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We describe general features of frequency-dependent charge transport near strongly interacting

quantum critical points in 2þ 1 dimensions. The simplest description using the AdS/CFT correspondence

leads to a self-dual Einstein-Maxwell theory on AdS4, which fixes the conductivity at a frequency-

independent self-dual value. We describe the general structure of higher-derivative corrections to the

Einstein-Maxwell theory, and compute their implications for the frequency dependence of the quantum

critical conductivity. We show that physical consistency conditions on the higher-derivative terms allow

only a limited frequency dependence in the conductivity. The frequency dependence is amenable to a

physical interpretation using transport of either particlelike or vortexlike excitations.
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I. INTRODUCTION

The AdS/CFT correspondence has become a powerful
framework for the study of strongly coupled gauge theories
[1–3]. While it is still in a nascent stage, an ‘‘AdS/
Condensed Matter’’ duality is also being developed. That
is, the AdS/CFT correspondence is proving to be a useful
tool to study a range of physical phenomena which bear a
strong similarity to those at strongly coupled critical points
in condensed matter systems. A variety of holographic
models displaying interesting properties, including super-
fluidity, superconductivity and Hall conductivity, have now
been studied [4]. Further interestingmodels of various types
of nonrelativistic CFT’s have also been constructed [5].

One advantage of the AdS/CFT correspondence is the
‘‘uniformity’’ of the holographic approach, i.e., a single set
of calculations can describe the system in different dispa-
rate regimes (e.g.,!=T ! 0 versus T=! ! 0). This can be
contrasted with more conventional field theory analysis of
conformal fixed points [6]. However, a surprising result of
the original transport calculations [7] was that the fre-
quency dependence was rather trivial. In particular, the
conductivity (at zero momentum) showed no frequency
dependence, i.e., it was a constant. The authors of [7]
traced the origin of this remarkable result to the electro-
magnetic (EM) self-duality of the bulk Einstein-Maxwell
theory in four dimensions. Again this holographic result
stands in contrast with those from more conventional field
theory analysis [6,8].

One perspective on these results is to regard them as
predictions of the AdS/CFT analysis on the behavior of
nearly perfect fluids. Such fluids are strongly interacting
quantum systems, found near scale-invariant quantum
critical points, which respond to local perturbations by
relaxing back to local equilibrium in a time of order
ℏ=ðkBTÞ, which is the shortest possible [6]. They are ex-
pected to have a shear viscosity, �, of order �� ℏs=kB [9],

where s is the entropy density, and many experimental
systems behave in this manner [10]. At the same footing,
we can then predict that 2þ 1 dimensional quantum criti-
cal systems with a conserved charge should have a
conductivity which is nearly frequency-independent.
Furthermore, in paired electron systems where the
Cooper pair charge is 2e, the self-dual value of the con-
ductivity is [11] 4e2=h, and this is close to the value
observed in numerous experimental systems [12]. There
has been no previous rationale why self-duality should be
realized in these experiments, and the AdS/CFT theory of
perfect fluids offers a potential explanation.
Measurements of the frequency dependence of the quan-

tum critical conductivity in two spatial dimensions have so
far been rather limited [13,14]. Engel et al. [13] performed
microwave measurements at the critical point between two
quantum Hall plateaus. Their results at the critical point do
not show appreciable ! dependence as ℏ! is scanned
through kBT. However, they did not pay particular atten-
tion to the value of the quantum critical conductivity (they
focused mainly on the width of the conductivity peak
between the plateaus), and it would be useful to revisit
this more carefully in future measurements. In any case, if
confirmed, the AdS/CFT perspective appears to be the
natural explanation for this weak frequency dependence.
Graphene also has characteristics of a quantum critical
system with moderately strong interactions [15], and its
conductivity has been measured [16,17] in the optical
regime where ! � T; a frequency-independent conduc-
tivity was found, equal to that of free Dirac fermions. This
is as expected, because the Coulomb interactions are mar-
ginally irrelevant in graphene [15]. However, for !� T,
the interactions are expected to be more important, and
graphene may well behave like a nearly perfect fluid [18].
A test of this hypothesis would be provided by measure-
ments of the conductivity of graphene in this frequency
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regime, under conditions in which the electron-electron
scattering dominates over disorder-induced scattering.
There have also been discussions of duality in nonlinear
transport near quantum critical points [19–21]. Again, there
is no natural basis for this in themicroscopic theory, while it
can emerge easily from an AdS/CFT analysis [22,23].

Given these motivations, it is clearly useful to under-
stand the robustness of the AdS/CFT self-duality beyond
the classical Einstein-Maxwell theory on AdS4. As was
pointed out in [7], in many constructions emerging from
string theory, the Maxwell field would have an effective
coupling depending on a scalar field and the EM self-
duality would be lost if the scalar had a nontrivial profile.
From the perspective of the holographic CFT, onewould be
extending the theory by introducing a new scalar operator,
and couplings between the new operator and the original
currents holographically dual to the Maxwell field. Further,
the nontrivial scalar profile would indicate that one is now
studying physics away from the critical point as (the ex-
pectation value of) the scalar operator will introduce a
definite scale into the problem.

However, we wish to understand the limitations of self-
duality, while remaining at the critical point. For this, a
possible approach is to simply modify the CFT through
introducing new higher-derivative interactions in the bulk
action for the metric and gauge field, e.g., see [24,25]. The
latter are readily seen to change the n-point functions of
current and the stress tensor in the CFT. While conformal
symmetry imposes rigid constraints on the two- and three-
point functions of these operators, they are only deter-
mined up to a finite number of constant parameters, e.g.,
the central charges, which characterize the particular fixed
point theory [26]. These parameters are reflected in the
appearance of dimensionless couplings in the bulk gravi-
tational theory. Hence, to explore the full parameter space
of the holographic CFT’s, one must go beyond studying the
Einstein-Maxwell theory and begin to investigate the effect
of higher-derivative interactions in the bulk action. This is
the approach which we examine in the present paper. In
particular, we investigate the effects on the charge trans-
port properties of the holographic CFT resulting from add-
ing a particular bulk interaction coupling the gauge field to
the space-time curvature—see Eq. (2.6).

Our main results for the frequency dependence of the
conductivity without self-duality are given in Fig. 1. Here
� is the sole parameter controlling the pertinent higher-
derivative terms in the bulk action; we will argue that
physical consistency conditions imply the constraint
j�j< 1=12.

For � > 0, the frequency dependence has the same non-
monotonic form as that expected by extrapolation from
the weak-coupling Boltzmann analysis [6]: a collision-
dominated Drude peak at small !, which is then smoothly
connected to the collisionless !-independent conductivity
at large !. This similarity implies that a description of

transport in terms of collisions of charged particles is a
reasonable starting point for � > 0.
On the other hand, for � < 0, we observe that it is the

inverse of the conductivity, i.e., the resistivity, which has a
Drude-like peak at small !. Under particle-vortex duality,
the resistivity of the particles maps onto the conductivity of
the vortices [11], as we will review here in Sec. VIA. Thus,
for � < 0, we conclude that a better description of charge
transport is provided by considering the motion and colli-
sions of vortices. In other words, for � < 0, it is the
excitations of the dual holographic CFT, obtained under
the EM duality of the bulk theory, which provide a
Boltzmann-like interpretation of the frequency dependence
of the conductivity.
An outline of the rest paper is as follows: In Sec. II, we

review some basic background material, mainly to moti-
vate the introduction of the higher-derivative interaction
for the gauge fields. In Sec. III, we calculate the charge
diffusion constant and susceptibility for the dual CFT. We
turn to the conductivity in Sec. IV and, in particular, we
demonstrate that in the modified theory, the conductivity is
a nontrivial function of !=T. In Sec. V, we derive con-
straints that arise on the coupling to the new gauge field
interaction by imposing certain consistency conditions in
the dual CFT. We examine electromagnetic duality in the
modified gauge theory in Sec. VI. We conclude with a brief
discussion of our results and future directions in Sec. VII.
A discussion of the Green’s functions at finite frequency
and finite momentum is presented in the Appendix. In
particular, we examine the relationship between the
Green’s functions in the two boundary theories related by
EM duality in the bulk.

II. PRELIMINARIES

As with many of the recent excursions in the AdS/CMT,
our starting point is the standard Einstein-Maxwell theory
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FIG. 1 (color online). The (dimensionless) conductivity
~� ¼ g24� is plotted versus the (dimensionless) frequency

w ¼ !=ð4�TÞ for various values of � (the coupling g4 is
defined in Sec. II). Various consistency conditions imply that
� 2 ½�1=12; 1=12�—see discussion surrounding Eq. (5.14).
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(with a negative cosmological constant) in four dimen-
sions. Hence the action may be written as

I0 ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2‘2P

�
Rþ 6

L2

�
� 1

4g24
FabF

ab

�
: (2.1)

The four-dimensional AdS vacuum solution of the above
theory corresponds to the vacuum of the dual three-
dimensional CFT. Of course, the theory also has (neutral)
planar AdS black-hole solutions:

ds2 ¼ r2

L2
ð�fðrÞdt2 þ dx2 þ dy2Þ þ L2dr2

r2fðrÞ ; (2.2)

where fðrÞ ¼ 1� r30=r
3. In these coordinates, the asymp-

totic boundary is at r ! 1 and the event horizon, at
r ¼ r0. This solution is dual to the boundary CFT at
temperature T, where the temperature is given by the
Hawking temperature of the black hole

T ¼ 3r0
4�L2

: (2.3)

At a certain point in the following analysis, it will also be
convenient to work with a new radial coordinate: u ¼ r0=r.
In this coordinate system, the black-hole metric becomes

ds2 ¼ r20
L2u2

ð�fðuÞdt2 þ dx2 þ dy2Þ þ L2du2

u2fðuÞ ; (2.4)

where fðuÞ ¼ 1� u3. Now the asymptotic boundary is at
u ¼ 0 and horizon at u ¼ 1.

As discussed in the Introduction, we wish to extend the
bulk theory by adding higher-derivative interactions. As
usual in quantum field theory, it is natural to organize the
interactions by their dimension or alternatively by the
number of derivatives. The Einstein-Maxwell action (2.1)
contains all covariant terms up to two derivatives, which
preserve parity, i.e., which are constructed without using
the totally antisymmetric " tensor. Hence it is natural to
next consider the possible interactions at fourth order in
derivatives [27]. In all, one can construct 15 covariant
parity-conserving terms using the metric curvature, the
gauge field strength and their derivatives [27]. However,
using integration by parts,1 as well as the identities
r½aFbc� ¼ 0 ¼ R½abc�d, the general four-derivative action

can be reduced to eight independent terms

I4 ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½�1R
2 þ �2RabR

ab þ �3ðF2Þ2

þ �4F
4 þ �5raFabrcFc

b þ �6RabcdF
abFcd

þ �7R
abFacFb

c þ �8RF
2� (2.5)

where F2 ¼ FabF
ab, F4 ¼ Fa

bF
b
cF

c
dF

d
a and the �i are

some unspecified coupling constants.

In a string theory context, one might expect all of these
interactions to emerge in the low-energy effective action as
quantum (i.e., string-loop) or �0 corrections to the two-
derivative supergravity action—see, for example, [28]. In
such a context, these terms would be part of a perturbative
expansion where the contribution of the higher order terms
is suppressed by powers of, e.g., the ratio of the string scale
over the curvature scale. From the perspective of the dual
conformal gauge theory, these contributions would repre-
sent corrections suppressed by inverse powers of the ‘t
Hooft coupling and/or the number of colors. Within this
perturbative framework, one is also free to use field re-
definitions to simplify the general bulk action (2.5). In the
present case, field redefinitions can be used to set to zero all
of the couplings except three, e.g., �3, �4 and �6 [27].
Examining the remaining three terms, the �3 and �4 terms
involve four powers of the field strength and so would not
modify the conductivity, at least if we study the latter at
zero density. Hence we are left to consider only the�6 term
which couples two powers of the field strength to the
space-time curvature. The latter will certainly modify the
charge transport properties of the CFTand, as we discuss in
detail in Sec. V, it also ruins the EM self-duality of the bulk
Maxwell theory.
While these string theory considerations naturally lead

us to focus our attention on a single new four-derivative
interaction, they are limited to the perturbative framework
described above. However, we would also like to extend
our analysis to the case where the new interactions are
making finite modifications of the transport properties. In
this case, we should think of the holographic theory as a toy
model whose behavior might be indicative of that of a
complete string theory model. Recently the utility of this
approach has been shown in holographic investigations
with various higher curvature gravity theories—see, for
example, [25,29–32]. Further, while the couplings of the
higher-derivative interactions are finite in this approach,
consistency of the dual CFT prevents these couplings of
from becoming very large, at least in simple models, as we
discuss in Sec. V.
So given this perspective of constructing a toy model

with finite couplings, let us reexamine each of the terms in
the general action (2.5). The first two terms are curvature-
squared interactions which do not involve the gauge field.
Hence from the CFT perspective, these terms would only
modify the n-point functions of the stress tensor and so are
not relevant to the charge transport. Again, the third and
fourth terms involve four field strengths and so these would
only modify the four-point correlator of the dual current.
Hence, as noted above, these terms will again be irrelevant
to the charge transport, if we limit ourselves to the case of a
vanishing chemical potential. Considering next the �5

term, we note that it contains two powers of the field
strength and so will modify the charge transport.
However, this term produces higher-derivative equations

1Note that we also treat the four-dimensional Euler density,
RabcdR

abcd � 4RabR
ab þ R2, as trivial since it does not effect

the equations of motion.
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of motion for the gauge field and so, as explained in detail
in [33], the dual CFT will contain nonunitary operators.
Hence we discard this term in the analysis at finite coupling
to avoid this problem. Finally, the last two terms in the
action (2.5) also involve F2 and again modify the charge
transport. However, as we discuss in more detail in
Sec. VII, they only do so in a trivial way by renormalizing
the overall coefficient of the Maxwell term. Therefore we
are again naturally led to consider the �6 interaction alone
in studying the transport properties of dual CFT.

Hence we will study the holographic transport properties
with the following effective action for bulk Maxwell field:

Ivec ¼ 1

g24

Z
d4x

ffiffiffiffiffiffiffi�g
p �

� 1

4
FabF

ab þ �L2CabcdF
abFcd

�
;

(2.6)

where we have formulated the extra four-derivative inter-
action in terms of the Weyl tensor Cabcd. That is, it is
constructed as a particular linear combination of the
�6;7;8 terms in the general action (2.5). This particular

interaction has the advantage that it leaves the charge
transport at zero temperature unchanged since the Weyl
curvature vanishes in the AdS geometry. Further the factor
of L2 was introduced above so that the coupling � is
dimensionless. From this action, we find the generalized
vector equations of motion:

ra½Fab � 4�L2CabcdFcd� ¼ 0: (2.7)

Note that the AdS vacuum and (neutral) planar black-hole
solution (2.2) are still solutions of the modified metric
equations produced by the new action.

In closing this discussion, we must note that the four-
derivative interaction in Eq. (2.6) has also appeared in
previous holographic studies [24,34,35]. In particular,
[24,34] considered the restrictions that must be imposed
on the coupling � in order that the dual CFT is physically
consistent. While [35] focused primarily on a five-
dimensional bulk theory, there is considerable overlap be-
tween the latter and the present paper. In particular, [35]
considered the charge diffusion constant and (zero-
frequency) conductivity, as in Sec. III, and bounds arising
from requiringmicro-causality of the dual CFT, as in Sec. V.

III. DIFFUSION CONSTANT
AND SUSCEPTIBILITY

In this section, we calculate the charge diffusion con-
stant and susceptibility, two quantities which control the
two-point Green’s function of the dual current in the limit
of low frequency and long wavelength [7]. We follow
[30,35] to extend the analysis of [36] to accommodate
our modified Maxwell action (2.6). We begin by writing
a generalized action which is quadratic in the field
strength:

I ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
� 1

8g24
FabX

abcdFcd

�
; (3.1)

where the background tensor Xabcd necessarily has the
following symmetries,

Xabcd ¼ X½ab�½cd� ¼ Xcdab: (3.2)

The standard Maxwell theory would be recovered by
setting

Xab
cd ¼ Iab

cd ¼ �a
c�b

d � �a
d�b

c; (3.3)

where we can think of I as the identity matrix acting in the
space of two-forms (or antisymmetric matrices). That is,
given an arbitrary two-form fab ¼ �fba, then fab ¼
1
2 Iab

cdfcd. With the generalized action in Eq. (3.1), the

theory of interest (2.6) is constructed by setting

Xab
cd ¼ Iab

cd � 8�L2Cab
cd: (3.4)

Extending the discussion of the membrane paradigm in
[36] to this generalized framework is straightforward [30].
One defines the stretched horizon at r ¼ rH (with rH > r0
and rH � r0 � r0) and the natural conserved current to
consider is then

ja ¼ 1

4
nbX

abcdFcdjr¼rH ; (3.5)

where na is an outward-pointing radial unit vector. Then
following the analysis in [36], one arrives at the following
expression for the charge diffusion constant [30]2:

D ¼ � ffiffiffiffiffiffiffi�g
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�XxtxtXxrxr
p

jr¼r0

Z 1

r0

drffiffiffiffiffiffiffi�g
p

Xtrtr : (3.6)

Further applying Ohm’s law on stretched horizon, the
conductivity at zero frequency is given by [35]

�0��ð!¼0;k¼0Þ¼ 1

g24

ffiffiffiffiffiffiffi�g
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�XxtxtXxrxr
p

jr¼r0 : (3.7)

Lastly, the susceptibility is easily determined using the
Einstein relation D ¼ �0=�. Combining this relation
with Eqs. (3.6) and (3.7), an expression for � is easily
read off as [35]

��1 ¼ �g24

Z 1

r0

drffiffiffiffiffiffiffi�g
p

Xtrtr : (3.8)

Of course, if one replaces Xab
cd ¼ Iab

cd as in Eq. (3.3),

then these expressions reduce to the expected results for
Einstein-Maxwell theory, e.g., see [7].

2As noted in [30], there are two conditions required for the
following general formulas to hold. The tensor Xab

cd is
(i) nonsingular on the horizon and (ii) ‘‘diagonal’’ in the sense
discussed in Sec. VI. Of course, in the present case, both of these
requirements are satisfied by Eq. (3.4).
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In the present case, we are interested in X as given in
Eq. (3.4) where the Weyl tensor is evaluated for the planar
AdS black hole (2.2). Hence we find

ffiffiffiffiffiffiffi�g
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�XxtxtXxrxr
p

jr¼r0 ¼ 1þ 4� and

1ffiffiffiffiffiffiffi�g
p

Xtrtr ¼ � L2r

r3 � 8r30�
: (3.9)

Combining these expressions in Eq. (3.6), we find the
diffusion constant to be

D ¼ 1þ 4�

16�T�1=3

� ffiffiffi
3

p
�� 2

ffiffiffi
3

p
arctan

�
1þ �1=3ffiffiffi
3

p
�1=3

�

þ log

�
1� 8�

ð1� 2�1=3Þ3
��

: (3.10)

A plot of this result is given in Fig. 2. If we consider
� � 1, this expression simplifies to

D ’ 3

4�T

�
1þ 6�þ 120

7
�2 þOð�3Þ

�
: (3.11)

A perturbative result for D to linear order in � was pre-
sented in [35] for arbitrary dimensions and our results
above match that for the case of a three-dimensional CFT.

Next using (3.7), we find

�0 ¼ 1

g24
ð1þ 4�Þ: (3.12)

Note that this expression is the exact result for arbitrary �.
The simple �-dependence appearing in the conductivity
contrasts with the complicated formula for the diffusion
constant (3.10). Of course, the diffusion constant still
varies very smoothly with � in the physical regime, as
shown in Fig. 2. We will confirm the above result by
directly evaluating the two-point function of the dual
current in the next section.

Given these results and the Einstein relationD ¼ �0=�,
the susceptibility is easily determined to be

��1 ¼ g24
16�T�1=3

� ffiffiffi
3

p
�� 2

ffiffiffi
3

p
arctan

�
1þ �1=3ffiffiffi
3

p
�1=3

�

þ log

�
1� 8�

ð1� 2�1=3Þ3
��

: (3.13)

Again considering small �, the susceptibility reduces to

� ’ 4�T

3g24

�
1� 2�� 36

7
�2 þOð�3Þ

�
: (3.14)

IV. CONDUCTIVITY

In this section, we calculate the conductivity for the CFT
dual to the bulk action (2.6). We begin by decomposing the
gauge field as

Aaðt; x; y; uÞ ¼
Z d3q

ð2�Þ3 e
iq�xAaðu;qÞ; (4.1)

where q � x ¼ �!tþ qxxþ qyy. For convenience and
without loss of generality, we choose three-momentum
vector to be q� ¼ ð!; q; 0Þ. Further we choose the gauge
in which Auðu;qÞ ¼ 0. Then evaluating modified
Maxwell’s equations (2.7) in the planar black-hole back-
ground (2.4), we find

A0
t þ qfð3� 16u2�f00Þ

!ð3þ 32u2�f00Þ A
0
x ¼ 0 (4.2)

A00
t þ 4u�ð2f00 þ uf000Þ

3þ 4u2�f00
A0
t

� L4

r20

qð3� 2u2�f00Þ
fð3þ 4u2�f00Þ ðqAt þ!AxÞ ¼ 0 (4.3)

A00
x þ f0ð3� 2u2�f00Þ � 2u�fð2f00 þ uf000Þ

fð3� 2u2�f00Þ A0
x

þ L4

r20

!

f2
ðqAt þ!AxÞ ¼ 0 (4.4)

A00
y þ f0ð3� 2u2�f00Þ � 2u�fð2f00 þ uf000Þ

fð3� 2u2�f00Þ A0
y

þ L4

r20

ð3!2 � 3q2f� 2u2�ð!2 þ 2q2fÞf00Þ
f2ð3� 2u2�f00Þ Ay ¼ 0:

(4.5)

Now we can use Eqs. (4.2) and (4.3) to decouple equation
of motion for Atðu;qÞ:

A000
t þ g1ðuÞA00

t þ g2ðuÞA0
t ¼ 0; (4.6)

where

 -1/12
 1/12
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FIG. 2 (color online). The charge diffusion constant is plotted
versus the coupling �. The vertical dashed lines denote the
boundaries of the physical regime, � 2 ½�1=12; 1=12�—see
discussion surrounding Eq. (5.14).
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g1ðuÞ ¼ f0ð9þ 6u2�f00 � 64u4�2f002Þ þ 2u�fð15� 4u2�f00Þð2f00 þ uf000Þ
fð3� 2u2�f00Þð3þ 2u2�f00Þ ;

g2ðuÞ ¼ 1

r20f
2ð3� 2u2�f00Þð3þ 4u2�f00Þ ðL

4!2ð9þ 6u2�f00 � 64u4�2f002Þ

þ fð3� 2u2�f00Þð�3q2L4 þ 2u�ðq2L4uþ 4r20f
0Þf00 þ 4r20u

2�f0f000Þ
þ 8r20�f

2ð3f00 þ 2u2�f002 þ 6uf000 þ u4�f0002ÞÞ: (4.7)

At this point, recall that in the analysis of the Maxwell
theory in [7], the equations of motion for Ayðu;qÞ and

A0
tðu;qÞ, i.e., the � ¼ 0 limit of Eqs. (4.5) and (4.6), were

identical. This was a result of the EM self-duality of this
bulk theory. However, clearly Eqs. (4.5) and (4.6) are no
longer identical with nonvanishing �, indicating that the
new interaction in Eq. (2.6) breaks the EM self-duality in
the present case. We return to examine the EM duality in
detail in Sec. VI.

Next we solve Eq. (4.5) with an infalling boundary con-
dition at the horizon. Near the horizon, we can write
Ayðu;qÞ ¼ ð1� uÞbFðu;qÞ where Fðu;qÞ is regular at

u ¼ 1. Inserting this ansatz in Eq. (4.5), we find that

b ¼ �iL2!=ð3r0Þ. The ingoing boundary condition at the
horizon fixes

b ¼ �i
L2!

3r0
¼ �iw; (4.8)

where we have defined the dimensionless frequency

w � !

4�T
: (4.9)

As we wish to calculate the conductivity with ! � 0 but
q ¼ 0 (recall thatq is spatialmomentum along x-direction),
we simplify the notation by denoting Aaðu;!; q ¼ 0Þ and
Fðu;!; q ¼ 0Þ byAaðuÞ andFðuÞ.Withb given by (4.8), for
q ¼ 0, the equation of motion for FðuÞ reduces to

0 ¼ F00 þ
�
3u2ð1� 4ð1� 2u3Þ�Þ
ð1� u3Þð1þ 4u3�Þ � 2iw

1� u

�
F0

þ iwðð1þ uþ u2Þð1þ 2uþ 2u2ð3þ 4uþ 5u2Þ�Þ � ið2þ uÞð4þ uþ u2Þð1þ 4u3�ÞwÞ
ð1� uÞð1þ uþ u2Þ2ð1þ 4u3�Þ F: (4.10)

To proceed further, we need to recall the relation of the
conductivity to the retarded Green’s function Gyy for the

dual current Jy:

� ¼ �Im

�GyyðqÞ
!

�
: (4.11)

Of course, we wish to calculate Gyy using the AdS/CFT

correspondence, following [37]. Briefly, integrating by
parts in the action (2.6), the bulk contribution vanishes by
the equations of motion (2.7) and so the result reduces to a
surface term. At the asymptotic boundary, one has the
following contribution for Ay:

Iyy ¼ � 1

2g24

Z
d3x

ffiffiffiffiffiffiffi�g
p

guugyyð1� 8�L2Cuy
uyÞ

	 Ayðu;xÞ@uAyðu;xÞju!0

¼ � 2�T

3g24

Z
d3xAyðu;xÞ@uAyðu;xÞju!0: (4.12)

The simple expression in the second line results from
explicitly evaluating the expression with the black-hole
metric (2.4) for which

Cuy
uy ¼ � u3

2L2
: (4.13)

The Fourier transform of Ay is required to compare the

above expression with the standard AdS/CFT result

Iyy ¼
Z d3q

ð2�Þ3
1

2
Ayð�qÞGyyðqÞAyðqÞju!0: (4.14)

Hence we can arrive at the usual result, i.e., the coupling �
makes no explicit appearance here,

G yyðqÞ ¼ � 4�T

3g24

Ayðu;�qÞ@uAyðu;qÞ
Ayðu;�qÞAyðu;qÞ

��������u!0
: (4.15)

Focusing our attention on the case q� ¼ ð!; 0; 0Þ and
adopting the notation introduced above Eq. (4.10), the
retarded Green’s function becomes

G yyð!; q ¼ 0Þ ¼ � 4�T

3g24

@uAyðu;!Þ
Ayðu;!Þ

��������u!0
: (4.16)

Then Eq. (4.11) yields the conductivity at q ¼ 0 as

� ¼ 1

3g24
Im

�
@uAy

wAy

�
u!0

: (4.17)

Given the above expression, it is straightforward to
calculate conductivity for small! analytically and confirm
the result (3.12) for �0 ¼ �ð! ¼ 0; q ¼ 0Þ derived in the
previous section using the membrane paradigm. First, we
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make a Taylor expansion of FðuÞ in w and substitute the
ansatz FðuÞ ¼ F1ðuÞ þwF2ðuÞ into (4.10). Then, we find
that F1 and F2 should satisfy the following

F00
1 �

3u2ð1� 4ð1� 2u3Þ�Þ
ð1� u3Þð1þ 4u3�Þ F0

1 ¼ 0; (4.18)

F00
2 �

3u2ð1� 4ð1� 2u3Þ�Þ
ð1� u3Þð1þ 4u3�Þ F0

2 þ
2i

1� u
F0
1

þ ið1þ 2uþ 4u2�ð3þ 4uþ 5u2ÞÞ
ð1� u3Þð1þ 4u3�Þ F1 ¼ 0: (4.19)

After solving Eq. (4.18) for F1, we can fix one of the
integration constants demanding that F1 is regular at the
horizon. This yields F1ðuÞ ¼ C, where C is an arbitrary
constant. Given F1, we solve Eq. (4.19) for F2. In this case,
we fix the two integration constants by imposing the fol-
lowing two conditions: First, F2 is regular at the horizon.
Second, we normalize FðuÞ such that its value at the
horizon is independent ofw, i.e., F2ðu ¼ 1Þ ¼ 0. The final
result is given by

F2ðuÞ ¼ �iC

�
�ffiffiffi
3

p � ffiffiffi
3

p
arctan

�
1þ 2uffiffiffi

3
p

�
� 1

2
log

�
1þ uþ u2

3

�

þ 2
ffiffiffi
3

p
21=3�2=3

�
arctan

�
1� 222=3u�1=3ffiffiffi

3
p

�
� arctan

�
1� 222=3�1=3ffiffiffi

3
p

��

þ 21=3�2=3 log

�ð1þ 22=3�1=3Þ3
1þ 4�

�
� 21=3�2=3 log

�ð1þ u22=3�1=3Þ3
1þ 4u3�

��
: (4.20)

Now we can simply use AyðuÞ ’ ð1� uÞbðF1ðuÞ þ
wF2ðuÞÞ in Eq. (4.17), take the limit w ! 0 and find

�0 ¼ 1

g24
ð1þ 4�Þ; (4.21)

which agrees with our previous result (3.7).
To study frequency dependant conductivity, we must

solve Eq. (4.10) numerically. Our numerical integrations
run outward from the horizon and so we need to fix the
initial conditions at u ¼ 1. To determine the latter we solve
Eq. (4.10) for u � 1, finding

FðuÞ ¼ 1� ð1� uÞ iwðiþ 2wþ 8�ð2iþwÞÞ
ð1þ 4�ÞðiþwÞ : (4.22)

Numerical integration is used to determine FðuÞ out to the
boundary at u ¼ 0 for fixed values of w (and �) and then
we use the complete solution AyðuÞ ¼ ð1� uÞbFðuÞ and
Eq. (4.17) to calculate conductivity �ðwÞ. In Fig. 1, we
show our results for various values of coupling constant �.

V. BOUNDS ON THE COUPLING

In this section, we find the constraints that are imposed
on the coupling � by demanding that the dual CFT respects
causality, following the analysis described in [29,31,35].
We also examine if there are any unstable modes of the
vector field, as discussed in [30,38], which would result in
our calculations of the charge transport properties being
unreliable. From a dual perspective, such unstable modes
indicate that the uniform neutral plasma is an unstable
configuration in the dual CFT.

To examine causality, the first step is to reexpress the
equations of motion of the two independent vector modes,

i.e., Eqs. (4.5) and (4.6), in the form of the Schrödinger
equation. We begin by considering Eq. (4.6). Recall that we
are working in the gauge where Auðu;qÞ ¼ 0 and we have
chosen q� ¼ ð!; q; 0Þ. Now if we make a coordinate trans-
formation to zðuÞ such that

z0 ¼ 3

1� u3
; (5.1)

and write A0
tðu;qÞ ¼ G1ðuÞc 1ðu;qÞ where

G0
1ðuÞ �

6u2�ð5þ 8u3�Þ
1� 4u3�ð1� 64u3�ÞG1ðuÞ ¼ 0; (5.2)

then Eq. (4.6) takes the form

� @2zc 1ðzÞ þ VðzÞc 1ðzÞ ¼ w2c ðzÞ: (5.3)

In this Schrödinger form, the effective potential VðzÞ can
be expressed in terms of u as

VðuÞ ¼ q2V0ðuÞ þ V1ðuÞ; (5.4)

where

q � q

4�T
(5.5)

V0ðuÞ ¼ ð1� u3Þð1þ 4u3�Þ
ð1� 8u3�Þ (5.6)

V1ðuÞ¼�2uð1�u3Þ�ð2�2u6��5u3ð1þ2�ÞÞ
3ð1þ4u3�Þ2 : (5.7)

It is easiest to consider the limit q ! 1, in which case
one can solve for c 1 in a WKB approximation [31]. In this
limit, V0ðuÞ will dominate the potential and we want to
examine how its properties change as � is varied,
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e.g., following [29]. In Fig. 3, we have plotted potential
V0ðuÞ for various values of �. We observe that if � is too
large, the potential develops a maximum with V0;max > 1 at
some point between u ¼ 0 and u ¼ 1. In that case, there
will be ‘‘superluminal’’ modes with w=q ¼ !=q > 1 in-
dicating that causality is violated in the dual CFT [29,31].
One can easily verify that this new maximum appears for
� > 1=12 by examining the behavior of V0ðuÞ near the
boundary, i.e., near u ¼ 0, where Eq. (5.6) yields

V0ðuÞ ’ 1� ð1� 12�Þu3 þ � � � : (5.8)

Next we turn to the transverse vector mode satisfying
Eq. (4.5). As above, we make a change of coordinate to
zðuÞ satisfying Eq. (5.1) and we write AyðuÞ ¼ G2ðuÞc 2ðuÞ
where

G0
2ðuÞ þ

6u2�

1þ 4u3�
G2ðuÞ ¼ 0: (5.9)

With these choices, Eq. (4.5) reduces to the desired
Schrödinger form

� @2zc 2ðzÞ þWðzÞc 2ðzÞ ¼ w2c 2ðzÞ; (5.10)

where

WðuÞ ¼ q2W0ðuÞ þW1ðuÞ eqn31 with (5.11)

W0ðuÞ ¼ ð1� u3Þð1� 8u3�Þ
ð1þ 4u3�Þ ; (5.12)

W1ðuÞ¼2uð1�u3Þ�ð2�5u3þ2�u3ð1�7u3ÞÞ
3ð1þ4u3�Þ2 : (5.13)

We again consider the WKB limit whereW0 dominates the
potential. The shape of this potential is also shown in Fig. 3
for various values of �. Examining the potential (5.12) as
above, we find that a maximum develops for � <�1=12,

indicating that causality is violated in the dual CFT in this
regime.
Combining the results from both modes, we find that the

dual CFT is only consistent (i.e., respects causality) if

� 1

12

 � 
 1

12
: (5.14)

We also note that these bounds coming from the violation
of micro-causality precisely match the bounds derived for
the dual parameter in the CFT derived in [24,34]. There,
various thought experiments were proposed to constrain
CFT’s in four dimensions. However, their discussion is
readily adapted to the three dimensions, as we consider
here. The relevant experiment consists of first producing a
disturbance, which is localized and injects a fixed energy,
with an insertion of the current "iJi, where "

i is a constant
(spatial) polarization tensor. Then one measures the energy
flux escaping to null infinity in the direction indicated by a
unit vector n:

E ðnÞ ¼ lim
r!þ1r

Z þ1

�1
dtTt

iðt; rnÞni: (5.15)

The final result takes the form

hEðnÞi ¼ h0jð"� � jyÞEðnÞð" � JÞj0i
h0jð"� � JyÞð" � jÞj0i

¼ E

2�

�
1þ a2

�j" � nj2
j"j2 � 1

2

��

¼ E

2�

�
1þ a2

�
cos2	� 1

2

��
; (5.16)

where E is the total energy and 	 is the angle between the
direction n and the polarization ". The structure of this
expression is completely dictated by the symmetry of the
construction and the (constant) coefficient a2 is a parame-
ter which characterizes the underlying CFT. Given
Eq. (5.16), it is clear that a2 is related to the parameters

1 12

0

1 4

5 12

1 9

0.2 0.4 0.6 0.8 1.0
u0.0

0.2

0.4

0.6

0.8

1.0

1.2

V0

1 8

1 12

0

1 8

1 4

0.2 0.4 0.6 0.8 1.0
u0.0

0.2

0.4

0.6

0.8

1.0

1.2

W0

FIG. 3 (color online). Left: V0ðuÞ for longitudinal At mode for various values of �. Right: W0ðuÞ for transverse Ay mode for various
values of �. Consistency conditions discussed in the text for the longitudinal mode imply � 2 ½�1=4; 1=12� in V0. Similarly for
transverse mode, � 2 ½�1=12; 1=8� in W0.
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appearing in the general three-point correlator
hTabðxÞJcðyÞJdðzÞi—see discussion in Sec. VII. Now, the
interesting observation of [24] was that if the coefficient a2
becomes too large, the energy flux measured in various
directions will become negative. Hence demanding that the
energy flux should be positive in all directions for a con-
sistent CFT leads to the constraints

� 2 
 a2 
 2: (5.17)

Of course, to relate this result to that in Eq. (5.14), we must
find the relation between a2 for our holographic CFT and
the bulk coupling �. The simplest approach is to use the
AdS/CFT correspondence to examine the bulk dual of the
thought experiment presented above. As noted above, in
calculating the flux expectation value in Eq. (5.16), we are
essentially determining a specific component of the three-
point function of the stress tensor with two currents. Hence
in our holographic description, we must introduce an ap-
propriate metric fluctuation h�
 and two gauge field per-

turbations A� in the AdS4 bulk, which couple to the

boundary insertions of Tab and Ja. We then evaluate the
on-shell contribution for these three insertions with
the action (2.6). We do not present the details here, as the
analogous calculations for d ¼ 4 are presented in
Appendix D of [24]—the interested reader may also find
the discussion in the first reference in [25] useful. In the
end, the holographic calculations yield a very simple final
result

a2 ¼ �24� (5.18)

and hence we find the bounds in Eqs. (5.14) and (5.17) are
equivalent. Next we turn to possible instabilities in the
neutral plasma. If we examine the potential V0 in more
detail, we find that another interesting feature develops for
� <�1=4. That is, the potential develops a minimum at
some radius close to the horizon where V0ðuÞ< 0. The
appearance of this potential well can be verified analyti-
cally by expanding V0ðuÞ near u ¼ 1,

V0ðuÞ ’ 3
1þ 4�

1� 8�
ð1� uÞ þ � � � : (5.19)

While V0 always vanishes at u ¼ 1, we see that for
� <�1=4, V0 < 0 immediately in front of the horizon
indicating the presence of the negative potential well there.
In the WKB limit, this potential well leads to bound states
with a negative (effective) energy, which correspond to
unstable quasinormal modes in the bulk theory [38].
While these modes do not signal a fundamental pathology
with the dual CFT, they do indicate that the uniform neutral
plasma is unstable in this regime. Hence our calculation of
the conductivity would be unreliable here. Of course, our
previous constraints (5.14) have already ruled out
� <�1=4 as being physically interesting and so we need
not worry about these instabilities.

On the other hand, one may worry that additional insta-
bilities will appear outside of the WKB regime, considered
above. In particular for small momentum, the effective
potential will also receive an important contribution from
V1ðuÞ. We find that for � 2 ð�1=4; 0Þ, V1ðuÞ also develops
a negative minimum close to the horizon and so there
might be some unstable modes in the plasma in this regime
as well. We have plotted the potential V1ðuÞ for various
values of the coupling constant � in Fig. 4. While the WKB
approximation may be less reliable in this regime, the
analysis in [38] suggests that it is sufficient to determine
the appearance of unstable modes. According to WKB
approximation, a zero energy bound state can appear in
this potential well for

�
n� 1

2

�
� ’

Z 1

z0

dz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�V1ðzÞ

q

¼
Z u¼1

u¼u0

3du

ð1� u3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�V1ðuÞ

q
� I; (5.20)

where n is a positive integer and the integration is over the
values of u for which the potential is negative. A plot of
~n � I=�þ 1=2 is given in Fig. 4. We see that ~n reaches a
maximum value of approximately 0.86, implying that the
potential well is never able to support a negative energy
bound state. Hence we conclude that there are no unstable
modes in this low momentum regime.
While we have discussed both small and large momenta

limit of our effective potential VðuÞ, one may still imagine
that instabilities can still arise at some finite momenta.
However, such a possibility can be eliminated by consid-
ering the structure of our complete potential VðuÞ. That is,
for any finite momenta and for � 2 ½�1=4; 0�, the negative
dip in potential VðuÞ is smaller than the dip in V1ðuÞ
because of the positive contribution coming from V0ðuÞ.
Hence there are no instabilities coming from the longitu-
dinal vector mode in the regime (5.14) of physical interest.
Of course, one must also consider possible instabilities

in the transverse vector mode. In this case, examining the
potential W0, we find that a negative minimum again
develops for � > 1=8. So again instabilities appear in the
large momentum limit but only for values of the coupling
outside of the physical regime (5.14). As above, one can
also consider the low and finite momentum regimes, how-
ever, again one finds that there are no additional instabil-
ities in the physical regime. Hence although both the
transverse and longitudinal modes of the vector exhibit
instabilities, these only appear in a regime where our
previous constraints already indicate that the CFT is
pathological.
Examining Eq. (5.19), one sees that the potential V0 is

also negative in front of the horizon for � > 1=8 (as well as
for � <�1=4, as discussed above). However, this behavior
is not indicative of a negative potential well in this case.
Rather a closer examination of the full potential (5.6)

shows that a simple pole appears at u ¼ 1=ð2�1=3Þ, which
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lies in the physical interval 0 
 u 
 1 for � > 1=8. The
potential W0 exhibits a similar behavior for � <�1=4.
The analysis and physical interpretation of the modes in
this case are more elaborate along the lines of that given in
[25]. However, we do not consider these issues further here
since our previous constraints (5.14) already indicate that
� > 1=8 and � <�1=4 are outside of the physically viable
regime.

VI. EM SELF-DUALITY LOST

In this section, we examine in more detail the loss of
electromagnetic (EM) self-duality for the U(1) gauge the-
ory defined by the bulk action (2.6). Recall from [7] that
this EM self-duality was the key property of the standard
four-dimensional Maxwell theory which lead to the simple
relation:

KTð!; qÞKLð!; qÞ ¼ constant; (6.1)

where KT and KL are the scalar functions determining the
transverse and longitudinal components of the retarded
current-current correlator—see the Appendix for further
discussion. As a result, the conductivity (at zero momen-
tum) was a fixed constant for all values of !=T. In
examining the explicit equations of motion, (4.5) and
(4.6), we already noted that self-duality is lost in the new
theory. However, in the context of any Uð1Þ gauge theory,
one can think of EM duality as simply a change of varia-
bles in the corresponding path integral. Even if our new
gauge theory (2.6) is not self-dual, we can still implement
this change of variables and construct the EM dual theory,
as we will demonstrate below.

We begin by introducing a (vector) Lagrange multiplier
Ba in the generalized action (3.1) as follows

I ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
� 1

8g24
FabX

abcdFcd þ 1

2
"abcdBa@bFcd

�
:

(6.2)

Here "abcd is totally antisymmetric tensor, with "0123 ¼ffiffiffiffiffiffiffi�g
p

. The fundamental fields in the path integral for this

action are the two-form Fab and the one-form Ba. Now the
EM duality comes from simply treating the integration
over these fields in two different orders.
If we evaluate the path integral by first integrating over

the Lagrange multiplier Ba, the latter integration enforces
the Bianchi identity on the two-form Fab, i.e.,

"abcd@bFcd ¼ 0: (6.3)

If Fab is to satisfy this constraint,3 then on a topologically
trivial background, it must take the form Fab ¼ @aAb �
@bAa. Hence the remaining path integral reduces to the
‘‘standard’’ gauge theory where the fundamental field is
the Maxwell potential Aa with generalized action given in
Eq. (3.1).
Alternatively, one can perform the path integral over the

two-formFab first. In this case, we first integrate by parts in
the second term in the action (6.2)

I ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
� 1

8g24
FabX

abcdFcd þ 1

4
"abcdFabGcd

�
;

(6.4)

where we have defined the new field strength Gab �
@aBb � @bBa. We can now shift the original two-form
field to

F̂ ab ¼ Fab � g24
4
ðX�1Þabcd"cdefGef (6.5)

where X�1 is defined by

1

2
ðX�1ÞabcdXcd

ef � Iab
ef: (6.6)
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FIG. 4 (color online). Left: V1ðuÞ for various values of �. Right: ~n ¼ I=�þ 1=2 plotted versus �—see Eq. (5.20). Here potential
V1ðuÞ is plotted for various values of �. We see that a negative dip appears in V1ðuÞ close to the horizon for � 2 ð�1=4; 0Þ. We have
also plotted ~n in this range of � and the plot clearly indicates that it always remains less than one.

3Note that we are justified in using ordinary (rather than
covariant) derivatives both here and in the action (6.2) because
of the antisymmetry of the indices.
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Recall the definition of Iab
cd given in Eq. (3.3). With this

shift, one has a trivial Gaussian integral over the field F̂ab

after which one is left with the path integral over the one-
form Ba with the action

I ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
� 1

8ĝ24
X̂abcdGabGcd

�
; (6.7)

where ĝ24 � 1=g24 and

X̂ab
cd ¼ � 1

4
"ab

efðX�1Þefgh"ghcd

¼ ðX�1Þabcd þ
1

2
ðX�1ÞefefIabcd

� ½ðX�1Þaece�b
d � ðX�1Þaede�b

c

� ðX�1Þbece�a
d þ ðX�1Þbede�a

c�: (6.8)

In the second equality above, the two "-tensors have been
eliminated with the four-dimensional identity of the form
"abcd"

efgh ¼ �ð�a
e�b

f�c
g�d

h þ � � �Þ—note that the

overall minus sign appears because we are working in
Minkowski signature. Hence Ba now plays the role of the
gauge potential in the EM dual theory with the action (6.7).

The relation between the gauge fields in the two dual
EM theories is implicit in the equations of motion for Fab

or F̂ab. From Eq. (6.5), we see that setting F̂ab ¼ 0 yields

Fab ¼ g24
4
ðX�1Þabcd"cdefGef: (6.9)

Recall that in the usual Maxwell theory, X takes the simple
form given in Eq. (3.3). In this case, X�1 ¼ X and one can

easily show that Eq. (6.8) also yields X̂ab
cd ¼ Iab

cd. Hence

for the Maxwell theory, the form of the two actions, (3.1)
and (6.7), as well as the corresponding equations of motion
for Aa and Ba, are identical. This is then a demonstration
that the Maxwell theory is self-dual. Further, the duality
relation between the two field strengths in Eq. (6.9) corre-
sponds to the usual Hodge duality, as expected for this
case.

Of course, in general, wewill find that X̂ � X and so this
self-duality property is lost. That is, the form of the action
and the equations of motion in the original theory and its
dual now have different forms, i.e.,

rbðXabcdFcdÞ ¼ 0 and rbðX̂abcdGcdÞ ¼ 0: (6.10)

For the action of interest (2.6), X is given in Eq. (3.4) and at
least in a regime where we treat � as small, we can
write

ðX�1Þabcd ¼ Iab
cd þ 8�L2Cab

cd þOð�2Þ: (6.11)

Further because of the traceless property of the Weyl
tensor, one finds

X̂ab
cd ¼ ðX�1Þabcd þOð�2Þ: (6.12)

With the change in sign of the order � contribution be-
tween Eqs. (3.4) and (6.11), it is clear that our gauge theory
is no longer self-dual.
Actually given the planar black-hole background (2.4), it

is straightforward to calculate X�1 exactly. First, we define
a six-dimensional space of (antisymmetric) index pairs
with, i.e., A, B 2 ftx; ty; tu; xy; xu; yug—note both the or-
dering of both the indices and the index pairs presented
here. Then X given in Eq. (3.4) becomes a diagonal six-
by-six matrix

XA
B ¼ diagð1þ �; 1þ �; 1� 2�; 1� 2�; 1þ �; 1þ �Þ

(6.13)

where � ¼ 4�u3. Since X is a diagonal matrix, X�1 is also
a diagonal matrix whose entries are simply the inverses of
those given in Eq. (6.13). Note that � takes its maximum
value at the horizon u ¼ 1, i.e., �max ¼ 4�. Hence we
must constrain� 1

4 < �< 1
8 in order for the inverse to exist

everywhere in the region outside of the horizon. Of course,
it is not a coincidence that the effective Schrödinger equa-
tion in Sec. V became problematic (i.e., the effective
potentials contained a pole) precisely outside of the same
interval. In any event, the physical regime (5.14) for �
determined in Sec. V lies well within this range.
Using this notation and the background metric (2.4),

"ab
cd becomes the following ‘‘antidiagonal’’ six-by-six

matrix

"BA ¼

r0f
L2

� r0f
L2

L2

r0

� r0
L2

L2

r0f

� L2

r0f

2
6666666666666664

3
7777777777777775

: (6.14)

Combining these expressions, we can easily evaluate the
duality transformation (6.9), which is expressed using the
new notation as

FA ¼ g24ðX�1ÞAB"BCGC: (6.15)

The final result is

Ftx ¼ g24
1þ�

r0f

L2
Gyu; Fty ¼� g24

1þ�

r0f

L2
Gxu;

Ftu ¼ g24
1� 2�

L2

r0
Gxy; Fxy ¼� g24

1� 2�

r0
L2

Gtu;

Fxu ¼ g24
1þ�

L2

r0f
Gty; Fyu ¼� g24

1þ�

L2

r0f
Gtx:

(6.16)

This duality transformation gives us a precise analytic
relation between the original gauge field Aa and that, Ba,
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in the EM dual theory. Of course, it would be less straight-
forward to express these duality relations in a covariant
construction using the Weyl curvature tensor.

As discussed in [7], from the perspective of the bound-
ary field theory, we can describe the CFT in terms of the
original conserved current Ja (dual to the bulk vector Aa)

or a new current Ĵa (dual to Ba). In the case of the Maxwell
theory, the EM self-duality means that both currents have
identical correlators. In the present case, where EM self-
duality is lost, the correlators still have a simple relation
which is summarized by

KTð!; qÞK̂Lð!; qÞ ¼ 1; K̂Tð!; qÞKLð!; qÞ ¼ 1:

(6.17)

The detailed derivation for these relations can be found in
the Appendix. The self-dual version of Eq. (6.17), with

K ¼ K̂, appeared in [7]. However, the conventions for the
EM duality transformation were different there, i.e., they
chose ĝ4 ¼ g4. This choice changes the normalization of
the dual currents and so changes the constant on the right-
hand side of Eq. (6.17) to ðg4Þ�4. In any event, these
relations imply, the longitudinal correlator in one theory
is traded for the transverse correlator in the dual theory, as
reflected in Eq. (6.16). Notably, Eq. (6.17) has precisely the
same form as that obtained from general considerations of
particle-vortex duality, but without self-duality, in the con-
densed matter context, as we review in the following
subsection.

A. Particle-vortex duality

Above, we discussed EM duality as a change of variables
which allows us to formulate the bulk theory in terms of two
different gauge potentials. This reformulation of the bulk
theory implies that the boundary CFT can be developed in
terms of two ‘‘dual’’ sets of currents, whose correlators are
simply related using Eq. (6.17). As noted in [7], the latter is
reminiscent of the structure of the correlators in systems
exhibiting particle-vortex duality. The discussion there
focused on self-dual examples, however, the latter is an
inessential feature to produce Eq. (6.17), as we illustrate
with the following simple example—see also Appendix B
of [7].

Consider the field theory of a complex scalar z coupled
to a U(1) gauge field

S ¼
Z

d2xdt

�
jð@� � iA�Þzj2 þ sjzj2 þ ujzj4

þ 1

2e2
ð��
�@
A�Þ2

�
: (6.18)

We now look at the structure of the conserved U(1) cur-
rents of S, and their correlators. For simplicity, we will
restrict our discussion to T ¼ 0 to make the main point in
the simplest context. There is a natural generalization to

T > 0, which is needed to obtain the full structure of the
relationship in Eq. (6.17), and which was discussed in [7].
The theory S has the obvious conserved U(1) current

J� ¼ 1

i
z�½ð@� � iA�Þz� � 1

i
½ð@� � iA�Þz��z: (6.19)

Because of current conservation, we can write the two-
point correlator of this current in the form (reminder, we
are at T ¼ 0)

hJ�ðpÞJ
ð�pÞi ¼
�
��
 �

p�p


p2

� ffiffiffiffiffiffi
p2

q
Kðp2Þ: (6.20)

Here, we note that this correlator has been defined to
be irreducible with respect to the propagator of the
photon, A�.

The theory S has a second conserved U(1) current; this
is the ‘‘topological’’ current

Ĵ � ¼ 1

2�
"�


�@
A�: (6.21)

We can interpret Ĵ� as the current of dual set of particles

which are the Abrikosov-Nielsen-Olesen vortices of the
Abelian-Higgs model in Eq. (6.18). Each such vortex
carries total A� flux of 2�, and hence the prefactor above.

Indeed, there is a dual formulation of the theory in
Eq. (6.18) in which the vortices become the fundamental
complex scalar field ẑ:

Ŝ ¼
Z

d2xdt½j@�ẑj2 þ ŝjẑj2 þ ûjẑj4�: (6.22)

This dual theory has no gauge field because the vortices of
S only have short-range interactions. The particle number
current of this dual theory is the same as that in Eq. (6.21)

Ĵ � ¼ 1

i
ẑ�@�ẑ� 1

i
@�ẑ

�ẑ: (6.23)

Now, returning to the perspective of the original theory S
in Eq. (6.18) and the U(1) current in Eq. (6.21), we can

write the two-point correlator of Ĵ� in the general form

hĴ�ðpÞĴ
ð�pÞi ¼ 1

4�2

�
��
 �

p�p


p2

�
p2

p2=e2 � �ðp2Þ
(6.24)

where �ðp2Þ is the photon self-energy.
The photon A� couples linearly to the current J�, and so

the photon self-energy is clearly the irreducible J� corre-

lator, and so

�ðp2Þ ¼
ffiffiffiffiffiffi
p2

q
Kðp2Þ: (6.25)

Also as p2 ! 0 in IR, we have �ðp2Þ � p2=e2—recall
that here we are assuming the space-time dimension d ¼ 3.
So we have
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hĴ�ðpÞĴ
ð�pÞi ’ �
�
��
 �

p�p


p2

� ffiffiffiffiffiffi
p2

q
K̂ðp2Þ (6.26)

where from Eqs. (6.24) and (6.25)

Kðp2ÞK̂ðp2Þ ¼ 1

4�2
: (6.27)

This result is clearly the T ¼ 0 analog of Eq. (6.17). It is
easily generalized to T > 0, after separation into transverse
and longitudinal components, but we refrain from present-
ing those details here.

VII. DISCUSSION

Our main results for the frequency dependence of the
conductivity without self-duality were given in Fig. 1, and
we presented a physical interpretation in Sec. I. For � > 0,
the results had a qualitative similarity to that expected from
a Boltzmann transport theory of interacting particles, while
for � < 0 the results resembled the Boltzmann transport of
vortices.

We will now discuss other aspects of these results. We
also see from Fig. 1 that the large frequency limit is
unaffected by the new coupling, i.e., �ð! ¼ 1Þ ¼ 1=g24.
We can understand this result from the fact that the Weyl
curvature vanishes in the asymptotic region of the black-
hole region and so the new interaction in Eq. (2.6) has no
effect there.

Further, we have

�ð! ¼ 0Þ
�ð! ¼ 1Þ ¼ 1þ 4� (7.1)

and so this ratio varies between 4=3 and 2=3 in the allowed
physical regime given in Eq. (5.14). Thus the allowed range
of variation in the conductivity by non-self-duality is
smaller than 33% and can have either sign, in our model.
This should be contrasted from the large variation obtained
from the weak-coupling Boltzmann analyses. In the
� ¼ 4� d expansion (where d is the space-time dimen-
sion), it was found that generically [6]

�ð! ¼ 0Þ
�ð! ¼ 1Þ �

1

�2
: (7.2)

Similarly, in the large N expansion (where N is the number
of components of a vector (and not matrix) field), we
have [8]

�ð! ¼ 0Þ
�ð! ¼ 1Þ � N: (7.3)

In both cases, the ratio becomes large in the regime of
applicability of the analysis. Thus the AdS/CFT analysis
gives a useful result for this ratio in the complementary
limit of very strong interactions.

Also note that the conductivity in Fig. 1 does not vary
monotonically, rather it seems there is an extremum at
! ’ 2�T. For � > 0, this oscillation is as anticipated

from Drude-like considerations of particle transport in
Ref. [6], and for � < 0 we argued in Sec. I that such an
oscillation is obtained from Drude-like vortex transport.
Recall that in the AdS/CFT correspondence, particle-
vortex duality in the boundary theory is realized as EM
duality in the bulk theory. Hence we can make the pre-
vious point explicit for our holographic model using the
formalism developed in Section VI. That is, for any given
value of �, we can explicitly construct the EM dual
theory and evaluate the conductivity. In Fig. 5, we have
plotted the resulting conductivities for the original bulk
theory and the EM dual theory for � ¼ �1=12. As ex-
pected, for � ¼ �1=12, the conductivity of the dual
theory exhibits a Drude-like peak at small !. For � ¼
1=12, a similar peak appears for the original theory while
the EM dual theory exhibits a dip in the conductivity at
small !. For either value of �, the figure also illustrates
that the conductivities of the two dual theories are not
precise inverses of one another, except for ! ! 0, 1.
This occurs because the function KTð!; q ¼ 0Þ is only
precisely real in the latter limits.
Oscillations in the conductivity similar to those in Fig. 1

were observed in [39]. The latter studied the transport
properties of currents on a three-dimensional defect im-
mersed in the thermal path of a four-dimensional super-
conformal gauge theory. The holographic bulk theory
consisted of probe D-branes embedded in AdS5 	 S5 and
the oscillations were an effect of stringy corrections to the
usual D-brane action. Implicitly, the four-derivative inter-
action considered there would have been a linear combi-
nation of the �5;6;7 terms in Eq. (2.5). In this previous

setting, the calculations were perturbative and the oscilla-
tory contribution to the conductivity was suppressed by a

factor of ��1=2 relative to the constant term produced by

1

12

1

12

1

12

1

12

0.0 0.5 1.0 1.5 2.0 4 T
0.0

0.5

1.0

1.5

FIG. 5 (color online). The (dimensionless) conductivity
~� ¼ g24� is plotted versus the (dimensionless) frequency

w ¼ !=ð4�TÞ for various values of �. The solid curves corre-
spond to the same conductivities displayed previously in
Fig. 1—red for � ¼ 1=12 and blue for � ¼ �1=12. The dashed
curves show the conductivity calculated from the EM dual
theory for the same values of �.
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the Maxwell action on the brane—as usual, � denotes the ‘t
Hooft coupling of the four-dimensional gauge theory.

Section II provided some motivation for introducing the
new four-derivative interaction in Eq. (2.6). However, there
was a certain liberty in choosing the precise form of the
curvature in this interaction. From a certain perspective,
the following vector action may be preferred:

I0vec ¼ 1

~g24

Z
d4x

ffiffiffiffiffiffiffi�g
p �

� 1

4
FabF

ab þ �L2½RabcdF
abFcd

� 4RabF
acFb

c þ RFabFab�
�
: (7.4)

The advantage of the higher-derivative term above is that it
produces second-order equations of motion for both the
gauge field and metric in any general background. We can
think of this term arising from Kaluza-Klein reduction of
Gauss-Bonnet gravity in five-dimensional space-time [40].
Now the generalized Maxwell’s equations are

ra½Fab � 4�L2ðRab
cdF

cd � 2RacFc
b

þ 2RbcFc
a þ RFabÞ� ¼ 0: (7.5)

Before considering the charge transport for this theory, we
note that AdS vacuum and the neutral black hole (2.2)
remain unmodified with this choice of the four-derivative
interaction. In particular then, for the black-hole back-
ground, we still satisfy the vacuum Einstein equations,
i.e.,Rab ¼ �3=L2gab. Further, the Reimann curvature
tensor Rabcd is related to the Weyl tensor Cabcd by

Rabcd¼Cabcdþga½cRd�b�gb½cRd�a�1

3
Rga½cgd�b: (7.6)

By substituting these relations into Eq. (7.4), we find that
the action becomes

I0vec ¼ 1þ 8�

~g24

Z
d4x

ffiffiffiffiffiffiffi�g
p �

� 1

4
FabF

ab

þ �

1þ 8�
L2CabcdF

abFcd

�
: (7.7)

Hence, this expression for action is identical to Eq. (2.6) if
we identify the couplings:

g24 ¼
~g24

1þ 8�
and � ¼ �

1þ 8�
: (7.8)

Hence in the neutral plasma, all of the charge transport
properties of the new theory are identical to those found in
the main text, as long as we make this identification of the
couplings in the bulk gauge theory. For example, we have
explicitly applied the analysis of Sec. V to the new action
(7.4) and found this produces the constraints �1=20 

� 
 1=4. One can easily verify that this range precisely
matches that in Eq. (5.14) for � using the identification of
the gauge theory couplings in Eq. (7.8).

It would be interesting to examine charged black
holes in this new theory (7.4). Beyond analyzing the
effects of adding a chemical potential in the boundary
CFT, it would be interesting to examine the so-called
‘‘entropy problem’’ in this theory. That is, at zero
temperature, charged black holes still have a finite
horizon area for the Einstein-Maxwell theory in the
bulk and hence the dual CFT has a large entropy
even at T ¼ 0 but nonvanishing chemical potential. It
would be interesting to determine how this feature
found in simple holographic CFT’s is affected by the
introduction of the new higher-derivative bulk interac-
tion in Eqs. (2.6) and (7.4). Such investigations would
require numerical work that would be greatly facilitated
by having second-order equations, as produced by the
above action (7.4).
As discussed in the Introduction, we are following a

program of expanding the universality class of the holo-
graphic CFT by introducing new higher-derivative inter-
actions to the bulk action. The simplest way to characterize
the effect of the new interactions is to examine the changes
which are produced in the vacuum n-point functions in the
CFT. As alluded to above, the Weyl curvature vanishes in
AdS space and so we may infer that in the vacuum of the
dual CFT (with vanishing temperature and charge density),
there are no changes to any of two-point functions,
i.e.,hJaðxÞJbðyÞi0 and hTabðxÞTcdðyÞi0, where the subscript
0 indicates the two-point functions are evaluated in the
vacuum or at T ¼ 0. That is, the two-point functions are
independent of � in the vacuum. In particular then, the
charge transport properties of the holographic CFTmust be
independent of � at T ¼ 0. On the other hand, recall the
simple � dependence which appears in Eq. (3.12) for the
conductivity at ! ¼ 0. Clearly, this means that the limits,
T ! 0 and ! ! 0, do not commute, as was also empha-
sized in Ref. [6].
As described in [24,34], the key effect of the new bulk

interaction (2.6) is to modify the three-point correlator
hTabðxÞJcðyÞJdðzÞi0. One can show that in any CFT, con-
formal symmetry will completely fix this three-point
function between the stress tensor and two conserved
currents up to two constant parameters [26]. One of these
parameters vanishes in the holographic dual of an Einstein-
Maxwell theory. However, this extra parameter is nonvan-
ishing for the CFT dual for our extended theory with
� � 0. In particular, as discussed in Sec. V, the parameter
a2 in Eq. (5.16) is only nonvanishing in the boundary CFT
when � � 0. Of course in a thermal bath, the expectation
value of the stress tensor is nonvanishing. Hence it should
be possible to use the previous three-point function to infer
the leading � modification to the two-point correlator
hJaJbiT at finite temperature, e.g., with an approach similar
to that considered in [41]. In principle then, such a (per-
turbative) calculation in the CFT should already indicate
that self-duality is lost.
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Above, we discussed the behavior of the conductivity,
which is related to the current correlator at zero momen-
tum. We also studied the full momentum dependence of
these correlators and obtained the duality relation in
Eq. (6.17), which applied in the general case without
self-duality. Remarkably, this has the same form as that
obtained by applying particle-vortex duality to a
(2þ 1)-dimensional field theory of a single complex sca-
lar, as we reviewed in Sec. VIA: note that this theory is not
self-dual (and self-duality is not expected in general, ex-
cept for a particular theory with two complex scalar fields
[7,42]). In the single scalar field case, as discussed in
Sec. VIA, KT;L characterize the transverse/longitudinal
components of the two-point correlations of the current

of the scalar particles—see Eq. (A4)—while K̂T;L charac-
terize the corresponding quantities of the vortex current.

Of course, the constants on the right-hand side of
Eqs. (6.17) and (6.27) are seen to be different. In both
cases, this constant depends on the conventions used to
normalize the currents and a new normalization would
change the constant in either model. Hence one may ask
if these relations can be expressed in a way which removes
this ambiguity. As we will show, one possibility is to
replace Eq. (6.17) by

KTð!; qÞK̂Lð!; qÞ ¼ �0�̂0;

K̂Tð!; qÞKLð!; qÞ ¼ �0�̂0;
(7.9)

where �0 is the conductivity at zero momentum and zero-
frequency and �̂0 is the same quantity for the dual currents.
For our holographic model, �0 was given in Eq. (3.12) and
given the discussion in Sec. VI, it is a simple exercise to
show that �0�̂0 ¼ 1. Hence, in this case, we easily recover
Eq. (6.17) from Eq. (7.9) above. However, the latter equa-
tion applies quite generally as we will now show: First,
given the expressions for� andKT in Eqs. (4.11) and (A6),
respectively, it is straightforward to show that
lim!!0K

Tð!; q ¼ 0Þ ¼ �0. Further with vanishing mo-
mentum, KLð!; q ¼ 0Þ ¼ KTð!; q ¼ 0Þ and hence we

also have lim!!0K̂
Tð!; q ¼ 0Þ ¼ �̂0. Now if we know

that the product KTK̂L is constant, we can evaluate the
constant at vanishing momentum and vanishing frequency
and then our discussion leads us to write Eq. (7.9). This
expression will apply independent of the conventions used
to normalize the currents and applies equally well for the
field theory examples considered in Sec. VIA and in [7] as
for our holographic model.

The holographic relation of EM duality in the bulk and
particle-vortex duality in the boundary theory was first
noted in [7,43] and the effect of this bulk transformation
on the boundary transport properties was further studied in
[44]—see also [39,45]. Particle-vortex duality can be ex-
tended to an SLð2; ZÞ action on three-dimensional CFT’s
[43,46] and the holographic realization of these group
transformations on the bulk theory was discussed in [43].

In particular, the S transformation corresponds to applying
EM duality in the bulk. To discuss the T transformation,
the bulk action must be extended to include a 	-term and
acting with the T generator corresponds to making a 2�
shift of 	. Of course, implicitly or explicitly, the previous
holographic discussions assumed a standard Maxwell ac-
tion for the bulk vector. It would be interesting to extend
this discussion of the full SLð2; ZÞ action to the generalized
action (3.1) introduced in Sec. III. Associating the S gen-
erator with EM duality as in [43], one can easily verify that
S2 ¼ �1 using Eq. (6.9). To include the T generator, we
would need generalize X to include parity violating terms,
i.e., nonvanishing z2ðuÞ and z3ðuÞ in Eq. (A23). We leave
this as an interesting open question.
To close, we wish to emphasize that our investigation

here has considered a simple toy model and one should
be circumspect in interpreting the results of our analysis.
While string theory will generate the higher-derivative
interactions in our action (2.6), it certainly also produces
many other higher order terms which schematically take
the form RnF2. For example, some such terms were
explicitly constructed (amongst many others) and studied
in [47]. Any terms with this schematic form would still
fall in the class of our general action (3.1) and so modify
the charge transport properties in a similar way. A key
feature of our model was that we were able to identify
physical restrictions which constrained the new coupling
� to fall in relatively narrow range (5.14). As a result,
the conductivity remained relatively close to the self-
dual value. Our expectation is that similar restrictions
appear for general string models, however, finding more
comprehensive physical constraints in this context re-
mains an interesting open question [48]. As seen here
and elsewhere [24,29,30,34], the interplay between the
boundary and bulk theories in the AdS/CFT correspon-
dence is beginning to provide new insights into this
question.
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APPENDIX: RETARDED GREEN’S
FUNCTIONS AND EM DUALITY

In this appendix, we find the retarded Green’s functions
of currents in the boundary field theory for finite frequency
and finite momentum and further we examine the relation-
ship between the Green’s functions in the two theories
related by EM duality in the bulk. In this discussion, we
work with the general vector action (3.1) and its EM dual

(6.7). Recall that the relation between coefficients X and X̂
appearing in these two actions is given in Eq. (6.8) and
the field strengths in the two theories are given by
Fab � @aAb � @bAa and Gab � @aBb � @bBa, respec-
tively. Further the duality relation between these two field
strengths is given in Eq. (6.9).

For simplicity, we will begin by assuming that Xab
cd is

diagonal in the six-dimensional space defined by the anti-
symmteric index pairs

A; B 2 ftx; ty; tu; xy; xu; yug: (A1)

This property holds for the specific theory (2.6) studied in
the main text, as shown in Eq. (6.13). We comment on more
general cases at the end of the appendix. Given this as-
sumption, we write

XA
B ¼ diagðX1ðuÞ; X2ðuÞ; X3ðuÞ; X4ðuÞ; X5ðuÞ; X6ðuÞÞ:

(A2)

Further rotational symmetry in the xy-plane would restrict
this ansatz with X1ðuÞ ¼ X2ðuÞ and X5ðuÞ ¼ X6ðuÞ.
However, we leave this symmetry as implicit, since it is
not required in the following. Now the inverse4 X�1 is
simply the diagonal matrix with entries 1=XiðuÞ and, given
Eq. (6.8), X̂A

B is also diagonal with

X̂ A
B ¼ diagðX̂1ðuÞ; X̂2ðuÞ; X̂3ðuÞ; X̂4ðuÞ; X̂5ðuÞ; X̂6ðuÞÞÞ

¼ diag

�
1

X6ðuÞ ;
1

X5ðuÞ ;
1

X4ðuÞ ;
1

X3ðuÞ ;
1

X2ðuÞ ;
1

X1ðuÞ
�
:

(A3)

Now we review the general structure of the Green’s
functions in the boundary theory, from the discussion in
[7]. Together current conservation and spatial rotational
invariance—Lorentz invariance is lost with T � 0—dictate
the form of the retarded Green’s functions as

G �
ðqÞ ¼
ffiffiffiffiffi
q2

q
ðPT

�
K
Tð!; qÞ þ PL

�
K
Lð!; qÞÞ; (A4)

where we use the notation: q� ¼ ð!; qx; qyÞ, q2 ¼
½ðqxÞ2 þ ðqyÞ2�1=2 and q2 ¼ q2 �!2. Further, PT

�
 and

PL
�
 are orthogonal projection operators defined by

PT
tt ¼ 0 ¼ PT

ti ¼ PT
it;

PT
ij ¼ �ij �

qiqj

q2
;

PL
�
 ¼

�
��
 �

q�q


jqj2
�
� PT

�
;

(A5)

with i, j denoting spatial indices while �, 
 run over both
space and time. If, for simplicity, we chooseq� ¼ ð!; q; 0Þ,
then we have

Gyyð!; qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 �!2

q
KTð!; qÞ;

Gttð!; qÞ ¼ � q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 �!2

p KLð!; qÞ:
(A6)

Of course, this general structure applies for both boundary
theories, that is, both for the theory dual to the vector
potential Aa and that dual to Ba. Our notation will be that
the above expressions refer to the theory dual to Aa while

Ĝ�
, K̂
T and K̂L are the corresponding expressions for the

boundary currents dual to Ba.
The first step in the holographic calculation of the

Green’s functions is to solve the bulk equations of motion.
Hence we begin as in Sec. IV by taking a plane-wave
ansatz (4.1) for Aa and Ba. Further, we choose q� ¼
ð!; q; 0Þ and work in radial gauge with Auðu;qÞ ¼ 0 ¼
Buðu;qÞ. With these choices and the background metric
(2.4), the Aa equations of motion become:

A0
t þ qf

!

X5

X3

A0
x ¼ 0 (A7)

A00
t þ X0

3

X3

A0
t � L4

r20

q

f

X1

X3

ðqAt þ!AxÞ ¼ 0 (A8)

A00
x þ

�
X0
5

X5

þ f0

f

�
A0
x þ L4

r20

!

f2
X1

X5

ðqAt þ!AxÞ ¼ 0 (A9)

A00
y þ

�
X0
6

X6

þ f0

f

�
A0
y � L4

r20

!2X2 � q2fX4

f2X6

Ay ¼ 0 (A10)

where we recall that f ¼ 1� u3. For the EM dual gauge
theory, the equations of motion are given by simply replac-

ing Aa ! Ba and Xi ! X̂i in the expressions above.
In general, there are two independent physical modes for

the four-dimensional bulk gauge field. Above, we see that
Ay decouples in Eq. (A10) to provide one of these modes,

while At and Ax are coupled in the remaining equations. Of
course, the analogous results apply to Ba in the EM dual
theory. Now explicitly writing out the duality relations
(6.15) in the present case, we find

4We assume that the functions Xi remain finite and positive
throughout u 2 ½0; 1� in order that XA

B is invertible and the bulk
propagators for the gauge potential are well-behaved there.
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Ftx ¼ g24
X1

r0f

L2
Gyu; Fty ¼ � g24

X2

r0f

L2
Gxu;

Ftu ¼ g24
X3

L2

r0
Gxy; Fxy ¼ � g24

X4

r0
L2

Gtu;

Fxu ¼ g24
X5

L2

r0f
Gty; Fyu ¼ � g24

X6

L2

r0f
Gtx:

(A11)

Hence, at a schematic level, EM duality exchanges the Ay

mode for that in Bt;x and similarly the At;x and By are

exchanged. Given the holographic relationship between
the bulk and boundary theories, we expect that there are

connections between the Green’s functions, G�
 and Ĝ�
,

generalizing those found in [7]. However, given the pre-
vious observation, more specifically, Gyy should be related

to Ĝtt (as well as Ĝxx and Ĝtx) and similarly Gtt, to Ĝyy.

To develop these connections in detail, we must extend
the holographic calculation of the Green’s functions given
in Sec. IV to include the mixing between At and Ax, noted
above. First, we solve the equations of motion (A7)–(A10)
for A� with infalling boundary conditions at the horizon

and asymptotic boundary conditions: limu!0A� ¼ A0
�. To

account for mixing between different components of the
gauge potential, we may write [7]: A�ðuÞ ¼ M�


ðuÞA0

.

Now, substituting the solutions into the action (3.1) and
integrating by parts leaves an surface term at the asymp-
totic boundary, which generalizes that given in Eq. (4.12),

I1¼2�T

3g24

Z
d3x½X3AtA

0
t�X5AxA

0
x�X6AyA

0
y�u!0: (A12)

After Fourier transforming in the boundary directions, we
extract the desired Green’s functions as

Gttð!; qÞ ¼ 4�T

3g24
X3ð0Þ�A

0
tðuÞ

�A0
t

��������u!0
; (A13)

Gxxð!; qÞ ¼ � 4�T

3g24
X5ð0Þ�A

0
xðuÞ

�A0
x

��������u!0
; (A14)

Gtxð!; qÞ ¼ 2�T

3g24

�
X3ð0Þ�A

0
tðuÞ

�A0
x

� X5ð0Þ�A
0
xðuÞ

�A0
t

�
u!0

;

(A15)

Gyyð!; qÞ ¼ � 4�T

3g24
X6ð0Þ

�A0
yðuÞ

�A0
y

��������u!0
: (A16)

Here we have used that the equations of motion
(A7)–(A10) only mix At and Ax. One may also easily verify
that Eq. (A16) reduces to the expression in Eq. (4.16) when
X6ð0Þ ¼ 1, as in the main text.

Next consider the Green’s functions Gyy. Assume that

we have AyðuÞ ¼ c ðuÞA0
y where c ðuÞ is a solution

of Eq. (A10) satisfying the appropriate boundary condi-
tions. In particularly, the asymptotic normalization is
c ðu ¼ 0Þ ¼ 1. Then from (A16), we have

Gyyð!; qÞ ¼ � 4�T

3g24
X6ð0Þc 0ð0Þ: (A17)

Given that EM duality exchanges Ay with Bt;x, we now

look for a relation between this result and that for Ĝtt. From
the expression for Fxy in Eq. (A11), we find B0

tðuÞ /
X4ðuÞAyðuÞ and so X4ðuÞc ðuÞ provides a solution of the

equations of motion for B0
tðuÞ in the EM dual theory. While

it is clear that the required infalling boundary condition is
satisfied at the horizon with c ðuÞ, we must expect that the
normalization has to be adjusted in order to satisfy the
desired asymptotic boundary condition. Hence we intro-
duce a new constant C1 setting B0

tðuÞ ¼ C1X4ðuÞc ðuÞ.
In order to fix this constant, we consider the analog of
Eq. (A8) in the EM dual theory and take the limit u ! 0 to
find

C1 ¼ L4

r20

qðqB0
t þ!B0

xÞ
X6ð0Þc 0ð0Þ (A18)

where deriving this expression uses X̂1 ¼ 1=X6 and X̂3 ¼
1=X4. Now the EM dual counterpart of Eq. (A13) yields

Ĝ ttð!; qÞ ¼ 4�T

3ĝ24
X̂3ð0Þ�B

0
tðuÞ

�B0
t

��������u!0
¼ 3g24

4�T

q2

X6ð0Þc 0ð0Þ :
(A19)

Here we have used the relations: ĝ4 ¼ 1=g4 and r0=L
2 ¼

4�T=3. Hence, combining Eqs. (A17) and (A19), we find

Gyyð!; qÞĜttð!; qÞ ¼ �q2: (A20)

Further, using Eq. (A6), this relation can be written as

KTð!; qÞK̂Lð!; qÞ ¼ 1: (A21)

Now it is clear that the EM dual version of the above
discussion would follow through without change. That is,

we would begin by constructing an expression for Ĝyy

analogous to Eq. (A17) and then the counterpart of
Eq. (A19) for Gtt. The final result emerging from these
results would then be

K̂ Tð!; qÞKLð!; qÞ ¼ 1: (A22)

To close our discussion, we comment on more general
cases where X contains off-diagonal terms. To begin, let us
write the most general tensor which is consistent with
rotational symmetry in the xy-plane:
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XA
B ¼

X1ðuÞ r0f
L2 z1ðuÞ r0f

L2 z2ðuÞ
X1ðuÞ � r0f

L2 z2ðuÞ r0f
L2 z1ðuÞ

X3ðuÞ L2

r0
z3ðuÞ

� r0
L2 z3ðuÞ X4ðuÞ

� L2

r0f
z1ðuÞ L2

r0f
z2ðuÞ X5ðuÞ

� L2

r0f
z2ðuÞ � L2

r0f
z1ðuÞ X5ðuÞ

2
6666666666666664

3
7777777777777775

; (A23)

where we are using the notation introduced in Eq. (A1), as
well as the background metric (2.4). Note the prefactors in
the off-diagonal terms reflect the tensor structure of Xab

cd,
which is slightly obscure in this notation, e.g., X5

1 ¼
gxxguug

ttgxxX1
5 ¼ �L4=ðr0fÞ2X1

5. Now, as noted above,
rotational invariance imposes two relations on the diagonal
entries, i.e., X2 ¼ X1 and X6 ¼ X5. However, as shown
above, this symmetry is remarkably restrictive on the off-
diagonal components as well and our general tensor (A23)
only contains three independent terms amongst all of the
possible entries. Now, if we further demand that this back-
ground tensor preserves parity, we must in fact set z2ðuÞ ¼
0 ¼ z3ðuÞ and we are left with only one function z1ðuÞ
determining all of the allowed off-diagonal components.
Note that these remaining off-diagonal terms preserve
parity but violate time-reversal invariance.5

If we restrict ourselves to the parity invariant case, it is
straightforward to generalize our previous discussion to

accommodate the general X above (with z2 ¼ 0 ¼ z3).
Although the intermediate expressions are somewhat
more involved, we find that the final Green’s functions still
satisfy Eqs. (A21) and (A22).
Note that parity invariance was implicit in the decom-

position of the Green’s functions in Eq. (A4). If parity
violating terms were allowed there would be an additional
contribution of the form.

�G�
 ¼ i"�
�q
�KPð!; qÞ: (A24)

Hence the present analysis must be revised to accom-
modate these parity violating terms. Our expectation is
that particle-vortex duality still provides relations be-
tween the three functions KT , KL and KP, describing
the Green’s functions of the two dual theories. A pre-
liminary examination of the equations of motion and
the EM duality relations suggests that, in this general
case, KT , KL, KP and their dual counterparts should
satisfy three relations. However, the details of this
interesting case are left as an open problem for future
work.
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