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We study the radiative pion decay of �þ ! eþ�e� in the light-front quark model. We also summarize

the result in the chiral perturbation theory. The vector and axial-vector hadronic form factors (FV;A) for the

� ! � transition are evaluated in the whole allowed momentum transfer. In terms of these momentum

dependent form factors, we calculate the decay branching ratio and compare our results with the

experimental data and other theoretical predictions in the literature. We also constrain the possible size

of the tensor interaction in the light-front quark model.
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I. INTRODUCTION

The light pesudoscalar decays have been playing impor-
tant roles of understanding the standard model (SM). In
particular, the radiative pion decay of �þ ! eþ�e� (�e2�)

is an interesting process, which can be used to test the
V � A structure of the weak interaction and search for
some anomalous interactions beyond the SM. The decay
consists of two types of contributions, referred as internal-
bremsstrahlung (IB) and structure-dependent (SD) in terms
of the emission of the photons, respectively. The IB con-
tribution to the decay amplitude (MIB) is helicity sup-
pressed like the �e2 decay as the photon radiates from
the external electron, while the SD one (MSD), depending
on vector and axial-vector weak hadronic currents, is pro-
portional to the electromagnetic coupling constant � but
free of the helicity suppression. One can parametrize MSD

by the vector and axial-vector form factors, denote as FV

and FA, respectively.
The decay of �þ ! eþ�e� has been measured with the

branching ratio of ð1:61� 0:23Þ � 10�7 for the cuts of
E� > 21 MeV and Ee > 70� 0:8E� by the ISTRA experi-

ment [1,2]. Recently, a more precise measurement on
the decay branching ratio has been given by the
PIBETA Collaboration [3,4], with the decay branching
ratios in various kinematic regions. In particular, for the
cuts of Ee > 0:5 MeV and E� > 10 MeV with the relative

angle �e� > 400, the decay branching ratio is ð73:86�
0:54Þ � 10�8 [4]. The new ongoing PEN experiment at
Paul Scherrer Institute will at least double the PIBETA data
set [5], resulting in further improvements in precision [6].
In addition, there is another ongoing new experiment,
PIENU, at TRIUMF [7] with a similar sensitivity as the
PEN experiment.

Theoretical calculations on FV;A as well as the decay

branching ratio in the SM have been done in various QCD
models [8–14]. In particular, the decay branching ratio with
the same cuts as those by ISTRA [1,2] and PIBETA [4] is
found to be 2:55� 10�7 and 76:66� 10�8 in the chiral

perturbation theory (ChPT) at Oðp6Þ [15–17], which are
larger than the data shown above, respectively. As a result, it
may be necessary to consider some new types of interac-
tions, such as tensor (T) interactions [1,8–12]. It is clear that
these tensor interactions are undoubtedly signals of new
physics. On the other hand, it is important if we can obtain
information on FV;A in some QCD models other than the

ChPT. For this purpose, in this study we will evaluate FV;A

in the light-front quark model (LFQM) [18,19]. Wewill use
the form factors in both ChPT and LFQM to examine the
decay of �þ ! eþ�e�. In addition, we will examine the
new physics effect due to the tensor interactions.
This paper is organized as follows. In Sec. II, we sum-

marize the form factors in the � ! � transition within the
ChPT and LFQM. In Sec. III, we calculate the decay
branching ratio of �þ ! eþ�e� in these models. We
also compare our results with the experimental data and
other theoretical predictions in the literature. We give our
conclusions in Sec. IV.

II. THE FORM FACTORS

A. Vector and axial-vector form factors

The decay amplitude for �þ ! eþ�e� can be written as
[20,21]

M ¼ MIB þMSD;

MIB ¼ ie
GFffiffiffi
2

p Vudf�me�
�
� �uðpeÞð1� �5Þ
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�
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�
�
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�
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2pe � q
�
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2
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where �� is the photon polarization vector, p�, pe, p�, and
q are the four momenta of �þ, eþ, �, and �, and f� and
FA;V are the � meson decay constant and the axial-vector

and vector form factors defined by

h0j�s���5uj�þðp�Þi ¼ if�p
�
�;

h�ðqÞj �u���5dj�ðp�Þi ¼ e
FA

m�

½ðp � qÞ��� � ð�� � pÞq��;

h�ðqÞj �u��dj�ðp�Þi ¼ ie
FV

m�

"�������q�p�; (2)

respectively, with p ¼ p� � q being the transfer momen-
tum. Obviously, MIB has a suppression factor of me. The
physically accessible kinematics region is 0 � p2 �
p2
max ¼ m2

� due to the timelike momentum transfers. In
the following discussion, we will first summarize the for-
mulas for FV;A in the ChPT [16,17] and then evaluate these

form factors in the LFQM. We note that similar calcula-
tions for the P ! �ðP ¼ Kþ; K0; D; BÞ transitions in the
LFQM have been performed in Refs. [22–24].

1. Chiral perturbation theory

The tree and loop contributions to FV;A in the ChPT at

Oðp6Þ for the �e2� decay have been calculated in

Refs. [16,17]. The explicit forms can be summarized as
[22]

FVðp2Þ¼ m�
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(3)

and

FAðp2Þ ¼ 4
ffiffiffi
2
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ffiffiffi
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2
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�
; (4)

where the wave function and decay constant (F� �
f�=

ffiffiffi
2

p
) renormalizations have been included and Cr

i ,
Lr
i , and yri are the renormalized coupling constants.

Note that the first terms in Eqs. (3) and (4) correspond to
FV and FA at Oðp4Þ [15,25], respectively. To get the
numerical results for the form factors, we take mK ¼
0:495 GeV, m� ¼ 0:14 GeV and m
 ¼ 0:77 GeV, F� ¼
0:092 GeV and the renormalized coefficients of
ðLr

1; L
r
2; L

r
3; L

r
9; L

r
10Þ, ðCr

7; C
r
22Þ, and ðyr100; yr104; yr109; yr110Þ

to be ð0:53; 0:71;�2:72; 6:9;�5:5Þ � 10�3 [26],
ð0:013; 6:52Þ � 10�3 GeV�2 [27], and ð1:09;�0:36; 0:40;
�0:52Þ � 10�4=F2

� [28], respectively. For some other pos-
sible sets of coefficients, see Ref. [17] as well as the recent
review in Ref. [29]. Note that the uncertainties for the
renormalized coupling constants are not considered in
this study.

2. Light-front quark model

In the light front (LF) approach, the general structure of
the phenomenological LF meson wave function is based
only on the Q �q Fock space sector [22]. The pion wave
function can be expressed by an antiquark �q and a quark Q
with the total momentum (pþ q) as

j�ðpþqÞi¼ X
	1	2

Z
½dk1�½dk2�2ð2�Þ3�3ðpþq�k1�k2Þ

��	1	2
� ðz;k?Þbþ�q ðk1;	1ÞdþQðk2;	2Þj0i; (5)

where �	1	2
� is the amplitude of the corresponding �qðQÞ

and k1ð2Þ is the on-mass shell LF momentum of the internal

quark. The LF relative momentum variables ðz; k?Þ are
defined by

kþ1 ¼ ð1� zÞðpþ qÞþ;
kþ2 ¼ zðpþ qÞþ;
k1? ¼ ð1� zÞðpþ qÞ? þ k?;

k2? ¼ zðpþ qÞ? � k?;

(6)

and

�	1	2
� ðz; k?Þ ¼

�
kþ1 kþ2

2½M2
0 � ðmQ �m �qÞ2�

�
1=2

� �uðk1; 	1Þ�5vðk2; 	2Þ�ðz; k?Þ;

M2
0 ¼

k2? þm2
q

1� z
þ k2? þm2

Q

z
; (7)
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where �ðz; k?Þ is the space part of the wave function,
which is taken to be a Gaussian type, but it can be solved
in principle by the LF QCD bound state equation [24]. At
the quark loop diagram, the hadronic matrix elements in
Eq. (2) can be obtained to be

h�ðqÞj �u��ð1� �5Þdj�ðpþ qÞi

¼
Z d4k1

ð2�Þ4 �� �
�
�5

ið�k2 þmuÞ
k22 �m2

u þ i�
ieu 6��

� iðk3 þmuÞ
k23 �m2

u þ i�
��ð1� �5Þ iðk1 þmdÞ

k21 �m2
d þ i�

þ ðu $ d; k1 $ k2Þ
�
; (8)

where �� is a vertex function related to the quark-
antiquark bound state of the � meson, k2 ¼ q� k3 and
k1 ¼ ðpþ qÞ � k2 ¼ k3 þ p. By integrating over the LF
momentum k�2 in Eq. (8), we get

h�ðqÞj �u��ð1� �5Þdj�ðpþ qÞi
¼

Z pþq

p
½d3k1�

�
��

k�1 � k�1on
ðI�jk�2onÞ

1

k�3 � k�3on

þ ðu $ d; k1 $ k2Þ
�
; (9)

where

½d3k1� ¼ dkþ1 dk1?
2ð2�Þ3kþ1 kþ2 kþ3

;

I�jk�
2on

¼ Tr

�
�5ð�k2 þmuÞieq 6��ðk3 þmuÞ��ð1� �5Þ

� ðk1 þmdÞ
�
;

k�ion ¼
m2

i þ k2i?
kþi

;

k�1ð2Þ ¼ p�
on � k�2ð1Þon;

k�3 ¼ q� � k�1on;

(10)

with fong representing the on-shell particles. Note that the
vertex function �� in Eqs. (8) and (9) include the normal-
ization factor of the wave function and momentum distri-
bution function, given by [19]

��

k�1 � k�1on
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
kþ1 kþ2

q
ffiffiffi
2

p
M0

�ðz; k?Þ: (11)

Note that in Eq. (11), we have taken mq ¼ mQ, i.e., mu ¼
md for �. To calculate the matrix element in Eq. (9), we
choose a frame with the transverse momentum p? ¼ 0 so
that p2 ¼ pþp� 	 0 covers the entire range of the mo-
mentum transfers. Here, the relevant quark momentum
variables are

kþ3 ¼ ð1� z0Þqþ; kþ2 ¼ z0qþ;

k3? ¼ ð1� z0Þq? þ k0?; k2? ¼ z0q? � k0?:
(12)

By considering the good component as ‘‘� ¼ þ’’, the
hadronic matrix elements in Eq. (2) can be rewritten as

h0j�s�þ�5uj�ðpþ qÞi ¼ if�ðpþ qÞþ;
h�ðqÞj �u�þ�5dj�ðpþ qÞi ¼ �e

FA

2m�

ð��? � q?Þpþ;

h�ðqÞj �u�þdj�ðpþ qÞi ¼ �ie
FV

2m�

�ij��i qjpþ:

(13)

Using Eq. (12), the trace part I� in Eq. (10) can be carried
out. By comparing the last two equations in Eq. (13) with
those in Eq. (9), we derive

FAðp2Þ ¼ 4m�

Z dz0d2k?
2ð2�Þ3 �ðz; k2?Þ

1

1� z

�
1

3

md þ Bk2?�
m2

d þ k2?

þ 2

3

mu � Ak2?�
m2

u þ k2?

�
;

FVðp2Þ ¼ �4m�

Z dz0d2k?
2ð2�Þ3 �ðz; k2?Þ

1

1� z

�
�
1

3

md þ ð1� zÞðmd �muÞk2?�
m2

d þ k2?

� 2

3

mu � zðmd �muÞk2?�
m2

u þ k2?

�
; (14)

where

A ¼ zð1� 2z0Þðmd �muÞ � 2z0mu;

B ¼ zð1� 2z0Þmd þmd þ ð1� 2z0Þð1� zÞmu;

�ðz; k2?Þ ¼ 4

�
�

!2
�

�
3=4

�
zð1� zÞ

2½M2
0 � ðmd �muÞ2�

�
1=2

�
ffiffiffiffiffiffiffiffi
dkz
dz

s
exp

�
�

~k2

2!2
�

�
;

� ¼ 1

�ðz; k2?Þ
d�ðz; k2?Þ

dk2?
;

z ¼ z0
�
1� p2

m2
�

�
;

~k ¼ ð ~k?; ~kzÞ;

kz ¼
�
z� 1

2

�
M0 þm2

d �m2
u

2M0

:

(15)

We note that to evaluate the form factors, we have to fix the
meson scale parameter!� in the meson wave functions by
fitting the meson decay constant, given by [30]

f� ¼ ffiffiffiffiffiffi
48

p Z dzd2k?
2ð2�Þ3 �ðz; k?Þ mu

zð1� zÞ : (16)
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B. Tensor form factor

The tensor interaction is given by [8,11]

LT ¼ GFffiffiffi
2

p sin�cfTð �u���5dÞ½ �e��ð1� �5Þ�e�: (17)

The tensor form factor is defined by [11]

h�ðqÞj �u���5dj�ðp�Þi¼�i
eFT

2fT
ð���q��q��

�
�Þ: (18)

For the LF good component of � ¼ þ, one rewrites
Eq. (18) as

h�ðqÞj �uþ��5dj�ðpþ qÞi ¼ �i
eFT

2fT
ð��? � q?Þ: (19)

At the quark level, the hadronic matrix element in Eq. (18)
is found to be

h�ðqÞj �u���5dj�ðpþ qÞi

¼
Z d4k01

ð2�Þ4 ��

�
�5

ið�k2 þmuÞ
k22 �m2

u þ i�
ieu 6�� iðk3 þmuÞ

k23 �m2
u þ i�

� ���5

iðk1 þmdÞ
k21 �m2

d þ i�
þ ðu $ d; k1 $ k2Þ

�
; (20)

which leads to

h�ðqÞj �u��5dj�ðpþ qÞi
¼

Z pþq

p
½d3k1�

�
��

k�1 � k�1on
ðI��jk�

2on
Þ 1

k�3 � k�3on

þ ðu $ d; k1 $ k2Þ
�
; (21)

where

I��jk�
2on
¼Trf�5ð�k2þmuÞieq 6��ðk3þmuÞ
���5ðk1þmdÞg: (22)

From Eqs. (19) and (21), we obtain

FTðp2Þ
fT

¼ 2
Z dz0d2k?

2ð2�Þ3 �ðz; k2?Þ
�
2

3

C1 þ C2k
2
?�

m2
u þ k2?

þ 1

3
ðmd $ muÞ

�
; (23)

where

C1 ¼ 1

z0zð1� zÞ2ð1� z0Þ fð1� 2z0 þ 2z02 � z0zÞ
� ðz0 þ z� 2z0zÞk2? þ ð1� zÞmu½2z0zð1� z0Þmd

þ ðz0 þ zþ 2z02z� 4z0zÞmd�g;

C2 ¼ ðz� z0Þ
z0zð1� zÞ2ð1� z0Þ fðz

0 þ z� 2z0zÞk2?
þ z2ð1� z0Þm2

d � ð1� zÞðz0 þ z� z0zÞm2
ug: (24)

At the maximal recoil of p2 ¼ 0, we have

FTð0Þ
fT

¼ 4
Z dzd2k?

2ð2�Þ3 �ðz; k2?Þ

�
�
2

3

ð1� zÞk2 þmuðzmd þ ð1� zÞmuÞ
zðm2

u þ k2?Þ
þ 1

3
ðmu $ mdÞ

�
: (25)

C. Numerical results

To compute numerical values of the form factors in
the LFQM, the ! parameter in the light-front wave func-
tion is fixed by other hadronic properties. For example,
by using the decay constant of f� ¼ 130 MeV and the
quark masses of mu ¼ md ¼ 250 MeV, we obtain !� ¼
301 MeV from Eq. (16). We note that this value of !� is
just a typical one and its uncertainty mainly arises from
those of the light quark masses. The transfer momentum p2

dependences of FV and FA are shown in Figs. 1 and 2,

FIG. 1. FVðp2Þ as a function of the transfer momentum p2 with
mu ¼ md ¼ 250 MeV.

FIG. 2. Same as Fig. 1 but for FVðp2Þ.
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respectively. Note that the behaviors of the figure’s sharps
are independent of the quark masses but the values of FV

and FA at the maximal recoil of p2 ¼ 0 can be quite
different as shown in Table I. The results in Table I also
illustrate the main uncertainty from the quark masses. In
Figs. 1 and 2, we have also included the experimental
results fitted by the forms of FVðp2Þ ¼ FVð1þ �p2Þ and
FAðp2Þ ¼ FAð0Þ with a constant parameter of � [4]; while

in Table. I, we list the values of FA;Vð0Þ in the ChPT and

those from the data. We remark that the numerical values
of the form factors at p2 ¼ 0 for the pion case between the
theoretical models seem to be less compatible comparing
with those for the kaon in Ref. [17] in which the strange
quark mass also enters. To illustrate the quark mass effects
on the form factors in the LFQM, in Figs. 3 and 4, we plot
three different sets of quark masses including the one in
Figs. 1 and 2. It is clear that both FV;A decrease as mu;d

increase.
The tensor form factor Eq. (23) in the whole kinematic

region for the LFQM is shown in Fig. 5. At p2 ¼ 0, we get
the FTð0Þ=fT ¼ 0:220, 0.210, and 0.202 for mu;d ¼ 230,
250, and 270 MeV, respectively.

III. DECAY BRANCHING RATIO

In the �þ rest frame, we obtain the double differential
decay rate as

d2�l

dxdy
¼ m�

256�3
jMj2 ¼ �

2�
Brð� ! e�ÞA; (26)

A ¼ AIBðx; yÞ þ ASDðx; yÞ þ AINTðx; yÞ; (27)

with

AIBðx; yÞ ¼ 1� 	

	x2

�
x2 þ 2ð1� reÞ

�
1� x� re

	

��
;

ASDðx; yÞ ¼ m4
�ð1� 	Þ
4f2�m

2
e

x2
�
jFV þ FAj2 	2

1� 	

�
�
1� x� re

	

�
þ jFV � FAj2ðy� 	Þ

�
;

AINTðx; yÞ ¼ �m�

f�

�
Re½ðFV þ FAÞ��

�
1� x� re

	

�

� Re½ðFV � FAÞ�� 1� yþ 	

	

�
; (28)

TABLE I. Values of FA;Vð0Þ in (a) the ChPT at Oðp4Þ, (b) the
ChPT at Oðp6Þ, (ci) the LFQM with i ¼ 1, 2, and 3 for mu;d ¼
230, 250, and 270 MeV, respectively.

(a) (b) (c1) (c2) (c3) Data [4]

FAð0Þ 0.0112 0.0102 0.0151 0.0131 0.0113 0.0117(17)

FVð0Þ 0.0272 0.0272 0.02751 0.0261 0.0243 0.0258(17)

FIG. 3. FVðp2Þ in the LFQM, where mu ¼ md ¼ 230, 250,
and 270 MeV correspond to solid, long-dashed, and short-dashed
lines, respectively.

FIG. 5. FT ðp2Þ
fT

as a function of the transfer momentum p2.

FIG. 4. Same as Fig. 3 but for FVðp2Þ.
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where x ¼ 2E�=m�, y ¼ 2Ee=m�, re ¼ m2
e=m

2
�, and 	 ¼

ðxþ y� 1� reÞ=x. One can also relate the angle �e�
between the eþ and photon momenta with y and 	.
Explicitly, by neglecting the re, one has that

	 ¼ ysin2
�
�e�
2

�
: (29)

The physical regions for x and y are given by

0�x�1�re; 1�xþ re
1�x

�y�1þre: (30)

In Table II, we show the decay branching fractions of�� !
e��e� in terms of the various contributions in Eq. (28) for
f� ¼ 130 MeV, m� ¼ 140 GeV [2], mu;d ¼ 250 MeV,
and Brð� ! e�Þ ¼ ð1:23� 0:004Þ � 10�8 with the cuts
of E� > 50 MeV and Ee > 50 MeV. Note that in this kine-

matic region, the contribution from the SD part dominates
the decay rate, which is sensitive to the V � A structure as
well as newphysics.We note that the total branching ratio in
the LFQM is 2.937 and 2:320� 10�8 for mu;d ¼ 230 and

270 MeV, respectively.
In Table III, we give the decay branching ratio of � !

e�e� in various kinematic energy regions in (a) the ChPT
at Oðp4Þ, (b) the ChPT at Oðp6Þ, (c) the LFQM, (d) the
green function method [13], and (e) the ChPTwith a large
NC expansion [14] as well as the data in Ref. [4]. Here, we
have usedmu;d ¼ 250 MeV in the LFQM. The errors in the

parentheses of our results in Table III are from the decay of
� ! e�. However, it should be noted that large uncertain-
ties could arise from the various normalized coupling
constants and the light quark masses in the ChPT and
LFQM, respectively. In Fig. 6, we display the spectrum
of the differential decay branching ratio as a function of
x ¼ 2E�=m� in the ChPT at bothOðp4Þ andOðp6Þ and the

LFQM. From Table III, we see that the results of the ChPT
at Oðp4Þ and Oðp6Þ are higher than those of the experi-
mental data, which can be understood from Table I and
Eq. (28) since the values of FV�Að0Þ � FVð0Þ � FAð0Þ in
the ChPT are larger than those fitted in the experimental
data. Since the result from the LFQM agrees well with the
data [4], it could lead to a strong constraint on new physics.
We now examine the contribution to the decay from the
tensor interaction in Eq. (17). From Eqs. (17) and (18), one
obtains the new tensor contribution as

MT ¼ ie
GFffiffiffi
2

p sin�cðFT�
�
�q�Þ½�l��ð1� �5Þ�l�: (31)

Because of the above tensor interaction, Eq. (27) should be
rewritten as follows:

TABLE II. Decay branching ratio of � ! e�e� (in units of
10�8) in (a) the ChPT at Oðp4Þ, (b) the ChPT at Oðp6Þ, and
(c) the LFQM with the cuts of E� > 50 MeV and Ee > 50 MeV,

respectively.

Model IB SD INT Total

(a) 3:692� 10�1 2.356 2:536� 10�3 2.727

(b) 3:692� 10�1 2.309 2:850� 10�3 2.679

(c) 3:692� 10�1 2.250 1:840� 10�3 2.621

TABLE III. Decay branching ratio of � ! e�e� (in units of 10�8) in (a) the ChPT at Oðp4Þ, (b) the ChPT at Oðp6Þ, (ci) the LFQM
with i ¼ 1, 2, and 3 for mu;d ¼ 230, 250, and 270 MeV, respectively, (d) the green function method [13], and (e) the ChPTwith a large

NC expansion [14] as well as the data in Ref. [4] in various kinematic energy regions (in units of MeV).

Emin
e Emin

� �min
e� Data [4] (a) (b) (c1) (c2) (c3) (d) (e)

50 50 - 2.614(21) 2.727(9) 2.679(9) 2.85(8) 2.62(8) 2.29(8) 2.81(38) 2.58(8)

10 50 40
 14.46(22) 15.04(5) 14.99(5) 14.93(37) 14.63(37) 14.19(37) 15.08(58) 14.77(40)

50 10 40
 37.69(46) 38.28(13) 38.12(12) 38.29(12) 73.67(22) 37.37(12) 38.4(10) 38.9(9)

0.5 10 40
 73.86(54) 76.66(25) 76.31(25) 73.67(22) 73.57(22) 72.58(22) . . . . . .

FIG. 6. Differential decay branching ratio as a function of
x ¼ 2E�=m�.

TABLE IV. The tensor related parts of the decay branching
ratio for � ! e�e� (in units of 10�8) in the LFQM with the cuts
of E� > 50 MeV and Ee > 50 MeV.

TT SDT IBT

4:636� 102f2T 9:817� 10�2fT 2:536� 10fT
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A ¼ AIBðx; yÞ þ ASDðx; yÞ þ AINTðx; yÞ þ ATTðx; yÞ
þ AIBTðx; yÞ þ ASDTðx; yÞ; (32)

where the new terms are given by

ATTðx; yÞ ¼ m4
�

f2�m
2
e

jFTj2x2	ð1� 	Þ;

AIBTðx; yÞ ¼ 2
m2

�

f�me

ReðFTÞ
�
1þ re � 	� re

	

�
;

ASDTðx; yÞ ¼ m3
�

f2�me

ReðFTÞðFV � FAÞx2	ð1� 	Þ:

(33)

Integrating over x and y variables in Eq. (33) and using the
form factor in Eq. (23), we get the tensor related parts of
the branching ratio as shown in Table. IV. To evaluate the
total branching ratio including the tensor part, we can
combine the results in Tables II and IV. By comparing
the final result with the experimental data of �� !
e��e�, we extract fT ¼ ð3:48þ8:02

�8:23Þ � 10�4 shown in

Table V in the LFQM for mu;d ¼ 250 MeV. In the table,

we have also given other results in the literature including
the single tensor form factor fitted by PIBETA [4].
We note that our result in the LFQM and that by
PIBETA correspond to �1:0� 10�3 < fT < 1:66� 10�3

and �5:2� 10�4 < fT < 4:0� 10�4 at 90% C.L.,
respectively.

IV. CONCLUSIONS

We have studied the momentum dependent � ! � tran-
sition form factors FA;Vðp2Þ in the ChPT and LFQM. In

particular, we have found that FAð0Þ ¼ 0:0112, 0.0102, and
(0.151, 0.0131, 0.0113) and FVð0Þ ¼ 0:0272, 0.0272, and
(0.0275, 0.0261, 0.0243) in (a) the ChPT Oðp4Þ, (b) the
ChPT Oðp6Þ, and (c) the LFQM with mu;d ¼
ð230; 250; 270Þ MeV, respectively, at the maximal recoil
of p2 ¼ 0, Based on these form factors, we have calculated
the decay branching ratio of � ! e�e�. Explicitly, we
have obtained that in the SM with the cut of E� >me

and Ee > 10 MeV with the relative angle �e� > 40
, the
decay branching ratio is 76:66� 0:25, 76:31� 0:25, and
ð73:67� 0:22; 73:57� 0:22; 72:58� 0:22Þ � 10�8 in
(a), (b), and (c), respectively, while the experimental mea-
surement is 73:86� 10�8 by the PIBETA Collaboration.
Since our results fit well with the data, we have also
derived a constraint for the tensor interaction to be�1:0�
10�3 < fT < 1:66� 10�3 at 90% C.L. in the LFQM.

ACKNOWLEDGMENTS

We thank Professors D.A. Bryman and T. Numao for
useful discussions. This work is supported in part by the
National Science Council of Republic of China. under
Grant Nos: NSC97-2112-M-006-001-MY3 (CHC), NSC-
95-2112-M-007-059-MY3 (CQG), NSC-98-2112-M-007-
008-MY3 (CQG) and NSC-97-2112-M-471-002-MY3
(CCL) and by the Boost Program of NTHU (CQG).

[1] V. N. Bolotov et al., Phys. Lett. B 243, 308 (1990); Sov. J.
Nucl. Phys. 51, 455 (1990).

[2] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1
(2008).

[3] E. Frlez et al., Phys. Rev. Lett. 93, 181804 (2004).
[4] M. Bychkov et al., Phys. Rev. Lett. 103, 051802

(2009).
[5] See the PEN Collaboration home page at http://pen

.phys.virginia.edu/ and references therein.
[6] D. Pocanic et al. (PEN Collaboration), arXiv:0909.4360;

see also Nucl. Phys. A 844, 26C (2010).
[7] D. Bryman, Proc. Sci., KAON2008 (2008) 052.
[8] A. A. Poblaguev, Phys. Lett. B 238, 108 (1990).
[9] V.M. Belyaev and I. I. Kogan, Phys. Lett. B 280, 238

(1992); Yu. Y. Komachenko, Yad. Fiz. 55, 2487 (1992)
[Sov. J. Nucl. Phys. 55, 1384 (1992)].

[10] M.V. Chizhov, Mod. Phys. Lett. A 8, 2753 (1993); Phys.
Part. Nucl. Lett. 2, 193 (2005).

[11] C. Q. Geng and S.K. Lee, Phys. Rev. D 51, 99 (1995).
[12] A. A. Poblaguev, Phys. Rev. D 68, 054020 (2003).
[13] V. Mateu and J. Portoles, Eur. Phys. J. C 52, 325 (2007).
[14] R. Unterdorfer and H. Pichl, Eur. Phys. J. C 55, 273

(2008).
[15] J. Bijnens, G. Ecker, and J. Gasser, Nucl. Phys. B 396, 81

(1993).
[16] L. Ametller, J. Bijnens, A. Braman, and F. Cornet, Phys.

Lett. B 303, 140 (1993).
[17] C. Q. Geng, I. L. Ho, and T.H. Wu, Nucl. Phys. B 684, 281

(2004).
[18] W.M. Zhang and A. Harindranath, Phys. Rev. D 48, 4881

(1993); K. G. Wilson et al., Phys. Rev. D 49, 6720 (1994);
W.M. Zhang, Phys. Rev. D 56, 1528 (1997).

TABLE V. Form factor of fT in units of 10�4.

LFQM [4] [8] [10] [12] [13]

3:48þ8:02
�8:23 �0:6� 2:8 �56� 17 372� 120 �115� 33 1� 14

STUDY OF THE RADIATIVE PION DECAY PHYSICAL REVIEW D 83, 074001 (2011)

074001-7

http://dx.doi.org/10.1016/0370-2693(90)90857-3
http://dx.doi.org/10.1016/j.physletb.2008.07.018
http://dx.doi.org/10.1016/j.physletb.2008.07.018
http://dx.doi.org/10.1103/PhysRevLett.93.181804
http://dx.doi.org/10.1103/PhysRevLett.103.051802
http://dx.doi.org/10.1103/PhysRevLett.103.051802
http://pen.phys.virginia.edu/
http://pen.phys.virginia.edu/
http://arXiv.org/abs/0909.4360
http://dx.doi.org/10.1016/j.nuclphysa.2010.05.009
http://dx.doi.org/10.1016/0370-2693(90)92108-U
http://dx.doi.org/10.1016/0370-2693(92)90061-8
http://dx.doi.org/10.1016/0370-2693(92)90061-8
http://dx.doi.org/10.1142/S0217732393003147
http://dx.doi.org/10.1103/PhysRevD.51.99
http://dx.doi.org/10.1103/PhysRevD.68.054020
http://dx.doi.org/10.1140/epjc/s10052-007-0393-5
http://dx.doi.org/10.1140/epjc/s10052-008-0584-8
http://dx.doi.org/10.1140/epjc/s10052-008-0584-8
http://dx.doi.org/10.1016/0550-3213(93)90259-R
http://dx.doi.org/10.1016/0550-3213(93)90259-R
http://dx.doi.org/10.1016/0370-2693(93)90058-P
http://dx.doi.org/10.1016/0370-2693(93)90058-P
http://dx.doi.org/10.1016/j.nuclphysb.2003.12.039
http://dx.doi.org/10.1016/j.nuclphysb.2003.12.039
http://dx.doi.org/10.1103/PhysRevD.48.4881
http://dx.doi.org/10.1103/PhysRevD.48.4881
http://dx.doi.org/10.1103/PhysRevD.49.6720
http://dx.doi.org/10.1103/PhysRevD.56.1528


[19] W. Jaus, Phys. Rev. D 41, 3394 (1990); 44, 2851 (1991);
N. B. Demchuk et al., Phys. At. Nucl. 59, 2152 (1996).

[20] D. A. Bryman et al., Phys. Rep. 88, 151 (1982).
[21] C. H. Chen, C.Q. Geng, and C. C. Lih, Phys. Rev. D 56,

6856 (1997).
[22] C. H. Chen, C.Q. Geng, and C. C. Lih, Phys. Rev. D 77,

014004 (2008); Int. J. Mod. Phys. A 23, 3204 (2008).
[23] C. Q. Geng, C. C. Lih, and C. C. Liu, Phys. Rev. D 62,

034019 (2000).
[24] C. Q. Geng, C. C. Lih, and W.M. Zhang, Phys. Rev. D 57,

5697 (1998); 62, 074017 (2000); Mod. Phys. Lett. A 15,
2087 (2000); C. C. Lih, C. Q. Geng, and W.M. Zhang,
Phys. Rev. D 59, 114002 (1999).

[25] J. F. Donoghue and B. R. Holstein, Phys. Rev. D 40, 2378
(1989); 40, 3700 (1989).

[26] G. Amoros, J. Bijnens, and P. Talavera, Nucl. Phys. B 602,
87 (2001).

[27] O. Strandberg, arXiv:hep-ph/0302064.
[28] M. Knecht and A. Nyffeler, Eur. Phys. J. C 21, 659

(2001).
[29] J. Bijnens, Prog. Part. Nucl. Phys. 58, 521 (2007), and

references therein.
[30] C. Q. Geng, C.W. Hwang, C. C. Lih, and W.M. Zhang,

Phys. Rev. D 64, 114024 (2001); C. H. Chen, C.Q. Geng,
C. C. Lih, and C. C. Liu, Phys. Rev. D 75, 074010
(2007).

CHUAN-HUNG CHEN, CHAO-QIANG GENG, AND CHONG-CHUNG LIH PHYSICAL REVIEW D 83, 074001 (2011)

074001-8

http://dx.doi.org/10.1103/PhysRevD.41.3394
http://dx.doi.org/10.1103/PhysRevD.44.2851
http://dx.doi.org/10.1016/0370-1573(82)90162-4
http://dx.doi.org/10.1103/PhysRevD.56.6856
http://dx.doi.org/10.1103/PhysRevD.56.6856
http://dx.doi.org/10.1103/PhysRevD.77.014004
http://dx.doi.org/10.1103/PhysRevD.77.014004
http://dx.doi.org/10.1142/S0217751X08041839
http://dx.doi.org/10.1103/PhysRevD.62.034019
http://dx.doi.org/10.1103/PhysRevD.62.034019
http://dx.doi.org/10.1103/PhysRevD.57.5697
http://dx.doi.org/10.1103/PhysRevD.57.5697
http://dx.doi.org/10.1103/PhysRevD.62.074017
http://dx.doi.org/10.1142/S021773230000267X
http://dx.doi.org/10.1142/S021773230000267X
http://dx.doi.org/10.1103/PhysRevD.59.114002
http://dx.doi.org/10.1103/PhysRevD.40.2378
http://dx.doi.org/10.1103/PhysRevD.40.2378
http://dx.doi.org/10.1103/PhysRevD.40.3700
http://dx.doi.org/10.1016/S0550-3213(01)00121-3
http://dx.doi.org/10.1016/S0550-3213(01)00121-3
http://arXiv.org/abs/hep-ph/0302064
http://dx.doi.org/10.1007/s100520100755
http://dx.doi.org/10.1007/s100520100755
http://dx.doi.org/10.1016/j.ppnp.2006.08.002
http://dx.doi.org/10.1103/PhysRevD.64.114024
http://dx.doi.org/10.1103/PhysRevD.75.074010
http://dx.doi.org/10.1103/PhysRevD.75.074010

