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Finite-volume lattice QCD calculations offer the possibility of extracting resonance parameters from the

energy-dependent elastic phase-shift computed using the Lüscher technique. In this letter, as a trial of the

method, we report on the extraction of the nonresonant phase-shift for S and D-wave �� isospin-2

scattering from dynamical lattice QCD computations. We define a variational basis of operators resembling

pairs of pions of definite relative momentum and extract a spectrum of excited states that maps to phase-

shifts at a set of discrete scattering momenta. Computations are performed with pion masses between 400

and 520 MeVon multiple spatial volumes. We observe no significant quark mass dependence in the phase-

shifts extracted which are in reasonable agreement with the available experimental data at low momentum.
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I. INTRODUCTION

The hadron spectrum and interactions of QCD can be
studied from first principles using numerical simulation of
the quark and gluon fields on a finite lattice. While signifi-
cant progress has been made in studying isolated excited
meson states with q �q-like operators [1,2], it remains chal-
lenging to extract properties of resonances that appear in
the scattering of stable hadrons. One procedure, due to
Lüscher [3], maps the discrete spectrum of eigenstates of
QCD in a finite cubic volume to the phase shift for elastic
scattering. By extracting multiple excited eigenstates
within a given quantum number sector, one can map out
the phase shift as a function of scattering momentum and,
if present in that channel, observe resonant behavior.

In this letter, we demonstrate the feasibility of the tech-
nique in a simple sector, that of �� scattering in isospin-2
(I ¼ 2), where the interaction is not strong enough to form
a resonance, but rather is weak and repulsive. For the first
time using this method, we extract the S- and D-wave
phase shifts as a function of scattering momentum. This
procedure is carried out independently on multiple vol-
umes to validate the finite-volume method. We find
through computations at a range of quark masses that at
the level of precision attained the phase shift is largely
quark mass independent.

Previous lattice QCD calculations of �� scattering
have limited themselves to extracting the phase shift at
near-zero energy, more conveniently expressed via the
scattering length [4,5], or by performing the same calcu-
lation in a moving frame, a single phase-shift point at
nonzero energy [6].

In contrast, we use the ‘‘distillation’’ method [7] to
construct both creation and annihilation operators of defi-
nite �� relative momentum, and employ them to form a
variational basis of composite QCD operators that re-
semble pairs of pions. This enables us to extract a spectrum
of multiple states with I ¼ 2, ‘P ¼ 0þ, 2þ (‘ is the partial
wave and P the parity) and, using the Lüscher technique,
we find the phase shift as a discrete function of the scat-
tering momentum. This sets the groundwork for investigat-
ing resonances in other meson-meson scattering channels.
Experimentally, �� I ¼ 2 phase shifts have been ex-

tracted from �N ! ��N0 charge-exchange scattering
reactions, treating the dominantly-exchanged pion as ap-
proximately on-shell owing to the proximity of the
t-channel pole to the physical small-t region. The extant
data [8–11] for �‘¼0 and �‘¼2 are broadly consistent in the
low-energy region measured and there is little statistically
significant evidence for inelasticity.

II. FINITE-VOLUME ANALYSIS

Lüscher’s method relates the discrete spectrum of en-
ergy levels in a finite volume to phase shifts evaluated at
the scattering momenta corresponding to the extracted
energy values. Complications arise from the cubic symme-
try of the lattice boundary which reduces the irreducible
symmetry channels from the set of all integer spins to a
finite set of irreducible representations. The relevant
irreps, �, for �� isospin-2 scattering at low momentum
are Aþ

1 which contains continuum spins ‘ ¼ 0; 4 . . . ,
Tþ
2 ð‘ ¼ 2; 4 . . .Þ, Eþð‘ ¼ 2; 4 . . .Þ and Tþ

1 ð‘ ¼ 4 . . .Þ. Odd
‘ values do not contribute due to Bose symmetry.
Once the finite-volume energy levels, E�� are obtained

from an explicit Monte Carlo calculation on a fixed volume*dudek@jlab.org
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(L3) lattice, the scattering momenta follow assuming a

continuumlike dispersion relation, k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE��=2Þ2 �m2
�

p

.
The desired phase-shifts are embedded in an equation

det

�

e2i�ðkÞ � U�

�

k
L

2�

��

¼ 0; (1)

where U�ðk L
2�Þ is a matrix in the space of partial waves, ‘,

of known functions particular to this irrep, �, evaluated at

the scattering momentum, k. e2i�ðkÞ is a diagonal matrix
featuring phase shifts, �‘ðkÞ, for all partial waves contrib-
uting to the irrep �. The dimension of these matrices is
formally infinite, since there are an infinite number of
possible partial waves contributing to each irrep �.
However, one can argue that, since higher waves typically
contribute less at low momentum, one can cut off the
dimension at some low spin and, provided the results are
reasonably insensitive to this cutoff, reliably extract the
phase shift for low partial waves. This is the core of
the Lüscher method [3].

The aim then is to solve for some set of phase shifts
f�‘ðkÞg, but since Eq. (1) is one equation (per energy level)
in several unknowns, this will not be possible. Instead we
will attempt to bound the size of all �‘ðkÞ for ‘ higher than
the lowest in each irrep using other information. In practice
we will assume that, in the energy region accessible to us,
�‘>4 � 0 and consider only the effect of a nonzero �4ðkÞ.

III. CORRELATOR CONSTRUCTION AND
VARIATIONAL ANALYSIS

In order to obtain the finite-volume energy spectrum, we
form a matrix of correlators using a basis of �� operators
that is then diagonalized using the variational method
[2,12,13]. The operators are constructed to resemble a
pair of pions with total momentum zero and definite rela-
tive momentum:

O �;�
��ðj ~pjÞ ¼

X

m

S‘;m
�;�

X

p̂

Ym
‘ ðp̂ÞO�ð ~pÞO�ð� ~pÞ:

The subduction coefficients, S‘;m
�;�, project operators of

definite ‘ into definite irreps, �—their explicit forms can
be found in Appendix A of [2]. The sum over directions of
momentum, p̂, at a fixed magnitude is limited to those
allowed by the periodic cubic boundary conditions. On a
lattice with spatial extent L these are ~p ¼ 2�

L
~n for a vector

of integers ~n.
In this first study we utilize only a simple operator

capable of interpolating a pion at momentum ~p from the
vacuum,

O �ð ~pÞ ¼
X

~x

ei ~p� ~x½ �ch��
5h�c �ð ~xÞ;

where the quark fields are acted upon by a distillation
smearing operator that emphasizes the low momentum
quark and gluon modes that dominate low mass hadrons.

In this study we useh� ¼ PNvecs

n¼1 e
�2�n=4�n�

y
n where �n, �n

are the eigenvalues and eigenvectors of the gauge-
covariant three-dimensional Laplacian operator (see [2,7]
for details; � ¼ 0 was used in [1,2]). It is distillation that
factorizes the construction of correlators in such a way as
to make possible the projection onto definite interpion
momentum at both source and sink, something that is not
possible in the traditional ‘‘point-all’’ method. Details of
the distillation correlator construction can be found in [7].
Our variational basis in the irrep Aþ

1 consists of opera-
tors with j ~pj2 ¼ ð2�L Þ2ð0; 1; . . . 4Þ each with two smearing

radii � ¼ 0:0, 4.0, giving a ten dimensional basis. For Eþ
we have j ~pj2 ¼ ð2�L Þ2ð1; 2; 4Þ and two smearings and Tþ

2

with j ~pj2 ¼ ð2�L Þ2ð2; 3Þ and two smearings. The Tþ
1 irrep

has lowest spin ‘ ¼ 4 for two pions. However the lowest
momentum fromwhich a Tþ

1 operator can be constructed is
j ~pj2 ¼ 5ð2�L Þ2 and this is the only one we used. With these

operators at source and sink, we form all correlators using
Wick contractions relevant for I ¼ 2.
Computations are performed on anisotropic lattices with

three dynamical flavors of Clover fermions with spatial
lattice spacing as � 0:12 fm and finer temporal spacing,
a�1
t � 5:6 GeV, see Table I and [14]. A precise measure of

the anisotropy, � ¼ as=at, is required to determine the
spatial length of the lattice in temporal lattice units,
L=at ¼ �L=as. Fitting single-pion correlators at finite mo-
mentum, as ~p ¼ 2�

L=as
~n, determines atE�ðj ~njÞ and � follows

from fitting the dispersion relation

ðatE�ðj ~njÞÞ2 ¼ ðatm�Þ2 þ 1

�2

�

2�

L=as

�

2j ~nj2;

for multiple values of j ~nj and L=as. Explicitly we find
� ¼ 3:459 4ð Þ, 3.454(5), 3.459(3) on, respectively, the
m� ¼ 396, 444, 524 MeV lattices, showing the lack of
quark mass dependence observed previously and utilized in
the dynamical tuning of the lattice action [15]. Mass-
dimension quantities multiplied by the temporal lattice
spacing, at, are scale-set using the procedure outlined
in [2], using the �-baryon mass determined on the same

lattice, m ¼ atm
atm�

�mphys
� . The continuum scaling of the

results is not investigated in this calculation at a single
lattice spacing.

TABLE I. Lattices used in this study. Nvecs indicates the num-
ber of eigenvectors of the laplacian used in the distillation
method.

m�=MeV ðL=asÞ3 � ðT=atÞ Ncfgs Ntsrcs Nvecs

524 163 � 128 496 4 64

203 � 128 377 4 96

444 163 � 128 605 5 64

203 � 128 321 3 128

396 163 � 128 439 16 64

203 � 128 535 3 128

243 � 128 548 4 162

DUDEK et al. PHYSICAL REVIEW D 83, 071504(R) (2011)

RAPID COMMUNICATIONS

071504-2



In Fig. 1 we show the finite-volume spectra obtained
with m� ¼ 396 MeV and L=as ¼ 16, 20, 24. We clearly
observe shifts relative to the energy of two noninteracting

pions with back-to-back momentum of ~p ¼ 2�
L
~n, E�� ¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
� þ j ~pj2p

. It is this energy shift that Lüscher’s method
relates to the scattering phase shift through Eq. (1). It is the
fact that we are able to resolve excited energy levels with a
statistical precision below 1% that makes possible an ex-
traction of the scattering phase shift as a function of
scattering momentum.

IV. PHASE SHIFT

For each �� energy level in each irrep in Fig. 1 we can
set up an Eq. (1) to be solved for the phase shifts, �‘. The
simplest way to solve these equations is to neglect the
contribution of ‘ � 4 to obtain �0 from Aþ

1 and �2 from

Tþ
2 or Eþ. Doing so gives the red, green and blue colored

points (solid lines) in Fig. 2. The small discrepancies
between Eþ and Tþ

2 extractions of �2 at k2 �
0:35; 0:55; 0:85 GeV2 (corresponding to the levels at
atE� 0:25, 0.29, 0.36 in Fig. 1), have a possible origin
in the neglect of a non-negligible value of �4. We can
estimate the size of this �4 by solving the coupled system
of Eqs. (1) for Tþ

2 and Eþ at the relevant energy for the two

unknowns, �2, �4. The values of �4 so extracted are shown
by the pink points in Fig. 2.

For a direct estimate of �4 from Tþ
1 , only the L=as ¼ 24

lattice has a point within our plotted range of scattering
momentum. The extracted point is shown by the pink
diamond in Fig. 2, and is in good agreement with the other
estimates, showing that j�4j is less than 2� over the whole
of the explored momentum range.

With an estimated magnitude of �4ðkÞ in hand (from
interpolation between the determined points), we can
solve Eq. (1) including the effect of the ‘ ¼ 4 wave. This
gives rise to the orange, light green and cyan colored
points (dotted lines) in Fig. 2 which are seen to differ
relatively little from the points with �4 assumed to be
zero. For final presentation we enlarge the error bar to
include the effect of the estimated �4 giving rise to asym-
metric error bars in Fig. 3.
As indicated in Fig. 2, the 4� threshold opens within the

energy range of our extracted phase shifts and technically
for energies above this the formalism leading to Eq. (1) is
not rigorously correct. On the other hand, there is relatively
little evidence experimentally for considerable inelasticity
in the �� isospin-2 channel in the energy range so far
probed—what little data there is does not show statistically
significant deviation from an elastic approximation [9,10].
As an initial approximation, we shall assume that the
inelasticity is negligible and continue to use Eq. (1) above
the inelastic threshold. The ‘ ¼ 2 phase shift extracted
from Eþ, Tþ

2 irreps should be less sensitive to any inelas-

ticity since the effective threshold in finite volume is higher
as it requires at least one unit of relative momentum in the
4� system. Future calculations should test the elasticity
assumption by computing correlators using operators that
resemble four pions projected into isospin-2 in the appro-
priate partial waves.

V. RESULTS

In Fig. 3 we show our results for S- and D-wave phase
shifts, at a range of pion masses, along with experimental

FIG. 1 (color online). Low-lying spectrum, in units of the
temporal lattice spacing, of finite-volume states in irreps Aþ

1 ,

Eþ, Tþ
2 at m� ¼ 396 MeV for L=as ¼ 16, 20, 24. The box

height indicates the statistical uncertainty on the energy. Orange
(dotted) boxes correspond to states suspected of being ��?

scattering states. Dashed lines indicate the noninteracting energy
of pion pairs with the allowed lattice momenta between them.

FIG. 2 (color online). Phase shifts extracted from spectra with
m� ¼ 396 MeV. Red (Aþ

1 ), green (Eþ), blue (Tþ
2 ) colored

points (solid lines) assume �4 ¼ 0; orange (Aþ
1 ), light green

(Eþ), cyan (Tþ
2 ) colored points (dotted lines, shifted slightly to

the right) used estimated �4 as described in the text: note that the
corrected �2 values from Eþ, Tþ

2 coincide by construction at

momenta near j ~pj2 ¼ 2 � ð2�L Þ2. Estimated �4 shown by pink

points. Also indicated are the positions of inelastic thresholds
into 4� and ��.
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data taken from [8–11]. We observe reasonable agreement
with the experimental data at lower scattering momenta,
where the scattering is purely elastic, for all the pion
masses computed. This suggests that it is possible that
the phase shift is only mildly dependent upon pion mass.
Of course, one requires lattice computations at smaller
pion masses to verify that the agreement with experiment
continues.

Using only �� and � correlators at zero momentum we
can perform the extraction of the scattering length using
the methodology of [4,5]. The scattering lengths so ob-
tained are shown in Fig. 4, where they are seen to be in
reasonable agreement with the precision data of [4], com-
puted on a lattice of similar spatial lattice spacing.
We can also obtain estimates for the scattering length

and effective range by fitting the k dependence of �0ðkÞ,
where we find that scattering lengths largely agree with the
estimates from the simple method above, while the effec-
tive range is small but only poorly determined.

VI. SUMMARYAND PROSPECTS

We have demonstrated the feasibility of an explicit
application of the Lüscher finite-volume framework in
dynamical lattice QCD. Using multiple excited state en-
ergy levels extracted in a single volume, we have deter-
mined the S- and D-wave �� isospin-2 phase shifts as a
function of scattering momentum. Multiple volumes are
then used for validation and estimation of the effect of
neglected higher partial waves. We estimate that j�4j & 2�
for k < 1 GeV.
We observe no significant pion mass dependence in

the phase shift below k� 1 GeV, with results for m� *
400 MeV being in reasonable agreement with experimen-
tal data at low scattering momentum. For precision cover-
age of experimentally relevant kinematics, we would
require still larger volumes to sample points at smaller
scattering momentum in the elastic region.
This calculation sets the groundwork for an investigation

of the resonances in meson-meson scattering that arise
from the strong interaction. Inclusion of quark annihilation
diagrams in the calculation of correlators [16] will enable
the I ¼ 1�� sector to be studied, where one expects to see
the � resonance appearing as a rapidly rising phase shift.
Some attempts in this direction have been made [17–19],
but using only a small basis of operators and subsequently
extracting a very limited number of phase-shift points.
Distillation and stochastic variants [7,20,21] will allow
us to efficiently construct a large basis and thus map out
many points on the phase-shift curve. In future work, we
will explore a range of different scattering hadrons in
various partial waves.
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FIG. 4 (color online). S-wave scattering length. Blue (open)

points from ~p ¼ ~0 correlators, pink (filled) points from effective
range fits to �ðkÞ. Comparison to lattice results of [4,5] and Roy
equations analysis of experimental data [22].

FIG. 3 (color online). Phase shift in degrees for �� I ¼ 2
scattering with ‘ ¼ 0 (�0) and ‘ ¼ 2 (�2). Lattice results
at various pion masses and volumes. Experimental data from
[8–11].
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