table III by about �0:003 to �0:005. On
the other hand, using the cumulant method without a spurious
contribution ~�1 ¼ ~�2 ¼ ð�1 þ �2Þ=2 changes the values in the
fifth column by � 0:0001.
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in the third and fourth column of Table IX, respectively. We
have also quoted the respective statistical errors from
Ref. [22]. For the high-statistics data at Q ¼ mZ our
�sðmZÞ result is larger than theirs, but the discrepancy
amounts to only 0.0007, which is a 0.5% shift in �sðmZÞ.
This illustrates the small size of the nonperturbative hadro-
nization corrections encoded in the Monte Carlo transfer
matrix atQ ¼ mZ. This is clearly incompatiblewith the size
of the nonperturbative correction we have obtained from
simultaneous fits of �s and�1, confirming the concerns on
Monte Carlo hadronization corrections explained in Sec. I.
Interestingly, with the exception of Q ¼ 172 GeV, our
fixed-order results for all Q are relatively stable and close
to the result at Q ¼ mZ, while their �sðmZÞ values, which
use the transfer matrix for nonperturbative effects, are sys-
tematically lower for Q>mZ by 7%–13%. Thus the non-
perturbative effects from theMonteCarlo transfermatrix are
substantially larger forQ>mZ.

20 The same behavior is also
visible in the results of Ref. [25], which includes NLL
resummation of logarithms. Since the transfer matrix is
obtained from Monte Carlo generators tuned to the more
accurate Q ¼ mZ data, we believe that this issue deserves
further investigation. To complete the discussion we use the
same fixed-order theory code to quote results for a global fit
to our default data set. Using the fit procedure as described in
Sec. VI we obtain �sðmZÞ ¼ 0:1300� ð0:0047Þpert. (The
corresponding errors obtained from the error band method
are given in the fourth line of Table VI.)

X. CONCLUSIONS

In this work we have provided a factorization formula
for the thrust distribution in eþe� annihilation which

incorporates the previously known Oð�2
sÞ and Oð�3

sÞ per-
turbative QCD corrections and summation of large loga-
rithms at N3LL order for the singular terms in the dijet limit
where the thrust variable � ¼ 1� T is small. The factoriza-
tion formula used here incorporates a systematic description
of nonperturbative effects with a soft function defined in
field theory. The soft function describes the dynamics of soft
particle radiation at large angles.We have also accounted for
bottom mass and QED photon effects for fixed-order con-
tributions as well as for the summation of QED logarithms.
With specifically designed �-dependent profile functions for
the renormalization scales the factorization formula can be
applied in the peak, tail, and far-tail regions of the thrust
distribution. It has all nonperturbative effects accounted for
up to terms of Oð�s�QCD=QÞ, which is parametrically

smaller than the remaining perturbative uncertainty (< 2%
for Q ¼ mZ) of the thrust distribution predictions in the tail
region where we carried out the fits to the experimental data.
In the tail region, 2�QCD=Q � � & 1=3, the dominant

effects of the nonperturbative soft function are encoded in

its first moment �1, which is a power correction to the

cross section. Fitting to tail data at multiple Q’s as we did

in this work, the strong coupling �sðmZÞ and the moment

�1 can be simultaneously determined. An essential ingre-

dient to reduce the theoretical uncertainties to the level of

<2% in the thrust distribution is our use of a short-distance

scheme for �1, called the R-gap scheme, that induces

subtractions related to an Oð�QCDÞ renormalon contained

in theMS perturbative thrust cross section from large angle

soft gluon radiation. The R-gap scheme introduces an

additional scale that leads to large logarithms in the sub-

tractions, and we carry out a summation of these additional

logarithms with renormalization group equations in the

variable R. The R-gap scheme reduces the perturbative

uncertainties in our best highest order theory code by

roughly a factor of 2 compared to the pure MS definition
��1, where renormalon effects are not treated.

TABLE IX. Comparison of the thrust results quoted in Ref. [22] with our numerical repro-
duction. For this numerical exercise we have used their procedure to get the error matrix for the
experimental data. This amounts to considering only the statistical errors in an uncorrelated way,
with the resulting experimental error shown in the third column. Whereas in the code of Ref. [22]
hadronization corrections are included determined from Monte Carlo simulations, our numbers
are based on a pure partonic code neglecting nonperturbative effects. We use the default value
for the scale setting, i.e. � ¼ Q.

Experiment Energy Dissertori et al. [22] Our fixed-order code

ALEPH 91.2 GeV 0.1274(3) 0.1281

ALEPH 133 GeV 0.1197(35) 0.1289

ALEPH 161 GeV 0.1239(54) 0.1391

ALEPH 172 GeV 0.1101(72) 0.1117

ALEPH 183 GeV 0.1132(32) 0.1247

ALEPH 189 GeV 0.1140(20) 0.1295

ALEPH 200 GeV 0.1094(22) 0.1260

ALEPH 206 GeV 0.1075(21) 0.1214

20Note that the weighted average of the Q>mZ thrust results
of Dissertori et al. is �sðmZÞ ¼ 0:1121 and is consistent with our
result in Eq. (68) within the larger uncertainties. Also note that
the Q dependence of our �1ðR;RÞ=Q power correction is
affected by its anomalous dimension; cf. Fig. 6.
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The code we use in this analysis represents the most
complete theoretical treatment of thrust existing at this
time. As our final result we obtain

�sðmZÞ ¼ 0:1135� 0:0011;

�1ðR�; ��Þ ¼ 0:323� 0:051 GeV;
(70)

where �s is defined in theMS scheme and�1 in the R-gap
scheme at the reference scales R� ¼ �� ¼ 2 GeV. Here
the respective total 1-sigma errors are shown. The results
with individual 1-sigma errors quoted separately for the
different sources of uncertainties are given in Eq. (68).
Neglecting the nonperturbative effects incorporated in the
soft function, and in particular �1, from the fits gives
�sðmZÞ ¼ 0:1241, which exceeds the result in Eq. (70)
by 9%. This is consistent with a simple scaling argument
one can derive from experimental data; see Eq. (3) in Sec. I.

Analyses of event shapes with a simultaneous fit of �s

and a power correction have been carried out earlier with
the effective coupling model. Davison and Webber [23]
analyzed the thrust distribution and determined �sðmZÞ ¼
0:1164� 0:0028 also using Oð�3

sÞ fixed-order input but
implementing the summation of logarithms only at NLL
order (for further discussion see Sec. IX). Recently
Gehrmann, Jaquier, and Luisoni [95] analyzed moments
of different event shape distributions, also with the effec-
tive coupling model, and obtained �sðmZÞ ¼ 0:1153�
0:0029 using fixed-order perturbation theory at Oð�3

sÞ.
Both analyses neglected bottom mass and QED correc-
tions. Our result in Eq. (70) is compatible with these
analyses at 1 sigma but has smaller uncertainties.

These results and our result for �sðmZÞ in Eq. (70) are
substantially smaller than the results of event shape analyses
employing input from Monte Carlo generators to determine
nonperturbative effects. We emphasize that using parton-to-
hadron level transfer matrices obtained from Monte Carlo
generators to incorporate nonperturbative effects is not

compatible with a high-order theoretical analysis such as
ours, and thus analyses relying on such Monte Carlo input
contain systematic errors in the determination of �s from
thrust data. The small effect of hadronization corrections on
thrust observed in Monte Carlo generators at Q ¼ mZ and
the corresponding small shift in �sðmZÞ do not agree with
the 9% shift we have obtained from our fits as mentioned
above. For the reasons discussed earlier, we believe
Monte Carlo generators should not be used for hadroniza-
tion uncertainties in higher order analyses.
Although our theoretical approach represents the most

complete treatment of thrust at this time, and all sources of
uncertainties known to us have been incorporated in our
error budget, there are a number of theoretical issues
related to subleading contributions that deserve further
investigation. These issues include (i) the summation of
logarithms for the nonsingular partonic cross section,
(ii) the structure of the Oð�s�QCD=QÞ power corrections,
and (iii) analytic perturbative computations of the Oð�2

sÞ
and Oð�3

sÞ nonlogarithmic coefficients s2 and s3 in the
partonic soft function, the Oð�3

sÞ nonlogarithmic coeffi-
cient j3 in the partonic jet function, and the 4-loop QCD
cusp anomalous dimension �

cusp
3 . Concerning issue (i)

we have incorporated in our analysis the nonsingular
contributions in the fixed-order perturbation theory and
estimated the uncertainty related to the higher order loga-
rithms through the usual renormalization scale variation.
Further theoretical work is needed to derive the renormal-
ization group structure of subleading jet, soft, and hard
functions in the nonsingular contributions and to use these
results to sum the corresponding logarithms. Concerning
issue (ii) we have shown that our theoretical description for
the thrust distribution contains a remaining theoretical
uncertainty from nonperturbative effects of order
Oð�s�QCD=QÞ. Parametrically, this uncertainty is substan-

tially smaller than the perturbative error of about 1.7% for
the thrust distribution in the tail region at LEP-I energies

FIG. 20 (color online). Comparison of selected determinations of �sðmZÞ defined in the MS scheme.
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that is contained in our best theory code. Furthermore, our
predictions in the far-tail region at Q ¼ mZ appear to
indicate that the dominant corrections of this order are
already captured in our setup. Nevertheless a systematic
analysis of these subleading effects is certainly warranted.

Apart from investigating these theoretical issues, it is
also warranted to apply the high-precision approach using
the soft-collinear effective theory to other event shape
distributions in order to validate the result in Eq. (70).
Event shapes that can be clearly treated with similar tech-
niques are heavy jet mass, the C parameter, and angularities
[96,97]. For many of these event shapes it has been proven
field theoretically that the same parameter�1 describes the
leading power corrections in the tail region [65], although
there might be caveats related to the experimental treatment
of hadron masses [37,98]. Thus, one has the potential to
extend the analysis done here to include additional data
without additional parameters. An analysis for the heavy jet
mass accounting for perturbative contributions at N3LL in

MS with different profile functions and a simple soft func-
tion model for power corrections without renormalon sub-
tractions was recently carried out in Ref. [99], providing a
first step in this direction. The final result for �sðmZÞ
obtained in Ref. [99] from the heavy jet mass spectrum is
the result of a purely perturbative fit and, given the added
uncertainty from neglecting power corrections, is fully
consistent with our result.

To conclude this work we cannot resist comparing our
result for �sðmZÞ with the results of a selection of analyses
using other techniques and observables, as shown in Fig. 20.
We include a N3LO analysis of data from deep inelastic
scattering in the nonsinglet channel [100],21 the recent
HPQCD lattice determination based on fitting Wilson loops
and the �-�0 mass difference [105], the result from fits to
electroweak precision observables based on the GFITTER

package [106], and analyses of �-decay data using the
fixed-order [107] and contour-improved perturbation theory
[108], together with an average of � results from Ref. [109].
For a discussion on consistency with higher order terms in
the �-decay OPE see Ref. [110]. Finally we also show a
collection of �s averages from Refs. [109,111,112]. The
deep inelastic scattering result is consistent with our fit
result, whereas the deviation from HPQCD is 3:5�. It is
interesting to note that the high energy extractions from
thrust and deep inelastic scattering appear to be smaller
than the low-energy extractions from lattice and � decays.
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APPENDIX A: FORMULAS

In this appendix we collect all the remaining formulas
used in our analysis for the case of massless quarks. The
total hadronic cross section at tree level at the energies we
are considering is

�0ðQÞ ¼ X
q�top

½�q
axðQÞ þ �q

vecðQÞ�; (A1)

where Q is the c.m. energy. For a quark of flavor q the tree
level axial-vector and vector cross sections are

�qa
0 ¼ Nc

4��2

3Q2

Q4ðv2
e þ a2eÞa2q

ðm2
Z �Q2Þ2 þ Q4

m2
Z

�2
Z

;

�qv
0 ¼ Nc

4��2

3Q2

�
e2q �

2eqvqveQ
2ðQ2 �m2

ZÞ
ðm2

Z �Q2Þ2 þ Q4

m2
Z

�2
Z

þ Q4ðv2
e þ a2eÞv2

q

ðm2
Z �Q2Þ2 þ Q4

m2
Z

�2
Z

�
; (A2)

where eq is the electric charge of the quark, and

vq ¼ Tq
3 � 2eqsin

2	W
sinð2	WÞ ; aq ¼ Tq

3

sinð2	WÞ : (A3)

Here Tq
3 is the third component of the weak isospin, and 	W

is the weak mixing angle. For our numerics we use the
following values:

21Analyses studying �s with data that depends also on the
gluon parton distribution function have been carried out in
Refs. [101–104].

THRUST AT N3LL WITH POWER CORRECTIONS AND . . . PHYSICAL REVIEW D 83, 074021 (2011)

074021-37



sin2	W ¼ 0:231 19; mZ ¼ 91:187 GeV;

�Z ¼ 2:4952 GeV; mt ¼ 172 GeV;

mb ¼ 4:2 GeV; �ðmZÞ ¼ 1=127:925:

(A4)

1. Singular cross-section formula

To simplify the numerical evaluation of the singular part
of the differential cross section given in Eq. (11) we take
� ¼ �J so that U�

Jðs� s0; �J; �JÞ ¼ �ðs� s0Þ and ex-
press the result in the following form:Z

dk
d�̂s

d�

�
�� k

Q

�
Smod
� ðk� 2 ��ðR;�SÞÞ

¼ Q
X
I

�I
0H

I
QðQ;�HÞUHðQ;�H;�JÞ

	
Z

dkPðQ;Q�� k;�JÞ
	 e�2�ðR;�SÞðd=dkÞSmod

� ðk� 2 ��ðR;�SÞÞ; (A5)

where the perturbative corrections from the partonic
soft function, jet function, and soft evolution factor
are contained in PðQ; k;�JÞ ¼

R
ds
R
dk0J�ðs;�JÞ	

U�
Sðk0; �J; �SÞSpart� ðk� k0 � s=Q;�SÞ. The integrals in P

can be carried out explicitly so that it is given by a simple
set of functions. The soft nonperturbative function

Smod
� ðk� 2 ��Þ is discussed in Sec. IV, and in Eq. (A5) we

have integrated by parts so the derivative in the exponential
with the �ðR;�SÞ acts on this nonperturbative function.

HI
Q, J�, S

part
� , and expð�2�ðR;�SÞd=dkÞ [cf. Eq. (37)]

involve series in �sð�hÞ, �sð�JÞ, and �sð�SÞ with no large
logs, and in our numerical analysis we expand the product
of these series out, order by order in �s. This expansion is

crucial for Spart� ðk;�SÞ and expð�2�ðR;�SÞd=dkÞ since it
is needed to allow the renormalon in the two series to
cancel.
For simplicity where possible we give ingredients in a

numerical form for SU(3) color with nf ¼ 5 active flavors.

The vector hard function to Oð�3
sÞ is [42,48–52]

Hv
QðQ;�Þ ¼ 1þ �sð�hÞð0:745 808� 1:273 24LQ � 0:848 826L2

QÞ þ �2
sð�hÞð2:275 87� 0:025 103 5LQ � 1:065 92L2

Q

þ 0:735 517L3
Q þ 0:360 253L4

QÞ þ �3
sð�hÞð0:000 503 93h3 þ 2:780 92LQ � 2:856 54L2

Q � 0:147 051L3
Q

þ 0:865 045L4
Q � 0:165 638L5

Q � 0:101 931L6
QÞ; (A6)

where LQ ¼ ln�h

Q and from Eq. (12) we have h3 ¼ 8998:080. Our axial-vector hard function for b quarks has an extra
two-loop singlet piece from the large top-bottom mass splitting, Hba

Q ¼ Hv
Q þH

singlet
Q . H

singlet
Q was given in Eq. (13) and

involves the real function [56]

I2ðrtÞ ¼ 10�ðrtÞ2 þ 6�ðrtÞþ�2

3
� 1

r2t
fCl2½2�ðrtÞ��ðrtÞþCl3½2�ðrtÞ���ðrtÞ2 � ð3Þg

� 2

rt
f2�ðrtÞCl2½4�ðrtÞ�� 2Cl3½2�ðrtÞ�þCl3½4�ðrtÞ�þ ½4�ðrtÞþ 3��ðrtÞ2 þ ð3Þg

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

rt
� 1

s �
4ð4hðrtÞþ�ðrtÞÞ�ðrtÞþ 4Cl2½4�ðrtÞ�� 6�ðrtÞ� 6Cl2½2�ðrtÞ��Cl2½2�ðrtÞ�þ 2�ðrtÞ�ðrtÞ

rt

	
; (A7)

where rt ¼ Q2=ð4m2
t Þ and

�ðrtÞ ¼ arcsinð ffiffiffiffi
rt

p Þ; �ðrtÞ ¼ lnð2Þ þ 1
2 lnðrtÞ;

Cl2ðxÞ ¼ Im½Li2ðeixÞ�; Cl3ðxÞ ¼ Re½Li3ðeixÞ�;
hðrtÞ ¼ lnð2Þ þ 1

2 lnð1� rtÞ:
(A8)

The resummation of large logs from �H to �J is given
by UHðQ;�H;�JÞ in Eq. (A5) which is the solution of the
RGE for the square of the SCET Wilson coefficient [9]

UHðQ;�H;�Þ ¼ e2Kð�H;�H;�;�HÞ
�
�2

H

Q2

�
!ð�H;�;�HÞ

; (A9)

and the functions ! and K are given in Eqs. (A23) and
(A24) below.

Finally using results for the convolution of plus func-
tions from Ref. [38] we have the momentum space formula

PðQ;k;�JÞ¼1

�
Eð�Þ
S ð�;�J;�SÞ

X1
n;m;k;l¼�1
mþnþ1�k
kþ1�l

Vmn
k Jm

�
�sð�JÞ;�Q

�2
J

�

	Sn

�
�sð�SÞ; ��S

�
Vk
l ½�2!ð�S;�J;�SÞ�

	L�2!ð�S;�J;�SÞ
l

�
k

�

�
: (A10)

This result is independent of the dummy variable �.22 Here

Eð�Þ
S ð�;�J;�SÞ encodes part of the running between the jet

and the soft scale [113,114]:

22When convoluted with Smod
� we evaluate the right-hand side

of Eq. (A10) for � ¼ Q�� 2 ��ðR;�SÞ which simplifies the final
numerical integration.
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Eð�Þ
S ð�;�J;�SÞ
¼ exp½2Kð�S; �S; �J;�SÞ�

�
�

�S

��2!ð�S;�J;�SÞ

	 exp½2�E!ð�S; �J;�SÞ�
�½1� 2!ð�S; �J;�SÞ� : (A11)

The sum in Eq. (A10) contains coefficients of the momen-
tum space soft and jet functions. Shifting the plus functions
so that they have common arguments gives

Jðp�k;�JÞ ¼ 1

p��
X1

m¼�1

Jm

�
�sð�JÞ; p

��
�2

J

�
Lm

�
k

�

�
;

Sðk;�SÞ ¼ 1

�

X1
n¼�1

Sn

�
�sð�SÞ; ��S

�
Ln

�
k

�

�
:

(A12)

Here the thrust soft function coefficients are

S�1½�s; x� ¼ S�1ð�sÞ þ
X1
n¼0

Snð�sÞ ln
nþ1x

nþ 1
;

Sn½�s; x� ¼
X1
k¼0

ðnþ kÞ!
n!k!

Snþkð�sÞlnkx:
(A13)

The soft function is known toOð�3
sÞ except for the constant

s3 term [14,15,20,62]

S�1ð�sÞ¼1þ0:349066�sþð1:26859þ0:0126651s2Þ�2
s

þð1:54284þ0:00442097s2þ0:00100786s3Þ�3
s ;

S0ð�sÞ¼2:07321�2
sþð4:80020�0:0309077s2Þ�3

s ;

S1ð�sÞ¼�1:69765�s�6:26659�2
s

�ð16:4676þ0:021501s2Þ�3
s ;

S2ð�sÞ¼1:03573�2
s�0:567799�3

s ;

S3ð�sÞ¼1:44101�2
sþ9:29297�3

s ;

S4ð�sÞ¼�1:46525�3
s ;

S5ð�sÞ¼�0:611585�3
s :

(A14)

Note that s2 and s3 are the Oð�2;3
s Þ coefficients of the

nonlogarithmic terms in the series expansion of the

logarithm of the position space thrust soft function. The
coefficients appearing in the shifted thrust jet function are

J�1½�s; x� ¼ J�1ð�sÞ þ
X1
n¼0

Jnð�sÞ ln
nþ1x

nþ 1
;

Jn½�s; x� ¼
X1
k¼0

ðnþ kÞ!
n!k!

Jnþkð�sÞlnkx
(A15)

and are known up to Oð�3
sÞ except for the constant j3 term

[20,58–61,115]

J�1ð�sÞ ¼ 1� 0:608 949�s � 2:267 95�2
s

þ ð2:210 87þ 0:001 007 86j3Þ�3
s ;

J0ð�sÞ ¼ �0:636 62�s þ 3:004 01�2
s þ 4:455 66�3

s ;

J1ð�sÞ ¼ 0:848 826�s � 0:441 765�2
s � 11:905�3

s ;

J2ð�sÞ ¼ �1:0695�2
s þ 5:362 97�3

s ;

J3ð�sÞ ¼ 0:360 253�2
s þ 0:169 497�3

s ;

J4ð�sÞ ¼ �0:469 837�3
s ;

J5ð�sÞ ¼ 0:076 448 1�3
s :

(A16)

The L distributions are defined as [n � 0]

L a
nðxÞ ¼

�
	ðxÞlnnx
x1�a

�
þ
¼ dn

dan
LaðxÞ; (A17)

La�1ðxÞ ¼ L�1ðxÞ ¼ �ðxÞ, and for a >�1

L aðxÞ ¼
�
	ðxÞ
x1�a

�
þ
¼ lim

�!0

d

dx

�
	ðx� �Þ x

a � 1

a

�
: (A18)

In Eq. (A10) we use the coefficients [38]

Vn
k ðaÞ ¼

8>>>><
>>>>:
a dn

dbn
Vða;bÞ
aþb









b¼0
; k ¼ �1;

a
n
k

� �
dn�k

dbn�k Vða; bÞjb¼0 þ �kn; 0 � k � n;

a
nþ1 ; k ¼ nþ 1

(A19)

and the coefficients

Vmn
k ¼

8>>>>>><
>>>>>>:

dm

dam
dn

dbn
Vða;bÞ
aþb









a¼b¼0
; k ¼ �1;

P
m
p¼0

P
n
q¼0 �pþq;k

m
p

� �
n
q

� �
dm�p

dam�p
dn�q

dbn�q Vða; bÞja¼b¼0; 0 � k � mþ n;

1
mþ1 þ 1

nþ1 ; k ¼ mþ nþ 1;

(A20)

where

Vða; bÞ ¼ �ðaÞ�ðbÞ
�ðaþ bÞ �

1

a
� 1

b
: (A21)

Special cases not covered by the general formulas in Eqs. (A19) and (A20) include

V�1�1 ðaÞ ¼ 1; V�1
0 ðaÞ ¼ a; V�1

k�1ðaÞ ¼ 0; V�1;n
k ¼ Vn;�1

k ¼ �nk: (A22)
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2. Evolution factors and anomalous dimensions

The evolution factors appearing in Eqs. (A9)–(A11) are

!ð�; �;�0Þ ¼ 2
Z �sð�Þ

�sð�0Þ
d�

�ð�Þ�ð�Þ

¼ � �0

�0

�
lnrþ �sð�0Þ

4�

�
�1

�0

� �1

�0

�
ðr� 1Þ þ 1

2

�2
sð�0Þ
ð4�Þ2

�
�2

1

�2
0

� �2

�0

þ �2

�0

� �1�1

�0�0

�
ðr2 � 1Þ

þ 1

3

�3
sð�0Þ
ð4�Þ3

�
�3

�0

� �3

�0

þ �1

�0

�
�2

1

�2
0

� �2

�0

�
� �1

�0

�
�2

1

�2
0

� 2
�2

�0

þ �2

�0

��
ðr3 � 1Þ

	
; (A23)

and

Kð�; �;�;�0Þ �!

�
�

2
; �;�0

�

¼ 2
Z �sð�Þ

�sð�0Þ
d�

�ð�Þ�ð�Þ
Z �

�sð�0Þ
d�0

�ð�0Þ

¼ �0

2�2
0

�
4�

�sð�0Þ
�
lnrþ 1

r
� 1

�
þ
�
�1

�0

� �1

�0

�
ðr� 1� lnrÞ � �1

2�0

ln2rþ �sð�0Þ
4�

��
�1�1

�0�0

� �2
1

�2
0

�
ðr� 1� r lnrÞ

� B2 lnrþ
�
�2

�0

� �1�1

�0�0

þ B2

� ðr2 � 1Þ
2

þ
�
�2

�0

� �1�1

�0�0

�
ð1� rÞ

�
þ �2

sð�0Þ
ð4�Þ2

���
�1

�0

� �1

�0

�
B2 þ B3

2

� ðr2 � 1Þ
2

þ
�
�3

�0

� �2�1

�0�0

þ B2�1

�0

þ B3

��
r3 � 1

3
� r2 � 1

2

�
� �1

2�0

�
�2

�0

� �1�1

�0�0

þ B2

��
r2 lnr� r2 � 1

2

�

� B3

2
lnr� B2

�
�1

�0

� �1

�0

�
ðr� 1Þ

�	
; (A24)

where r ¼ �sð�Þ=�sð�0Þ depends on 4-loop running cou-
plings, and the coefficients are B2 ¼ �2

1=�
2
0 � �2=�0 and

B3 ¼ ��3
1=�

3
0 þ 2�1�2=�

2
0 � �3=�0. These results are

expressed in terms of series expansion coefficients of the
QCD � function �½�s�, of �½�s� which is given by a
constant of proportionality times the QCD cusp anomalous
dimension, and of a noncusp anomalous dimension �½�s�:

�ð�sÞ¼�2�s

X1
n¼0

�n

�
�s

4�

�
nþ1

; �ð�sÞ¼
X1
n¼0

�n

�
�s

4�

�
nþ1

;

�ð�sÞ¼
X1
n¼0

�n

�
�s

4�

�
nþ1

: (A25)

The coefficients for nf ¼ 5 are [61,116–120]

�0 ¼ 23=3; �1 ¼ 116=3; �2 ¼ 180:907;

�3 ¼ 4826:16;

�cusp
0 ¼ 16=3; �cusp

1 ¼ 36:8436; �cusp
2 ¼ 239:208:

(A26)

For the unknown four-loop cusp anomalous dimension we
use the Padé approximation assigning 200% uncertainty:

�cusp
3 ¼ ð1� 2Þ ð�

cusp
2 Þ2
�
cusp
1

: (A27)

The anomalous dimensions for the hard, jet, and soft
functions are [21,51,61,114,121–123]

�H
n ¼ ��

cusp
n ; �J

n ¼ 2�
cusp
n ; �S

n ¼ ��
cusp
n ;

�H
0 ¼ �8; �H

1 ¼ 1:141 94; �H
2 ¼ �249:388;

�J
0 ¼ 8; �J

1 ¼ �77:3527; �J
2 ¼ �409:631;

�S
n ¼ ��H

n � �J
n: (A28)

To determine the strong coupling �sð�Þ in terms of
�sðmZÞ at 4 loops with 5 light flavors we use

1

�sð�Þ¼
X

�sðmZÞþ0:401347248lnX

þ�sðmZÞ
X

½0:01165228ð1�XÞþ0:16107961lnX�

þ�2
sðmZÞ
X2

½0:1586117ðX2�1Þþ0:0599722ðXþ lnX�X2Þ
þ0:0323244fð1�XÞ2� ln2Xg�; (A29)

where X ¼ 1þ �sðmZÞ lnð�=mZÞ�0=ð2�Þ and the dis-
played numbers are determined from the �i in Eq. (A26).
The form in Eq. (A29) agrees very well with the numerical
solution of the beta function equation.

3. Nonsingular cross-section formula

At Oð�2
sÞ there is an axial singlet contribution to the

nonsingular terms through the three-parton cut of Fig. 2,
which is given by the function fsinglet appearing in Eq. (27)
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for fbaqcd. The result for this function can be extracted from results in Ref. [70] and reads [rt ¼ Q2=ð4m2
t Þ]

fsingletð�; rtÞ ¼ � 64

3
	

�
1

3
� �

��Z 2ð1��Þ

1þ�
dy y gðy� 1; rtÞ þ ð1� 3�Þ ð1þ �Þ

2
gð�; rtÞ

�
;

gð�; rtÞ ¼
2rt½

ffiffiffiffiffiffiffiffiffiffi
1�rt�
rt�

q
sin�1ð ffiffiffiffiffiffiffi

rt�
p Þ �

ffiffiffiffiffiffiffiffi
1�rt
rt

q
sin�1ð ffiffiffiffi

rt
p Þ� þ ½sin�1ð ffiffiffiffiffiffiffi

rt�
p Þ�2 � ½sin�1ð ffiffiffiffi

rt
p Þ�2 � rt logð�Þ

4rtð1� �Þ2 :

(A30)

4. R evolution

Finally we display here the function DðkÞ [39] which
appears in the solution in Eq. (41) of the R-RGE equation

for ��ðR; RÞ:

DðkÞð�1; �2Þ ¼ ei�b̂1
Xk
j¼0

ð�1ÞjSj½�ð�b̂1 � j; t1Þ

� �ð�b̂1 � j; t2Þ�; (A31)

which is real since the complex phase ei�b̂1 cancels the
imaginary part coming from the incomplete Gamma func-
tions, defined as

�ðc; tÞ ¼
Z 1

t
dx xc�1e�x: (A32)

In Eq. (A31) k is the order of the matrix elements. (That is,
k ¼ 0 for NLL0 and NNLL, k ¼ 1 for NNLL0 and N3LL,

and k ¼ 2 for N3LL0. For lower orders DðkÞ ¼ 0.) In Eq.
(A31) we have defined

ti ¼� 2�

�0�i

; b̂1 ¼ �1

2�2
0

; S0 ¼ 0; S1 ¼ �R
1

ð2�0Þ2
;

S2 ¼ �R
2

ð2�0Þ3
� 2�2

0�1 þ�2
1 ��0�2

16�6
0

�R
1 ; (A33)

where the R-anomalous dimensions �R
i were given in

Eq. (40).

5. Total hadronic cross section

The total hadronic QCD cross section can be evaluated
in the fixed-order perturbation theory with � ’ Q and was
given in Eq. (58) with the vector QCD results given in
Eq. (59). The function appearing in the singlet contribution
in Eq. (58) at Oð�2

sÞ is [56]

IðrtÞ ¼ ��ðrtÞCl2½2�ðrtÞ� � Cl3½2�ðrtÞ� þ 3
r2t

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

rt
� 1

s �
2½1� �ðrtÞ��ðrtÞ � Cl2½2�ðrtÞ�

rt

þ 2Cl2½2�ðrtÞ� þ 2½2�ðrtÞ � 3��ðrtÞ
�

þ 6�ðrtÞ þ 2�ðrtÞ2 � 4�ðrtÞ2 þ 1

rt
� �2

3
; (A34)

where the necessary functions appear in Eq. (A8). Note
that we have dropped the four particle cut contribution
I4 ¼ �2=3� 15=4 since we have not accounted for it in
the Oð�2

sÞ nonsingular distribution.

APPENDIX B: SOFT FUNCTION OPE MATCHING

To derive Eq. (21) we must demonstrate uniqueness of
the power correction�1 and derive its perturbative Wilson
coefficient to all orders in �s. We carry out these two parts
of the proof in turn.
Since the operator appearing in the matrix element

�1 is nonlocal, the proof of uniqueness is more involved
than for a typical OPE where we could just enumerate all
local operators of the appropriate dimension. Here we are
integrating out perturbative soft gluons in S�ðk;�Þ while
retaining nonperturbative soft gluons. The hierarchy
between these soft gluons is in their invariant masses
k2 � �2

QCD. This process cannot introduce Wilson lines

in new lightlike directions nor additional Wilson lines
following paths in n and �n. Thus the Wilson lines will be
the same as those in the full theory operator, Eq. (17).
Additional Wilson lines could only be induced by integrat-
ing out collinear or hard gluons, which would yield power
corrections suppressed by the hard or jet scales. The second
point to demonstrate is that dimension one combinations of

derivatives other than i@̂ do not lead to new nonperturba-
tive matrix elements at this order. The key is that for
derivative operators inside our vacuum matrix element
involving Wilson lines, boost invariance along the thrust
axis relates all matrix elements to�1 [65]. The proof relies
on boost invariance along the thrust axis of derivative
operators inside the vacuum matrix element. To see this
one defines the transverse energy flow operator ETð
Þ by
its action on states [17,47]

E Tð
ÞjXi ¼
X
i2X

j ~k?i j�ð
� 
iÞjXi: (B1)

Any dimension one derivative operator we might wish to
consider, such as n � @; �n � @; @t; @z; . . . , or combinations
thereof, is given by an integral

R
d
hð
ÞETð
Þ for an

appropriate rapidity function hð
Þ. For example, for the

thrust derivative i@̂ we have hð
Þ ¼ e�j
j. Boost invari-
ance implies [65]
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��1¼ 1

2Nc

h0jtr �YT
�n ð0ÞYnð0Þi@̂Yy

n ð0Þ �Y�
�nð0Þj0i

¼
Z
d


hð
Þ
2Nc

h0jtr �YT
�n ð0ÞYnð0ÞETð
þ
0ÞYy

n ð0Þ �Y�
�nð0Þj0i

¼ 1

Nc

h0jtr �YT
�n ð0ÞYnð0ÞETð
0ÞYy

n ð0Þ �Y�
�nð0Þj0i; (B2)

for arbitrary 
0. The same steps hold for any other deriva-
tive operator and function hð
Þ, and different choices only
affect the constant calculable prefactor. This suffices to
show the second point.

To derive an all-orders expression for the Wilson coef-
ficient of �1 we construct an analog of the OPE matching
done for the soft function in B ! Xs� [59]. The proof is
considerably simpler for B ! Xs� because the OPE in that
case yields local heavy quark effective theory operators.
Nevertheless the thrust soft function can be manipulated
such that a similar strategy can be used. Using the thrust
axis we define hemisphere a, where pþ < p�, and hemi-
sphere b, where p� <pþ. Consider the soft function
written as a matrix element squared:

S�ðk;�Þ ¼ 1

Nc

X
X

�ðk� kaþs � kb�s Þ trh0j �YT
�n ð0ÞYnð0ÞjXi

	 hXjYy
n ð0Þ �Y�

�nð0Þj0i; (B3)

where the trace is over color, kaþs ¼ n � pa
X is the total plus

momentum of the particles in state X in hemisphere a, and
kb�s ¼ �n � pb

X is the minus momenta of particles in X in
hemisphere b. To carry out the OPE we need to consider a
state that has overlap with the operator in Eq. (20). Thus we
could replace the vacuum by very soft nonperturbative
gluons with momenta of Oð�QCDÞ and then consider ma-

trix elements with perturbative gluons having momenta
�k � �QCD. Since the OPE is independent of the particu-

lar states we choose, we will instead consider a simpler
alternative in the following.

First we write the matrix element in Eq. (B3) as

trh0j �YT
�nYnjXihXjYy

n �Y�
�nj0i

¼ h0j � �n
�YT
�nYnnjXunv �nihXunv �nj �nYy

n �Y�
�n �nj0i; (B4)

where n and  �n are noninteracting collinear fields whose
contractions with the sterile quark un and antiquark v �n are
chosen with a normalization to reproduce the original
matrix element (and a sum over their color correctly re-
produces the trace). Here un should be thought of as a very
energetic collinear quark in hemisphere a with large label
momentum p�

n and zero residual momentum. The large
momentum is conserved by soft interactions from the
Wilson lines due to the SCET multipole expansion. Here
the plus momentum of un is included into kaþs but is zero
and does not contribute to the � function. The same is true
for v �n which has zero minus momentum and large label pþ

�n

momentum and is always in hemisphere b. We introduced

un and v �n so that we can use them to systematically add a
very soft momentum to the end of the Wilson lines (at 1).
They provide a convenient state with which to carry out the
OPE, because there is nonzero overlap taking only the 1
out of the Wilson lines, Y. In particular, they allow us to

perform the OPE and pick out the i@̂ present in ��1 at tree
level, without the necessity to add explicit soft gluons with
momenta � k.
To carry out the OPE we now give un a very small soft

momentum ‘þ and v �n a very small soft momentum ‘� and
denote them by u‘n and v

‘
�n, respectively. These particles are

kept on-shell by adjusting their large label ? momenta so
that ‘þ ¼ p2

n?=p
�
n and ‘� ¼ p2

�n?=p
þ
�n . Because of the

multipole expansion these ? momenta have no influence
on diagrams with perturbative soft gluons having momenta
k � pn? ¼ �p �n?. The Wilson line propagators reduce to
the same as before, such as

p�
n

kþp�
n þ ‘þp�

n þ p2
n?

¼ 1

kþ
: (B5)

This property is familiar in SCET where soft couplings to
energetic collinear quarks in SCET remain eikonal for any
values of the quark’s large momenta by using the equations
of motion, as long as the final particles are on-shell. Thus at
any order in perturbation theory, with any number of soft
gluons and soft quarks of momenta �k in the matrix
elements, the only change caused by ‘� is on the �ðk�
kaþs � kb�s Þ in Eq. (B3) which is shifted to �ðk� ‘�
kaþs � kb�s Þ, where ‘ 
 ‘þ þ ‘�. Expanding with ‘ � k
the matrix element with this choice of state evaluates to

S
part
� ðk� ‘;�Þ ¼ S

part
� ðkÞ � dSpart� ðkÞ

dk
‘þ � � � : (B6)

At lowest order in emission of very soft gluons��QCD the

corresponding matrix element in the lower energy theory is

1

Nc

h0j � �n
�YT
�nYnni@̂ju‘nv‘

�nihu‘nv‘
�nj �nYy

n �Y�
�n �nj0i ¼ ‘: (B7)

Virtual radiative corrections do not correct this result since
they are scaleless and vanish in pure dimensional regulari-

zation. Thus we can identify ‘ ! 2 ��1 in Eq. (B6), and this
then yields the stated result for the OPE in Eq. (21).

APPENDIX C: OPERATOR EXPANSION FOR
THE FIRST THRUST MOMENT

For moment integrals of the thrust distribution over
� 2 ½0; 1=2� there is not a hierarchy of scales that induces
large logs, and one may formulate the theoretical result in
terms of an expansion in �s and �QCD=Q. The zeroth

moment of thrust is just the total cross section for eþe� !
hadrons, and the power corrections are formulated in terms
of the well known OPE [124]. For higher moments the fact
that thrust constrains a nontrivial combination of final-state
momenta makes carrying out an OPE more difficult. For
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example, when weweigh the integral by a power of thrust it
is not possible to collapse all propagators to a point, so the
nonperturbative parameters are no longer constrained to be
given by a basis of local operators. In the effective coupling
model [35] the same nonperturbative parameter �0 that
appears for the thrust distribution also occurs in the first
moment. However it is not clear to what level of accuracy
this carries over to a field theoretical description of power
corrections derived from QCD. In this appendix we show
how one can carry out an OPE for the 1st moment of the
thrust distribution and demonstrate that at leading order it
only involves the same nonperturbative matrix element�1

from Eq. (6).
To carry out an OPE for the thrust moment we can work

order by order in the hard �sðQÞ expansion and analyze
direct computations where we couple soft nonperturbative
gluons to hard partons in Feynman diagrams. The appro-
priate nonlocal operator(s) appearing in the expansion will
be identified by the structure of the amplitudes in this
computation. In the following discussion the soft gluons
will not be treated as final-state particles for which there is
a phase space integral but rather as a means of probing the
structure of the nonperturbative operator. The lowest order
graphs with zero or one soft gluon and a virtual photon
current (for simplicity) are shown in Fig. 21. Here k� �
�QCD is soft, and p� �Q, p0� �Q are hard momenta. To

carry out the OPE we calculate and square the on-shell
amplitude M�

hM
�
h, where � and � are the virtual photon

current indices. We sum over the final quark and antiquark
spins since these particles are hard and are being integrated
out. On the other hand, the gluon vector indices � and �0
are left uncontracted and are used to help in identifying the
operator for the nonperturbative matrix element. For sim-
plicity, the indices� and�0 are suppressed in writing down
the amplitudes below. We start out without making restric-
tions on the number of gluons coming fromM�

h andM��
h ,

which corresponds to directly matching onto the nonper-
turbative operator, without considering the final vacuum
matrix element which gives a nonperturbative parameter.
Since p2 ¼ p02 ¼ k2 ¼ 0 the denominators of the propa-
gators in the one-gluon graphs reduce to 2p � k and 2p0 � k.
In the numerators we can drop k’s relative to the largep and
p0. The interference between the zero and one gluon am-
plitudes gives

M�
hM

��
h ¼ Nctr½p��p0��� 2gT

A

Nc

�
p0�

p0 � k�
p�

p � k
�
: (C1)

The interference with one gluon from each of M�
h and

M��
h is

M�
hM

��
h ¼ Nc tr½p��p0���g

2TATB

Nc

�
p�p�0

ðp � kÞ2 þ
p0�p0�0

ðp0 � kÞ2

� ðp�p0�0 þ p0�p�0 Þ
ðp � kÞðp0 � kÞ

�
: (C2)

Continuing in this fashion with any number of gluons
from M�

h and any number from M��
h we always find the

tree level amplitude squared with no soft gluons,
Nc tr½p��p0���, times an amplitude from the soft gluons.
Since the hard quarks are on-shell and back-to-back

their four-momenta are given by lightlike vectors along
the thrust axis:

p� ¼ n�
�n � p
2

; p0� ¼ �n�
n � p
2

; (C3)

up to power corrections beyond those considered here.

Here n� ¼ ð1; t̂Þ and �n� ¼ ð1;�t̂Þ are identical to the n
and �n appearing in Eq. (6). Using Eq. (C3) the soft gluon
amplitudes in Eqs. (C1) and (C2) are eikonal with precisely

the right factors to come from the �YT
�n ð0Þ, Ynð0Þ, Yy

n ð0Þ, and
�Y�
�nð0Þ in the �1 matrix element in Eq. (6).
For the first moment observable we can focus on ampli-

tudes that have the same number of gluons in M�
h and

M��
h and at least one gluon for the i@̂ operation in Eq. (6)

to act on. Since the gluon is soft, the factor of � inR
d�ð�=�Þðd�=d�Þ is given by

� ¼ min

�
2p � k
q2

;
2p0 � k
q2

�
¼ 1

Q
min½n � k; �n � k�

¼ 1

Q
fn � k	ð �n � k� n � kÞ þ �n � k	ðn � k� �n � kÞg; (C4)

and is exactly equal to i@̂ given in Eq. (7) acting on the soft
gluon in Fig. 21. Hence in the first moment of thrust we
find that � together with the soft gluon amplitude give
precisely 2�1=Q, with the vacuum matrix in Eq. (6)
(where the trace comes from the sum over color for the
final-state quarks). The remaining Nc tr½p��p0��� ampli-
tude goes together with the two-body phase space to yield
the tree level cross section �I

0. Together these results yield

Eq. (25) for the lowest order OPE for the first moment of
thrust.

FIG. 21. Amplitudes for zero and one soft gluon.
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