
Effects of an extra Uð1Þ axial condensate on the strong decays of pseudoscalar mesons

Enrico Meggiolaro*
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We consider a scenario (supported by some lattice results) in which a Uð1Þ-breaking condensate

survives across the chiral transition in QCD. This scenario has important consequences for the

pseudoscalar-meson sector, which can be studied using an effective Lagrangian model. In particular,

generalizing the results obtained in two previous papers, where the effects on the radiative decays �,

�0 ! �� were studied, in this paper we study the effects of the Uð1Þ chiral condensate on the strong

decays of the ‘‘light’’ pseudoscalar mesons, i.e., �, �0 ! 3�0; �, �0 ! �þ���0; �0 ! ��0�0;

�0 ! ��þ��; and also on the strong decays of an exotic (‘‘heavy’’) SUð3Þ-singlet pseudoscalar state
�X, predicted by the model.
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I. INTRODUCTION

It is well known that the QCD vacuum has a very
complicated structure, characterized by some nontrivial
local (or also nonlocal) condensates, whose behavior as a
function of the temperature T also characterizes the phase
structure of the theory. For example, a phase transition
which occurs in QCD at a finite temperature Tch is the
restoration of the SUðLÞ � SUðLÞ chiral symmetry (in
association with L ¼ 2, 3 massless quarks), which for
T < Tch is broken spontaneously by the nonzero value of
the so-called chiral condensate, i.e., h �qqi � P

L
i¼1h �qiqii [1].

But QCD with L massless quarks has also (at least at the
classical level) aUð1Þ axial symmetry [2,3]. This symmetry
is broken by an anomaly at the quantum level, which in the
‘‘Witten-Veneziano mechanism’’ [4,5] plays a fundamental
role (via the so-called topological susceptibility) in explain-
ing the large mass of the �0 meson. The role of the Uð1Þ
axial symmetry for the finite temperature phase structure
has been so far not well clarified. One expects that,
above a certain critical temperature TUð1Þ, also the Uð1Þ
axial symmetry will be (effectively) restored but it is still
unclear whether TUð1Þ has or has not something to do

with Tch.
In this paper we reconsider a scenario (which was

originally proposed in Refs. [6–9] and elaborated in
Refs. [10–12], and which seems to be supported by some
lattice results on the so-called chiral susceptibilities
[13–15]) in which a new Uð1Þ-breaking condensate sur-
vives across the chiral transition at Tch, staying different
from zero up to a temperature TUð1Þ > Tch. TUð1Þ is, there-
fore, the temperature at which the Uð1Þ axial symmetry is
(effectively) restored, meaning that, for T > TUð1Þ, there
are no Uð1Þ-breaking condensates. The new Uð1Þ chiral
condensate has the form CUð1Þ ¼ hOUð1Þi, where, for a

theory with L light quark flavors, OUð1Þ is a 2L-fermion

local operator that has the chiral transformation properties
of [3,16,17]1:

O Uð1Þ � det
st
ð �qsRqtLÞ þ det

st
ð �qsLqtRÞ; (1.1)

where s; t ¼ 1; . . . ; L are flavor indices. The color
indices [not explicitly indicated in Eq. (1.1)] are arranged
in such a way that: (i) OUð1Þ is a color singlet, and

(ii) CUð1Þ ¼ hOUð1Þi is a genuine 2L-fermion condensate,

i.e., it has no disconnected part proportional to some power
of the quark-antiquark chiral condensate h �qqi: the explicit
form of the condensate for the cases L ¼ 2 and L ¼ 3 is
discussed in detail in Appendix A (see also Refs. [8–10]).
This scenario has important consequences for the

pseudoscalar-meson sector. The low-energy dynamics of
the pseudoscalar mesons, including the effects due to the
anomaly, the q �q chiral condensate and the new Uð1Þ chiral
condensate, can be described, in the limit of large
number N of colors, and expanding to the first order in
the light quark masses, by an effective Lagrangian
written in terms of the topological charge density Q, the
mesonic field Uij � �qjRqiL (up to a multiplicative con-

stant), and the new field variable X � detð �qsRqtLÞ (up to
a multiplicative constant), associated with the new Uð1Þ
condensate [6–8,10]:

LðU;Uy; X; Xy; QÞ
¼ 1

2
Trð@�U@�UyÞ þ 1

2
@�X@

�Xy � VðU;Uy; X; XyÞ

þ i

2
!1QTrðlnU� lnUyÞ

þ i

2
ð1�!1ÞQðlnX � lnXyÞ þ 1

2A
Q2; (1.2)

*enrico.meggiolaro@df.unipi.it

1Throughout this paper we use the following notations for the
left-handed and right-handed quark fields: qL;R � 1

2 ð1� �5Þq,
with �5 � �i�0�1�2�3.
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where the potential term VðU;Uy; X; XyÞ has the form:

VðU;Uy; X; XyÞ

¼ �2
�

4
Tr½ðUyU� ��IÞ2� þ �2

X

4
ðXyX � �XÞ2

� Bm

2
ffiffiffi
2

p TrðMUþMyUyÞ

� c1

2
ffiffiffi
2

p ½detðUÞXy þ detðUyÞX�: (1.3)

M ¼ diagðm1; . . . ; mLÞ is the quark mass matrix and A is
the topological susceptibility in the pure–Yang-Mills the-
ory. (This Lagrangian generalizes the one originally pro-
posed in Refs. [18–22], which included only the effects due
to the anomaly and the q �q chiral condensate.) All the
parameters appearing in the Lagrangian must be consid-
ered as functions of the physical temperature T. In particu-
lar, the parameters �� and �X determine the expectation
values hUi and hXi and so they are responsible, respec-
tively, for the behavior of the theory across the SUðLÞ �
SUðLÞ and the Uð1Þ chiral phase transitions, as follows:
��jT<Tch

� 1
2F

2
� > 0; ��jT>Tch

< 0;

�XjT<TUð1Þ � 1
2F

2
X > 0; �XjT>TUð1Þ < 0:

(1.4)

The parameter F� is the well-known pion decay constant,
while the parameter FX is related to the new Uð1Þ
axial condensate. Indeed, from Eq. (1.4), �X ¼ 1

2F
2
X > 0

for T < TUð1Þ, and therefore, from Eq. (1.3), hXi ¼
FX=

ffiffiffi
2

p
� 0. Remembering that X � detð �qsRqtLÞ, up to a

multiplicative constant, we find that FX is proportional to
the new 2L-fermion condensate CUð1Þ ¼ hOUð1Þi intro-

duced above. In the same way, the pion decay constant
F�, which controls the breaking of the SUðLÞ � SUðLÞ
symmetry, is related to the q �q chiral condensate by a
simple and well-known proportionality relation (see
Refs. [6,10] and references therein): h �qiqiiT<Tch

’
� 1

2BmF�. (Moreover, in the simple case of L light quarks

with the same mass m, m2
NS ¼ mBm=F� is the squared

mass of the nonsinglet pseudoscalar mesons and one
gets the well-known Gell-Mann–Oakes–Renner relation:
m2

NSF
2
� ’ �2mh �qiqiiT<Tch

.) It is not possible to find, in a

simple way, the analogous relation between FX and the
new condensate CUð1Þ ¼ hOUð1Þi.

However, as was shown in two previous papers [11,12],
information on the quantity FX [i.e., on the newUð1Þ chiral
condensate, to which it is related] can be derived, in the
realistic case of L ¼ 3 light quarks with nonzero masses
mu, md, and ms, from the study of the radiative decays of
the pseudoscalar mesons � and �0 into two photons. A first
comparison of the results with the experimental data has
been performed and it is encouraging, pointing toward
some evidence for a nonzero Uð1Þ axial condensate.
The following decay rates are derived [11,12]:

�ð� ! ��Þ ¼ �2m3
�

192�3F2
�

�
cos ~’þ 2

ffiffiffi
2

p
F�

F�0
sin ~’

�
2
; (1.5)

�ð�0 ! ��Þ ¼ �2m3
�0

192�3F2
�

�
2

ffiffiffi
2

p
F�

F�0
cos ~’� sin ~’

�
2
; (1.6)

where � ¼ e2=4� ’ 1=137 is the fine-structure constant.
Here F�0 is defined as follows:

F�0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
� þ 3F2

X

q
; (1.7)

and can be identified with the �0 decay constant in the
chiral limit of zero quark masses. Moreover, ~’ is a mixing
angle, which can be related to the masses of the quarksmu,
md,ms, and therefore to the masses of the octet mesons, by
the following relation:

tan ~’ ¼
ffiffiffi
2

p
9A

BF�F�0 ðms � ~mÞ ¼ F�F�0

6
ffiffiffi
2

p
A
ðm2

� �m2
�Þ;
(1.8)

where m2
� ¼ 2B ~m and m2

� ¼ 2
3Bð ~mþ 2msÞ, with B � Bm

2F�

and ~m � muþmd

2 . If one putsFX ¼ 0, i.e., if one neglects the

new Uð1Þ chiral condensate, the expressions written above
reduce to the corresponding ones derived in Ref. [23] using
an effective Lagrangian which includes only the usual q �q
chiral condensate. Using the experimental values for the
various quantities which appear in Eqs. (1.5) and (1.6), one
can extract the following values for the quantity FX and for
the mixing angle ~’:2

FX ¼ 24ð7Þ MeV; ~’ ¼ 17ð2Þ�; (1.9)

and these values are perfectly consistent with the relation
(1.8) for the mixing angle, if one uses for the pure–Yang-
Mills topological susceptibility the estimate A ¼ ð180�
5 MeVÞ4, obtained from lattice simulations [25].
In Sec. III of this paper, continuing the work started in

Refs. [11,12], we shall study the effects of the Uð1Þ
chiral condensate on the strong decays of the light pseu-
doscalar mesons, i.e., �, �0 ! 3�0; �, �0 ! �þ���0;
�0 ! ��0�0; �0 ! ��þ��; and also on the strong de-
cays of an exotic (heavy) SUð3Þ-singlet pseudoscalar state
�X, predicted by the model: �X ! 3�0; �X ! �þ���0;
�X ! ��0�0; �X ! ��þ��; �X ! �0�0�0; �X !
�0�þ��; �X ! 3�, 3�0, ���0, ��0�0. In particular, in
the case of the exotic particle �X, we shall find some
relations between its mass and its decay widths, which,

2Indeed, the original values reported in Refs. [11,12] were
FX ¼ 27ð9Þ MeV and ~’ ¼ 16ð3Þ�. The values reported in
Eq. (1.9) (which are, anyhow, consistent with the original
values within the errors) have been obtained using the
updated experimental values of the Particle Data Group [24]
[in particular, �expð� ! ��Þ ¼ 0:51ð3Þ keV and �expð�0 !
��Þ ¼ 4:31ð36Þ keV; moreover we use F� ¼ 92:2ð4Þ MeV,
m� ’ 134:98 MeV, m� ’ 547:85 MeV, m�0 ’ 957:78 MeV].
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in principle, might be useful to identify a possible candi-
date for this particle.

For the benefit of the reader, we shall start, in Sec. II, by
resuming the main results, obtained in the original papers
[6,8,10], concerning the mass spectrum of the chiral effec-
tive Lagrangian (1.2) and (1.3), for temperatures T < Tch:
in this paper we shall consider the case T ¼ 0 only.

II. MASS SPECTRUM AND NEW PARAMETERS
OF THE CHIRAL EFFECTIVE LAGRANGIAN

Let us consider the Lagrangian (1.2), where the field
variable QðxÞ has been integrated out:

L ðU;Uy; X; XyÞ ¼ 1
2 Trð@�U@�UyÞ þ 1

2@�X@
�Xy

� VðU;Uy; X; XyÞ þ 1
8A½!1 TrðlnU

� lnUyÞ þ ð1�!1ÞðlnX � lnXyÞ�2:
(2.1)

A. Mass spectrum at T ¼ 0 for a generic L
(in the chiral limit)

At T ¼ 0 both SUðLÞ � SUðLÞ and Uð1ÞA symmetries
are broken. Following Ref. [18], we can eliminate the
redundant (having much larger masses) scalar fields of
the linear �-type model by taking the limit �2

� ! 1 and
�2
X ! 1. In this limit the potential term gives the follow-

ing constraints:

UyU ¼ 1
2F

2
� � I; XyX ¼ 1

2F
2
X: (2.2)

We are thus left with a nonlinear chiral effective model, in
which the field U has the form:

U ¼
ffiffiffi
1

2

s
F� exp

�
i

ffiffiffi
2

p
F�

�

�
; � ¼ XL2�1

a¼1

�a	a þ S�ffiffiffiffi
L

p I;

(2.3)

where 	aða ¼ 1; . . . ; L2 � 1Þ are the generators of SUðLÞ
[Trð	aÞ ¼ 0] in the fundamental representation, with nor-
malization Trð	a	bÞ ¼ 
ab, and �aða ¼ 1; . . . ; L2 � 1Þ
are the nonsinglet meson fields, while S� is the usual
quark-antiquark SUðLÞ singlet field:

S� � i
XL
i¼1

ð �qiLqiR � �qiRqiLÞ: (2.4)

And similarly the field X has the form:

X ¼
ffiffiffi
1

2

s
FX exp

�
i

ffiffiffi
2

p
FX

SX

�
; (2.5)

where SX is an exotic singlet field, with the following
quark content:

SX � i½det
st
ð �qsLqtRÞ � det

st
ð �qsRqtLÞ�: (2.6)

Substituting Eqs. (2.3) and (2.5) into Eq. (2.1) and taking
only the quadratic part of the Lagrangian, we obtain

L2 ¼ 1

2
@��a@

��a þ 1

2
@�S�@

�S� þ 1

2
@�SX@

�SX

� 1

2

�X
il

�2
i 	

a
il	

b
li

�
�a�b � 1

2

�
2ffiffiffiffi
L

p X
i

�2
i 	

a
ii

�
�aS�

� 1

2L

X
i

�2
i S

2
� � 1

2
c

� ffiffiffiffiffiffi
2L

p
F�

S� �
ffiffiffi
2

p
FX

SX

�
2

� 1

2
A

� ffiffiffiffiffiffi
2L

p
F�

!1S� þ
ffiffiffi
2

p
FX

ð1�!1ÞSX
�
2
; (2.7)

where

c � c1ffiffiffi
2

p
�
FXffiffiffi
2

p
��
F�ffiffiffi
2

p
�
L
; �2

i �
Bm

F�

mi: (2.8)

In the chiral limit, supmi ! 0, Eq. (2.7) reduces to

L2 ¼ 1

2
@��a@

��a þ 1

2
@�S�@

�S� þ 1

2
@�SX@

�SX

� 1

2
c

� ffiffiffiffiffiffi
2L

p
F�

S� �
ffiffiffi
2

p
FX

SX

�
2

� 1

2
A

� ffiffiffiffiffiffi
2L

p
F�

!1S� þ
ffiffiffi
2

p
FX

ð1�!1ÞSX
�
2
: (2.9)

In this case the L2 � 1 nonsinglet fields are massless: they
are the Goldstone bosons coming from the breaking of the
SUðLÞ � SUðLÞ symmetry down to SUðLÞV. Instead, the
two singlet fields S� and SX are mixed with the following
squared mass matrix:

2LðA!1þcÞ
F2
�

2
ffiffiffi
L

p ½A!1ð1�!1Þ�c�
F�FX

2
ffiffiffi
L

p ½A!1ð1�!1Þ�c�
F�FX

2½Að1�!1Þ2þc�
F2
X

0
B@

1
CA: (2.10)

The eigenvalues of this matrix are

m2
S1;S2

¼ ZL 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
L � 4QL

q
2

; (2.11)

where

ZL � 2A½F2
�ð1�!1Þ2 þ LF2

X!
2
1� þ 2cðF2

� þ LF2
XÞ

F2
�F

2
X

;

QL � 4LAc

F2
�F

2
X

: (2.12)

Making use of the following N-dependences of the
relevant quantities in the limit of large number of colors
N (see Ref. [6]):

F�¼OðN1=2Þ; FX ¼OðN1=2Þ; A¼Oð1Þ; c¼OðNÞ;
(2.13)

we derive, at the first order in the 1=N
expansion (and assuming that c1 � 0: see the discussion
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in Appendix B), the following expressions for the two
eigenvectors:

S1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
� þ LF2

X

q ðF�S� þ ffiffiffiffi
L

p
FXSXÞ;

S2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
� þ LF2

X

q ð ffiffiffiffi
L

p
FXS� � F�SXÞ;

(2.14)

with the corresponding eigenvalues:

m2
S1

¼ 2LA

F2
� þ LF2

X

¼ Oð1=NÞ;

m2
S2

¼ 2cðF2
� þ LF2

XÞ
F2
�F

2
X

¼ Oð1Þ:
(2.15)

The two fields S1 and S2 have the same quantum numbers,
but different quark contents: the first one (assuming that
F� 
 FX) is prevalently a quark-antiquark singlet S�,
while the second one is prevalently an exotic 2L-fermion
singlet SX � i½detð �qsLqtRÞ � detð �qsRqtLÞ�. Both fields are
massive in the chiral limit. If we let FX ! 0 in the above
reported formulas [i.e., if we neglect the new Uð1Þ axial
condensate], then S1 ! S� and m2

S1
! 2LA=F2

�, which is

the usual Witten-Veneziano formula for the �0 mass in the
chiral limit [4,5]. On the other side,m2

S2
’ 2c=F2

X ! 1 for

FX ! 0, being c ¼ OðFXÞ [Eq. (2.8)], and therefore, in
this limit, the field S2 ! �SX is ‘‘constrained’’ to be zero.3

In the more general case FX � 0, which we are considering
in this paper, there is a field (S1) with a squared mass which
vanishes as Oð1=NÞ in the large-N expansion; on the
contrary, the field S2 has a large mass of order Oð1Þ in
the large-N limit. It is quite easy to convince oneself that
the particle associated with the field S1 is nothing but the
particle �0, which is required by the well-known Witten-
Veneziano mechanism for the solution of theUð1Þ problem
(see Refs. [8,10]). In fact, the expression for the Uð1Þ axial
current

JðLÞ5;� ¼ i½TrðUy@�U�U@�U
yÞ þ LðXy@�X� X@�X

yÞ�
¼ � ffiffiffiffiffiffi

2L
p

@�ðF�S� þ ffiffiffiffi
L

p
FXSXÞ; (2.16)

can be rewritten, using the first Eq. (2.14), as

JðLÞ5;� ¼ � ffiffiffiffiffiffi
2L

p
FS1@�S1; (2.17)

where

FS1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
� þ LF2

X

q
(2.18)

is nothing but the decay constant of the singlet meson S1,
defined as

h0jJðLÞ5;�ð0ÞjS1ð ~p1Þi ¼ i
ffiffiffiffiffiffi
2L

p
FS1p1�: (2.19)

We recall that, according to the Witten-Veneziano mecha-
nism for the solution of the Uð1Þ problem, the �0 mass
must satisfy the following relation, known as the Witten-
Veneziano formula:

m2
�0 ¼ 2LA

F2
�0

: (2.20)

Using the first Eq. (2.15), together with Eq. (2.18),
one immediately verifies that the singlet meson associated
with the field S1 indeed verifies this relation, i.e.,
m2

S1
¼ 2LA=F2

S1
. For this reason, from now on, the field/

particle S1 will be denoted as �0, with

F�0 � FS1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
� þ LF2

X

q
: (2.21)

Instead, from now on, we shall use the name �X to denote
the other exotic singlet field/particle S2.

B. Mass spectrum at T ¼ 0 for the realistic L ¼ 3 case

Let us consider more carefully the realistic case [8],
in which there are L ¼ 3 light quark flavors, named
u, d, and s, with masses mu ¼ ð1:7� 3:3Þ MeV, md ¼
ð4:1� 5:8Þ MeV, and ms ¼ ð80� 130Þ MeV [24], which
are small compared to the QCD mass scale �QCD �
0:5 GeV. In this case Eq. (2.3) becomes

U ¼
ffiffiffi
1

2

s
F� exp

�
i

ffiffiffi
2

p
F�

�

�
; � ¼ X8

a¼1

�a	a þ S�ffiffiffi
3

p I;

(2.22)

where �aða ¼ 1; . . . ; 8Þ are the pseudoscalar mesons
(JP ¼ 0�) of the octet, while S� is the quark-antiquark
SUð3Þ-singlet field. Proceeding as in the previous section,
but making also an expansion up to the first order in the
quark masses, we immediately find that the fields �1, �2,
�4, �5, �6, �7 are already diagonal, with masses

m2
�1;2

� m2
�� ¼ Bðmu þmdÞ;

m2
�4;5

� m2
K� ¼ Bðmu þmsÞ;

m2
�6;7

� m2
K0; �K0 ¼ Bðmd þmsÞ;

(2.23)

where B � Bm

2F�
.

On the contrary, the fields �3, �8, S�, SX mix together,
with the following squared mass matrix:

3More rigorously, before taking the limit FX ! 0 (i.e.,
X ! 0), one should first take the limit !1 ! 1, so that no
singular behavior arises from the anomalous term in Eqs. (1.2)
and (2.1) and the Lagrangian simply reduces, for X ! 0, to the
usual Lagrangian of Witten, Di Vecchia, Veneziano, et al. It is
easy to check that, by putting !1 ¼ 1 in Eqs. (2.11) and (2.12)
and then letting FX ! 0, one recovers the same results that one
also obtains by simply letting FX ! 0 in Eqs. (2.15), i.e.,
m2

S1
! 2LA=F2

� and m2
S2

’ 2c=F2
X ! 1.
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K ¼

2B ~m 1ffiffi
3

p B�
ffiffi
2
3

q
B� 0

1ffiffi
3

p B� 2
3Bð ~mþ 2msÞ 2

ffiffi
2

p
3 Bð ~m�msÞ 0ffiffi

2
3

q
B� 2

ffiffi
2

p
3 Bð ~m�msÞ 6ðA!2

1
þcÞ

F2
�

þm2
0

2
ffiffi
3

p ½Að1�!1Þ!1�c�
F�FX

0 0 2
ffiffi
3

p ½Að1�!1Þ!1�c�
F�FX

2½Að1�!1Þ2þc�
F2
X

0
BBBBBBBB@

1
CCCCCCCCA
; (2.24)

where ~m � muþmd

2 , m2
0 � 2

3Bð2 ~mþmsÞ, and � � mu �md. This last parameter � measures isospin violations, i.e., the
explicit breaking of the SUð2ÞV symmetry. If we neglect the experimentally small violations of the SUð2ÞV isospin
symmetry, i.e., if we put � ¼ 0 in Eq. (2.24),4 the squared mass matrix (2.24) simplifies to

K 0 ¼

2B ~m 0 0 0
0 2

3Bð ~mþ 2msÞ 2
ffiffi
2

p
3 Bð ~m�msÞ 0

0 2
ffiffi
2

p
3 Bð ~m�msÞ 6ðA!2

1
þcÞ

F2
�

þm2
0

2
ffiffi
3

p ½Að1�!1Þ!1�c�
F�FX

0 0 2
ffiffi
3

p ½Að1�!1Þ!1�c�
F�FX

2½Að1�!1Þ2þc�
F2
X

0
BBBBB@

1
CCCCCA: (2.25)

Therefore, in this limit, �3 also becomes diagonal and
can be identified with the physical state �0, with squared
mass

m2
�0 ¼ 2B ~m ¼ Bðmu þmdÞ � m2

�: (2.26)

The fields ð�3; �8; S�; SXÞ can be written in terms of the
eigenstates ð�0; �; �0; �XÞ as follows:

�3

�8

S�
SX

0
BBB@

1
CCCA ¼ C0

�0

�
�0
�X

0
BBB@

1
CCCA; (2.27)

where C0 is the following orthogonal matrix [11,12]:

C 0 ¼

1 0 0 0
0 cos ~’ � sin ~’ 0

0 F�

F�0
sin ~’ F�

F�0
cos ~’

ffiffi
3

p
FX

F�0

0
ffiffi
3

p
FX

F�0
sin ~’

ffiffi
3

p
FX

F�0
cos ~’ � F�

F�0

0
BBBBB@

1
CCCCCA: (2.28)

As we have already said above, F�0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
� þ 3F2

X

q
can be

identified with the �0 decay constant in the chiral limit of
zero quark masses [11,12]. Moreover, ~’ is a mixing angle,
which can be related to the masses of the quarks mu, md,
ms, and therefore to the masses of the octet mesons, by the
relation (1.8) [11,12].

The matrix C0 has been derived by diagonalizing the
squared mass matrix (2.25) at the first order in the quark
masses and in 1=N, so neglecting terms behaving as 1=N2,
m2 or m=N (and assuming, again, that c1 � 0: see the
discussion in Appendix B). Following Refs. [5,18,23], we
have considered the limit in which m=�QCD � 1=N � 1:

this particular choice is justified by the fact that the mixing
angle, which is of order OðmN=�QCDÞ, is experimentally

small.5 The other eigenvalues of the squared mass matrix
(2.25) can be easily derived at the first order in the quark
masses and in 1=N (in the sense explained above):

m2
� ¼ 2

3Bð ~mþ 2msÞ; (2.29)

m2
�0 ¼ 6A

F2
�0
þ F2

�

F2
�0
m2

0; (2.30)

m2
�X

¼ 2cF2
�0

F2
�F

2
X

þ 2A½F2
�ð!1 � 1Þ þ 3F2

X!1�2
F2
�F

2
XF

2
�0

þ 3F2
X

F2
�0

m2
0:

(2.31)

The physical interpretation of these three states is clear.
The state � is the eighth pseudo-Goldstone bosons of the
octet: its mass vanishes with the light quark masses. On the
contrary, the states �0 and �X have masses which do not
vanish with the light quark masses. In particular, the state
�0 has a topological (nonchiral) squared mass term
6A=F2

�0 , which vanishes as 1=N in the large-N limit.

The state �X, instead, should be heavier, having a normal
(nonchiral) mesonic mass term6 of order Oð1Þ in the
large-N limit. From Eqs. (2.23), (2.26), and (2.29) one
immediately derives the well-known Gell-Mann–Okubo
formula [28,29] for the squared masses of the octet
mesons:

3m2
� þm2

� ¼ 4m2
K; (2.32)

4In the next section, instead, we shall take into account also the
small violations of the SUð2ÞV isospin symmetry, by taking
� � 0.

5In the literature, other possibilities have also been studied.
For example, Leutwyler in Ref. [26] considersm=�QCD and 1=N
to be of the same order, and Witten in Ref. [19] also studies the
opposite case, i.e., mN=�QCD 
 1.

6See Ref. [27] for a detailed discussion of hadrons and their
masses in the framework of the 1=N expansion.
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where m2
K � 1

2 ðm2
K� þm2

K0; �K0Þ ¼ Bð ~mþmsÞ. In fact, it is

natural to expect that the introduction of a new chiral order
parameter, which only breaks the Uð1Þ axial symmetry,
should not modify the mass relations for the octet mesons,
such as Eq. (2.32), which only derive from the breaking of
SUð3Þ � SUð3Þ down to SUð3ÞV.

Considering also the squared mass (2.30) of the �0, one
immediately derives the following interesting relation
[with m2

K defined as in Eq. (2.32)] [8]:

�
1þ 3

F2
X

F2
�

�
m2

�0 þm2
� � 2m2

K ¼ 6A

F2
�

: (2.33)

This is nothing but a generalization of the usual Witten-
Veneziano formula for the �0 mass (including nonzero
quark masses), with a correction which only depends on
the parameter FX [which, as we have already said in the
Introduction, is essentially proportional to the new Uð1Þ
axial condensate], but not on the other unknown parame-
ters of the model (!1, c1). From Eq. (2.33), using the
known values for the meson masses, the pion decay con-
stant F� and the pure-gauge topological susceptibility A,
one can derive the following upper limit for the parameter
FX: jFXj & 20 MeV [8,10].

Finally, we can derive an anologous relation involving
also the squared mass of the exotic state �X. By taking the
trace of the squared mass matrix (2.24), using the relations

(2.23), together with ~m � muþmd

2 ,m2
0 � 2

3Bð2 ~mþmsÞ, and
m2

K � Bð ~mþmsÞ, one obtains

Tr½K� ¼m2
�0 þm2

� þm2
�0 þm2

�X

¼ 2B ~mþ 2

3
Bð ~mþ 2msÞ þm2

0 þ
6ðA!2

1 þ cÞ
F2
�

þ 2Að1�!1Þ2 þ 2c

F2
X

¼m2
�0 þ 2m2

K þ 6ðA!2
1 þ cÞ

F2
�

þ 2Að1�!1Þ2 þ 2c

F2
X

;

(2.34)

from which, reordering, one finally gets

m2
�X

þm2
�0 þm2

� � 2m2
K

¼ 2cF2
�0

F2
�F

2
X

þ 2A½F2
�ð1�!1Þ2 þ 3F2

X!
2
1�

F2
�F

2
X

: (2.35)

Unfortunately, this expression depends upon all the un-
known parameters of the model (FX,!1, c1) and, therefore,
we cannot use it to obtain a direct estimate of the mass of
the particle �X. However, in the next section we shall find
some relations between its mass and its decay widths,
which, in principle, might be useful to identify a possible
candidate for this particle.

III. THE STRONG DECAYS OF THE
PSEUDOSCALAR MESONS �, �0, �X

In this section we shall study the strong decays of
pseudoscalar mesons, using the chiral effective
Lagrangian which we have discussed above. First, we
observe that the strong decays of a pseudoscalar meson
into two pseudoscalar mesons are trivially forbidden by
parity conservation. In fact, in terms of the chiral effective
Lagrangian (2.1), one easily verifies that it is invariant
under the following field transformation:

U ! Uy; X ! Xy; Q ! �Q; (3.1)

which is nothing but the parity transformation for the fields
[provided one also transforms the space-time coordinates
as x ¼ ðx0; ~xÞ ! xP ¼ ðx0;� ~xÞ]. In terms of the meson
fields �a, S�, SX, defined in Eqs. (2.3) and (2.5), they
correspond to

�a ! ��a; S� ! �S�; SX ! �SX: (3.2)

Therefore, terms with an odd number of meson fields
(which are not parity invariant) necessarily vanish.
In particular, operators with three pseudoscalar meson
fields are absent and therefore the strong decays of a
pseudoscalar meson into two pseudoscalar mesons are
forbidden.
On the contrary, the strong decays of a pseudoscalar

meson into three pseudoscalar mesons, being induced by
parity-invariant four-meson operators, are allowed and we
shall devote the rest of this section to a detailed discussion
of these decays.

A. The four-meson Lagrangian

In order to study the strong decays of�,�0,�X into three
pseudoscalar mesons, we have to isolate the four-meson
operators in the Lagrangian (2.1), when expanding the
fields (2.3) and (2.5) in powers of the meson fields.
We thus obtain the following four-meson Lagrangian:

L4 ¼ 1

4F2
�

Tr

�
@��

2@��2 þ 4

3
�3h�

�
þ 1

4F2
X



�
@�S

2
X@

�S2X þ 4

3
S3XhSX

�
þ B

6F2
�

Tr½M�4�

þ c

6

� ffiffiffi
3

p
F�

S� � 1

FX

SX

�
4
; (3.3)

where, as usual, B ¼ Bm

2F�
, c ¼ c1ffiffi

2
p ðFXffiffi

2
p ÞðF�ffiffi

2
p Þ3.

By making an integration by parts and using the usual
identities for the SUð3Þ generators, we can rewrite the first
term in the right-hand side of Eq. (3.3) as (apart from total
derivatives)
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LðfÞ
4 ¼ 1

4F2
�

Tr

�
@��

2@��2 þ 4

3
�3h�

�

¼ 1

4F2
�

Tr

�
@��

2@��2 � 4

3
@��

3@��

�

¼ 1

4F2
�

�
� 2

3
fijcfc��ð�i@��jÞð��@

���Þ
�
; (3.4)

where fabc are the structure constants of SUð3Þ, defined as

½	a; 	b� ¼ i
ffiffiffi
2

p
fabc	c, with Trð	a	bÞ ¼ 
ab. It is easy to

see that this term gives contributions only to decays into

charged pions, whose fields are �� ¼ �1	i�2ffiffi
2

p .

Concerning the second term in the right-hand side of
Eq. (3.3), we immediately recognize (after an integration
by parts) that it vanishes (apart from a total derivative):

1

4F2
X

�
@�S

2
X@

�S2X þ 4

3
S3XhSX

�

¼ 1

4F2
X

�
@�S

2
X@

�S2X � 4

3
@�S

3
X@

�SX

�
¼ 0: (3.5)

Therefore, the four-meson Lagrangian (3.3) reduces to

L4 ¼ 1

4F2
�

�
� 2

3
fijcfc���i��@��j@

���

�

þ B

6F2
�

Tr½M�4� þ c

6

� ffiffiffi
3

p
F�

S� � 1

FX

SX

�
4
: (3.6)

In the limit c ! 0, FX ! 0, and SX ! 0 this Lagrangian
reduces to the usual four-meson Lagrangian derived by Di
Vecchia et al. in Ref. [23].

The last term in the four-meson Lagrangian (3.6) can be
rewritten in terms of the mass eigenstates, given, in the
case � ¼ 0, by Eqs. (2.27) and (2.28), so obtaining


LðcÞ
4 ¼ c

6

� ffiffiffi
3

p
F�

S� � 1

FX

SX

�
4 ¼ c

6

�
F�0

F�FX

�
4
�4
X: (3.7)

This term contributes only to the elastic scattering ampli-
tude �X�X ! �X�X. At the end of the next subsection we

shall see that, for � � mu �md � 0, the term 
LðcÞ
4 gives

also contributions to the decays into three pseudoscalar
mesons, but these contributions are strongly suppressed for
small �.

B. The mass eigenstates in the case � � 0

In the strong decays of �, �0, �X into three pions the

SUð2Þ isotopic spin ~̂I is not conserved, i.e., (being the

charge conjugation Ĉ conserved by strong interactions)
the so-called G-parity, defined, for a multiplet of isotopic

spin I, as Ĝ � Ĉei�Î2 ¼ C0ð�1ÞI, C0 being the eigenvalue

of Ĉ for the neutral component of the multiplet, is not
conserved. The mesons �, �0, �X are isosinglets (I ¼ 0)
with C ¼ 1 (they can decay into �� for the electromag-
netic interaction), and so they haveG ¼ 1. On the contrary,
the mesons � form an isotriplet (I ¼ 1), with C0 ¼ 1
(since �0 can decay into �� for the electromagnetic inter-
action), and so each of them has G ¼ �1, and a three-pion
final state has G ¼ ð�1Þ3 ¼ �1.
We shall evaluate the decay amplitudes (and the corre-

sponding decay widths) at the lowest order in the parame-
ter � � mu �md, which measures isospin violations, i.e.,
the explict breaking of the SUð2ÞV symmetry. In the
case � � 0, the fields �3, �8, S�, SX mix together with
the squared mass matrix K, given by Eq. (2.24), while
the remaining �a are already diagonal [8]. We write the
matrix K as

K ¼ K0 þ 
K�; (3.8)

whereK0 is the matrixK for � ¼ 0, given by Eq. (2.25),
which is diagonalized by the orthogonal matrix C0, given
by Eq. (2.28), while 
K� is given by


K� ¼
0 1ffiffi

3
p B�

ffiffi
2
3

q
B� 0

1ffiffi
3

p B� 0 0 0ffiffi
2
3

q
B� 0 0 0
0 0 0 0

0
BBBBB@

1
CCCCCA: (3.9)

We shall evaluate the eigenvalues and the eigenstates of the
matrix K at the first order in the parameter �, by treating
the term 
K� as a small perturbation. It is easy to verify
that the corrections to the eigenvalues (i.e., to the squared
masses m2

�, m
2
�, m

2
�0 , m2

�X
, evaluated in the previous sec-

tion) are of order �2 (the first-order corrections being
identically zero) and are therefore negligible, if we stop
at the first order in �. Instead, the eigenstates of the matrix
K at the first order in the parameter � are given by

�3

�8

S�
SX

0
BBB@

1
CCCA ¼ C

�0

�
�0
�X

0
BBB@

1
CCCA; C ¼


0 
1 
2 
3

�0 �1 �2 �3

�0 �1 �2 �3

�0 �1 �2 �3

0
BBB@

1
CCCA;

(3.10)

where
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0 ¼ 1;

�0 ¼ B�ffiffiffi
3

p
�

cos ~’

ðm2
� �m2

�Þ
�
cos ~’þ

ffiffiffi
2

p
F�

F�0
sin ~’

�
� sin ~’

ðm2
� �m2

�0 Þ
� ffiffiffi

2
p

F�

F�0
cos ~’� sin ~’

��
;

�0 ¼ B�ffiffiffi
3

p
�

F� sin ~’

ðm2
� �m2

�ÞF�0

�
cos ~’þ

ffiffiffi
2

p
F�

F�0
sin ~’

�
þ F� cos ~’

ðm2
� �m2

�0 ÞF�0

� ffiffiffi
2

p
F�

F�0
cos ~’� sin ~’

�
þ 3

ffiffiffi
2

p
F2
X

ðm2
� �m2

�X
ÞF2

�0

�
;

�0 ¼ B�

�
FX sin ~’

ðm2
� �m2

�ÞF�0

�
cos ~’þ

ffiffiffi
2

p
F�

F�0
sin ~’

�
þ FX cos ~’

ðm2
� �m2

�0 ÞF�0

� ffiffiffi
2

p
F�

F�0
cos ~’� sin ~’

�
�

ffiffiffi
2

p
F�FX

ðm2
� �m2

�X
ÞF2

�0

�
;


1 ¼ B�ffiffiffi
3

p ðm2
� �m2

�Þ
�
cos ~’þ

ffiffiffi
2

p
F�

F�0
sin ~’

�
; �1 ¼ cos ~’; �1 ¼ F�

F�0
sin ~’; �1 ¼

ffiffiffi
3

p
FX

F�0
sin ~’;


2 ¼ B�ffiffiffi
3

p ðm2
�0 �m2

�Þ
� ffiffiffi

2
p

F�

F�0
cos ~’� sin ~’

�
; �2 ¼ � sin ~’; �2 ¼ F�

F�0
cos ~’; �2 ¼

ffiffiffi
3

p
FX

F�0
cos ~’;


3 ¼
ffiffiffi
2

p
B�FX

ðm2
�X

�m2
�ÞF�0

; �3 ¼ 0; �3 ¼
ffiffiffi
3

p
FX

F�0
; �3 ¼ � F�

F�0
;

(3.11)

where m2
�, m

2
�, m

2
�0 , m2

�X
are given by Eqs. (2.26), (2.29),

(2.30), and (2.31). The only modifications with
respect to the ‘‘unperturbed’’ matrix C0, reported
in Eq. (2.28), are in the elements �0, �0, �0, 
1, 
2, 
3,
which are now different from zero and of order �: in the
limit � ! 0 the matrix C correctly reduces to the
matrix C0.

At the end of the previous subsection we had observed

that in the case� ¼ 0 the last term 
LðcÞ
4 in the four-meson

Lagrangian (3.6), being proportional to �4
X, contributes

only to the elastic scattering amplitude �X�X ! �X�X.
Instead, in the realistic case in which � � mu �md � 0,
this term has the form [obtained using Eqs. (3.10) and
(3.11) derived above]:


LðcÞ
4 ¼ c

6

� ffiffiffi
3

p
F�

S� � 1

FX

SX

�
4

¼ c

6

�� ffiffiffi
2

p
B�

ðm2
� �m2

�X
ÞF�

�
�0 þ

�
F�0

F�FX

�
�X

�
4
: (3.12)

Therefore, when � � 0 this term also contributes to the
decay �X ! 3�0, but this contribution is of order Oð�3Þ,
and therefore it is strongly suppressed, for small �, when
compared with the similar contributions derived from
the other terms in the Lagrangian (3.6) [see Eq. (3.21)
below]. Therefore, in the following we shall neglect this
contribution.

C. Decays �, �0, �X ! 3�0, �þ���0

In this section we shall evaluate the leading-order
(LO) amplitudes and the corresponding widths for the
decays of �, �0, and �X into 3�0 or �þ���0. The
fields in the four-meson Lagrangian L4, written in

Eq. (3.6), can be expressed in terms of the fields of
the physical eigenstates (which diagonalize the squared
mass matrix K) by using Eqs. (3.10) and (3.11). Let us
start considering the decay � ! 3�0. As we have al-
ready said after Eq. (3.4), the first term (containing field
derivatives) of the four-meson Lagrangian L4 in
Eq. (3.6) does not contribute to this decay amplitude,
which, therefore, turns out to be simply a constant, i.e.,
not dependent on the particle momenta, and given by, at
the first order in the parameter �,

Að�! 3�0Þ ¼ h�0�0�0jL4j�i
¼ Bffiffiffi

3
p

F2
�

f�ð�1 þ
ffiffiffi
2

p
�1Þ

þ 2
ffiffiffi
3

p
~m½
1 þ ð�1 þ

ffiffiffi
2

p
�1Þð�0 þ

ffiffiffi
2

p
�0Þ�g:
(3.13)

Using the expressions (3.11) for �1, �1, 
1, �0, �0 and
expanding up to the first order in the quark masses, we
obtain the following expression:

Að� ! 3�0Þ ¼ B�ffiffiffi
3

p
F2
�

�
cos ~’þ

ffiffiffi
2

p
F�

F�0
sin ~’

�
: (3.14)

The amplitude for the decay �0 ! 3�0 can be obtained
by simply substituting ð
1; �1; �1Þ with ð
2; �2; �2Þ in
the expression (3.13). We thus obtain the following
expression:

Að�0 ! 3�0Þ ¼ B�ffiffiffi
3

p
F2
�

� ffiffiffi
2

p
F�

F�0
cos ~’� sin ~’

�
: (3.15)

ENRICO MEGGIOLARO PHYSICAL REVIEW D 83, 074007 (2011)

074007-8



Let us observe that in the limit FX ! 0 (that is,
F�0 ! F�) the expressions (3.14) and (3.15) correctly

reduce to the corresponding expressions derived by Di
Vecchia et al. in Ref. [23], i.e.,

Að� ! 3�0ÞjFX¼0 ¼ B�ffiffiffi
3

p
F2
�

ðcos’þ ffiffiffi
2

p
sin’Þ; (3.16)

Að�0 ! 3�0ÞjFX¼0 ¼ B�ffiffiffi
3

p
F2
�

ð ffiffiffi
2

p
cos’� sin’Þ; (3.17)

where ’ is the mixing angle without the contribution
coming from the new Uð1Þ axial condensate, and it is

given by Eq. (1.8) with FX ¼ 0, i.e., tan’ ¼ffiffi
2

p
9A BF

2
�ðms � ~mÞ ¼ F2

�

6
ffiffi
2

p
A
ðm2

� �m2
�Þ. From the ampli-

tudes (3.14) and (3.15), we can derive the corresponding
decay widths by integrating over the final-state phase
space, according to the formula (valid for constant am-

plitudes A and three identical final particles) � ¼ 1
2M 
R

1
3!d�

ð3ÞjAj2 ¼ jAj2
2M�3!�

ð3Þ, where the total phase space

�ð3Þ is given by (see, for example, Ref. [30] and refer-
ences therein)

�ð3Þ ¼
Z dsdt

128�3M2

¼ 1

128�3M2

Z s3

s2

ds

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� s1Þðs� s2Þðs3 � sÞðs4 � sÞ

q
;

(3.18)

where M is the mass of the initial particle and
s1 � ðm1 �m2Þ2, s2 � ðm1 þm2Þ2, s3 � ðM�m3Þ2,
s4 � ðMþm3Þ2, m1, m2, and m3 being the masses of
the three final particles; s and t are the usual
Mandelstam variables, defined as s � ðP� p1Þ2 and
t � ðP� p2Þ2, where P is the four-momentum of the
initial particle and p1, p2, p3 are the four-momenta of
the three final particles (P2 ¼ M2, p2

1 ¼ m2
1, p2

2 ¼ m2
2,

p2
3 ¼ m2

3).

After performing numerically the integration in
Eq. (3.18) for the two cases that we are considering, using
the values for the meson masses as reported by the Particle
Data Group [24], we have obtained the following expres-
sions for the decay widths:

�LOð� ! 3�0Þ ¼ ðB�Þ2
36F4

�

�
cos ~’þ

ffiffiffi
2

p
F�

F�0
sin ~’

�
2 �ð3Þ

m�

;

�ð3Þ

m�

¼ 9:82 keV; (3.19)

�LOð�0 ! 3�0Þ ¼ ðB�Þ2
36F4

�

� ffiffiffi
2

p
F�

F�0
cos ~’� sin ~’

�
2 �ð3Þ

m�0
;

�ð3Þ

m�0
¼ 67:00 keV: (3.20)

Proceeding analogously, the following expression is
obtained for the leading-order amplitude of the decay
�X ! 3�0:

Að�X ! 3�0Þ ¼
ffiffiffi
2

p
B�FX

F2
�F�0

: (3.21)

Let us observe that this amplitude correctly reduces to zero
when FX ! 0, i.e., when the new Uð1Þ axial condensate is
zero. Concerning the derivation of the decay width, the
mass m�X

of the exotic meson �X is not directly known

(but see the discussion at the end of this subsection) and
therefore the integration in Eq. (3.18) cannot be performed
numerically. However, on the basis of what we have said in
the previous section, the mass of the �X is expected to be
quite large, at least larger than the mass of the �0. So it is
probably not a too bad approximation to neglect the meson
masses in the total phase space for this process. In the limit
m1 ¼ m2 ¼ m3 ¼ 0 Eq. (3.18) reduces to

�ð3Þ
0 ðMÞ ¼ M2

256�3
; (3.22)

and for the width of the decay �X ! 3�0 we obtain the
following approximate expression:

�LOð�X ! 3�0Þ ¼ jAð�X ! 3�0Þj2 �
ð3Þ
0 ðm�X

Þ
2m�X

� 3!

¼ ðB�Þ2F2
X

1536�3F4
�F

2
�0
m�X

: (3.23)

Let us now study the decays of �, �0, and �X into
�þ���0. As we have already observed above, also the

four-meson Lagrangian term 
LðfÞ
4 , defined in Eq. (3.4)

and containing derivatives of the fields, gives con-
tributions to the amplitudes of these decays. In particular,
one finds that


AðfÞð� ! �þ���0Þ ¼ h�þ���0j
LðfÞ
4 j�i

¼ 1

F2
�


0
1ðs� s0Þ; (3.24)


AðfÞð�0 ! �þ���0Þ ¼ h�þ���0j
LðfÞ
4 j�0i

¼ 1

F2
�


0
2ðs� s00Þ; (3.25)
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AðfÞð�X ! �þ���0Þ ¼ h�þ���0j
LðfÞ
4 j�Xi

¼ 1

F2
�


0
3ðs� �s0Þ; (3.26)

where the coefficients 
0, 
1, 
2, and 
3 are defined in
Eqs. (3.10) and (3.11), while s0, s

0
0, and �s0 are so defined

s0 � 1
3ðm2

� þ 3m2
�Þ;

s00 � 1
3ðm2

�0 þ 3m2
�Þ;

�s0 � 1
3ðm2

�X
þ 3m2

�Þ;
(3.27)

and, as usual, s � ðP� P�0Þ2 ¼ ðP�þ þ P��Þ2, P being
the four-momentum of the initial particle (�, �0, �X) and
P�0 , P�þ , P�� being the four-momenta of the three final
pions. Adding also the contributions coming from the
second term in the right-hand side of Eq. (3.6), we obtain
the following expressions for the amplitudes of the decays
�, �0, �X ! �þ���0:

Að�!�þ���0Þ

¼ B�

3
ffiffiffi
3

p
F2
�

�
cos ~’þ

ffiffiffi
2

p
F�

F�0
sin ~’

��
1þ 3ðs� s0Þ

m2
��m2

�

�
; (3.28)

Að�0 !�þ���0Þ

¼ B�

3
ffiffiffi
3

p
F2
�

� ffiffiffi
2

p
F�

F�0
cos ~’� sin ~’

��
1þ 3ðs�s00Þ

m2
�0 �m2

�

�
; (3.29)

Að�X ! �þ���0Þ ¼
ffiffiffi
2

p
B�FX

3F2
�F�0

�
1þ 3ðs� �s0Þ

m2
�X

�m2
�

�
: (3.30)

From these amplitudes we can derive the corresponding
decay widths by integrating over the final-state phase
space, according to the formula (see, for example,
Ref. [30] and references therein):

� ¼ 1

2M

Z
d�ð3ÞjAj2 ¼ 1

2M

Z dsdt

128�3M2
jAj2

¼ 1

256�3M3



Z s3

s2

ds

s
jAðsÞj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� s1Þðs� s2Þðs3 � sÞðs4 � sÞ

q
;

(3.31)

where the notation is the same already used in Eq. (3.18).
After performing numerically the integration in Eq. (3.31),
using the values for the meson masses as reported by the
Particle Data Group [24], we have obtained the following
expressions for the decay widths:

�LOð� ! �þ���0Þ

¼ ðB�Þ2
54F4

�

�
cos ~’þ

ffiffiffi
2

p
F�

F�0
sin ~’

�
2 
 10:48 keV; (3.32)

�LOð�0 ! �þ���0Þ

¼ ðB�Þ2
54F4

�

� ffiffiffi
2

p
F�

F�0
cos ~’� sin ~’

�
2 
 83:95 keV: (3.33)

Concerning the case of the decay �X ! �þ���0, we
proceed exactly as for the case of the decay �X ! 3�0

and we neglect the meson masses in the calculation of the
integral (3.31), so obtaining the following approximate
expression for the decay width:

�LOð�X ! �þ���0Þ ¼ ðB�Þ2F2
X

1536�3F4
�F

2
�0
m�X

: (3.34)

We now numerically compute our theoretical expressions
for the leading-order decay widths, using for the mixing
angle ~’ the value derived from Eq. (1.8).
All our isospin-violating decay widths are proportional

to the factor:

ðB�Þ2 ¼ m4
�

�
mu �md

mu þmd

�
2 ¼ m4

�

�
R� 1

Rþ 1

�
2

’ 2:66
 107 MeV4; (3.35)

where m2
� ¼ Bðmu þmdÞ ’ ð134:98 MeVÞ2 and R �

mu=md ’ 0:558 is the ratio between the up and down
quark masses, determined using Eqs. (2.23) and the experi-
mental values of the meson masses reported in the Particle
Data Group [24].
We are, of course, particularly interested in the effects

due to a nonzero value of the parameter FX, related to
the new Uð1Þ axial condensate considered in this paper.
In Table I we report, for each decay process of the form
�, �0 ! 3�, the leading-order theoretical prediction,
using for the parameter FX the value FX ¼ 24ð7Þ MeV,
that we have found studying the radiative decays
�, �0 ! �� [see the Introduction and, in particular,
Eq. (1.9)]. These values are compared with the corre-
sponding values obtained for FX ¼ 0, i.e., in the absence
of the new Uð1Þ axial condensate [in Table I we also
explicitly show the correction to the decay widths,
��LO � �LOðFX ¼ 24� 7 MeVÞ � �LOðFX ¼ 0Þ, com-
ing from a nonzero value of FX], and also with the
experimental values.
Concerning the comparison with the experimental val-

ues, it is well known that, because of large unitarity
corrections due to strong final-state interactions, one has
to go beyond leading and even one-loop order in chiral
perturbation theory in order to obtain a valid, reliable
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representation of the �, �0 ! 3� decay amplitudes
and of the corresponding decay widths, that can be
successfully compared with the experimental values
[31–36].

In the present paper we are not, of course, aiming at that.
In particular, we cannot proceed as in the case of the
radiative decays �, �0 ! ��, i.e., we cannot extract the
value of FX (and of the mixing angle ~’) by comparing,
e.g., the leading-order theoretical predictions (3.19) and
(3.20), for the � ! 3�0 and �0 ! 3�0 decay widths, with
the corresponding experimental values reported in Table I.
Indeed, making use of Eq. (1.8) for tan ~’, one easily

verifies that, being tan ~’ and F�0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
� þ 3F2

X

q
increasing

functions of FX, the expression (3.19) for �LOð� ! 3�0Þ is
a decreasing function of FX: so, being its value at FX ¼ 0
already smaller than the corresponding experimental value,
it turns out that there is no value of FX which makes the
expression (3.19) compatible with the experimental value
in Table I.7

Instead, our aim is simply to quantify the corrections
coming from a nonzero value of the parameter FX, taking
the leading-order amplitudes/widths in the FX ¼ 0 case
as a useful reference point. From the values reported in
Table I we can conclude that:

(i) In the case of the � ! 3� decays, the size of the
corrections ��LO coming from a nonzero value
FX ¼ 24ð7Þ MeV, with respect to the FX ¼ 0 case,
is very small, being of the order of 1%, i.e., compa-
rable to (or even smaller than) the size of the elec-
tromagnetic corrections for these decays, which have
been recently recalculated in Ref. [37].

(ii) Instead, in the case of the �0 ! 3� decays,
the size of the corrections ��LO is much larger,

being of the order of 30%. Moreover, at least for
the decay �0 ! 3�0 (where the statistical errors are
smaller), this (negative) correction seems to go in
the right direction, improving the agreement be-
tween the theoretical prediction and the experi-
mental value.

Concerning the decays of the �X into three pions, we
derive the following relations between its mass m�X

and

the decay widths:

�LOð�X ! 3�0Þ
m�X

¼ �LOð�X ! �þ���0Þ
m�X

¼ ð4:35þ2:17
�1:97Þ 
 10�7: (3.36)

These constraints could be used to identify a possible
candidate for the exotic singlet meson �X, once we know
its mass and decay widths. According to the Particle Data
Group [24], the possible candidates for the �X, having the
same quantum numbers IGðJPCÞ ¼ 0þð0�þÞ of the �0, but
a larger mass, are the following:

�ð1295Þ: �tot ¼ 55ð5Þ MeV;

�ð1405Þ: �tot ¼ 51ð3Þ MeV;

�ð1475Þ: �tot ¼ 85ð9Þ MeV;

�ð1760Þ: �tot ¼ 96ð70Þ MeV;

�ð2225Þ: �tot ¼ 185þ70
�40 MeV:

(3.37)

Unfortunately, no quantitative determination of their decay
widths into three pions has been done up to now.

D. Decays �0 ! ��� and �X ! ���, �0��
We now study the decays of�0 into��0�0,��þ�� and

of �X into ��0�0, ��þ��, �0�0�0, �0�þ��. This de-
cays do not violate isospin and so they can happen also
when� ¼ 0. Therefore, in order to evaluate the amplitudes
and the corresponding widths for these decays, we shall use
the approximate expressions (2.28) of the eigenstates at the
order zero in the isospin-violating parameter �.
The following expression is obtained for the leading-

order amplitudes of the decays �0 ! ��0�0 and
�0 ! ��þ�� (which, in the limit of exact SUð2ÞV isospin
symmetry, are equal):

Að�0 ! ��0�0Þ ¼ Að�0 ! ��þ��Þ

¼ m2
�

6F2
�

�
2

ffiffiffi
2

p
F�

F�0
cosð2 ~’Þþ

�
2F2

�

F2
�0

� 1

�
sinð2 ~’Þ

�
: (3.38)

In the limit FX ! 0 these amplitudes reduce to the expres-
sion already found in Ref. [23], i.e.,

TABLE I. The leading-order theoretical predictions for
the decay widths, computed both for FX ¼ 0 and for
FX ¼ 24ð7Þ MeV, and the corresponding corrections to
the decay widths, ��LO � �LOðFX ¼ 24� 7 MeVÞ �
�LOðFX ¼ 0Þ, compared with the experimental values.

Decay �exp (keV) �LO (keV) ��LO (keV)

FX ¼ 0 FX ¼ 24ð7Þ MeV

� ! 3�0 0.423(26) 0.178 0.176(1) �0:002ð1Þ
�0 ! 3�0 0.33(6) 0.84 0.62(10) �0:24ð10Þ
� ! �þ���0 0.30(2) 0.127 0.125(1) �0:002ð1Þ
�0 ! �þ���0 0.70(25) 0.70 0.52(8) �0:18ð8Þ

7Even considering the singlet decay constant F�0 and the
mixing angle ~’ in Eqs. (3.19) and (3.20) as free parameters, to
be fixed from a comparison with the experimental values re-
ported in Table I, we would find a too small value F�0 ’ 68 MeV
for the singlet decay constant, incompatible with the formula

(1.7), i.e., F�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
� þ 3F2

X

q
� F� ¼ 92:2ð4Þ MeV, and also

an anomalously large value ~’ ’ 44� for the mixing angle.
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Að�0 ! ��0�0ÞjFX¼0 ¼ Að�0 ! ��þ��ÞjFX¼0

¼ m2
�

6F2
�

½2 ffiffiffi
2

p
cosð2’Þ þ sinð2’Þ�: (3.39)

After numerical integration of the phase space (3.18), using
the values for the meson masses reported in Ref. [24], we
obtain the corresponding decay widths:

�LOð�0 ! ��0�0Þ ¼ jAð�0 ! ��0�0Þj2 �ð3Þ

2m�0 � 2! ;

�ð3Þ

2m�0 � 2! ¼ 1:093 keV;

�LOð�0 ! ��þ��Þ ¼ jAð�0 ! ��þ��Þj2 �ð3Þ

2m�0

¼ 2�LOð�0 ! ��0�0Þ: (3.40)

We proceed as in the previous subsection and numerically
compute our theoretical expressions for the leading-
order decay widths, using for the mixing angle ~’ the
value derived from Eq. (1.8) and for the parameter FX

the value FX ¼ 24ð7Þ MeV, that we have found studying
the radiative decays �, �0 ! ��. Again, our aim is
simply to quantify the corrections coming from a non-
zero value of the parameter FX, taking the leading-order
amplitudes/widths in the FX ¼ 0 case as a reference
point. In this case, however, it is already known from
Ref. [23] that the leading-order theoretical predictions
for FX ¼ 0,

�LOð�0 ! ��þ��ÞjFX¼0 ¼ 2�LOð�0 ! ��0�0ÞjFX¼0

¼ 2:42 keV; (3.41)

are in strong disagreement with the experimental
values [24], �expð�0 ! ��þ��Þ ¼ 84ð5Þ keV and

�expð�0 ! ��0�0Þ ¼ 42ð4Þ keV.
We can try to see if the introduction of a nonzero value

of FX can cure, at least in part, the strong disagreement
between leading-order theoretical predictions and experi-
mental values: however, the answer to this question is
negative. In fact, we find that

�LOð�0 ! ��þ��ÞjFX¼24ð7ÞMeV

¼ 2�LOð�0 ! ��0�0ÞjFX¼24ð7ÞMeV

¼ 1:78ð30Þ keV: (3.42)

Even if the correction ��LO is quite large (of the order of
30%) if compared with the value of �LO at FX ¼ 0, it is,
however, too small if compared with the experimental

value. In addition, the correction ��LO, being negative,
goes in the ‘‘wrong’’ direction, lowering the theoretical
prediction at FX ¼ 0, which is already much smaller than
the experimental value: in other words, it is not possible to
find a value of the parameter FX which moves the leading-
order theoretical prediction toward the experimental value.
Moreover, the amplitude (3.38) is a constant, while the
experimental data are well fitted by a nonconstant ampli-
tude having the form: Að�0 ! ���Þ ¼ Að1� �1T�Þ,
where T� is the kinetic energy of the �, A and �1 are

some constants. As already observed in Ref. [23], in order
to describe this behavior, and to obtain a better agreement
with the experimental value of the decay width, it is not
enough to retain only the leading order in the 1=N
expansion, but one has to go to the next-to-leading order,
adding to the Lagrangian (1.2) non-leading terms such as
�Q2 Trð@�U@�UyÞ, that may be very important because

of the proportionality of the leading terms to the tiny pion
mass.8 The systematic introduction, in our model, of
higher-order terms in the 1=N expansion (including also
one-loop graphs, which are of order 1=N2: see, for ex-
ample, Refs. [31,39]) is, of course, a quite hard task, which
is beyond the aim of the present paper (but it will probably
be addressed in a subsequent work).
Concerning the exotic meson �X, the following expres-

sions are obtained for the leading-order amplitudes of the
decays �X ! ��� and �X ! �0��:

Að�X ! ��0�0Þ ¼ Að�X ! ��þ��Þ

¼
ffiffiffi
2

p
m2

�FXffiffiffi
3

p
F2
�F�0

�
cos ~’þ

ffiffiffi
2

p
F�

F�0
sin ~’

�
; (3.43)

Að�X ! �0�0�0Þ ¼ Að�X ! �0�þ��Þ

¼
ffiffiffi
2

p
m2

�FXffiffiffi
3

p
F2
�F�0

� ffiffiffi
2

p
F�

F�0
cos ~’� sin ~’

�
: (3.44)

From these amplitudes we can obtain the corresponding
decay widths, using, for the integrated phase space (3.18),
the following approximate expression obtained neglecting
the pion masses (while retaining the � and �0 masses
different from zero):

�ð3Þ
1 ðM;mÞ ¼ M4 �m4 þ 4M2m2 lnðm=MÞ

256�3M2
; (3.45)

whereM is the mass of the initial particle andm is the mass
of the final massive particle. We thus find the following
expressions:

8A different and alternative approach, first suggested in
Ref. [38], considers the decay �0 ! ��� to be dominated by
coupling to nearby scalar resonances.
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�LOð�X ! ��0�0Þ ¼ jAð�X ! ��0�0Þj2 �
ð3Þ
1 ðm�X

;m�Þ
2m�X

� 2!

¼ m4
�F

2
X

1536�3F4
�F

2
�0

�
cos ~’þ

ffiffiffi
2

p
F�

F�0
sin ~’

�
2
�
m�X

� m4
�

m3
�X

þ 4m2
�

m�X

ln

�
m�

m�X

��

¼ ð0:95þ0:46
�0:42Þ 
 10�5m�X

�
1�

�
m�

m�X

�
4 þ 4

�
m�

m�X

�
2
ln

�
m�

m�X

��
;

�LOð�X ! ��þ��Þ ¼ jAð�X ! ��þ��Þj2 �
ð3Þ
1 ðm�X

;m�Þ
2m�X

¼ 2�LOð�X ! ��0�0Þ; (3.46)

and also

�LOð�X ! �0�0�0Þ ¼ jAð�X ! �0�0�0Þj2 �
ð3Þ
1 ðm�X

;m�0 Þ
2m�X

� 2!

¼ m4
�F

2
X

1536�3F4
�F

2
�0

� ffiffiffi
2

p
F�

F�0
cos ~’� sin ~’

�
2
�
m�X

� m4
�0

m3
�X

þ 4m2
�0

m�X

ln

�
m�0

m�X

��

¼ ð0:49þ0:12
�0:18Þ 
 10�5m�X

�
1�

�
m�0

m�X

�
4 þ 4

�
m�0

m�X

�
2
ln

�
m�0

m�X

��
;

�LOð�X ! �0�þ��Þ ¼ jAð�X ! �0�þ��Þj2 �
ð3Þ
1 ðm�X

;m�0 Þ
2m�X

¼ 2�LOð�X ! �0�0�0Þ: (3.47)

As in the case of Eq. (3.36), these relations could also, in
principle, be used to identify a possible candidate for the
exotic singlet meson �X, once we know its mass and decay
widths. However, a certain caution must be used since, as
in the case of the decays �0 ! ���, large corrections to
these leading-order results could come from nonleading
terms in the 1=N expansion: only a detailed analysis of
our model at the next-to-leading order in 1=N shall clarify
this point.

E. Possible decays �X ! 3�, ���0, ��0�0, 3�0?
If the exotic singlet meson �X were heavy enough, let us

say, if m�X
> 3m� ’ 1640 MeV, it could also decay into

three � particles. The amplitude for this decay, which does
not violate SUð2ÞV isospin, can be evaluated at the order
zero in the isospin-violating parameter �, so using the
approximate form (2.28) for the physical eigenstates, and
the following result is obtained:

Að�X ! 3�Þ ¼ 8
ffiffiffi
2

p
m2

KFX

3
ffiffiffi
3

p
F2
�F�0

�
� cos ~’þ 3

ffiffiffi
2

p
F�

2F�0
sin ~’

�
:

(3.48)

In order to estimate the decay width, considering that also
the final-state particles � are rather heavy, we use the
approximate expression for the total phase space (3.18)
in the nonrelativistic limit, i.e.,

�ð3Þ
nr ðM;m1; m2; m3Þ ¼ Q2

64�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1m2m3

ðm1 þm2 þm3Þ3
s

; (3.49)

where Q � M�m1 �m2 �m3 is the so-called Q value
of the decay. We thus obtain the following approximate
expression for the decay width:

�LOð�X ! 3�Þ ¼ jAð�X ! 3�Þj2 �
ð3Þ
nr ðm�X

;m�;m�;m�Þ
2m�X

� 3!

¼ m4
KF

2
X

486
ffiffiffi
3

p
�2F4

�F
2
�0

�
cos ~’� 3

ffiffiffi
2

p
F�

2F�0
sin ~’

�
2


 ðm�X
� 3m�Þ2
m�X

¼ ð0:96þ0:46
�0:43Þ 
 10�3m�X

�
1� 3m�

m�X

�
2
;

(3.50)

where, as usual, we have used for the parameter FX the
value FX ¼ 24ð7Þ MeV, that we have found studying the
radiative decays �, �0 ! ��, and for the mixing angle ~’
the value derived from Eq. (1.8). [For example, for a value
m�X

� 2 GeV, one would get �LOð�X ! 3�Þ � 61 keV.]

Other possible decays of this kind (supposing that the �X is
heavy enough so that they are kinematically allowed) are
�X ! ���0, ��0�0, 3�0, and their amplitudes and corre-
sponding widths can be derived in a similar way.

IV. CONCLUSIONS

In this paper we have considered a scenario (sup-
ported by some lattice results) in which a Uð1Þ-breaking
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condensate survives across the chiral transition at Tch,
staying different from zero up to TUð1Þ > Tch. This scenario

has important consequences for the pseudoscalar-meson
sector, which can be studied using an effective Lagrangian
model, including also the newUð1Þ chiral condensate. This
model, originally proposed in Refs. [6–9] and elaborated in
Refs. [10–12], could perhaps be verified in the near future
by heavy-ion experiments, by analyzing the pseudoscalar-
meson spectrum in the singlet sector.

Section II contains a brief review (for the benefit of the
reader) of the main results, obtained in the original papers
[6,8,10], concerning the mass spectrum of the chiral effec-
tive Lagrangian. The Lagrangian (2.1) contains a new field
X and three new parameters, namely FX, !1, and c1, with
respect to the usual Lagrangian of Witten, Di Vecchia,
Veneziano et al. In this paper we have assumed that the
parameter FX, which is essentially proportional to the new
Uð1Þ axial condensate, is different from zero. In this case,
there are two singlet pseudoscalar mesons, the �0 and an
exotic particle �X, whose squared masses [assuming also
that the coupling constant c1 of the interaction term
detðUÞXy þ detðUyÞX in Eq. (1.3), between the usual q �q
meson field U and the exotic meson field X, is different
from zero and not too small: see the discussion in
Appendix B] are given by Eqs. (2.30) and (2.31): in par-
ticular, the exotic particle �X turns out to have a large
(nonchiral) mass term of order Oð1Þ in the large-N limit,
generated by the (nonzero) coupling constant c1.

In Sec. III, generalizing the results obtained in
Refs. [11,12], where the effects of the new Uð1Þ chiral
condensate on the radiative decays of the pseudoscalar
mesons � and �0 into two photons had been investigated,
we have studied the effects of the Uð1Þ chiral condensate
on the strong decays of the light pseudoscalar mesons, i.e.,
�, �0 ! 3�0; �, �0 ! �þ���0; �0 ! ��0�0; �0 !
��þ��; and also on the strong decays of the exotic
(heavy) SUð3Þ-singlet pseudoscalar state �X: �X ! 3�0;
�X ! �þ���0; �X ! ��0�0; �X ! ��þ��; �X !
�0�0�0; �X ! �0�þ��; �X ! 3�, 3�0, ���0, ��0�0.
Concerning the decays of the exotic particle �X, we have
found some relations between its mass and its decay
widths, which in principle might be useful to identify a
possible candidate for this particle. According to the
Particle Data Group [24], the possible candidates for the
�X, having the same quantum numbers IGðJPCÞ ¼
0þð0�þÞ of the �0, but a larger mass, are, at the moment,
those reported in Eq. (3.37) [other candidates with larger
masses are also present, but some of their quantum num-
bers IGðJPCÞ are not yet known]: unfortunately, no quanti-
tative determination of their decay widths into (e.g.) three
pions has been done up to now.

Concerning the decays �, �0 ! 3�, it is well known
that, because of large unitarity corrections due to strong
final-state interactions, one has to go beyond leading and
even one-loop order in chiral perturbation theory in order

to obtain a valid, reliable representation of the decay
amplitudes and of the corresponding decay widths, that
can be successfully compared with the experimental values
[31–36].
In the present paper we have not, of course, aimed at

that. In particular, we could not proceed as in the case of
the radiative decays �, �0 ! ��, i.e., we could not extract
the value of FX (and of the mixing angle ~’) by comparing,
e.g., the leading-order theoretical predictions (3.19) and
(3.20), for the � ! 3�0 and �0 ! 3�0 decay widths, with
the corresponding experimental values reported in Table I
of Sec. III.
Instead, our aim has been simply to quantify the

corrections coming from the nonzero value FX ¼
24ð7Þ MeV, that we have found studying the radiative
decays �, �0 ! �� [see the Introduction and, in particular,
Eq. (1.9)], taking the leading-order amplitudes/widths in
the FX ¼ 0 case as a useful reference point. From the
values reported in Table I of Sec. III we have concluded
that:
(i) In the case of the � ! 3� decays, the size of the

corrections ��LO coming from a non-zero value
FX ¼ 24ð7Þ MeV, with respect to the FX ¼ 0 case,
is very small, being of the order of 1%, i.e., compa-
rable to (or even smaller than) the size of the elec-
tromagnetic corrections for these decays, which have
been recently recalculated in Ref. [37].

(ii) Instead, in the case of the �0 ! 3� decays, the
size of the corrections ��LO is much larger, being
of the order of 30%. Moreover, at least for the decay
�0 ! 3�0 (where the statistical errors are smaller),
this (negative) correction seems to go in the right
direction, improving the agreement between the
theoretical prediction and the experimental value.

Finally, concerning the decays �0 ! ��0�0 and
�0 ! ��þ��, knowing already from Ref. [23] that the
leading-order theoretical predictions for FX ¼ 0 are in
strong disagreement with the experimental values, we
have tried to see if the introduction of a nonzero value of
FX can cure, at least in part, this disagreement: but we have
found that it cannot. In fact, even if the correction ��LO is
quite large (of the order of 30%) if compared with the value
of �LO at FX ¼ 0, it is, however, too small if compared
with the experimental value, and, moreover, being nega-
tive, it goes in the wrong direction, lowering the theoretical
prediction at FX ¼ 0, which is already much smaller than
the experimental value. (In other words, it is not possible
to find a value of the parameter FX which moves the
leading-order theoretical prediction toward the experimen-
tal value.)
However, as we have already stressed in the conclusions

of Refs. [11,12], one should keep in mind that our results
have been derived from a very simplified model, obtained
by doing a first-order expansion in 1=N and in the quark
masses. We expect that such a model can furnish only

ENRICO MEGGIOLARO PHYSICAL REVIEW D 83, 074007 (2011)

074007-14



qualitative or, at most, ‘‘semiquantitative’’ predictions. As
already observed in Ref. [23], in order to obtain a better
agreement with the experimental data of the decay widths,
most probably it is not enough to retain only the leading
order in the 1=N expansion, but one has to go to the next-
to-leading order. The introduction, in our model, of higher-
order terms in the 1=N expansion is, of course, a quite hard
task, which is beyond the aim of the present paper. Further
studies are therefore necessary in order to continue this
analysis from a more quantitative point of view. We expect
that some progress will be made along this line in the near
future.
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APPENDIX A: THE Uð1Þ CHIRAL
ORDER PARAMETER

We make the assumption (discussed in the Introduction)
that the Uð1Þ chiral symmetry is broken independently
from the SUðLÞ � SUðLÞ symmetry. The usual chiral order
parameter h �qqi is an order parameter both for SUðLÞ �
SUðLÞ and for Uð1ÞA: when it is different from zero,
SUðLÞ � SUðLÞ is broken down to SUðLÞV (V stands for
vectorial) and also Uð1ÞA is broken. In fact, under a
Uð1Þ chiral transformation with parameter � [as
usual, qL � 1

2 ð1þ �5Þq and qR � 1
2 ð1� �5Þq, with

�5 � �i�0�1�2�3, denote, respectively, the left-handed
and the right-handed quark fields]:

Uð1ÞA: q ! e�i��5q;

i:e:; qL ! e�i�qL; qR ! ei�qR;
(A1)

the chiral condensate would transform as [assuming the
Uð1ÞA symmetry to be realized à la Wigner-Weyl]

Uð1ÞA: h �qqi ! e2i�h �qLqRi þ e�2i�h �qRqLi: (A2)

By taking � ¼ �=2, we would obtain h �qqi ! �h �qqi:
therefore, if the chiral condensate is different from zero,
the Uð1ÞA symmetry cannot be realized à laWigner-Weyl.
Thus, we need another quantity which could be an order
parameter only for the Uð1Þ chiral symmetry [6–9]. The
most simple quantity of this kind was introduced by
Kobayashi and Maskawa in 1970 [16], as an additional
effective vertex in a generalized Nambu-Jona-Lasinio
model, and it was later derived by ’t Hooft in 1976 [3],
as an instanton-induced quark interaction. (See also
Ref. [17] for an historical review on this subject.)

For a theory with L light quark flavours (of mass
mi � �QCD; i ¼ 1; . . . ; L), it is a 2L-fermion interaction

that has the chiral transformation properties of

O ðLÞ
Uð1Þ � det

st

�
�qs

�
1þ �5

2

�
qt

�
þ H:c:

¼ det
st
ð �qsRqtLÞ þ det

st
ð �qsLqtRÞ; (A3)

where s; t ¼ 1; . . . ; L are flavor indices, but the color in-
dices are arranged in a more general way (see below).
Since under chiral UðLÞ �UðLÞ transformations the quark
fields transform as follows:

UðLÞ �UðLÞ: qL ! VLqaL; qR ! VRqR; (A4)

where VL and VR are arbitrary L
 L unitary matrices, we

immediately derive the transformation property of OðLÞ
Uð1Þ

under UðLÞ �UðLÞ:
UðLÞ �UðLÞ: OðLÞ

Uð1Þ ! detðVLÞ detðVRÞ�det
st
ð �qsRqtLÞ þ H:c:

(A5)

This just means that OðLÞ
Uð1Þ is invariant under SUðLÞ �

SUðLÞ �Uð1ÞV , while it is not invariant under the Uð1ÞA
transformation (A1):

Uð1ÞA: OðLÞ
Uð1Þ ! e�i2L�det

st
ð �qsRqtLÞ þ H:c: (A6)

1. The Uð1Þ chiral condensate for L ¼ 2

As an example let us consider the most simple case, that
is L ¼ 2, but with a general color group SUðNÞ. It is not
hard to find [using the Fierz relations both for the spinorial
matrices and the SUðNÞ generators in their fundamental
representation] that the most general color singlet,
Hermitian and P-invariant local quantity (without deriva-
tives) which has the required chiral transformation prop-
erties is just the following four-fermion local operator:

O ðL¼2Þ
Uð1Þ ð�0; �0Þ ¼ Fac

bdð�0; �0Þ�stð �qa1RqbsL � �qc2RqdtL
þ �qa1Lq

b
sR � �qc2LqdtRÞ; (A7)

where the color tensor Fac
bdð�0; �0Þ is given by

Fac
bdð�0; �0Þ ¼ �0


a
b


c
d þ �0


a
d


c
b; (A8)

�0 and �0 being arbitrary real parameters. In Eq. (A7), a,
b, c, d 2 f1; . . . ; Ng are color indices; s, t 2 f1; 2g are
flavor indices and �st ¼ ��ts, �12 ¼ 1. Dirac indices are
contracted between the first and the second fermion field
and also between the third and the fourth one. Note that

if we choose �0 ¼ N and �0 ¼ �1, OðL¼2Þ
Uð1Þ ð�0; �0Þ just

becomes (up to a proportionality constant) the effective
Lagrangian for two flavors of quarks in an instanton back-
ground, found by ’t Hooft in [3].
Now, to obtain an order parameter for the Uð1Þ chiral

symmetry, one can simply take the vacuum expectation

value of OðL¼2Þ
U1Þ ð�0; �0Þ:
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CðL¼2Þ
Uð1Þ ð�0; �0Þ � hOðL¼2Þ

Uð1Þ ð�0; �0Þi: (A9)

The arbitrarity in the choice of �0 and �0 (indeed of only
one of them, since only their ratio is relevant) can be
removed if we require that the new Uð1Þ chiral condensate
is ‘‘independent,’’ in a sense which will be explained
below, of the usual chiral condensate h �qqi. As it was
pointed out by Shifman, Vainshtein, and Zakharov in
[40], a matrix element of the form h �q�1q � �q�2qi has, in
general, a contribution proportional to the square of the
vacuum expectation value of �qq. This contribution corre-
sponds to retaining the vacuum intermediate state in all the
channels and neglecting the contributions of all the other
states; we call this contribution the disconnected part of the
original matrix element:

h �q�1q � �q�2qidisc ¼ 1

G2
½ðTr�1 � Tr�2Þ � Trð�1�2Þ�h �qqi2;

(A10)

where the normalization factor G is defined as
( �qq ¼ P

A �qAqA):

h �qAqBi ¼ 
AB

G
h �qqi; i:e:; G ¼ 
AA; (A11)

and the subscripts A, B are collective indices which include
spin, color, and flavor; therefore, G ¼ 4
 L
 N for a
general L, and G ¼ 8N for L ¼ 2. When considering the

operator OðL¼2Þ
Uð1Þ ð�0; �0Þ defined in Eqs. (A7) and (A8), we

find the following expression for its disconnected part:

hOðL¼2Þ
Uð1Þ ð�0; �0Þidisc
¼ 1

16N
½Nð2�0 þ �0Þ þ ð�0 þ 2�0Þ�h �qqi2; (A12)

where: h �qqi ¼ h �uui þ h �ddi. From this last equation we
immediately see that the disconnected part of the conden-

sate CðL¼2Þ
Uð1Þ ð�0; �0Þ vanishes with the following particular

choice of the coefficients �0 and �0 (only their ratio is
really relevant):

�0

�0

¼ � 2N þ 1

N þ 2
: (A13)

In other words, the condensate (A9) with �0 and �0

satisfying the constraint (A13) does not take contributions
from the usual chiral condensate h �qqi. To summarize,
a good choice for a Uð1Þ chiral condensate which is
really independent of the usual chiral condensate h �qqi is
the following one (apart from an irrelevant multiplicative
constant):

CðL¼2Þ
Uð1Þ ¼

��

a
b


c
d �

2N þ 1

N þ 2

a
d


c
b

�
�stð �qa1RqbsL � �qc2RqdtL

þ �qa1Lq
b
sR � �qc2LqdtRÞ

	
: (A14)

As a remark, we observe that the condensate CðL¼2Þ
Uð1Þ so

defined turns out to be of order Oðg2N2Þ ¼ OðNÞ in the
large-N expansion (this result was also derived in Ref. [7]
by simply requiring that the 1=N expansion of the relevant
QCDWard identities remains well defined when including
this new condensate). In the case of physical interest, i.e.,
N ¼ 3, the condensate Eq. (A14) becomes

CðL¼2Þ
Uð1Þ ¼

��

a
b


c
d �

7

5

a
d


c
b

�
�stð �qa1RqbsL � �qc2RqdtR

þ �qa1Lq
b
sR � �qc2LqdtRÞ

	
: (A15)

2. The Uð1Þ chiral condensate for L ¼ 3

So far we have considered the most simple case L ¼ 2.
However, this procedure can be easily generalized to every
L, and we can take as an order parameter for the Uð1Þ
chiral symmetry:

CðLÞ
Uð1Þ ¼ hOðLÞ

Uð1Þi: (A16)

As we have done in the case L ¼ 2, the color indices may
be arranged in such a way that the Uð1Þ chiral condensate
does not take contributions from the usual chiral conden-
sate h �qqi: as a consequence of this, the new condensate
will be of order Oðg2L�2NLÞ ¼ OðNÞ in the large-N
expansion [7,8].
In the real-world case there are L ¼ 3 light flavors, u, d,

and s, with masses mu, md, and ms, which are small
compared to the QCD mass scale �QCD. Proceeding as in

the case L ¼ 2 [see Eq. (A7)], one reduces to consider the
following general color singlet, Hermitian and P invariant
local six-fermion operator (without derivatives):

O ðL¼3Þ
Uð1Þ ¼ Fa1a2a3

b1b2b3
�l1l2l3 �qa11Rq

b1
l1L

� �qa22Rqb2l2L � �q
a3
3Rq

b3
l3L

þ H:c:;

(A17)

where a1, a2, a3, b1, b2, b3 2 f1; 2; � � �Ng are color in-
dices, l1, l2, l3 2 f1; 2; 3g are flavor indices, and the color
tensor Fa1a2a3

b1b2b3
is given by

Fa1a2a3
b1b2b3

¼ �1

a1
b1

a2
b2

a3
b3
þ �2


a1
b2

a2
b3

a3
b1
þ �3


a1
b3

a2
b1

a3
b2

þ �1

a1
b2

a2
b1

a3
b3
þ �2


a1
b1

a2
b3

a3
b2
þ �3


a1
b3

a2
b2

a3
b1
;

(A18)

with �1, �2, �3, �1, �2, �3 real parameters. However,

differently from the case L ¼ 2, the operator OðL¼3Þ
Uð1Þ in

Eqs. (A17) and (A18), with arbitrary real parameters �1,
�2, �3, �1, �2, �3, is not, in general, invariant under a
SUð3Þ � SUð3Þ chiral transformation:

SUð3Þ � SUð3Þ: qL ! ULqL; qR ! URqR; (A19)

( detUL ¼ detUR ¼ 1). Invariance under SUð3Þ � SUð3Þ
is, instead, recovered provided that the color tensor
Fa1a2a3
b1b2b3

satisfies the following symmetry property:
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Fa1a2a3
b1b2b3

¼ F
aiajak
bibjbk

; 8 permutations fi; j; kg of f1; 2; 3g: (A20)

In fact, in this case it is easy to see that the operator (A17) can be rewritten in the following form:

O ðL¼3Þ
Uð1Þ ¼ F

a1a2a3
b1b2b3

1

3!
�r1r2r3�l1l2l3 �qa1r1Rq

b1
l1L

� �qa2r2Rq
b2
l2L

� �qa3r3Rq
b3
l3L

þ H:c:; (A21)

which is manifestly invariant under SUð3Þ � SUð3Þ:

OðL¼3Þ
Uð1Þ ! Fa1a2a3

b1b2b3

1

3!
�r1r2r3�l1l2l3 �qa1s1RðUy

RÞs1r1ðULÞl1m1
qb1m1L

� �qa2s2RðUy
RÞs2r2ðULÞl2m2

qb2m2L
� �qa3s3RðUyÞs3r3ðULÞl3m3

qb3m3L
þ H:c:

¼ F
a1a2a3
b1b2b3

1

3!
detðUy

RÞ�s1s2s3 detðULÞ�m1m2m3 �qa1s1Rq
b1
m1L

� �qa2s2Rq
b2
m2L

� �qa3s3Rq
b3
m3L

þ H:c:

¼ Fa1a2a3
b1b2b3

1

3!
�s1s2s3�m1m2m3 �qa1s1Rq

b1
m1L

� �qa2s2Rqb2m2L
� �qa3s3Rq

b3
m3L

þ H:c: ¼ OðL¼3Þ
Uð1Þ : (A22)

[Or, equivalently, one can start from the expression (A21)
of the six-fermion local operator, which, on the basis of
(A22), is invariant under SUð3Þ � SUð3Þ for every choice
of the color tensor F

a1a2a3
b1b2b3

: but one immediately recognizes
that only the symmetric part of the color tensor, satisfying
the relation (A20), contributes to the right-hand side of
(A21), the antisymmetric parts being trivially cancelled
out. Note that, in the case L ¼ 2, the most general color
tensor (A8) automatically satisfies the symmetry property,
Fac
bd ¼ Fca

db.] The symmetry property (A20) imposes the
following constraints on the parameters of the color
tensor (A18):

�3 ¼ �2; �3 ¼ �2 ¼ �1: (A23)

The color tensor has, therefore, the following form:

F
a1a2a3
b1b2b3

¼ �1

a1
b1

a2
b2


a3
b3
þ �2ð
a1

b2

a2
b3


a3
b1
þ 
a1

b3

a2
b1


a3
b2
Þ

þ �1ð
a1
b2

a2
b1


a3
b3
þ 
a1

b1

a2
b3


a3
b2
þ 
a1

b3

a2
b2


a3
b1
Þ;

(A24)

in terms of three arbitrary real parameters �1, �2, �1.
Let us now evaluate the vacuum expectation value of the

operator OðL¼3Þ
Uð1Þ :

CðL¼3Þ
Uð1Þ � hOðL¼3Þ

Uð1Þ i
¼ F

a1a2a3
b1b2b3

�l1l2l3h �q�1q � �q�2q � �q�3qi þ c:c:

¼ Fa1a2a3
b1b2b3

�l1l2l3ð�1ÞABð�2ÞCDð�3ÞEF

 h �qAqB �qCqD �qEqFi þ c:c:; (A25)

where [see Eq. (A17)]

ð�1ÞAB ¼ð�1Þc1d1i1j1;m1n1

¼
�
1þ�5

2

�
i1j1

�ð
m11
n1l1Þ� ð
c1a1
d1b1Þ;

ð�2ÞCD ¼ð�2Þc2d2i2j2;m2n2

¼
�
1þ�5

2

�
i2j2

�ð
m22
n2l2Þ� ð
c2a2
d2b2Þ;

ð�3ÞEF ¼ð�3Þc3d3i3j3;m3n3

¼
�
1þ�5

2

�
i3j3

�ð
m33
n3l3Þ� ð
c3a3
d3b3Þ;

(A26)

where i, j are Dirac indices, m, n are flavor indices, and c,
d are color indices.
As in the case L ¼ 2 treated above, we can write the

vacuum expectation value of the operator OðL¼3Þ
Uð1Þ as the

sum of a connected part, which does not depend on
the chiral condensate h �qqi, and a disconnected part, which

instead contains the chiral condensate h �qqi, i.e., CðL¼3Þ
Uð1Þ ¼

hOðL¼3Þ
Uð1Þ iconn þ hOðL¼3Þ

Uð1Þ idisc, where

hOðL¼3Þ
Uð1Þ idisc ¼ F

a1a2a3
b1b2b3

�l1l2l3ð�1ÞABð�2ÞCDð�3ÞEF

h �qAqB �qCqD �qEqFidisc þ c:c:; (A27)

and the disconnected part of the vacuum expectation value.
of the six-fermion operator has the following form:

h �qAqB �qCqD �qEqFidisc ¼ h �qAqBih �qCqD �qEqFiconn þ h �qCqDih �qAqB �qEqFiconn þ h �qEqFih �qAqB �qCqDiconn
� h �qAqDih �qCqB �qEqFiconn � h �qAqFih �qCqD �qEqBiconn � h �qCqBih �qAqD �qEqFiconn
� h �qCqFih �qAqB �qEqDiconn � h �qEqBih �qAqF �qCqDiconn � h �qEqDih �qAqB �qCqFiconn
þ h �qAqBih �qCqDih �qEqFi � h �qAqBih �qCqFih �qEqDi � h �qAqDih �qCqBih �qEqFi
þ h �qAqDih �qCqFih �qEqBi þ h �qAqFih �qCqBih �qEqDi � h �qAqFih �qCqDih �qEqBi: (A28)

On the basis of Eq. (A11), we see that the disconnected part of the condensate (A25) can be written as
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hOðL¼3Þ
Uð1Þ idisc ¼ A1h �qqi þ A3h �qqi3; (A29)

where the first term (A1h �qqi), proportional to the chiral condensate, is originated by the first nine terms in the right-hand
side of Eq. (A28), while the second term (A3h �qqi3) is originated by the last six terms in the right-hand side of Eq. (A28) and
represents the completely disconnected part, proportional to the third power of the chiral condensate.

Explicitly, using Eq. (A11), with G ¼ 4
 3
 N ¼ 12N, the form (A26) of the � matrices and the form (A24) of the
color tensor F

a1a2a3
b1b2b3

, satisfying the symmetry property (A20), we obtain the following expression for the coefficient A1:

A1 ¼ 1

G3
Fa1a2a3
b1b2b3

�l1l2l3fTr�1h �q�2q � �q�3qiconn þ Tr�2h �q�1q � �q�3qiconn þ Tr�3h �q�1q � �q�2qiconn
� h �q�1�2q � �q�3qiconn � h �q�2�1q � �q�3qiconn � h �q�1�3q � �q�2qiconn � h �q�3�1q � �q�2qiconn
� h �q�2�3q � �q�1qiconn � h �q�3�2q � �q�1qiconng þ c:c:

¼ 1

12N
½2Face

bde þ Face
bed þ Face

edb�ðCabcd
12 þ Cabcd

13 þ Cabcd
23 Þ; (A30)

where

Cabcd
12 � �st3½h �qa1RqbsL � �qc2RqdtLiconn þ c:c:�;

Cabcd
13 � �s2t½h �qa1RqbsL � �qc3RqdtLiconn þ c:c:�;

Cabcd
23 � �1st½h �qa2RqbsL � �qc3RqdtLiconn þ c:c:�;

(A31)

and the following expression for the coefficient A3:

A3 ¼ 2

G3
Fa1a2a3
b1b2b3

�l1l2l3½Tr�1Tr�2Tr�3 � Tr�1Trð�2�3Þ
� Trð�1�2ÞTr�3 þ Trð�1�3�2Þ þ Trð�1�2�3Þ
� Trð�1�3ÞTr�2�

¼ 1

216N3
½�1ð2N3 þ 3N2 þ NÞ

þ �2ðN3 þ 6N2 þ 5NÞ þ �1ð3N3 þ 9N2 þ 6NÞ�:
(A32)

Now, if we want to obtain a new order parameter which is
really independent on the usual chiral condensate h �qqi, we
must require that its disconnected part (A29) vanishes
independently on the value of h �qqi, imposing the two
conditions A1 ¼ 0 and A3 ¼ 0. Therefore, we have two
independent constraints on the three parameters �1, �2

and �1, which enter the color tensor (A24): the new
condensate CðL¼3Þ

Uð1Þ is then univocally determined, apart
from a multiplicative constant.

Let us also observe that in the large-N limit, taking the
coefficients �1, �2, and �1 in the color tensor (A24) to be
of order OðN0Þ, the coefficient A1 is of order OðNÞ, while
the coefficient A3 is of orderOðN0Þ: and, consequently, the
first term A1h �qqi in the right-hand side of (A29) is of order
OðN2Þ, while the second term A3h �qqi3 is of order OðN3Þ
[being h �qqi ¼ OðNÞ]. If both these disconnected parts are

zero, then the new condensate CðL¼3Þ
Uð1Þ is simply equal to the

connected part hOðL¼3Þ
Uð1Þ iconn, which is of orderOðNÞ, i.e., of

the same order of the usual chiral condensate h �qqi
(as already observed in Refs. [7,8]).

We also observe that the condition A1 ¼ 0 implies that

the new six-fermion condensate CðL¼3Þ
Uð1Þ does not take con-

tributions from four-fermion condensates of the form
(A31). In this paper we have only studied the effects of
the new six-fermionUð1Þ chiral order parameter. However,
recently, four-fermion operators (which could be associ-
ated with the above-mentioned four-fermion condensates)
have been used in the literature, in the study of scalar
mesons, which are modeled as four-quark (i.e., �qq �qq)
states, called tetraquarks or diquark-antidiquark bound
states [41–43].

APPENDIX B: ON THE NEW PARAMETERS
FX, !1, AND c1

The Lagrangian (2.1) contains a new field X and three
new parameters, namely FX,!1, and c1, with respect to the
usual Lagrangian of Witten, Di Vecchia, Veneziano et al. It
is therefore natural to ask if the model can be further
simplified by simply eliminating some parameter. As we
have already said, in this paper we are assuming that the
parameter FX, which is essentially proportional to the new
Uð1Þ axial condensate, is different from zero: in Sec. III we
discuss the relevance of this parameter FX in the phenome-
nological analysis of the strong decays of pseudoscalar
mesons.
Concerning the parameter !1, we cannot say too much.

We recall that the usual Lagrangian of Witten, Di Vecchia,
Veneziano et al. is obtained by choosing !1 ¼ 1 (together
with FX ¼ 0, i.e., X ¼ 0). At low temperatures one expects
that the deviations from this Lagrangian are small, in some
sense, and therefore one expects that !1 is not much
different from 1 at low temperatures. On the other side,
as already observed in Ref. [6], !1 must necessarily be
zero when T � Tch, in order to avoid a singular behavior
of the anomalous term above the chiral transition: this
implies a non trivial behavior of !1 with the temperature.
However, in this paper no particular choice for the value
of !1ðT ¼ 0Þ will be done: it will be considered as a free
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parameter (apart from the above-mentioned limitation for
T � Tch).

The case of the parameter c1 is much more interesting.
By putting c1 ¼ 0, i.e., c ¼ 0 [see Eq. (2.8)], into
Eqs. (2.12), these reduce to

ZL ¼ 2A½F2
�ð1�!1Þ2 þ LF2

X!
2
1�

F2
�F

2
X

; QL ¼ 0; (B1)

which, when inserted into Eq. (2.11), lead to the following
values for the squared masses of the two singlets S1 and S2
in the chiral limit:

m2
S1

¼ 0; m2
S2

¼
�
2LA

F2
�

�
!2

1 þ
�
2A

F2
X

�
ð1�!1Þ2: (B2)

The corresponding eigenvectors, written in terms of
S� and SX, are

S1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
�ð1�!1Þ2 þ LF2

X!
2
1

q

 ðF�ð!1 � 1ÞS� þ ffiffiffiffi

L
p

FX!1SXÞ;
S2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2
�ð1�!1Þ2 þ LF2

X!
2
1

q

 ð ffiffiffiffi

L
p

FX!1S� þ F�ð1�!1ÞSXÞ:

(B3)

Let us observe that Eqs. (B3) and (B2) cannot be derived
by simply putting c ¼ 0 into Eqs. (2.14) and (2.15), derived
in Sec. II A. This is due to the fact that Eqs. (2.14) and
(2.15) were derived not only assuming that c1 � 0, but

also taking the large-N limit, in which the quantity c �
c1ffiffi
2

p ðFXffiffi
2

p ÞðF�ffiffi
2

p ÞL is large, being of order OðNÞ [see Eq. (2.13)].
In that case, therefore, one obtains ZL ¼ Oð1Þ and QL ¼
Oð1=NÞ, so that, from Eq. (2.11), m2

S1
’ QL

ZL
’ 2LA

F2
�þLF2

X

¼
Oð1=NÞ and S1 can be identified with the particle �0.

Instead, in the particular case in which c1 ¼ 0 [i.e.,
c ¼ 0], one has that ZL ¼ Oð1=NÞ and QL ¼ 0, so that,
from Eq. (2.11), S1 is massless (in the chiral limit) and
therefore it does not verify the Witten-Veneziano formula
required for the �0. It is easy to convince oneself that, in
this particular case c1 ¼ 0, S2, having a squared mass of
order Oð1=NÞ in the large-N limit, is just the field which
must be identified with the particle �0, as required by the
Witten-Veneziano mechanism for the solution of the Uð1Þ
problem. In fact, by virtue of Eqs. (B3), we can rewrite the

Uð1Þ axial current JðLÞ5;�, given by Eq. (2.16), in terms of the

fields S1 and S2:

JðLÞ5;� ¼ � ffiffiffiffiffiffi
2L

p
@�ðFS1S1 þ FS2S2Þ; (B4)

where

FS1 ¼
F2
�ð!1 � 1Þ þ LF2

X!1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
�ð1�!1Þ2 þ LF2

X!
2
1

q ;

FS2 ¼
ffiffiffiffi
L

p
F�FXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2
�ð1�!1Þ2 þ LF2

X!
2
1

q ;

(B5)

are nothing but the decay constants of the singlet pseudo-
scalar mesons S1 and S2, defined as

h0jJðLÞ5;�ð0ÞjS1ð ~p1Þi ¼ i
ffiffiffiffiffiffi
2L

p
FS1p1�;

h0jJðLÞ5;�ð0ÞjS2ð ~p2Þi ¼ i
ffiffiffiffiffiffi
2L

p
FS2p2�:

(B6)

From Eqs. (B2) and (B5) one immediately verifies that the
field S2 satisfies the Witten-Veneziano formula, i.e.,

m2
S2

¼ 2LA

F2
S2

; (B7)

and, therefore, it is nothing but the field associated with the
particle �0, with a squared (nonchiral) mass generated by
the anomaly and of order Oð1=NÞ in the large-N limit, as
required by the Witten-Veneziano mechanism. [Instead,
concerning the state S1, even if, according to Eqs. (B6) and
(B5), it is coupled to the Uð1Þ axial current, it is not
coupled to the topological charge density, i.e.,
h0jQð0ÞjS1ð ~p1Þi ¼ 1ffiffiffiffiffi

2L
p FS1m

2
S2
1

¼ 0, since it is massless:

therefore it does not appear as an intermediate mesonic
state in the spectral decomposition of the full topological
susceptibility . . .]
It is interesting to observe that, in this case (differently

from the case discussed in Sec. II A), the parameter !1

plays a fundamental role. In fact, when c1 ¼ 0, the anoma-
lous Lagrangian term containing !1 is the only one which
generates a coupling between U and X (i.e., between the
usual quark-antiquark pseudoscalar mesons and the exotic
singlet state). By changing !1 one can ‘‘move’’ the anom-
aly from U to X. In particular, in the case !1 ¼ 1 the
anomalous term only depends on U and the field X is
decoupled. In this case the Lagrangian simply reduces to
the sum of the usual Lagrangian written by Witten, Di
Vecchia, Veneziano et al. for the field U (including the
anomalous term) plus a nonanomalous Lagrangian for
the field X: in this limit the state S2, i.e, the �0, reduces
to the usual quark-antiquark singlet state S�, while the
massless state S1 reduces to the exotic state SX. On the
contrary, in the opposite case !1 ¼ 0 the anomalous term
only depends on the exotic field X and so the state S2, i.e,
the �0, reduces to the exotic state SX, while the massless
state S1 reduces to the usual quark-antiquark singlet state
S�. In conclusion, we have found that, in the case in
which c1 ¼ 0, in addition to the usual L2 � 1 nonsinglet
(pseudo-)Goldstone bosons and to the massive singlet
S2 ¼ �0, there is another singlet S1, which is massless in
the chiral limit. This particle is therefore another (pseudo-)
Goldstone boson which, when including the quark masses,
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should have a mass comparable with that of the other
L2 � 1 nonsinglet pseudoscalar mesons.

In the realistic case L ¼ 3, by diagonalizing the squared
mass matrix (2.25) with c ¼ 0, we derive the following
expressions for the squared masses of S1 and S2, at the first
order in the quark masses and in 1=N:

m2
S1

¼ F2
�ð1�!1Þ2

F2
�ð1�!1Þ2 þ 3F2

X!
2
1

m2
0;

m2
S2

¼
�
6A

F2
�

�
!2

1 þ
�
2A

F2
X

�
ð1�!1Þ2

þ 3F2
X!

2
1

F2
�ð1�!1Þ2 þ 3F2

X!
2
1

m2
0:

(B8)

Remembering the definition of m2
0 � 2

3Bð2 ~mþmsÞ ¼
2
3Bðmu þmd þmsÞ and Eqs. (2.23), we immediately see

that the squared mass of the singlet S1 satisfies the follow-
ing relation:

m2
S1

¼ F2
�ð1�!1Þ2

F2
�ð1�!1Þ2 þ 3F2

X!
2
1

m2
0 � m2

0

¼ 1

3
ðm2

� þm2
K� þm2

K0; �K0Þ ’ ð412 MeVÞ2: (B9)

Even assuming, as already said, that we can identify the
singlet S2 with the observed singlet �0, no other singlet

pseudoscalar meson is observed whose mass satisfies the
limit (B9). Our assumption c1 ¼ 0 (together with FX � 0)
has thus led us to another ‘‘Uð1Þ problem.’’ Even if we let
c1 be different from zero, but arbitrarily small, i.e., c1 ! 0
with all other quantities fixed, since, by virtue of
Eqs. (2.11) and (2.12), the squared masses m2

S1;S2
in the

chiral limit are continuous functions of the parameter c1,
we find that m2

S1
’ QL=ZL ’ 2Lc

F2
�ð1�!1Þ2þLF2

X!
2
1

¼ Oðc1Þ will
be arbitrarily small and, when including quark masses, it
will have an upper limit arbitrarily close (from above) to
that reported in Eq. (B9).
Therefore, we are forced to discard this possibility (as it

leads to wrong predictions for the pseudoscalar-meson
mass spectrum) and, in the rest of this paper, we shall
always consider the model in which c1 is different from
zero and not too small, so that c ¼ OðNÞ is large. In this
case, as we have seen in Secs. II A and II B, the squared
masses of the singlet mesons S1 and S2 are given by
Eq. (2.15) in the chiral limit and by Eqs. (2.30) and
(2.31) in the realistic case with L ¼ 3 light quark flavors.
Therefore, as already said, the state S1 has a topological
(nonchiral) squared mass of order Oð1=NÞ in the large-N
limit and it is nothing but the particle �0. Instead, the state
S2 is identified with an exotic singlet particle �X, having a
large (nonchiral) mass term of order Oð1Þ in the large-N
limit, generated by the (non-zero) coupling constant c1.
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