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The Galilean conformal algebra (GCA) arises in taking the nonrelativistic limit of the symmetries of a

relativistic conformal field theory in any dimensions. It is known to be infinite dimensional in all

spacetime dimensions. In particular, the 2d GCA emerges out of a scaling limit of linear combinations

of two copies of the Virasoro algebra. In this paper, we find metrics in dimensions greater than 2 which

realize the finite 2d GCA (the global part of the infinite algebra) as their isometry by systematically

looking at a construction in terms of cosets of this finite algebra. We list all possible subalgebras consistent

with some physical considerations motivated by earlier work in this direction and construct all possible

higher-dimensional nondegenerate metrics. We briefly study the properties of the metrics obtained. In the

standard one higher-dimensional ‘‘holographic’’ setting, we find that the only nondegenerate metric is

Minkowskian. In four and five dimensions, we find families of nontrivial metrics with a rather exotic

signature. A curious feature of these metrics is that all but one of them are Ricci-scalar flat.
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I. INTRODUCTION

Nonrelativistic conformal theories have received a lot of
recent attention in connection with the AdS/CFT conjec-
ture, more generally, the gauge-gravity duality. The most
popular of the versions of this nonrelativistic gauge-gravity
duality has been the one studied in the context of the
Schrödinger algebra. The Schrödinger algebra is the largest
symmetry algebra of the free Schrödinger equation [1,2]
and has been observed in cold atom systems at unitarity
[3]. Gravity duals of a certain class of field theories pos-
sessing Schrödinger symmetry have been proposed in
[4,5], and now there is extensive literature in this line of
research, some of which can be found in the excellent
review [6]. Another popular venue of research in this field
has been in relation to spacetime with Lifshitz symmetry,
as proposed in [7], which unlike the Schrödinger case, does
not exhibit invariance under Galilean boosts and hence
does not contain the Galilean group as part of the symme-
try algebra.

In [8], a different direction to nonrelativistic AdS/CFT
was proposed by focusing on a systematic limiting proce-
dure of the relativistic symmetry group. The relativistic
conformal algebra on the boundary was parametrically
contracted to what is called the Galilean conformal algebra
(GCA). One of the remarkable observations here was that
the GCA could be given an infinite-dimensional lift for any
spacetime dimensions. It was also observed that the GCA
was important to the study of nonrelativistic hydrodynam-
ics. Specifically, the finite-dimensional GCA is the sym-
metry algebra of the Euler equations, which is valid in
cases where the fluid viscosity can be neglected. There

have been further studies of the various aspects of the GCA
in [9–12].
The gravity dual of the GCAwas proposed initially to be

a novel Newton-Cartan–like AdS2 � Rd in [8]. The sys-
tematic limit, when performed on the parent AdS metric,
leads to a degeneration. Hence the proposal was that when
one looked for a standard one dimension higher holo-
graphic construction, there would be no nondegenerate
spacetime metric and the theory described in terms of
connections would be a geometrized version of
Newtonian gravity. We should, at this point, remind the
reader that in the case of the Schrödinger algebra, the
gravity dual was found in a two-dimensional higher space-
time. The question of finding a metric with the Galilean
conformal isometry in higher dimensions remains.
Recently, in [13], a connection between asymptotically
flat spaces and the GCA has been established. The 2d
infinite-dimensional GCA was shown to be isomorphic to
the Bondi-Metzner-Sachs (BMS) algebra [14] in three
dimensions, which is the group of asymptotic isometries
of flat three-dimensional space at null infinity [15]. The
two different points of view are seemingly at loggerheads,
and one of the issues that we address in this paper is this
apparent confusion.
The basic philosophy behind constructing the gravity

duals of nonrelativistic field theories is to realize the cor-
responding symmetry group as the isometry group of a
spacetime metric. We attempt to find all possible higher
(greater than two)-dimensional metrics possessing the
Galilean conformal isometry by a process of coset con-
struction. In the context of nonrelativistic Gauge-gravity
duality, the authors of [16] have shown that under some
‘‘physical’’ conditions the metrics obtained by this method
uniquely reproduce the holographic constructions with
Schrödinger and Lifshitz isometries. This procedure has
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also been followed in [17], in relation to the aging
algebra, an algebra of relevance to some nonequilibrium
statistical mechanical systems without time translation
symmetry. We conduct a case-by-case exhaustive study
of all possible metrics that can arise out of this coset
construction for the 2d GCA, using the finite part of the
algebra. We look to implement the two physical conditions
as outlined in [16] and then make our search more exten-
sive by relaxing one of them. We find that when we are
looking at metrics with one extra direction, the physical
conditions do not lead to any nondegenerate spacetime
metric in 3d, adding strength to the claim that the correct
structure to look for is indeed a Newton-Cartan–like
AdS2 � R. Interestingly, when one of the two physical
conditions is relaxed, we obtain a flat 3d metric, in keeping
with the connection discussed in [13]. We find other
nondegenerate metrics for higher-dimensional spaces.
Curiously, most of these metrics turn out to be Ricci-scalar
flat, although (except for the Minkowskian one) they
source nontrivial Ricci tensors.

The outline of the paper is as follows: we first review, in
Sec. II, the Galilean conformal algebra, with special em-
phasis on the 2d GCAwhich shall be the focus of the paper.
In Sec. III, we outline the procedure of constructing met-
rics on homogeneous coset spaces that we would use.
Section IV contains the main results of the paper. We
subdivide the section according to the dimension of the
spacetime metric that we construct and make several com-
ments. The main results are also summarized in a table in
this section. We end with some concluding remarks. An
appendix contains a list of all possible subalgebras for the
2d GCA.

II. A REVIEW OF THE GCA

A. GCA in arbitrary dimensions

The maximal set of conformal isometries of Galilean
spacetime generates the infinite-dimensional Galilean
conformal algebra [8]. The notion of Galilean spacetime
is a little subtle since the spacetime metric degenerates
into a spatial part and a temporal piece. Nevertheless,
there is a definite limiting sense (of the relativistic space-
time) in which one can define the conformal isometries
(see [18]) of the nonrelativistic geometry. Algebraically,
the set of vector fields generating these symmetries is
given by

LðnÞ ¼�ðnþ1Þtnxi@i� tnþ1@t;

MðnÞ
i ¼ tnþ1@i;

JðnÞa �JðnÞij ¼�tnðxi@j�xj@iÞ;
(2.1)

for integer values of n. Here i ¼ 1 . . . ðd� 1Þ range
over the spatial directions. These vector fields obey the
algebra

½LðmÞ; LðnÞ� ¼ ðm� nÞLðmþnÞ;

½LðmÞ; JðnÞa � ¼ �nJðmþnÞ
a ;

½JðnÞa ; JðmÞ
b � ¼ fabcJ

ðnþmÞ
c ;

½LðmÞ;MðnÞ
i � ¼ ðm� nÞMðmþnÞ

i :

(2.2)

There is a finite-dimensional subalgebra of the GCA (also
sometimes referred to as the GCA) which consists of

taking n ¼ 0, �1 for the LðnÞ, MðnÞ
i together with Jð0Þa .

This algebra is obtained by considering the nonrelativistic
contraction of the usual (finite-dimensional) global confor-
mal algebra SOðd; 2Þ (in d > 2 spacetime dimensions)
(see, for example, [8,19]).

B. GCA in 2d

In two spacetime dimensions, as is well known, the
situation is special. The relativistic conformal algebra is
infinite dimensional and consists of two copies of the
Virasoro algebra. One expects this to be related to the
infinite-dimensional GCA algebra [20]. In two dimensions
the nontrivial generators in (2.2) are the Ln and the Mn:

LðnÞ ¼�ðnþ1Þtnx@x� tnþ1@t; MðnÞ ¼ tnþ1@x; (2.3)

which obey

½LðmÞ; LðnÞ� ¼ ðm� nÞLðmþnÞ;

½MðmÞ;MðnÞ� ¼ 0;

½LðmÞ;MðnÞ� ¼ ðm� nÞMðmþnÞ:

(2.4)

These generators in (2.3) arise precisely from a non-
relativistic contraction of the two copies of the Virasoro
algebra. To see this, let us remember that the nonrelativistic
contraction consists of taking the scaling

t ! t; x ! �x; (2.5)

with � ! 0. This is equivalent to taking the velocities
v� � to zero (in units where c ¼ 1). Consider the vector
fields which generate (two copies of) the centerless
Virasoro algebra in two dimensions:

L ðnÞ ¼ �znþ1@z;
�LðnÞ ¼ ��znþ1@�z: (2.6)

In terms of space and time coordinates, z ¼ tþ x,

�z ¼ t� x. Expressing Ln,
�Ln in terms of t, x and taking

the above scaling limit in (2.5), we get the following
combinations:

LðnÞ þ �LðnÞ ¼ �tnþ1@t � ðnþ 1Þtnx@x þOð�2Þ;
LðnÞ � �LðnÞ ¼ � 1

�
tnþ1@x þOð�Þ:

(2.7)

Therefore we see that as � ! 0 [20],

L ðnÞ þ �LðnÞ !LðnÞ; �ðLðnÞ� �LðnÞÞ!�MðnÞ: (2.8)
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Let us now rewrite the ð1þ 1Þ-dimensional (finite) al-

gebra generated by fLð�1Þ; Lð0Þg and fMð�1Þ;Mð0Þg. The
nontrivial commutators resulting from (2.4) are given by

½D;H�¼H; ½D;K0�¼�K0; ½D;K1�¼�K1;

½D;P�¼P; ½K0;H�¼2D; ½B;H�¼P;

½K1;H�¼2B; ½K0;B�¼K1; ½K0;P�¼2B;

(2.9)

where we have made the following identifications:

Lð�1Þ � H; Lð0Þ � D; Lðþ1Þ � K0;

Mð�1Þ � P; Mð0Þ � B; Mðþ1Þ � K1:
(2.10)

Here H is the time translation generator,D is the dilatation
operator, P is the spatial translation generator, B is the
Galilean boost, and K0, K1 are the two components of the
special conformal generator. These identifications natu-
rally arise when one considers the contraction of the rela-
tivistic conformal algebra [8]. In the rest of the paper we
will entirely focus on the algebra written in (2.9) and not be
concerned about the infinite-dimensional extension. We
would look to realize this finite algebra as the isometries
of spacetime metrics in dimensions greater than two. It is
natural to expect that only the finite GCA would play the
role of the true isometries and the other higher modes may
correspond to asymptotic isometries of the metrics that we
would obtain.1 This is something that we will not address
in the current paper.

III. CONSTRUCTION OF METRICS
ON COSET SPACES

Here we briefly review the construction of metrics on
coset spaces that we will use in the rest of the paper. We
closely follow the notation and conventions of [16]. We
would like to consider a cosetM ¼ G=H , where G is the
Galilean conformal group and H is a subgroup of G. The
corresponding Lie algebras are denoted by g and h, re-
spectively, and for each g 2 g there is a corresponding
element denoted by ½g� 2 g=h. As vector spaces, we can
always decompose

g ¼ h �m: (3.1)

The coset M is called a reductive coset if there exists a
choice ofm 2 M such that ½h;m� � m. We will see that,
generically, for the GCA we do not have such reductive
cosets.

Our goal here will be to construct a G-invariant metric
on the homogeneous space M. Given a Lie group the
Cartan-Killing form is given by

�ab � 1

Iadj
fac

dfbd
c; (3.2)

where fab
c are the structure constants and Iadj is the

Dynkin index. For a semisimple Lie group the Cartan-
Killing form is nondegenerate and therefore induces a
nondegenerate G-invariant metric on M. However, the
GCA is not a semisimple algebra, and thus the correspond-
ing Killing form is degenerate. We would like to point out
here that there is the possibility of constructing a non-
degenerate 2-form over the whole group manifold via a
procedure called ‘‘double extension.’’ We will have more
to say about this later.
Following [22], there exists a one-to-one correspon-

dence between the G-invariant metric on M ¼ G=H
and Ad(H )-invariant nondegenerate symmetric bilinear
forms � on g=h. When H is connected, this invariance
takes the following form:

�½m�½n�f½k�p
½m� þ�½k�½m�f½n�p

½m� ¼ 0; (3.3)

where ½m�; ½n�; . . . are indices corresponding to m and p
indicates the index corresponding to h. Given the structure
constants for a particular choice of h and m, we can solve
for the bilinear � from this equation.
However, the existence or the uniqueness of a solution

for � is not guaranteed, and we will observe later that for
the GCA only a few choices for the subalgebra h lead to a
nondegenerate �. Moreover, a typical solution of (3.3)
does not fix � completely; rather, it gives a symmetric
bilinear in terms of a bunch of arbitrary real numbers. This
will therefore result in redundancies in the description of
the G-invariant (family of) metrics that we will eventually
obtain.
Now let us choose an explicit coordinate basis as in [16].

First we fix a linear space decomposition (3.1) and denote
that tm; tn; . . . are the bases of h and tp; tq; . . . are the bases

ofm. Then an element ½g� 2 G=H can be represented by

½g� ¼ ½expðxmtmÞ expðxntnÞ . . .� modulo H : (3.4)

The Maurer-Cartan 1-form given by Jg ¼ g�1dg can then

be computed according to the linear space decomposition
in (3.1),

Jg ¼ emtm þ eptp; (3.5)

where em and ep are the vielbein. The metric on the coset is

then constructed by contracting the symmetric bilinear �
with the vielbein,

G ¼ �pqepeq: (3.6)

IV. HOMOGENEOUS SPACES WITH
2D GALILEAN CONFORMAL ISOMETRY

In this section we will discuss and present the nontrivial
homogeneous spaces (and the corresponding choice of the
subalgebra) that we obtain via the coset construction. For
the interested reader, we have presented a complete list of
all possible subalgebras of the 2d GCA in the Appendix.1For a brief review on asymptotic isometries, see e.g. [21].
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Let us mention our guiding principles for the choices of
subalgebra here. In [16], the authors uniquely determined
the metrics for the Schrödinger and the Lifshitz algebras by
imposing the following physical conditions:

(1) h does not contain the translation generator P.
(2) h contains the boost generator B.
As argued in [16], condition (1) is natural in the sense

that P would induce infinitesimal translations in the result-
ing geometry and should not be included in the stabilizer of
a point in G=H . We shall strictly follow condition (1) in
all our examples. Condition (2) is derived from the
higher-dimensional analogue of Lorentz invariance. For a
d-dimensional algebra, the authors of [16] proposed to
keep Jij, Bi in h to preserve Lorentz invariance in d

dimensions. We, however, do not believe in the sanctity
of this condition in our analysis and will proceed to relax it
in our exhaustive study.

A. Three-dimensional Minkowski space

We begin by considering the case when dimM ¼ 3. In
this case, the only choice that gives a nondegenerate sym-
metric bilinear� (and therefore a nondegenerate metric) is
the coset M ¼ G=fH;D;K0g. Note that in this case the
subalgebra does not contain the boost generator B, and thus
it falls under the category where we relax one of the
physical conditions outlined above (and in [16]).

The structure constants are given by

f½i�H
½j� ¼

0 0 0
0 0 2
1 0 0

0
@

1
A; f½i�D

½j� ¼
�1 0 0
0 1 0
0 0 0

0
@

1
A;

f½i�K0

½j� ¼
0 0 �2
0 0 0
0 �1 0

0
@

1
A;

(4.1)

which gives

� ¼
0 �2!33 0

�2!33 0 0
0 0 !33

0
@

1
A; !ij 2 R: (4.2)

Now the coset element is parametrized as

½g� ¼ ½exPPex1K1exBB�; (4.3)

which gives the following vielbein:

eP ¼ dxP; eK1
¼ dx1; eB ¼ dxB: (4.4)

So, the resulting metric reads

ds23 ¼ �pqepeq ¼ !33ð�4dxPdx1 þ dxBÞ: (4.5)

This is the flat 3d Minkowski space.2 As we remarked
earlier based on the observation recently made in [13], this
is a consequence of the isomorphism between the finite
Galilean conformal group in ð1þ 1Þ dimensions and the

Poincaré group in ð2þ 1Þ dimensions. The isomorphism
actually extends beyond the finite GCA and encompasses
the full infinite extension of the GCA on one side and the
infinite-dimensional BMS group in three dimensions
which is the asymptotic symmetric group of flat 3d space-
times at null infinity [13].
We observe that the strict imposition of both the ‘‘physi-

cal conditions’’ above does not lead to any nondegenerate
spacetime metric. As remarked in the Introduction, the
original proposal for the dual gravitational description of
a system with the GCA was given in terms of a Newton-
Cartan–like AdS [8]. In the case of the three-dimensional
bulk dual, the structure of the spacetime would be a fiber-
bundledAdS2 � R. The spacetime metric degenerates, and
the dynamical quantities are the Christoffel symbols which
‘‘talk’’ to the separate metrics of the base AdS2 and the
fibers. The imposition of Lorentz symmetry in two dimen-
sions [condition (2)] in our present construction rules out a
nondegenerate spacetime metric, and this is in keeping
with the claim that the correct structure to look for is a
Newton-Cartan–like AdS2 � R.
Let us comment on a couple of things here about the flat

metric that we have obtained. First, we know that if an
n-dimensional manifold admits 1

2nðnþ 1Þ Killing vectors,

it must be a manifold of constant curvature. We were
looking for spacetimes in three dimensions admitting the
six-dimensional GCA as an isometry. So, we would have
ended up with spacetimes of constant curvature. Our only
choices are flat, de Sitter, or anti-de Sitter in three dimen-
sions. That we get a flat spacetime is thus not a surprise.
Another point to note is that this seems to be the metric

that is picked out by the method of contractions that gave
rise to the GCA from the relativistic conformal algebra
from the point of view of AdS/CFT [8], both on the
boundary and in the bulk. To see this, let us remind
ourselves that the AdS3 metric is obtained by the following
coset construction (see e.g. [23]):

AdS 3 ¼ SLð2; RÞ � SLð2; RÞ
SLð2; RÞdiag : (4.6)

The above construction of the Minkowskian metric of the
GCA is precisely the contraction of (4.6).3 The finite GCA
is obtained by contracting the global SLð2; RÞ � SLð2; RÞ
of the Virasoro algebra, and SLð2; RÞdiag, the diagonal

SLð2; RÞ subgroup of the relativistic theory, is the parent
of the fH;D;K0g subalgebra of the GCA.

B. Four-dimensional metrics

Next we consider the case when dimM ¼ 4. The first
nontrivial case is the coset M ¼ G=fB;Dg, which obeys
both the physical conditions outlined in [16]. In this case
the structure constants are given by

2Clearly we can set !33 ¼ 1 without any loss of generality.

3We would like to thank Rajesh Gopakumar for pointing this
out to us.
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f½i�B
½j� ¼

0 �1 0 0
0 0 0 0
0 0 0 þ1
0 0 0 0

0
BBB@

1
CCCA;

f½i�D
½j� ¼

�1 0 0 0
0 �1 0 0
0 0 þ1 0
0 0 0 þ1

0
BBB@

1
CCCA;

(4.7)

which yields

� ¼
0 0 !13 !14

0 0 !14 0
!13 !14 0 0
!14 0 0 0

0
BBB@

1
CCCA; !ij 2 R: (4.8)

This is nondegenerate as long as !14 � 0.
Since we get a nondegenerate bilinear, let us compute

the vielbein in this case. We parametrize the coset element
as

½g� ¼ ½exHHexPPex0K0ex1K1�; (4.9)

which gives the following vielbein:

eH ¼ dxH; eP ¼ dxP; eK0
¼ x20dxH þ dx0;

eK1
¼ 2x0x1dxH þ x20dxP þ dx1: (4.10)

For the sake of visualization, let us write down the full
metric. We define xH ¼ t, xP ¼ x, x0 ¼ y, x1 ¼ z,
w31 ¼ a, w41 ¼ b. The metric, then, can be written as

ds24ð1Þ ¼ ð2ay2þ4byzÞdt2þ4by2dtdxþ2adtdy

þ2bdtdzþ2bdxdy: (4.11)

Note that here we have two arbitrary real numbers, a, b,
which parametrize a family of metrics. This family of
metrics has a vanishing Ricci scalar.

The other nontrivial result comes from taking the coset
M ¼ G=fB;�1Dþ �2K1g. The structure constants are
given by

f½i�B
½j� ¼

0 �1 0 0

0 0 0 0

0 0 0 0

0 0 ��1=�2 0

0
BBBBB@

1
CCCCCA
;

f½i��1Dþ�2K1

½j� ¼ �1

�1 0 0 0

0 �1 0 0

0 0 þ1 0

0 0 0 þ1

0
BBBBB@

1
CCCCCA
;

(4.12)

which yields the following:

�¼
0 0 !31 !41

0 0 0 ��1

�2
!31

!31 0 0 0
!41 ��1

�2
!31 0 0

0
BBB@

1
CCCA; !ij2R: (4.13)

The above � is nondegenerate for �1 � 0. The vielbein
are obtained to be

eH ¼ e�xDdxH; eP ¼ e�xDdxP;

eD ¼ dxD � 2x0e
�xDdxH � �1

�2

dxP;

eK0
¼ e�xDx20dxH � x0dxD þ dx0:

(4.14)

It can be checked that, without any loss of generality, we
can set4 !31 ¼ 1 ¼ �2. Hence we get a family of metrics
parametrized by two real numbers, !41 and �1. Again, for
clarity, it is useful to write the metric down explicitly. We
make the following redefinitions: xH ¼ t, xP ¼ x, x0 ¼ y,
exD ¼ r, !41 ¼ a,

ds24ð2Þ ¼
2

r2
fð1� ayÞdrdtþ ðay2 � 2yÞdt2 � �ðr

þ y2Þdtdxþ ardtdyþ �ydxdr� �rdxdyg:
(4.15)

It is trivial to check that this metric also has a vanishing
Ricci scalar. This is the only nonreductive example that we
encounter in the coset construction of the two-dimensional
Galilean conformal symmetry.
Let us offer some comments regarding the signature of

these four-dimensional metrics. It can be observed that the
two distinct families of metrics we obtained take the
following generic form:

ds2 ¼ 2�13e1e3 þ 2�14e1e4 þ 2�2;ð3=4Þe2eð3=4Þ; (4.16)

where �ij are the corresponding matrix entries in (4.8) or

(4.13) and ei’s are the vielbein given in (4.10) or (4.14). If
we introduce a local orthonormal frame fE1; E2; E3; E4g,
where Ei’s are appropriate linear combinations of ei’s, the
particular form of the metric in (4.16) strongly suggests
that the signature of the metric should be (2,2).5 It is worth
noting at this point that in [11], a geometric realization of
the ‘‘exotic’’ Galilean conformal isometry in ð2þ 1Þ di-
mensions was found in terms of an AdS7 metric with (3,4)
signature. [This is called exotic because there exists a
central charge in the commutator of the boost generators.
This is unique to ð2þ 1Þ dimensions.]

C. Five-dimensional metrics

Finally we present the five-dimensional metrics ob-
tained via the coset construction. The first nontrivial case

4This is achieved by computing the Ricci tensor and observing
that only the ratios !41=!31 and �2=�1 appear.

5It is easy to check that one cannot write ds2 ¼ �E2
1 þ E2

2 þ
E2
3 þ E2

4; however, one can write ds2 ¼ �E2
1 � E2

2 þ E2
3 þ E2

4.
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is the coset M ¼ G=fBg. This gives the following sym-
metric bilinear:

�¼

!11 0 !13 !14 !15

0 0 0 !15 0
!13 0 !33 !34 0
!14 !15 !34 !44 0
!15 0 0 0 0

0
BBBBB@

1
CCCCCA
; !ij2R; (4.17)

which is nondegenerate if !15 � 0 and !33 � 0, and
without any loss of generality, we can set !33 ¼ 1 ¼
!13 ¼ !14 ¼ !15 ¼ !34. In this case we get the following
vielbein:

eH ¼ e�xDdxH; eP ¼ e�xDdxP;

eD ¼ �2x0e
�xDdxH þ dxD;

eK0
¼ x20e

�xDdxH � x0dxD þ dx0;

eK1
¼ 2x0x1e

�xDdxH þ x20e
�xDdxP � x1dxD þ dx1:

(4.18)

The resulting two-parameter family of metrics is Ricci-
scalar flat. Clearly, this construction obeys both the physi-
cal conditions.

The only other nontrivial example in five dimensions is
the coset M ¼ G=fDg, which does not obey the physical
condition (2). In this case we get

�¼

0 0 !31 !41 0
0 0 !32 !42 0

!31 !32 0 0 0
!41 !42 0 0 0
0 0 0 0 !55

0
BBBBB@

1
CCCCCA
; !ij2R: (4.19)

This is also nondegenerate, provided !55 � 0 and
!32!41 � !31!42. The vielbein are given by

eH¼dxH; eP¼dxP; eK0
¼x20dxHþdx0;

eK1
¼ð2x0x1þx20xBÞdxHþx20dxPþxBdx0þdx1;

eB¼�2x0dxPþdxB:

(4.20)

This actually gives a four-parameter family of metrics.
This family generically has a coordinate-dependent Ricci
scalar which diverges as R� x21 for x1 ! 1. If !32 ¼ 0,
we still get a nondegenerate metric but the Ricci scalar
vanishes identically. On the other hand, if !32 � 0, then
the Ricci scalar can vanish at a particular point in x1.

As in the examples with four-dimensional metrics, it can
also be argued that the existence of a local orthonormal
frame and the precise structure of these five-dimensional
metrics strongly suggest the signature (2,3).
Note that the two-dimensional GCA has six generators;

hence a homogeneous space of five dimensions is con-
structed by choosing a subalgebra which consists of only
one generator. This is a rather trivial choice which none-
theless yields a family of nontrivial metrics.
Finally, we summarize some of our results in Table I.

Here R denotes the curvature scalar defined by R ¼
g��R��, R

2
�� � R��R��, R

2
���� � R����R����, and fi-

nally the curvature of the Weyl tensor is defined as
C2
���� ¼ C����C����. The metrics that we obtain in this

construction (except the Minkowski one) do yield a fairly
nontrivial Ricci tensor. Thus it is not clear to us what
matter fields will source such backgrounds. It is therefore
not obvious that such matter fields will preserve the
Galilean conformal isometry. Thus although our metrics
do possess the desired isometry, the full background (the
metric along with the matter fields sourcing it) may not.
Before we leave this section altogether, a few comments

are in order: First, as we remarked earlier in this construc-
tion we get a family of metrics parametrized by arbitrary
real numbers. The redundancy in this description does not
fix the sign of these parameters and hence does not fix the
signature of the metric. However, by assuming the exis-
tence of a local orthonormal frame, we seem to be able to
fix the signature of these metrics, and they turn out to be
rather nonstandard.
Second, note that once we know a metric with the

Galilean conformal isometry in a given dimension, it is
straightforward to construct a higher dimensional metric
with the same isometry by fibering the lower-dimensional
metric over a base manifold

ds2 ¼ f1ð�Þd�2 þ f2ð�Þds2GCA; (4.21)

where f1ð�Þ and f2ð�Þ are two arbitrary functions and
ds2GCA is the metric with the Galilean conformal isometry.

This isometry acts nontrivially on the metric ds2GCA but has

no natural action on the base manifold. However, a space-
time thus constructed is not a homogeneous space since the
Galilean conformal isometry group does not act transi-
tively on the whole manifold. Therefore the homogeneous

TABLE I. A summary of our results.

Choice of subalgebra dimM Properties

hBi 5 R ¼ R2
�� ¼ R2

���� ¼ 0 ¼ C2
����

hDi 5 R � 0, R2
�� � 0, R2

���� � 0 and C2
���� � 0 singularity appears as x0; x1; xB ! 1

hB;Di 4 R ¼ R2
�� ¼ R2

���� ¼ 0 ¼ C2
����

hB;�1Dþ �2K1i, �1;2 � 0 4 R ¼ R2
�� ¼ R2

���� ¼ 0 ¼ C2
����; a (nontrivial) nonreductive coset

hH;D;K0i 3 Minkowski
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spaces we obtained in four and five dimensions are not
related in any obvious manner to the three-dimensional
Minkowski space and are thus truly nontrivial.6

Finally, let us return to a point which was made in the
initial sections. The 2d GCA has a degenerate Cartan-
Killing form given by

��
0 0 �2
0 1 0
�2 0 0

0

0
BBB@

1
CCCA; (4.22)

where the upper left 3� 3 nondegenerate block comes

from the SLð2; RÞ subalgebra spanned by fLð�Þ; Lð0Þg. The
rest of the matrix entries are all zeros.

However, the 2d GCA actually allows for a nondegen-
erate 2-form over the whole group manifold. The situation
is similar to the well-known Nappi-Witten algebra [24] (the
centrally extended 2d Euclidean algebra) or the Abelian
extension of d-dimensional Euclidean algebra considered
in e.g. [25]. The general construction of an invariant non-
degenerate metric for nonsemisimple Lie algebra goes by
the name of ‘‘double extension,’’ as introduced in [26].7

Below we briefly review this.
Let h be any Lie algebra and h	 be its dual. Let the basis

for h and h	 be, respectively, denoted by fXag and fXag
obeying the relation hXa; X

bi ¼ �b
a. Using the fact

that h acts on h	 via the coadjoint representation, one can
define the following Lie algebra structure on the vector
space h � h	

½Xa;Xb�¼fab
cXc;½Xa;Xb�¼0;½Xa;X

b�¼�fac
bXc;

(4.23)

where fab
c are the structure constants for the Lie algebra h.

This defines a semidirect product of h and h	. It is now
possible to define an invariant metric on this semidirect
product algebra.

From the definition of the finite 2d GCA in (2.4) and the
Lie algebra structure defined in (4.23), it is obvious that

Xa � LðmÞ and Xa � MðmÞ, where m ¼ 0;�. Thus the
GCA is isomorphic to the semidirect product of SLð2; RÞ
with its coadjoint representation. We can define a two-
parameter family of invariant inner products in the follow-
ing manner:

hXa;Xbi¼��ab; hXa;X
bi¼	�b

a; hXa;Xbi¼0; (4.24)

where � and 	 are nonzero real numbers and �ab is the
nondegenerate Cartan-Killing form for SLð2; RÞ. This con-
struction works for the semidirect product of any simple
Lie algebra g with its coadjoint representation. It is called

the double extension of the trivial metric Lie algebra
by g [26].

V. SUMMARYAND CONCLUSIONS

In this paper we have systematically constructed metrics
in dimensions greater than two which realize the two-
dimensional Galilean conformal algebra as their isometry.
We classified all the relevant subalgebras of the 2d GCA
and, in order to construct these metrics, looked at a for-
mulation in terms of cosets. Though many choices of these
cosets turned out to produce degenerate metrics, we were
able to get some nontrivial higher-dimensional metrics. In
three dimensions, we obtained a flat Minkowskian metric
which we observed to be the contracted limit of the metric
onAdS3. In higher dimensions, viz. four and five, we found
several families of metrics, all except one of which turned
out to be Ricci-scalar flat.
It is curious that most of the metrics we have obtained

are Ricci-scalar flat. It would be worthwhile trying to
understand if there is any deeper reason behind this, or if
it is a mere coincidence. One might also like to understand
if there is any fundamental difference between these Ricci-
scalar flat metrics and the family which is not Ricci-scalar
flat, given that they were obtained by similar methods.
Despite the fact that these metrics (except the

Minkowski one) seem to have a ‘‘wrong’’ signature, a
further analysis may turn out to be useful in understanding
their structure. It will be very interesting to determine the
matter fields which source such backgrounds. However,
since these metrics are neither Lorentzian nor Euclidean, it
may be difficult to interpret such ‘‘matter fields’’
physically.
In the spirit of the gauge/gravity duality, one could try

and reproduce the correlation functions of the 2d GCA
[10,20] from a gravity analysis. This might actually be a
challenging task, as there is little chance that modes would
separate into normalizable and non-normalizable ones like
in the usual AdS case. But if one is able to perform such
computations, then one could claim that these metrics are
actually holographically dual to the nonrelativistic field
theories with the GCA as their symmetry algebra.
Another speculation made earlier was that the metrics

obtained by this method might realize the infinite-
dimensional GCA as asymptotic symmetries. It has been
observed in [15] that the infinite BMS algebra in three
dimensions, which is isomorphic to the 2d GCA [13],
arises as the asymptotic symmetries of flat space at null
infinity. So, this speculation indeed holds for our construc-
tion in three dimensions. The expectation is that the other
metrics which have the finite 2d GCA as their isometries
would also realize the infinite GCA in a manner similar to
the BMS case. In [21], following the general scheme of
calculating asymptotic symmetries outlined in [27], the
authors constructed the asymptotic symmetry algebra for
metrics with Schrödinger symmetry and found that the

6We would like to thank J. Simon and J. Figueroa-O’Farill for
discussions related to this issue.

7We would like to thank J. Figueroa-O’Farill for explaining
this issue to us and bringing this reference to our attention.
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infinite extension of the Schrödinger algebra indeed
emerges as the asymptotic symmetries of those metrics.
The obstruction for applying the general formalism of [27]
to the GCA was the absence of a spacetime metric. Now
that, in this work, we have derived a number of metrics
with the finite GCA as the isometry algebra, it should, in
principle, be possible to carry out a similar analysis to [21]
and check whether our speculation is indeed correct.

A natural direction of extending this analysis is to con-
struct the metrics for the higher-dimensional GCAs by this
method of cosets. But the problem of classifying relevant
subalgebras quickly becomes intractable and the full analy-
sis too unwieldy to attempt a case-by-case study. This
would involve a mathematical machinery more elaborate
and powerful than what we have used in the two-
dimensional analysis. Another natural extension is to con-
sider the super-GCA and construction of supercosets. A
natural place to begin would again be two dimensions [28].
The size of the finite algebra would provide a challenge
which, in this case, may be overcome by imposing strict
physical conditions.

To conclude, let us remark on a point we have only
fleetingly looked at in this paper. The existence of a non-
degenerate 2-form on the full finite GCA is an avenue of
potential fruitful research. Given that there is no field theory
known for the GCA, it would be nice to use the construction
of Nappi-Witten [24] and its generalizations [26] to con-
struct a Wess-Zumino-Witten model with the GCA as its
symmetry. It would also be useful to understand if the
infinite extension of the GCA plays any interesting role in
this context.
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APPENDIX: THE LIST OF SUBALGEBRAS

Here we list the possible choices of the subalgebras for
the finite part of GCA in (2.9). We begin by imposing the
physical conditions imposed in [16] and then relaxing
them. Just to remind the reader, the physical conditions
are as follows:

(1) h does not contain the translation generator P.

(2) h contains the boost generator B.
However, we do not impose any constraint on the

dimensionality of M ¼ G=H .
Let us therefore list the possible choices in descending

order in dimM:
(i) dimH ¼ 1, dimM ¼ 5:

h ¼ hBi; m ¼ hH;P;D;K0; K1i: (A1)

More generally, however, we have

h¼h�1Bþ�2Hþ�3Dþ�4K0þ�5K1i; �1�0;

m¼hH;P;D;K0;K1i: (A2)

(ii) dimH ¼ 2, dimM ¼ 4:

h ð1Þ ¼ hB;K1i; mð1Þ ¼ hH;P;D;K0i; (A3)

h ð2Þ ¼ hB;Di; mð2Þ ¼ hH;P;K0; K1i: (A4)

More generally, we can have

hð3Þ ¼ hB;�1Dþ �2K1i;
mð3Þ ¼ hH;P;D;K0i; �2 � 0;

(A5)

hð4Þ ¼ hB;�1Dþ �2K1i;
mð4Þ ¼ hH;P;K0; K1i; �1 � 0:

(A6)

(iii) dimH ¼ 3, dimM ¼ 3:

hð1Þ ¼ hB;K1; �1Dþ �2K0i;
mð1Þ ¼ hH;P;K0i; �1 � 0;

(A7)

h ð2Þ ¼ hB;K1; K0i; mð2Þ ¼ hH;P;Di: (A8)

More generally, we have

h ð3Þ ¼ hB;K1; �1Dþ �2K0 þ �3K1i;
mð3Þ ¼ hH;P;K0i; �1;3 � 0;

(A9)

hð4Þ ¼ hB;K0; �1Dþ �2K0 þ �3K1i;
mð4Þ ¼ hH;P;Di; �2;3 � 0:

(A10)

(iv) dimH ¼ 4, dimM ¼ 2:

h ¼ hB;K1; D; K0i; m ¼ hH;Pi: (A11)

Let us now list the possibilities for relaxing condi-
tion (2); i.e. we consider h not containing B. The
choices are as follows:

(v) dimH ¼ 1, dimM ¼ 5:

h ð1Þ ¼ hHi; mð1Þ ¼ hP;D;K0;K1;Bi; (A12)

h ð2Þ ¼ hDi; mð2Þ ¼ hH;P;K0;K1;Bi; (A13)
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h ð3Þ ¼ hK0i; mð3Þ ¼ hH;P;D;K1; Bi; (A14)

h ð4Þ ¼ hK1i; mð4Þ ¼ hH;P;D;K0; Bi: (A15)

(vi) dimH ¼ 2, dimM ¼ 4:

h ð1Þ ¼ hH;Di; mð1Þ ¼ hP;K0;K1;Bi; (A16)

h ð2Þ ¼ hK0;K1i; mð2Þ ¼ hH;P;D;Bi; (A17)

h ð3Þ ¼ hK0;Di; mð3Þ ¼ hH;P;K1;Bi; (A18)

h ð4Þ ¼ hK1;Di; mð4Þ ¼ hH;P;K0;Bi: (A19)

More generally, we can have

hð5Þ ¼ hD;�1K0 þ �2K1i;
mð5Þ ¼ hH;P;K1; Bi; �1 � 0;

mð5Þ ¼ hH;P;K0; Bi; �2 ¼ 0;

(A20)

h ð6Þ ¼ hK0; Dþ �1K1i;
mð6Þ ¼ hH;P;K1; Bi;

(A21)

h ð7Þ ¼ hK1; Dþ �1K0i;
mð7Þ ¼ hH;P;K0; Bi:

(A22)

(vii) dimH ¼ 3, dimM ¼ 3:

h ð1Þ ¼ hH;D;K0i; mð1Þ ¼ hP;K1;Bi; (A23)

h ð2Þ ¼ hK0;K1;Di; mð2Þ ¼ hH;P;Bi: (A24)

More generally, we can also have

hð5Þ ¼ hK0; Dþ �1K1; 	1K0 þ 	2K1i;
m ¼ hH;P; Bi:

(A25)

For the sake of completeness, below we list the possible
subalgebras relaxing both conditions (1) and (2):
(i) dimH ¼ 1, dimM ¼ 5:

h ¼ hPi: (A26)

(ii) dimH ¼ 2, dimM ¼ 4:

h ¼hP;Bi; hP;K1i; hP;Hi; hP;Di: (A27)

(iii) dimH ¼ 3, dimM ¼ 3:

h ¼hP;B;K1i; hP;B;Di; hP;B;Hi;
hP;K1;Di: (A28)
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