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We consider the extension of the statistical parton distributions to include their transverse momentum

dependence, by using two different methods, one is based on our quantum statistical approach, the other

on a relativistic covariant method. We take into account the effects of the Melosh-Wigner rotation for the

polarized distributions. The results obtained can be compared with recent semi-inclusive deep inelastic

scattering (DIS) data on the cross section and double longitudinal-spin asymmetries from JLab. We also

give some predictions for future experiments on electron-neutron scattering.

DOI: 10.1103/PhysRevD.83.074008 PACS numbers: 12.40.Ee, 13.60.Hb, 13.88.+e, 14.65.Bt

I. INTRODUCTION

A new set of parton distribution functions (PDF) was
constructed in the framework of a statistical approach of
the nucleon [1], and let us first recall very briefly, its main
characteristic features. For quarks (antiquarks), the build-
ing blocks are the helicity dependent distributions q�ðxÞ
( �q�ðxÞ) so this allows to describe simultaneously the un-
polarized distributions qðxÞ ¼ qþðxÞ þ q�ðxÞ and the he-
licity distributions �qðxÞ ¼ qþðxÞ � q�ðxÞ (similarly for
antiquarks). At the initial energy scale taken at Q2

0 ¼
4 GeV2, these distributions are given by the sum of two
terms, a quasi Fermi-Dirac function and a helicity inde-
pendent diffractive contribution, which leads to a universal
behavior at very low x for all flavors. The flavor asymmetry
for the light sea, i.e. �dðxÞ> �uðxÞ, observed in the data is
built in. This is clearly understood in terms of the Pauli
exclusion principle, based on the fact that the proton con-
tains two u quarks and only one d quark. The chiral
properties of QCD lead to strong relations between qðxÞ
and �qðxÞ. For example, it is found that the well established
result �uðxÞ> 0 implies ��uðxÞ> 0 and similarly
�dðxÞ< 0 leads to � �dðxÞ< 0. Concerning the gluon, the
unpolarized distribution Gðx;Q2

0Þ is given in terms of a

quasi Bose-Einstein function, with only one free parame-
ter, and for simplicity, one assumes zero gluon polariza-
tion, i.e. �Gðx;Q2

0Þ ¼ 0, at the initial energy scale Q2
0. All

unpolarized and polarized light quark distributions depend
upon eight free parameters, which were determined in

2002 (see Ref. [1]), from a next-to-leading order fit of a
selected set of accurate deep inelastic scattering (DIS)
data. Concerning the strange quark and antiquark distribu-
tions, the statistical approach has been applied to calculate
the strange quark asymmetry and the corresponding helic-
ity distributions, which were found both negative at all x
values [2]. More recently, new tests against experimental
(unpolarized and polarized) data turned out to be very
satisfactory, in particular, in hadronic reactions, as reported
in Refs. [3,4]. The paper is organized as follows. In the next
section we review the construction of the statistical distri-
butions and we present an improved version of the exten-
sion to the transverse momentum dependence (TMD). In
Sec. III, we will consider charged pion production in semi-
inclusive deep inelastic scattering (SIDIS), ‘N ! ‘HX, a
suitable reaction for testing our TMD distributions, more
specifically, for the cross section and the longitudinal-spin
asymmetry, by taking into account the effects of the
Melosh-Wigner rotation. The results are given and dis-
cussed in Sec. IV and the last section is devoted to our
concluding remarks.

II. THE TMD PARTON DISTRIBUTIONS

A. The original longitudinal parton distributions

We now review some of the basic features of the statis-
tical approach, as opposed to the standard polynomial type
parametrizations of the PDF, based on Regge theory at low
x and counting rules at large x. The fermion distributions
are given by the sum of two terms [1], a quasi Fermi-Dirac
function and a helicity independent diffractive contribution
equal for all light quarks:
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xqhðx;Q2
0Þ ¼

AXh
0qx

b

exp½ðx� Xh
0qÞ= �x� þ 1

þ
~Ax

~b

expðx= �xÞ þ 1
;

(1)

x �qhðx;Q2
0Þ ¼

�AðX�h
0q Þ�1x2b

exp½ðxþ X�h
0q Þ= �x� þ 1

þ
~Ax

~b

expðx= �xÞ þ 1
;

(2)

at the input energy scale Q2
0 ¼ 4 GeV2. Notice the change

of sign of the potentials and helicity for the antiquarks. The
parameter �x plays the role of a universal temperature and
X�
0q are the two thermodynamical potentials of the quark q,

with helicity h ¼ �. The eight free parameters1 in Eqs. (1)
and (2) were determined at the input scale from the com-
parison with a selected set of very precise unpolarized and
polarized DIS data [1]. They have the following values

�x ¼ 0:09907; b ¼ 0:40962;

~b ¼ �0:25347; ~A ¼ 0:08318;
(3)

Xþ
0u ¼ 0:46128; X�

0u ¼ 0:29766;

X�
0d ¼ 0:30174; Xþ

0d ¼ 0:22775:
(4)

For the gluons we consider the black-body inspired
expression

xGðx;Q2
0Þ ¼

AGx
bG

expðx= �xÞ � 1
; (5)

a quasi Bose-Einstein function, with bG ¼ 0:90, the only
free parameter,2 since AG ¼ 20:53 is determined by the
momentum sum rule. We also assume that, at the input
energy scale, the polarized gluon, distribution vanishes, so

x�Gðx;Q2
0Þ ¼ 0: (6)

For the strange quark distributions, the simple choice made
in Ref. [1] was greatly improved in Ref. [2], but they will
not be considered in this paper. In Eqs. (1) and (2) the
multiplicative factorsXh

0q and ðX�h
0q Þ�1 in the numerators of

the nondiffractive parts of q’s and �q’s distributions imply a
modification of the quantum statistical form we were led to
propose in order to agree with experimental data. The
presence of these multiplicative factors was justified in
our earlier attempt to generate the TMD [5], as we will
explain now, with a considerable improvement.

B. The TMD statistical distributions revisited

Let us recall that the TMD of the nondiffractive part of a
quark distribution q of helicity h (first term in Eq. (1)) was
introduced by the following multiplicative term

1

exp½ðk2T=x�2 � Yh
0qÞ= �x� þ 1

; (7)

where Yh
0q is the thermodynamical potential associated to

the quark transverse momentum kT and 1=�
2 is a Lagrange

multiplier, whose value is determined by a transverse
energy sum rule. We notice that this term induces a non
factorizable x and kT dependence as it is assumed in some
other parametrizations. In order to recover the original x
distributions, the integration of (7) over k2T gives the ex-
plicit factor

Z 1

0

dk2T
exp½ðk2T=x�2 � Yh

0qÞ= �x� þ 1

¼ �x�2 �xLi1ð� exp½Yh
0q= �x�Þ: (8)

Here Li1 denotes the polylogarithm function of order 1,
which is known to arise from the integral of Fermi-Dirac
distributions and is such that

� Li1ð�eyÞ ¼
Z 1

0

d!

eð!�yÞ þ 1
¼ lnð1þ eyÞ: (9)

Similarly for an antiquark distribution �q of helicity �h,
according to the rules of the statistical approach, one
should use the same potential with the opposite sign, so
one gets instead, x�2 �x lnð1þ exp½�Yh

0q= �x�Þ. In Ref. [5],

we made the arbitrary simple choice Yh
0q ¼ kXh

0q, with

k ¼ 1:42, which allows to recover the factor Xh
0q for quarks

(see Eq. (1)), since for large values 3 of Yh
0q= �x, one has

Li1ð� exp½Yh
0q= �x�Þ � Yh

0q= �x, which is proportional to Xh
0q.

However this is not suitable to get the factor ½Xh
0q��1 for

antiquarks (see Eq. (2)), because Li1ð� exp½�Yh
0q= �x�Þ �

exp½�Yh
0q= �x� for large values of Yh

0q= �x. In other words, the

product lnð1þ exp½Yh
0q= �x�Þ � lnð1þ exp½�Yh

0q= �x�Þ does

not remain independent of Yh
0q, as it should. Actually, the

division by �x of the argument of the exponential in the
Fermi-Dirac expression was not necessary because for
the transverse degrees of freedom, �2 plays the role of
the temperature. This feature reflects the fact that one
should not treat on equal footing longitudinal and trans-
verse degrees of freedom. Therefore, for the sake of sim-
plicity, we propose to replace Eq. (7) by

1

expðk2T=x�2 � Yh
0qÞ þ 1

; (10)

1A ¼ 1:74938 and �A ¼ 1:90801 are fixed by the following
normalization conditions u� �u ¼ 2, d� �d ¼ 1.

2In Ref. [1] we were assuming that, for very small x, xGðx;Q2
0Þ

has the same behavior as x �qðx; Q2
0Þ, so we took bG ¼ 1þ ~b.

However this choice leads to a too much rapid rise of the gluon
distribution, compared to its recent determination from Hadron
Elektron Ring Anlage (HERA) data, which requires bG ¼ 0:90. 3 �x has a small value according to Eq. (3) above.
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with the corresponding integral over k2T ,
x�2 lnð1þ exp½Yh

0q�Þ. Clearly this implies a different nor-

malization for �2 and Yh
0q. At high kT , Eq. (10) has a

Gaussian behavior, with a width proportional to �
ffiffiffi
x

p
,

at variance with the usual factorization assumption of
the dependences in x and kT [6]. The product
lnð1þ exp½Yh

0q�Þ � lnð1þ exp½�Yh
0q�Þ has its maximum

ðln2Þ2 for Yh
0q ¼ 0 and therefore it is stationary around

this value. So now in order to try to recover the factors
Xh
0q and ðX�h

0q Þ�1 in Eqs. (1) and (2), we simply have to

choose Yh
0q such that lnð1þ exp½Yh

0q�Þ is proportional to

Xh
0q and more precisely such that

lnð1þ exp½Yh
0q�Þ ¼ kXh

0q: (11)

This way we recover exactly the factors Xh
0q introduced in

Eq. (1) for the quarks. We take the proportionality factor
k ¼ ln2=Xþ

0d, X
þ
0d being the lowest longitudinal potential,

so with the value given in (4) we get k ¼ 3:05. In order to
get almost exactly ðXh

0qÞ�1 for the antiquarks in Eq. (2), we

also assume that the corresponding transverse potential Yþ
0d

is small and fixed to the value 0.01. So from Eq. (11), the
values of the other three transverse potentials can be ob-
tained and we finally have

Yþ
0u ¼ 1:122; Y�

0u ¼ 0:388;

Y�
0d ¼ 0:409; Yþ

0d ¼ 0:010:
(12)

These are different from the values obtained in Ref. [5] and
will lead to different predictions for the TMD of the PDF.
The nondiffractive contributions read now

xqhðx; k2TÞ ¼
FðxÞ

expðx� Xh
0qÞ= �xþ 1

� 1

expðk2T=x�2 � Yh
0qÞ þ 1

; (13)

x �qhðx; k2TÞ ¼
�FðxÞ

expðxþ X�h
0q Þ= �xþ 1

� 1

expðk2T=x�2 þ Y�h
0q Þ þ 1

; (14)

where

FðxÞ ¼ Axb�1Xh
0q

lnð1þ expYh
0qÞ�2

¼ Axb�1

k�2
: (15)

Similarly for �q we have �FðxÞ ¼ �Ax2b�1=k�2. After
this new determination of the transverse potentials, we
will see later how we can determine �2, using the trans-
verse energy sum rule. As noted in Ref. [5], if pz denotes
the proton momentum, its energy can be approximated by

pz þM2=2pz, where M is the proton mass. Similarly the
energy of a massless parton, with transverse momentum kT
is, in the same approximation, xpz þ k2T=2xpz. Therefore
all involved parton distributions denoted piðx; k2TÞ must
satisfy the momentum sum rule

X
i

Z 1

0
dx

Z
xpiðx; k2TÞdk2T ¼ 1; (16)

and also the transverse energy sum rule

X
i

Z 1

0
dx

Z
piðx; k2TÞ

k2T
x
dk2T ¼ M2: (17)

The contribution of Eq. (13), for the quarks, to the sum rule
Eq. (17) is given by:

Z k2T
x
qhðx; k2TÞdxdk2T ¼

Z 1

0

FðxÞdx
x2
�
exp

x�Xh
0q

�x þ 1
�

�
Z 1

0

k2Tdk
2
T

exp
�
k2T
x�2 � Yh

0q

�
þ 1

; (18)

and after the change of variable � ¼ k2T=x�
2, we get

�2
Z 1

0

�2FðxÞdx
exp

x�Xh
0q

�x þ 1

Z 1

0

�d�

expð�� Yh
0qÞ þ 1

¼ �2I1 � I2;

(19)

where

I1 ¼
Z 1

0

�2FðxÞdx
exp

x�Xh
0q

�x þ 1
¼ Pqh

lnð1þ expYh
0qÞ

; (20)

Pqh is the number of parton of type qh, and

I2 ¼
Z 1

0

�d�

expð�� Yh
0qÞ þ 1

¼ �2

6
þ ðYh

0qÞ2
2

þ Li2ð� expð�Yh
0qÞÞ: (21)

Therefore in the limit Yh
0q ¼ 0 the contribution of a parton

of type qh is just �2Pqh�
2=ð12 ln2Þ, since Li2ð�1Þ ¼

��2=12.
In a similar way for the contribution to the sum rule

Eq. (17), from the nondiffractive part of the light anti-
quarks Eq. (14), we get

�2
Z 1

0

�2 �FðxÞdx
exp

xþX�h
0q

�x þ 1

Z 1

0

�d�

expð�þ Y�h
0q Þ þ 1

¼ �2 �I1 � �I2;

(22)

where
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�I 1 ¼
Z 1

0

�2 �FðxÞdx
exp

xþX�h
0q

�x þ 1
¼ P �qh

lnð1þ expð�Y�h
0q ÞÞ ; (23)

P �qh is the number of parton of type �qh, and

�I 2 ¼
Z 1

0

�d�

expð�þ Y�h
0q Þ þ 1

¼ �2

6
þ ðY�h

0q Þ2
2

þ Li2ð� expðY�h
0q ÞÞ: (24)

Finally we turn to the universal diffractive contribution
to quarks and antiquarks in Eqs. (1) and (2), namely

xqDðx;Q2
0Þ ¼ ~Ax

~b=½expðx= �xÞ þ 1�. Since ~b < 0 (see

Eq. (3)), the introduction of the kT dependence cannot be
done similarly to the nondiffractive contributions, because
in the energy sum rule Eq. (17), it generates a singular
behavior when x ! 0. Therefore in order to avoid this
difficulty, as in Ref. [5], we modify our prescription by
taking at the input energy scale

xqDðx; k2TÞ ¼
~Ax

~b�2

ln2�2

1

½expðx= �xÞ þ 1�
1

½expðk2T=x2�2Þ þ 1� ;
(25)

whose kT fall off is stronger, because x�2 is now replaced
by x2�2. Note that this is properly normalized to recover
xqDðx;Q2

0Þ after integration over k2T . We have checked that

xqDðx; k2TÞ gives a negligible contribution to Eq. (17), as
expected (See Appendix). Concerning the gluon, since it is
parametrized by a quasi Bose-Einstein function, one has to
introduce a nonzero potential YG, in contrast with the QCD
equilibrium conditions, to avoid the singular behavior of
Li1ðexp½�YG= �x�Þ, when YG ¼ 0. The value of YG is not
constrained, but by taking a very small YG, it does not
affect the energy sum rule (See Appendix). Clearly these
regularization procedures to the diffractive contribution
and to the gluon are not fully satisfactory, but we will
discuss them again in our concluding remarks (See
Sec. V). By summing up all contributions to the energy
sum rule, one finally gets the value of �2, namely �2 ¼
0:198 GeV2.

C. The Melosh-Wigner transformation

So far in all our quark or antiquark TMD distributions
(see Eqs. (13) and (14)), the label ‘‘‘h’’’ stands for the
helicity along the longitudinal momentum and not along
the direction of the momentum, as normally defined for a
genuine helicity. The basic effect of a transverse momen-
tum kT � 0 is the Melosh-Wigner rotation [7,8], which
mixes the components q� in the following way

qþ0 ¼ cos2�qþ þ sin2�q� and

q�0 ¼ cos2�q� þ sin2�qþ; (26)

where 2� ¼ Arctgð�kT=xMÞ, M is the proton mass and �
is a dimensionless parameter. Consequently q ¼ qþ þ q�
remains unchanged q0 ¼ q, whereas we have

�q0 ¼ ðcos2�� sin2�Þ�q ¼ cos2��q

¼ cosArctgð�kT=xMÞ�q: (27)

So we finally get

�q0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð�kT=xMÞ2p �q: (28)

The effect of the Melosh-Wigner transformation on the
double longitudinal-spin asymmetry will be discussed in
Sec. IV.

D. The TMD distributions in the relativistic
covariant approach

Covariant parton models have been widely discussed in
the literature, but in some recent papers [9,10], an analysis
based on the requirements of symmetry, for the parton
motion in the nucleon rest frame, leads to a different
method to generate the TMD of a given x-distribution.
By using some input unpolarized distribution fðxÞ, one
can calculate the corresponding TMD distribution
fðx; k2TÞ, by means of its derivative, according to the fol-
lowing rule

fðx; k2TÞ ¼ � 1

�M2

d

d�
ðfð�Þ=�Þ; (29)

where the variable � is defined as � ¼ xð1þ k2T=x
2M2Þ,M

being the proton mass. This method has been generalized
for helicity distributions�fðxÞ and in this case we have for
the corresponding TMD distribution �fðx; k2TÞ

�fðx; k2TÞ ¼
2x� �

�M2�3

�
�
3�fð�Þ þ 2

Z 1

�

�fðyÞ
y

dy� �
d

d�
�fð�Þ

�
:

(30)

It is interesting to recall that in Ref. [11], it was demon-
strated that for the TMD PDF a factorized form f1ðxÞf2ðk2TÞ
is in contradiction with the Lorentz structure, at least for a
zero strong interaction coupling g ¼ 0. Using a rather
different approach, they obtain results identical to the
ones above. We will show and discuss later the results
one obtains from these formulas, using as input the
x-dependent statistical PDF in Eqs. (1) and (2). In this
approach as well as in ours, one gets the distributions
function of x and k2T=x.
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III. CROSS SECTION AND SPIN ASYMMETRY
OF PION PRODUCTION IN

POLARIZED SIDIS

Following Ref. [12], we consider the polarized SIDIS,
‘N ! ‘HX in the simple quark-parton model, with
unintegrated parton distributions. According to the stan-
dard notations for DIS variables, ‘ and ‘0 are, respectively,
the four-momenta of the initial and the final state leptons,
q ¼ ‘� ‘0 is the exchanged virtual photon momentum,
P is the target nucleon momentum, PH is the final hadron
momentum, Q2 ¼ �q2, x ¼ Q2=2P � q, y ¼ P � q=P � ‘,
z ¼ P � PH=P � q, Q2 ¼ xyðs�M2Þ and s ¼ ð‘þ PÞ2.
We work in a frame with the z-axis along the virtual photon
momentum direction and the x-axis in the lepton scattering
plane, with positive direction chosen along the lepton
transverse momentum. The produced hadron has trans-
verse momentum pT (For further details see Ref. [12]).
Keeping only twist-two contributions and terms up to
OðM=QÞ, the cross section for SIDIS of longitudinally
polarized leptons off a longitudinally polarized target can
be written as:

d5�
!(

dxdydzd2pT

¼ 2�2

xy2s
fH 1 þ �SLH 2g; (31)

where the arrows indicate the direction of the lepton (!)
and target nucleon (() polarizations, with respect to the
lepton momentum; �, and SL are the magnitudes of the
longitudinal beam polarization and the longitudinal target
polarization, respectively.

The two terms have the following simple partonic ex-
pressions

H 1ðpTÞ ¼
X
q

e2q
Z

d2kTqðx; kTÞ�y2 ŝ
2 þ û2

Q4
Dh

qðz; qTÞ;

(32)

H 2ðpTÞ ¼
X
q

e2q
Z

d2kT�q
0ðx; kTÞ�y2 ŝ

2 � û2

Q4
Dh

qðz; qTÞ;

(33)

where pT ¼ qT þ zkT and qT is the intrinsic transverse
momentum of the hadron H with respect to the fragment-
ing quark direction. Here ŝ, t̂ and û are the Mandelstam
variables for the subprocess ‘q ! ‘q. Note that in Eq. (33)
above, we have used Eq. (28), which takes into account the
effect of the Melosh-Wigner rotation. The first two con-
tributions, Eqs. (32) and (33), give, respectively, the un-
polarized cross section and the numerator of the double
longitudinal-spin asymmetry A1

d5�þþ

dxdydzd2pT

� d5�þ�

dxdydzd2pT

¼ 4�2

xy2s
H 2;

d5�

dxdydzd2pT

¼ 2�2

xy2s
H 1;

(34)

where þ, � stand for helicity states. So we simply have
A1 ¼ 2H 2=H 1.
The integrals in Eqs. (32) and (33) involve the following

TMD fragmentation function [13]

Dh
qðz; qTÞ ¼ Dh

qðzÞ 1

��2
D

exp

�
� q2T
�2

D

�
; (35)

which is the standard factorized Gaussian model, since we
have not yet generalized our statistical approach to the
TMD fragmentation functions.

IV. RESULTS AND DISCUSSION

In this section we will present all our results on the TMD
unpolarized and polarized PDF, for light quarks and anti-
quarks, resulting from the two approaches considered
above. We will discuss their specific features and the
difference they lead to, in the calculation of the cross
sections and the spin asymmetries for SIDIS pion produc-
tion. All our results are given at Q2 ¼ 2:37 GeV2, the
value corresponding to the CLAS data [14,15], so
we have performed a backward QCD evolution from our
input energy scale Q2

0 ¼ 4 GeV2. In Fig. 1 we show

xuðx; kT; Q2Þ and xdðx; kT; Q2Þ as a function of kT for
different x values, using the TMD statistical PDF con-
structed in Sec. II B. We have checked that in this
x-region, the nondiffractive part of the quark distributions
largely dominate. Similarly x�uðx; kT; Q2Þ and
x�dðx; kT; Q2Þ are shown in Fig. 2 and we recall that
they are independent of the diffractive contribution. It is
clear that all these kT distributions are close to a Gaussian
behavior, but with a x-dependent width. The corresponding
antiquark PDF are shown in Figs. 3 and 4 and in this case,
we notice a much more rapid fall off in kT compare to the
unpolarized PDF. Now if one uses the procedure resulting
from the relativistic covariant approach described in
Sec. II D, one obtains different TMD unpolarized and
polarized PDF as shown in Figs. 5 and 6 for u and d
quarks. By comparing them with Figs. 1 and 2, we see
that their kT fall off is much faster than in the previous case.
The corresponding antiquark distributions are shown in
Figs. 7 and 8. Next, we turn to the calculation of the
unpolarized cross section and the double longitudinal-
spin asymmetry for pion production in polarized SIDIS.
The cross section is directly related to H 1 (see Eq. (34))
and we show in Fig. 9, the results, on a proton target, from
the two approaches, versus p2

T , for different x-values. The
parameter �2

D, which enters in the fragmentation function,
Eq. (35), is a free parameter. In order to get the best
description of the data of Ref. [14], it has been adjusted
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to the value �2
D ¼ 0:155 GeV2, a value slightly different

from the one used in Ref. [6]. The agreement is better in
the case of the relativistic covariant approach, which has a
faster p2

T fall off. However it has very little x-dependence,
which is not known experimentally at the moment,
unfortunately. We predict essentially the same result for
�� production and also for �� production on a neutron
target.

However if we consider the ratio of the cross sections for
the production of a �þ from a neutron target over its
production from a proton target, our prediction is shown
in Fig. 10. The calculation was done in the two approaches
considered and the results are almost identical. At fixed pT ,
this ratio decreases with x, following almost the trend of
the ratio dðxÞ=uðxÞ (see Fig. 4 of Ref. [4]) and at fixed x, it
is essentially flat over pT , because the TMD of the pion
fragmentation function is flavor independent. This predic-
tion is worthwhile to check with future experiments.

FIG. 2 (color online). The statistical distributions
x�uðx; kT; Q2Þ (top) and x�dðx; kT; Q2Þ (bottom), calculated at
Q2 ¼ 2:37 GeV2, versus kT , for different x values: solid line
x ¼ 0:2, dashed line x ¼ 0:4, dotted line x ¼ 0:6.

FIG. 1 (color online). The statistical distributions xuðx; kT; Q2Þ
(top) and xdðx; kT;Q2Þ (bottom), calculated at Q2 ¼ 2:37 GeV2,
versus kT , for different x values: solid line x ¼ 0:2, dashed line
x ¼ 0:4, dotted line x ¼ 0:6.
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Finally, let us consider the double longitudinal-spin
asymmetry A1, defined above. The results of the calcula-
tion from both approaches, for ��;0 on a proton target are
shown in Fig. 11, with the kinematic cuts corresponding to
the JLab recent data [15]. Whereas the relativistic cova-
riant approach leads to an asymmetry decreasing with pT ,
the statistical approach leads to a flat dependence in pT , in
fairly good agreement with the data, and it gives the correct
normalization. We note that this behavior, which was

obtained with � ¼ 1:35 in (28), is partly due to the effect
of the Melosh-Wigner rotation. In both approaches this
effect reduces A1, but it plays an essential role in the
statistical approach because it compensates the effect of
the kT rising behavior of �q. For completeness, in view of
future experiments, we have also calculated the asymmetry
on a neutron target, which are displayed in Fig. 12. For the
production of �þ, A1 is sensitive to �d and this is the
reason for a negative result. In this case, the predictions
from the two approaches lead again to rather different

FIG. 3 (color online). The statistical distributions x �uðx; kT; Q2Þ
(top) and x �dðx; kT;Q2Þ (bottom), calculated at Q2 ¼ 2:37 GeV2,
versus kT , for different x values: solid line x ¼ 0:2, dashed line
x ¼ 0:4, dotted line x ¼ 0:6.

FIG. 4 (color online). The statistical distributions
x��uðx; kT; Q2Þ (top) and x� �dðx; kT; Q2Þ (bottom), calculated at
Q2 ¼ 2:37 GeV2, versus kT , for different x values: solid line
x ¼ 0:2, dashed line x ¼ 0:4, dotted line x ¼ 0:6.
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results, which should be also compared to the predictions
from Ref. [6].

Before closing this discussion we must come back to the
effect of the Melosh-Wigner rotation. It is clear that the
integral over kT of �q0 (see Eq. (28) is smaller than �qðxÞ.
Therefore to solve this small mismatch, one should adjust
the potentials, in such a way that Xþ

0q � X�
0q increases

slightly, whereas Xþ
0q þ X�

0q remains unchanged, since the

Melosh-Wigner rotation does not affect the unpolarized
distribution q. This new improvement will be considered

more seriously in future work, when we will have access to
more precise data on the kT dependence of the quark
distributions, allowing also a good flavor separation be-
tween u and d quarks.

V. CONCLUDING REMARKS

An important result of this work is the construction of a
new set of TMD statistical distributions. This allows us to
take into account, in a satisfactory way, the multiplicative

FIG. 6 (color online). The relativistic covariant distributions
x�uðx; kT; Q2Þ (top) and x�dðx; kT; Q2Þ (bottom), calculated at
Q2 ¼ 2:37 GeV2, versus kT , for different x values: solid line
x ¼ 0:2, dashed line x ¼ 0:4, dotted line x ¼ 0:6.

FIG. 5 (color online). The relativistic covariant distributions
xuðx; kT;Q2Þ (top) and xdðx; kT; Q2Þ (bottom), calculated at
Q2 ¼ 2:37 GeV2, versus kT , for different x values: solid line
x ¼ 0:2, dashed line x ¼ 0:4, dotted line x ¼ 0:6.
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factors Xh
0q and ðX�h

0q Þ�1 in the numerators of the non-

diffractive parts of q’s and �q’s distributions. We have
introduced some thermodynamical potentials Yh

0q, associ-

ated to the quark transverse momentum kT , and related to
Xh
0q by the simple relation lnð1þ exp½Yh

0q�Þ ¼ kXh
0q. This

approach involves a parameter �2, which plays the role of
the temperature for the transverse degrees of freedom and
whose value was determined by the transverse energy sum
rule. The substitution x ! x2, we had to make in the
diffractive part of the quark (antiquark) distributions and

in the gluon distribution,4 to avoid a singularity in the
energy sum rule, remains an open problem at the moment.
We can give the intuitive argument that gluons, as

photons in a laser, are created mainly in the forward
direction. The diffractive part, which comes from their
conversion into q �q pairs, as well as the gluons themselves,
may thermalize only for the x degree of freedom. We have

FIG. 8 (color online). The relativistic covariant distributions
x��uðx; kT; Q2Þ (top) and x� �dðx; kT; Q2Þ (bottom), calculated at
Q2 ¼ 2:37 GeV2, versus kT , for different x values: solid line
x ¼ 0:2, dashed line x ¼ 0:4, dotted line x ¼ 0:6.

FIG. 7 (color online). The relativistic covariant distributions
x �uðx; kT;Q2Þ (top) and x �dðx; kT; Q2Þ (bottom), calculated at
Q2 ¼ 2:37 GeV2, versus kT , for different x values: solid line
x ¼ 0:2, dashed line x ¼ 0:4, dotted line x ¼ 0:6.

4Let us recall that, unlike the nondiffractive part, they did not
require any multiplicative factor.

SEMI-INCLUSIVE DIS CROSS SECTIONS AND SPIN . . . PHYSICAL REVIEW D 83, 074008 (2011)

074008-9



calculated the pT dependence of SIDIS cross sections and
double longitudinal-spin asymmetries, taking into account
the effects of the Melosh-Wigner rotation, for ��;0 pro-
duction by using this set of TMD parton distributions and
another set coming from the relativistic covariant ap-
proach. These sets lead to different results, which were
compared to recent experimental data. Both sets do not
satisfy the usual factorization assumption of the

dependence in x and kT . We have made some predictions
for future experiments with neutron targets, which will
allow further tests of our results. Major progress in our
understanding of the TMD PDF will also certainly be
achieved by measurements at the future electron ion
collider [16].

APPENDIX

Let us consider the contribution of the diffractive term to
the energy sum rule. So by using Eq. (25), this contribution
reads

Z k2T
x
qDðx; k2TÞdxdk2T ¼

Z 1

0

~Ax
~b�2dx

�2x2 ln2ðexpx�x þ 1Þ

�
Z 1

0

k2Tdk
2
T

exp
�

k2T
x2�2

�
þ 1

; (A1)

and after the change of variable � ¼ k2T=x
2�2, we get

�2
Z 1

0

~Ax
~bdx

expx�x þ 1

Z 1

0

�d�

exp�þ 1
¼ �2�2PD

12 ln2
: (A2)

One finds that PD ¼ 0:0115, so the contribution of the
diffractive part to the sum rule is negligible. Finally let

FIG. 9 (color online). The p2
T dependence of the term H 1 at

Q2 ¼ 2:37 GeV2 and z ¼ 0:30 for �þ production on a proton
target. Comparison of the results of the statistical approach (top)
and the relativistic covariant distributions (bottom). In both cases
the solid lines are for x ¼ 0:20, the dashed lines for x ¼ 0:40 and
the dotted lines for x ¼ 0:60. The data are from Ref. [14] for
x ¼ 0:24 and the error bars are statistical only.

FIG. 10 (color online). The p2
T dependence of the ratio

H n
1=H

p
1 at Q2 ¼ 2:37 GeV2 and z ¼ 0:30 for �þ production

on a neutron and proton target. Solid line is for x ¼ 0:20, dashed
line for x ¼ 0:40, dashed dotted line for x ¼ 0:60 and dotted line
for x ¼ 0:80.
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us consider the case of the gluon. In order to recover its
x-dependence (see Eq. (5)), we can write

xGðx; k2TÞ ¼ � AGx
bG�2

ðexpx�x � 1Þ�2 lnð1� expYGÞ
� 1

exp
�

k2T
x2�2 þ YG

�
� 1

; (A3)

FIG. 11 (color online). The double longitudinal-spin asymme-
try A1 for �

þ (top), �� (middle) and �0 (bottom) production on
a proton target, versus pT , with the following kinematic cuts
corresponding to the JLab data Ref. [15]: 0:12< x< 0:48, 0:4<
y< 0:85 and 0:4< z < 0:7. The data displayed are those of
Ref. [15] and the error bars are statistical only. The solid lines
are the results from the statistical distributions and the dashed
dotted lines without the inclusion of the Melosh-Wigner rotation.
The dashed lines correspond to the relativistic covariant distri-
butions and the dotted lines without the inclusion of the Melosh-
Wigner rotation.

FIG. 12 (color online). The double longitudinal-spin asymme-
try A1 for �

þ (top), �� (middle) and �0 (bottom) production on
a neutron target, versus pT , assuming the same kinematic cuts as
for the proton target. The solid lines are the results from the
statistical distributions and the dashed lines correspond to the
relativistic covariant distributions.
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because we had to introduce a small YG, otherwise
xGðx; k2TÞ ¼ 0. The contribution to the energy sum rule
Eq. (17) is

Z k2T
x
Gðx; k2TÞdxdk2T ¼ �

Z 1

0

AGx
bG�4dx

�2 lnð1� expYGÞðexpx�x � 1Þ

�
Z 1

0

k2Tdk
2
T

expð k2T
x2�2 þ YGÞ � 1

;

(A4)

and after the change of variable � ¼ k2T=x
2�2, we get

��2
Z 1

0

AGx
bGdx

ðexpx�x � 1Þ lnð1� expYGÞ
Z 1

0

�d�

expð�þ YGÞ � 1

¼ �2PG � IG;
(A5)

with

PG ¼
Z 1

0

AGx
bGdx

expx�x � 1
¼ 0:421 (A6)

and

IG ¼ � 1

lnð1� expYGÞ
Z 1

0

�d�

expð�þ YGÞ � 1

¼ � Li2ðexpYGÞ
lnð1� expYGÞ : (A7)

With YG ¼ 10�6, we find IG ¼ 0:119, so the contribution
of the gluon to the energy sum rule is negligible.
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