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QCD sum rules involving mixed inverse moment integration kernels are used in order to determine the

running charm-quark mass in the MS scheme. Both the high and the low energy expansion of the vector

current correlator are involved in this determination. The optimal integration kernel turns out to be

of the form pðsÞ ¼ 1� ðs0=sÞ2, where s0 is the onset of perturbative QCD. This kernel enhances the

contribution of the well known narrow resonances, and reduces the impact of the data in the range

s ’ 20–25 GeV2. This feature leads to a substantial reduction in the sensitivity of the results to changes in

s0, as well as to a much reduced impact of the experimental uncertainties in the higher resonance region.

The value obtained for the charm-quark mass in the MS scheme at a scale of 3 GeV is �mcð3 GeVÞ ¼
987� 9 MeV, where the error includes all sources of uncertainties added in quadrature.
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Progress on the theoretical [1–12], as well as on the
experimental, information [13–16] on the vector current
correlator has allowed for a considerable improvement on
the accuracy of QCD sum rule determinations of the
charm-quark mass [17–19]. The analysis of [17] is based
on inverse (Hilbert) moment QCD sum rules, requiring
QCD knowledge of the vector correlator in the low energy,
as well as in the high energy region. In [18], an alternative
approach was used which involves only QCD information
at short distances, together with (a) a simple integration
kernel pðsÞ ¼ 1� s=s0 (local constraint), and
(b) Legendre-type polynomial kernels (global constraint).
In this paper, we describe an improved analysis based on
the use of direct as well as inverse moment kernels of the
form pðsÞ ¼ 1� ðs0=sÞn, with n � 1. These kernels en-
hance considerably the impact of the well-known narrow
resonances, as compared with e.g. a simple kernel pðsÞ ¼
1=s2, or pðsÞ ¼ 1� s=s0. They also provide a welcome
stronger suppression of the contribution of data in the
range s ’ 20–25 GeV2. In comparison with simple inverse
moments without pinching, this means that results are less
sensitive to assumptions about the onset of perturbative
QCD (PQCD), as well as to the treatment of the higher
resonance data. For instance, changes in s0 in the range
s0 ’ 15–23 GeV2 lead to a variation in �mcð3 GeVÞ of only
4 MeV (for n ¼ 2) as opposed to a variation of 14 MeV for
pðsÞ ¼ 1=s2, as used in [17].

We consider the vector current correlator

���ðq2Þ ¼ i
Z

d4xeiqxh0jTðV�ðxÞV�ð0ÞÞj0i
¼ ðq�q� � q2g��Þ�ðq2Þ; (1)

where V�ðxÞ ¼ �cðxÞ��cðxÞ. From the residue theorem in

the complex s-plane (� q2 � Q2 � s) it follows
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þRes½�ðsÞpðsÞ;s¼0�; (2)

where pðsÞ is an integration kernel, and

Im�ðsÞ ¼ 1

12�
RcðsÞ; (3)

with RcðsÞ the standard R-ratio for charm production.
The PQCD expansion of �ðsÞ at short distances can be
written as

�ðsÞjPQCD ¼ e2c
X
n¼0

�
�sð�2Þ

�

�
n
�ðnÞðsÞ; (4)

where ec ¼ 2=3 is the charm-quark electric charge, and

�ðnÞðsÞ ¼ X
i¼0

�
�m2
c

s

�
i
�ðnÞ

i ; (5)

and �mc � �mcð�Þ is the running charm-quark mass in the

MS-scheme. Up to order O ½�2
sð �m2

c=sÞ6� the function
�ðsÞPQCD has been calculated in [1], and exact results for

�ð3Þ
0 and �ð3Þ

1 have been found in [2]. The function �ð3Þ
2 is

known exactly up to a constant [3]. At five-loop order

Oð�4
sÞ the full logarithmic terms for �ð4Þ

0 may be found

in [5], and for �ð4Þ
1 in [6]. Since there is incomplete

knowledge at this loop-order, we shall use the available
information as a measure of the truncation error in PQCD.
The low energy expansion of the vector correlator around
s ¼ 0 can be written as

�PQCDðsÞ ¼ 3e2c
16�2

X
n�0

�Cnz
n; (6)
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where z ¼ s=ð4 �m2
cÞ. The coefficients �Cn can be expanded

in powers of �sð�Þ

�Cn¼ �Cð0Þ
n þ�sð�Þ

�
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n l2m

þ �Cð33Þ
n l3mÞþ . . . (7)

where lm � lnð �m2
cð�Þ=�2Þ. Up to three-loop level, the

coefficients up to n ¼ 30 of �Cn are known [8,9]. At four-
loop level, we have �C0 and �C1 from [8,10], �C2 from [9],
and �C3 from [11]. We will choose pðsÞ so that no coeffi-
cients �C4 and above contribute to the residue at s ¼ 0,
Res½�ðsÞpðsÞ; s ¼ 0�.

Apart from the quark mass, the fundamental QCD pa-
rameters are the running strong coupling �sð�2Þ, and the
gluon condensate. For the strong coupling, we use the
world average from [20], which agrees with lattice QCD
results [21], �sðM2

ZÞ ¼ 0:1184� 0:0007. However, we
will consider other values when comparing results for �mc

with other analyses. In the nonperturbative sector, the
leading power correction in the operator product expansion
involves the gluon condensate, i.e. hð�s=�ÞG2i whose
value has been extracted [22] from the ALEPH data on
�-decays. While the gluon condensate is renormalization
group invariant, its determination from QCD sum rules
involves a difference between integrals of PQCD and
integrated experimental data. This leads to an unavoidable
dependence of the gluon condensate on the value of �s

used in the PQCD expression of the correlator.
Extrapolating the results of [22] to include current values
of �s [20,23] leads to hð�s=�ÞG2i ¼ ð0:01� 0:01Þ GeV4.
This large uncertainty in the value of the gluon condensate
has only a very small impact on our results for �mc.

Turning to the experimental data, we follow closely the
analysis of [17]. For the first two narrow resonances, we
use the latest data from the Particle Data Group [24],
MJ=c ¼ 3:096916ð11Þ GeV, �J=c!eþe� ¼ 5:55ð14Þ keV,
Mc ð2sÞ ¼ 3:68609ð4Þ GeV, �c ð2sÞ!eþe� ¼ 2:35ð4Þ keV.
These two narrow resonances are followed by the open
charm region where the contribution from the light quark
sector Ruds needs to be subtracted from the total R-ratio
Rtot. We perform this subtraction as in [25]. In the region
3:97 GeV � ffiffiffi

s
p � 4:26 GeV, we only use CLEO data

[16] as they are the most precise. In connection with the
three data sets from the BES collaboration[13–15], we
assume that the systematic uncertainties are not fully in-
dependent and add them linearly, rather than in quadrature.
However, we treat these data as independent from the
CLEO data set [16], and thus add errors in quadrature.
There is no data in the region s ¼ 25–49 GeV2, and

beyond there is CLEO data up to s ’ 110 GeV2. The latter
data is fully compatible with PQCD.
We discuss next the integration kernels pðsÞ in Eq. (2),

which we choose as

pðsÞ ¼ 1�
�
s0
s

�
n
; (8)

with n � 1. As discussed in [17], inverse moments pðsÞ ¼
1=sn should not involve too large values of n. In fact, the
convergence of PQCD deteriorates with increasing n, the
gluon condensate contribution increases sharply for n > 2,
and the uncertainties in �s and the renormalization scale�
have a greater impact on the total error of the charm-quark
mass. On the other hand, direct kernels of the form pðsÞ ¼
sn, with n � 1, pose problems. Indeed, the high energy
expansion of the vector correlator is incompletely known at
O½�3

s�, so that the greater the value of n, the greater is the
contribution of the higher order mass corrections at this
order in PQCD. Already with n ¼ 1, one would need a
Pade approximation for the termO½�3

s �m
6
c�. Hence, in order

to avoid any approximation up to this order in PQCD we
restrict ourselves to direct moments with n ¼ 0, and in-
clude inverse powers in an attempt to enhance the contri-
bution of the well-known narrow resonances, J=c and
c ð2SÞ, and at the same time suppressing the broad reso-
nance region. We found that Eq. (8) with n ¼ 2 is the
optimal kernel as explained next. In Fig. 1, we show
the experimental data for the ratio RðsÞ together with the
kernel Eq. (8) with n ¼ 2 and s0 ’ 23 GeV2, and the
simple kernel pðsÞ ¼ 1=s2 normalized such that both
kernels coincide at the peak of the second narrow reso-
nance c ð2SÞ, i.e. s ’ 13:6 GeV2. One can easily appreci-
ate that in comparison with the latter, the former kernel
leads to a welcome enhancement of the weight of the J=c ,

J 2s
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FIG. 1. Experimental data for the total RðsÞ ratio together with
the optimal integration kernel, Eq. (8), with n ¼ 2 (dash curve),
and pðsÞ ¼ 1=s2 (solid curve) normalized to coincide with the
former at the position of the c ð2SÞ peak.
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as well as to a strong suppression of the broad resonance
region, and particularly the region near the onset of the
continuum. Quantitatively, the ratio of the area under the
hadronic spectral function weighted with pðsÞ, in the nar-
row resonance region, Inr, and in the broad resonance
region and beyond, Ibr, is Inr=Ibr ¼ 3:6 for pðsÞ ¼
1=s2, and Inr=Ibr ¼ 7:7 for Eq. (8) with n ¼ 2. Other
values of n lead to slightly less enhancement. In addition,
the kernel Eq. (8) with n ¼ 2 leads to final results for �mc

which are fairly insensitive to the choice of s0. For in-
stance, in the range s0 ’ 15:0–23:0 GeV2, �mcð3 GeVÞ
changes by about 4.0 MeV, while using the kernel pðsÞ ¼
1=s2 it changes by 14.0 MeV.

Proceeding to our determination, we list in Table I the
results for �mcð3 GeVÞ at different orders in perturbation
theory, and using two integration kernels. The results for
the kernel pðsÞ ¼ 1=s2 differ from [17] as we use now a
slightly different value of the strong coupling, of the gluon
condensate and of the c ð2SÞ parameters as given above,
and we include the CLEO data [16]. The various errors
associated to the final value of �mcð3 GeVÞ are given in
Table II. Results from fixed order perturbation theory are
essentially the same as using contour improved perturba-
tion theory to integrate around the circle of radius s0 in the
complex s-plane. In Fig. 2, we show the results for
�mcð3 GeVÞ as a function of s0 for the kernel pðsÞ ¼
1=s2, and in Fig. 3 for the kernel Eq. (8) with n ¼ 2, the
latter exhibiting improved stability. The convergence pat-
tern in �s of the PQCD integral as a function of �mc can be
studied by computing

Iðs0Þ ¼ � 1

2�i

I
Cðjs0jÞ

pðsÞ�ðsÞds

þ Res½�ðsÞpðsÞ; s ¼ 0�; (9)

with these integrals being functions of both �mc and �s.
Using �mcð3 GeVÞ ¼ 987 MeV, and Eq. (8) with n ¼ 2

we find reasonable convergence, i.e. I ð0Þ ¼ 91:4 GeV2,

I ð1Þ¼62:0GeV2, I ð2Þ ¼57:0GeV2, and I ð3Þ ¼56:3GeV2,

where the upper index in I ðjÞ indicates the power of �s.
Our final result using the optimal kernel, Eq. (8), with

n ¼ 2 is

�mcð3 GeVÞ ¼ 987� 9 MeV; (10)

in good agreement within errors with the result from
inverse moment QCD sum rules [17], other recent deter-
minations [18,19,25,26], as well as lattice QCD [21].
Translated into a scale invariant mass, the above result
gives �mcð �mcÞ ¼ 1278� 9 MeV for the value used here
for the strong coupling.

TABLE I. Results for the charm-quark mass at different orders
in PQCD, and for two integration kernels. The results for pðsÞ ¼
1=s2 are obtained using slightly different values of the QCD
parameters, and a different integration procedure as in [17].

�mcð3 GeVÞ (in MeV)

Kernel �mð0Þ
c �mð1Þ

c �mð2Þ
c �mð3Þ

c

s�2 1129 1021 998 995

1� ðs0=sÞ2 1146 1019 991 987

TABLE II. The various uncertainties due to the data (EXP), the
value of �s (��s), changes of �35% in the renormalization
scale around � ¼ 3 GeV (��), the value of the gluon conden-
sate (NP), and due to variations in s0 (s0).

Uncertainties (in MeV)

Kernel �mcð3 GeVÞ EXP ��s �� NP s0 Total

s�2 995 9 3 1 1 14 17

1� ðs0=sÞ2 987 7 4 1 1 4 9
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FIG. 2. Results for �mcð3 GeVÞ as a function of s0 for the kernel
pðsÞ ¼ 1=s2. The variation of �mcð3 GeVÞ in this range is up to
14 MeV.
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FIG. 3. Results for �mcð3 GeVÞ as a function of s0 for the kernel
Eq. (8) with n ¼ 2. The variation of �mcð3 GeVÞ in this range is
up to 4 MeV.
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A recent analysis [19] using inverse moment sum rules
finds mcð3 GeVÞ ¼ 998� 29 MeV. The relatively large
error arises mostly from the unconventional choice of
different renormalization scales for the quark mass and
for the strong coupling. If these scales are taken to be the
same, then there is a substantial cancellation of the scale
dependence in inverse moment sum rules leading to a
smaller uncertainty. However, this does not affect sum
rules with kernels involving positive powers of s, as e.g.
in [18]. By using different kernels, different moments,
different renormalization procedures and different integra-
tion methods, one can produce a variety of quark mass

values with different errors. Following the philosophy used
in most previous determinations of the heavy quark
masses, we choose the procedure which leads to the small-
est final error, provided the central values are all
compatible.
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