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We investigate the structure of two-point functions for the quantum field theory dual to an asymptoti-

cally Lorentzian Anti de Sitter (AdS) wormhole. The bulk geometry is a solution of five-dimensional

second-order Einstein-Gauss-Bonnet gravity and causally connects two asymptotically AdS spacetimes.

We revisit the Gubser-Klebanov-Polyakov-Witten prescription for computing two-point correlation

functions for dual quantum field theories operators O in Lorentzian signature and we propose to express

the bulk fields in terms of the independent boundary values��
0 at each of the two asymptotic AdS regions;

along the way we exhibit how the ambiguity of normalizable modes in the bulk, related to initial and final

states, show up in the computations. The independent boundary values are interpreted as sources for dual

operators O� and we argue that, apart from the possibility of entanglement, there exists a coupling

between the degrees of freedom living at each boundary. The AdS1þ1 geometry is also discussed in view

of its similar boundary structure. Based on the analysis, we propose a very simple geometric criterion to

distinguish coupling from entanglement effects among two sets of degrees of freedom associated with

each of the disconnected parts of the boundary.
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I. INTRODUCTION

Asymptotically Anti de Sitter (AdS) geometries play an
important role in the gauge/gravity correspondence [1–3],
since they provide gravity duals to quantum field theories
(QFT) with uv conformal fixed points. There is a general
consensus, based on several checks, for the dual interpre-
tation of various asymptotically AdS geometries: a big
black hole solution is supposed to describe a thermal
QFT state [4], a bulk solution interpolating between an
AdS horizon (corresponding to an ir conformal field fixed
point) and an AdS geometry at infinity of different radii
realizes the renormalization group flow between two con-
formal fixed points [5]. As a third possibility, certain
regular (solitonic) charged AdS solutions are interpreted
as excited QFT coherent states [6].

We would like to discuss in this work the more intrigu-
ing situation that appears when a wormhole in the bulk
causally connects two asymptotic AdSdþ1 (Lorentzian)
boundaries. Holography and the AdS/CFT correspondence
in the presence of multiple boundaries is less understood.
The implementation of the AdS/CFT paradigm for such
cases suggests that the dual field theory lives on the union
of the disjoint boundaries, and therefore to be the product
of field theories on the different boundaries (see [7]). We
will revisit this statement and discuss the issue of whether
the two dual theories are independent, decoupled or not.

For the Lorentzian signature, wormhole geometries are
ruled out for d � 2 dimensions as a solution of an Einstein-
Hilbert action satisfying natural causality conditions: dis-
connected boundaries must be separated by horizons [8]
(see [9] for recent work in 2þ 1 dimensions). Studies

of wormholes in string theory and in the context of the
AdS/CFT correspondence have therefore concentrated on
Euclidean signature spaces particularly motivated from
applications to cosmology (see references to [10,11]).
For completeness, we quote that in the Euclidean context
a theorem states that disconnected positive scalar curvature
boundaries are also ruled for complete Einstein manifolds
of negative curvature [12] (see also [13]). Moreover, [12]
proves that for negative curvature boundaries the holo-
graphic theory living on them would be unstable for
d � 3 (see also [14]). The wormholes studied in [10]
avoided the theorem in [12] since they were constructed
as hyperbolic slicings of AdS and supported by extra
supergravity fields.
The canonical Lorentzian example of two boundaries

separated by a horizon is the Eternal black hole geometry,
and the proposal put forward in [15] makes contact with
the thermo field dynamics (TFD) formulation of QFT at
finite temperature [16]: the two disconnected boundaries
amount to two decoupled copies H� of the dual field
theory and nonvanishing correlators hOþðxÞO�ðx0Þi are
interpreted as being averaged over an entangled state en-
coding the statistical/thermal information of the bulk ge-
ometry (see also [17,18] for recent work). An interesting
second Lorentzian example with two disconnected
boundaries was constructed in [19] by performing a non-
singular orbifold of AdS3. The result of the construction
led to two causally connected cylindrical boundaries with
the dual field theory involving the discrete light cone
quantization (DLCQ) limit of the D1-D5 conformal field
theory, but the coupling between the different boundaries
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degrees of freedom was not clarified. The main difference
between these two examples is that in the last case causal
contact exists between the conformal boundaries. The no-
go theorem [8] is bypassed in the second case because the
performed quotient results in the presence of compact
direction with the geometry effectively being a S1 fibration
over AdS2 where the aforementioned theorem does not
apply.

The no-go Lorentzian wormholes theorem [8] is also
bypassed when working with a higher order gravity theory;
moreover, higher order curvature corrections to standard
Einstein gravity are generically expected for any quantum
theory of gravity. However, not much is known about the
precise forms of the higher derivative corrections, other
than for a few maximally supersymmetric cases. Since
from the pure gravity point of view the most general theory
that leads to second-order field equations for the metric is
of the Lovelock type [20], we will choose to work with the
simplest among them known as Einstein-Gauss-Bonnet
theory. The action for this theory only contains terms up
to quadratic order in the curvature and our interest in the
wormhole solution, found in [21], is that its simplicity
permits an analytic treatment. The geometry corresponds
to a static wormhole connecting two asymptotically locally

AdS regions with base manifold ~�, which in dþ 1 ¼ 5

takes the form ~� ¼ H3 or S1 �H2, where H2 and H3 are
two- and three-dimensional (quotiented) hyperbolic
spaces. The resulting geometry is smooth, does not contain
horizons anywhere, and the two asymptotic regions turn
out to be causally connected. A perturbative stability study
for the five-dimensional solution case of [21] was per-
formed in [22].

We will revisit in the present paper the Gubser-
Klebanov-Polyakov-Witten (GKPW) prescription [2,3]
for extracting QFT correlators from gravity computations
and discuss its application for the Lorentzian wormhole
solution found in [21], mentioning along the way the
similarities and differences with the AdS2 case (see
[22,23] for other work on the wormhole background dis-
cussed here). We recall that the GKPW prescription in
Lorentzian signature involves not only boundary data at
the conformal boundary of the spacetime but also the
specification of initial and final states, and we will show
how these states make their appearance in the computa-
tions (see [24–29] for discussions on Lorentzian issues
related to the GKWP prescription). It is commonly ac-
cepted that the QFT dual to a wormhole geometry should
correspond to two independent gauge theories living at
each boundary and the wormhole geometry encodes an
entangled state among them. On the other hand, the causal
connection between the boundaries has been argued to give
rise to a nontrivial coupling between the two dual theories
[19]. We will argue, by performing an analytic continu-
ation to the Euclidean section of the spacetime, that
the nonvanishing result obtained for the correlator

hOþðxÞO�ðx0Þi between operators located at opposite
boundaries signals the existence of a coupling between
the fields associated to each boundary.
The paper is organized as follows: in Sec. II, we review

the GKPW prescription for computing QFT correlation
functions from gravity computations mentioning the pecu-
liarities of Lorentzian signature. In Sec. III, we extend the
GKPW prescription for the case of two asymptotic inde-
pendent boundary data. We apply it to AdS2, reproducing
the results appearing in the literature, and to the wormhole
[21] showing their similarities. In Sec. IV, we discuss
several arguments regarding the possibility of entangle-
ment and/or interactions among the two dual QFT. We
summarize in Sec. V the results of the paper.

II. GKPW PRESCRIPTION WITH A SINGLE
ASYMPTOTIC BOUNDARY

The GKPW prescription [2,3] equates the gravity (bulk)
partition function for an asymptotically AdSdþ1 spacetime
M, understood as a functional of boundary data, to the
generating functional for correlators of a conformal field
theory (CFT) defined on the spacetime conformal bound-
ary @M. Explicitly, the prescription is

Z gravity½�ð�0Þ� ¼ hei
R

@M
ddx�0ðxÞOðxÞi: (1)

In the left-hand side (lhs), �0 ¼ �0ðxÞ stands for the
boundary value of the field �, and the right -hand side
(rhs) is the CFT generating functional of correlators of the
operator O dual to the (bulk) field �. In the present paper,
we will be working in the semiclassical spacetime limit
(large N limit of the CFT) and therefore the lhs in (1) will
be approximated by the on-shell action of the field�which
for simplicity will be taken to be a scalar field of mass m.
We are interested in real time (Lorentzian) geometries and
in this case, the prescription (1) is incomplete, since a
specification of the initial and final states c i;f on which

we compute the correlator on the rhs need to be specified.
We will discuss this issue below.
To set out the notation, we summarize the prescription

for massive scalar fields highlighting the points important
for our arguments. The AdSdþ1 metric in Poincaré coor-
dinates reads

ds2 ¼ R2

z2
ðdx2 þ dz2Þ; (2)

where the term dx2 stands for �dt2 þ d~x2. The (confor-
mal) boundary of AdS is located at z ¼ 0 and a horizon
exists at z ¼ 1.1 The solution to the � field equation
subject to boundary data �0 set at the conformal boundary
is commonly written as

1In the Euclidean case z ¼ 1 is just a point, leading to the half
plane z � 0 in (2) being compactified to a sphere.
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�ðx; zÞ ¼
Z
@M

dyKðx; z j yÞ�0ðyÞ: (3)

In the free field limit, the Klein-Gordon (KG) equation
shows that the asymptotic behavior for � is

�ðx; zÞ � z���0ðxÞ; z ! 0 (4)

where2

�� ¼ d

2
��; � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4
þm2R2

s
: (5)

The bulk-boundary propagator K in (3) is therefore de-
manded to satisfy [2,3]

ðh�m2ÞKðx; z j yÞ ¼ 0 (6)

with boundary condition

K ðx; z j yÞ � z���ðx� yÞ; z ! 0: (7)

Finally, the bulk-boundary propagator K can be related to
the Dirichlet bulk-bulk Green function Gðx; zjy; z0Þ
through Green’s second identity, the result being that K
can be obtained from the normal derivative of G evaluated
at the spacetime boundary (see [31,32]) as

Kðx; z j yÞ ¼ lim
z0!0

ffiffiffiffiffiffiffi�g
p

gz
0z0@z0Gðx; z j y; z0Þ: (8)

Two comments are in order: i) the bulk solution for a
given boundary data �0 computed from (3) is not unique,
since Lorentzian AdS spaces admit normalizable solutions
’ðx; zÞ that can be added at will to (3) without altering the
boundary behavior (7), explicitly

�ðx; zÞ ¼
Z
@M

dyKðx; z j yÞ�0ðyÞ þ ’ðx; zÞ: (9)

The consequence of their inclusion on the CFT is inter-
preted as fixing the initial and final states jc i;fi on which

one computes the expectation value on the rhs of (1). Our
second observation is ii) in Lorentzian signature, the
z ¼ 1 surface is a Killing horizon and therefore an addi-
tional boundary where the bulk field needs to be specified
for having a well-posed Dirichlet problem [see Fig. 1(a)].
These two observations turn out to be related to the fact
that a second condition is required to fully fix the bulk-
boundary propagator K (recall that in Euclidean space
demanding regularity in the bulk implies K ! 0 when
z ! 1). The remaining condition on K imposed at the
horizon (z ¼ 1) is best expressed in terms of Fourier

modes as purely ingoing waves (exponentially decaying)
for timelike (spacelike) momenta; this is a well known
problem for QFT in curved spacetimes and amounts to
the choice of vacuum. The incorporation of normalizable
(timelike) modes induces an outgoing component from the
horizon which is naturally interpreted as an excitation (see
[2,17,25–27,33–35] for related work).
We are interested in computing two-point correlation

functions on the dual field theory. To this end we need
the on-shell action for a scalar field to quadratic order

S ¼ � 1

2

Z
dxdz

ffiffiffiffiffiffiffi�g
p ðg��@��@��þm2�2Þ: (10)

Integrating by parts and evaluating on-shell, the contribu-
tion from the conformal boundary is given by (see [34] for
a discussion on the horizon contribution)

S½�0� ¼ 1

2

Z
dx½ ffiffiffiffiffiffiffi�g

p
gzz�ðx; zÞ@z�ðx; zÞ�z¼0: (11)

Inserting (3) into this expression gives the on-shell action
as a functional of the boundary data �0

S½�0� ¼ 1

2

Z
dydy0�0ðyÞ�ðy; y0Þ�0ðy0Þ (12)

where

�ðy; y0Þ ¼
Z

dx½ ffiffiffiffiffiffiffi�g
p

gzzKðx; z j yÞ@zKðx; z j y0Þ�z¼0:

(13)

Taking into account (7) and (8) in (13), one obtains

�ðy; y0Þ � ½ ffiffiffiffiffiffiffi�g
p

gzz@zKðy; z j y0Þ�z¼0 (14)

� lim
z;z0!0

ð ffiffiffiffiffiffiffi�g
p

gzzÞð ffiffiffiffiffiffiffi�g
p

gz
0z0 Þ @2

@z@z0
Gðy; z j y0; z0Þ: (15)

This relation has been used to relate, in the semiclassical
limit, the two-point function to the geodesics of the
geometry [36].
Summarizing, the two-point function for an operator

O dual to the bulk field � is obtained from the on-shell
action as

hc fjOðyÞOðy0Þjc ii ¼ �i
�2S½�0�

��0ðyÞ��0ðy0Þ ¼ �i�i;fðy; y0Þ:
(16)

The initial and final states c i;f on the lhs encode to the

ambiguity in adding a normalizable solution to (3); in the
following section we will show explicitly how they mani-
fest in (13).

2Negative mass scalar fields are allowed in AdS as long as
� � 0. The minimum allowed mass for a scalar field in AdSdþ1

is given by the so-called Breitenlohner-Freedman (BF) bound
�BF ¼ 0, or equivalently m2

BF ¼ �d2=4 [30].

LORENTZIAN AdS GEOMETRIES, WORMHOLES, AND . . . PHYSICAL REVIEW D 83, 066015 (2011)

066015-3



AdS global coordinates

The recipe for obtaining QFT correlators from gravity
computations involves evaluating bulk quantities at the
conformal boundary; as might be suspected from (4), (7),
and (13), the evaluation leads to singularities and therefore
requires a regularization. We will discuss in what follows
how this is done in the AdS global coordinate system since
the wormhole case we will discuss later coincides in its
asymptotic region with that coordinate system and will
therefore be regularized in the same way. Along the way,
we will show how the specification of the initial and final
states c i;f appear in the computation.

The regularization of (16) is performed imposing the
boundary data at some finite distance in the bulk and taking
the limit to the boundary at the end of the computations
(see [37] for a subtlety when taking the limit). The AdSdþ1

manifold is fully covered by the so-called global coordi-
nates where the metric takes the form

ds2 ¼ R2

�
� dt2

1� x2
þ dx2

ð1� x2Þ2 þ
x2

1� x2
d�2

d�1

�
(17)

where we have changed variables to x ¼ tanh� from the
standard radial � variable to map the conformal boundary
to x ¼ 1.

We impose the boundary data at a finite distance
x� ¼ 1� �; therefore, consistency demands that

lim
x!x�

Kðt;�; x j t0;�0; x�Þ ¼ �ðt� t0Þ�ð���0Þffiffiffiffiffiffiffi
g�

p (18)

and K regular in the interior. The boundary-bulk propaga-
tor K satisfying (18) can be obtained from the
Klein-Gordon equation solutions �ðt;�; xÞ ¼
e�i!tYlmð�Þfl!ðxÞ as

K ðt;�; x j t0;�0; x�Þ

¼
Z 1

�1
d!

2�

X
lm

e�i!ðt�t0ÞYlmð�ÞY�
lmð�0Þfl!ðxÞ

(19)

if we normalize3 fl!ðx�Þ ¼ 1. For later comparison we
quote the differential equation satisfied by fl!ðxÞ

ð1� x2Þ d
2fl!
dx2

þ d� 1� x2

x

dfl!
dx

þ
�
!2 � q2

x2
� m2R2

1� x2

�
fl! ¼ 0: (20)

The solution to this equation is a linear combination of two
hypergeometric functions, but one of them diverges as
x ! 0 so regularity in the bulk demands to discard it.
The properly normalized regular solution reads

fl!ðxÞ ¼
�

x�ðd=2Þþ�þ1ð1� x2Þ1=2�þ

ð1� �Þ�ðd=2Þþ�þ1ðð2� �Þ�Þ1=2�þ

�
2F1ð12 ð�þ ��!þ 1Þ; 12 ð�þ �þ!þ 1Þ;�þ 1; x2Þ

2F1ð12 ð�þ ��!þ 1Þ; 12 ð�þ �þ!þ 1Þ;�þ 1; ð1� �Þ2Þ : (21)

Here, 2F1 is Gauss hypergeometric function with � given

by (5) and � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd�2

2 Þ2 þ q2
q

, the symmetry of the hyper-

geometric function in its first two arguments implies that
fl!ðxÞ ¼ fl�!ðxÞ. The asymptotic behavior of the solution
(21) near the boundary looks like

fl!ðxÞ � Cþð1� xÞ1=2�þ þ C�ð1� xÞ1=2�� ; (22)

where �� are given by (5) and C� ¼ C�ð�; �;!Þ. In
Lorentzian signature, the KG operator possesses normal-
izable solutions; these appear for particular values of !
given by [25,30,38]

!nl ¼ �ð2nþ �þ�þ 1Þ
¼ �ð2nþ lþ�þÞ; n; l ¼ 0; 1; 2 . . . ; (23)

or stated otherwise, these are the frequencies for which4

C� ¼ 0. The discreteness of the spectrum manifests the
‘‘box’’ character of AdS, and from the dual perspective

arises from the compactness of S3. The quantization of the
states (23) in the bulk is interpreted as dual to the QFT

states defined on the S3 � R conformal boundary of AdS.
The two-point correlation functions for the dual QFT

operators are obtained by plugging

�ðt;�; xÞ ¼
Z

dt0d�0 ffiffiffiffiffiffiffiffi
g�0

p
Kðt;�; x j t0;�0; x�Þ�0ðt0;�0Þ

(24)

3The spherical harmonics Ylm on the d� 1 sphere satisfy
r2Ylm ¼ �q2Ylm with q2 ¼ lðlþ d� 2Þ, l ¼ 0; 1; . . .

4See [30] for an alternative quantization condition for 0 �
� � 1 and [39] for its interpretation in the AdS/CFT context.
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into the action (10); note that we have not included any normalizable solution to (24) (see next paragraph). The on-shell
action leads to a boundary term evaluated at x� (see (11)–(13)) and the regularized expression for �ðt;� j t0;�0Þ in (12) is
therefore written as5

�regðt;�jt0;�0Þ ¼ � 1ffiffiffiffiffiffiffi
g�

p ½ ffiffiffiffiffiffiffi�g
p

gxx@xKðt;�; x j t0;�0; x�Þ�x¼x�

¼ �
Z d!

2�
e�i!ðt�t0ÞX

lm

Ylmð�ÞY�
lmð�0Þ

�
xd�1

ð1� x2Þðd�2Þ=2 @xfl!ðxÞ
�
x¼x�

¼ �X
lm

Ylmð�ÞY�
lmð�0Þ

Z d!

2�
e�i!ðt�t0Þ

�
xd�1

ð1� x2Þðd�2Þ=2 @xfl!ðxÞ
�
x¼x�

; (25)

where the first line comes from (13) taking into account
(18).

Some comments regarding (25): when taking the � ! 0
limit, the expression in the last line turns out to be ambig-
uous due to the existence of simple poles, located at (23),
along the !-integration contour.6 These poles manifest the
existence of normalizable solutions in the bulk (see (9))
and therefore, in order to define the!-integration, we need
to give a prescription for bypassing the poles. The choice
of contour is traditionally understood as the choice be-
tween advanced/retarded/Feynman Green function; we
will choose to work with the Feynman one in the following.
We now call attention to the observation, pointed out in
[29], about the relation between contours in the complex
!-plane and choices of normalizable solutions. The obser-
vation is simple: any particular choice of contour is equiva-
lent by deformation to choosing the Feynman contour plus
contributions from encircling the poles (23). Therefore, the
ambiguity in the expression (24) arising from the addition
of arbitrary normalizable modes translates into a choice of
contour in the complex !-plane (see Fig. 2). The Feynman

contour choice naturally leads to time ordered correlators,
and the encircling of positive (negative) normalizable
modes fix the initial (final) state c i;f in the lhs of (16).

Choosing the retarded contour as reference should be in-
terpreted as giving rise to response functions instead of
correlation functions. Summarizing, the states are inter-
preted as created from a single fundamental one jc 0i
associated to the reference integration contour chosen.
The � ! 0 limit of the expression inside the brackets in

(25) also shows several poles in � both analytic and non-
analytic. The physical result is obtained by renormalizing
the boundary data taking into account the asymptotic be-
havior in the radial direction (see (22)); in the present case
it amounts to rescale �0 as (see [3,32,37])

�0ðt;�Þ ¼ �1=2���renðt;�Þ: (26)

Moreover, since eventually we are interested in correlation
functions for separated points, (contact) terms proportional
to positive integer powers of q2 are dropped. The finite
term in the � ! 0 limit reads

�renðt;�jt0;�0Þ	 lim
�!0

����regðt;�jt0;�0Þ

¼X
lm

Ylmð�ÞY�
lmð�0Þ

Z d!

2�
e�i!ðt�t0Þ ��þ

2��

�ð1��Þ
�ð1þ�Þ

�ð12ð�!þ�þ�þ1ÞÞ�ð12ð!þ�þ�þ1ÞÞ
�ð12ð�!þ���þ1ÞÞ�ð12ð!þ���þ1ÞÞ : (27)

The numerator of this last expression shows explicitly the appearance of poles along the integration contour precisely at
frequencies !nl given by (23). The specification of a contour C in the complex ! plane fixes the initial and final states c i;f

when compared to the standard Feynman one (see Fig. 2).
From the discussion following (25), it should be clear that correlation functions computed on the QFT vacuum state are

obtained by choosing the standard Feynman contour for the! integration in (27). Performing the! integration we obtain7

�F
renðt;�jt0;�0Þ ¼ 2i

�þ�ð1��Þ
2���ð1þ�Þ

X
lm

Ylmð�ÞY�
lmð�0Þ �

�X1
n¼0

ð�1Þn
n!

�ðnþ lþ �þÞ
�ðnþ lþ d

2Þ�ð�ðnþ�ÞÞ e
�ijt�t0jð2nþlþ�þÞ

�
: (28)

6Their origin can be traced to having normalized fl!ðx�Þ ¼ 1.
7Generically, (23) are the only divergencies in (27), and special care must be taken for integer values of �. We will not discuss the

details of this in the present work since experience with the AdS/CFT correspondence has shown that correlation functions do not
change qualitatively in the integer limit.

5Following [37], when calculating (25) we first compute the x-derivative and afterwards we take the � ! 0 limit.
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The sum over the residues can be computed analytically,
giving

h0jTOðt;�ÞOðt0;�0Þj0i
¼�i�F

renðt;�jt0;�0Þ

¼ � 2�þ
2���ð�Þ

X
lm

Ylmð�ÞY�
lmð�0Þ�ðlþ�þÞ

�ðlþ d
2Þ

� e�ijt�t0jðlþ�þÞ
2F1

�
1þ�;lþ�þ; lþd

2
;e�2ijt�t0j

�
:

(29)

III. GKPW PRESCRIPTION FOR
LORENTZIAN WORMHOLES

Our goal in this section will be to extend the GKPW
prescription to the case of multiple timelike boundaries; we
will discuss the two boundaries case for simplicity. On

general grounds, AdS/CFT suggests that the presence of
two timelike boundaries should be associated with the
existence of two sets O� of dual operators corresponding
to the two independent boundary conditions ��

0 that must

be imposed on the field � when solving the wave
equation.8

We consider wormholes with (conformal) boundary to-
pology of the form R��, with R representing time and
� ¼ �þ þ�� the union of two (spatial) compact disjoint
copies ��. The wormholes can be covered by a single
coordinate system ðx; t; �Þwhere x is the radial holographic
coordinate in the bulk and ðx�; t; �Þ the coordinates pa-
rametrizing the two boundariesR���. In the presence of
two disconnected conformal boundaries we propose to
write the bulk field in terms of the boundary data ��

0 ðyÞ
on each of the boundaries as (see Fig. 1(b))

�ðy; xÞ ¼
Z

dy0Kiðy; xjy0Þ�i
0ðy0Þ

¼
Z

dy0½Kþðy; xjy0Þ�þ
0 ðy0Þ þ K�ðy; xjy0Þ��

0 ðy0Þ�:
(30)

Here, y ¼ ðt; �Þ; note that the solution for given boundary
data is not unique since in Lorentzian signature normal-
izable solutions can be added to (30). This ambiguity is
resolved, as discussed in Sec. II, when a choice of contour
in the frequency space ! of the kernel K is given. Our
method differs from the proposal developed in [19]: in that
work only theKþ bulk-boundary propagator was discussed
and its form was determined by demanding the absence of
cuts when extending the radial coordinate to complex
values. The prescription led to the conclusion that ��

0

were not independent.
Consistency demands the bulk-boundary propagators

K�ðy; xjy0Þ to solve the Klein-Gordon equation (6) with
the following boundary conditions:

Kþðy; xjy0Þjx¼xþ ¼ �ðy � y0Þ; Kþðy; xjy0Þjx¼x� ¼ 0

K�ðy; xjy0Þjx¼x� ¼ �ðy � y0Þ; K�ðy; xjy0Þjx¼xþ ¼ 0:

(31)

These expressions completely determine the bulk-
boundary propagators K�. The on-shell action (10) results
in two terms arising from the boundaries which take the
form

S ¼ � 1

2

Z
dyð½ ffiffiffiffiffiffiffi�g

p
gxx�ðy; xÞ@x�ðy; xÞ�x¼xþ

� ½ ffiffiffiffiffiffiffi�g
p

gxx�ðy; xÞ@x�ðy; xÞ�x¼x�Þ: (32)

(a) (b)

FIG. 1 (color online). (a) Poincare patch of Lorentzian AdS:
the value of the scalar field � at any point in the bulk depends
not only on the boundary value �0 but also on the value of the
field at the future and past horizons �H. (b) Lorentzian worm-
hole geometry: the value of the scalar field � at any point in the
bulk depends not only on two boundary values ��

0 but also on

normalizable modes in the bulk �ðnÞ. The dependence, in both
pictures, on the normalizable modes correlates to a choice of the
initial and final states jc i;fi and manifests as a choice of contour

in the complex ! plane when computing the correlator (27).

FIG. 2 (color online). Contours in ! complex plane: when
performing the ! integration in (27) any arbitrary contour can be
deformed to be the Feynman contour plus contributions from
encircling the poles (23). The encircling of positive (negative)
frequency poles fix the initial (final) states c i;f in (16).

8Some authors have assumed than the two dual field theories
are decoupled because of the disconnected structure of the
boundary [18].
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Inserting the solution (30) into (32), one obtains

S½�0� ¼ � 1

2

Z
dydy0�i

0ðyÞ�ijðy; y0Þ�j
0ðy0Þ (33)

with i; j ¼ þ;� denoting the two boundaries and �ij the

generalization of (13). Their explicit forms are

�þiðy; y0Þ ¼ ½ ffiffiffiffiffiffiffi�g
p

gxx@xK
iðy; xjy0Þ�x¼xþ ;

��iðy; y0Þ ¼ �½ ffiffiffiffiffiffiffi�g
p

gxx@xK
iðy; xjy0Þ�x¼x� :

(34)

As in Sec. II the two-point functions of operators on the
same boundary result

hc fjO�ðyÞO�ðy0Þjc ii � �i���ðy; y0Þ (35)

and the correlators between operators on opposite bounda-
ries read

hc fjO�ðyÞO
ðy0Þjc ii � �i��
ðy; y0Þ: (36)

The generalization of the expressions (8) and (15) to back-
grounds with two boundaries take the form

K iðy; x j y0Þ ¼ lim
x0!xi

ffiffiffiffiffiffiffi�g
p

gx
0x0@x0Gðy; x j y0; x0Þ; (37)

which gives

�ijðy; y0Þ � lim
x!xi;x0!xj

ð ffiffiffiffiffiffiffi�g
p

gxxÞð ffiffiffiffiffiffiffi�g
p

gx
0x0 Þ

� @2

@x@x0
Gðy; x j y0; x0Þ: (38)

Note that the ��
 correlation function involves in the
semiclassical limit a geodesic through the bulk connecting
two points, one at each boundary.

A. AdS2 Lorentzian strip

We will apply in this section the prescription developed
above to Lorentzian AdS2 reobtaining previous results
[18]. The AdS2 Lorentzian metric can be written as

ds2 ¼ R2

�
� dt2

1� x2
þ dx2

ð1� x2Þ2
�
; (39)

the timelike boundaries are located at x ¼ �1 and the ðt; xÞ
coordinate system covers the whole spacetime. To find the
bulk-boundary propagators K� in (30), we propose

K�ðt; xÞ ¼
Z 1

�1
d!

2�
e�i!tf�! ðxÞ: (40)

Inserting into the KG Eq. (6), we obtain the following
differential equation for f!

ð1� x2Þd
2f�! ðxÞ
dx2

� x
df�! ðxÞ
dx

þ
�
!2 � m2R2

1� x2

�
f�! ðxÞ ¼ 0:

(41)

The solution to (41) can be written in terms of generalized
Legendre Polynomials as

f�! ðxÞ ¼ ð1� x2Þ1=4½a�!P�
� ðxÞ þ b�!Q

�
� ðxÞ� (42)

with � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 þm2R2

q
, � ¼ !� 1

2 and a�! , b�! arbitrary

constants which get fixed when we impose the conditions
(31). The conditions translate into9

f�! ð�x�Þ ¼ 1; f�! ð
x�Þ ¼ 0: (43)

The solutions to (43) read

fþ! ðxÞ ¼
�
1� x2

1� x2�

�
1=4 Q

�
� ðxÞP�

� ð�x�Þ �Q
�
� ð�x�ÞP�

� ðxÞ
Q

�
� ðx�ÞP�

� ð�x�Þ �Q
�
� ð�x�ÞP�

� ðx�Þ
(44)

f�! ðxÞ ¼
�
1� x2

1� x2�

�
1=4

� Q�
� ðxÞP�

� ðx�Þ �Q�
� ðx�ÞP�

� ðxÞ
Q�

� ð�x�ÞP�
� ðx�Þ �Q�

� ðx�ÞP�
� ð�x�Þ : (45)

Analyzing the asymptotic behavior near the boundary in
(42), one finds normalizable modes for

!n ¼ �
�
nþ�þ 1

2

�
; n ¼ 0; 1; 2 . . . and

b!Q

a!Q

¼ � 2 tan��

�
: (46)

The renormalized �ij functions disregarding contact terms

result

�ren��ðt; t0Þ ¼ 
 2��

2�

�ð1��Þ
�ð1þ�Þ

Z d!

2�
e�i!ðt�t0Þ

� �

�
1

2
þ��!

�
�

�
1

2
þ�þ!

�
cosð�!Þ

(47)

�ren�
ðt; t0Þ ¼ 
 2��

�ð�Þ2
Z d!

2�
e�i!ðt�t0Þ�

�
1

2
þ��!

�

� �

�
1

2
þ�þ!

�
; (48)

as before, the integrands in these expressions show poles in
! at the values given by (46).
The integrals (47) and (48) can be computed using the

residue theorem once a contour in the complex plane is
chosen. For the Feynman contour, we obtain

9As discussed in Sec. II, the boundary data is imposed at a
finite distance x ¼ �x� where x� ¼ 1� �.
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�F
ren��ðt; t0Þ ¼ 


�
i����þ

8�þ�1=2

�
�ð12 þ�Þ

�ð�Þsin2�þðt�t0
2 Þ

�F
ren�
ðt; t0Þ ¼ 


�
8��i

4

�
�ð1þ 2�Þ

�ð�Þ2cos2�þðt�t0
2 Þ

(49)

The vacuum expectation values between operators on the
same and opposite boundaries result (cf. [18])

h0jTO�ðtÞO�ðt0Þj0i ¼ �
�
4��i2��

8�þ

�
�ð2�Þ

�ð�Þ2sin2�þðt�t0
2 Þ ;

(50)

h0jTO�ðtÞO
ðt0Þj0i ¼ 

�
8��

4

�
�ð1þ 2�Þ

�ð�Þ2cos2�þðt�t0
2 Þ : (51)

The first line gives the result for operators on the same
boundary and has the expected conformal behavior
jt� t0j�2�þ when the operators approach each other. The
second line corresponding to operators located on different
boundaries becomes singular for t ¼ t0 þ ð2nþ 1Þ�,
n 2 Z; this singularity reflects the existence of causal
(null) curves connecting the boundaries and it has been
argued that their existence hints at an interaction between
the two sets of degrees of freedom O� [19].10 The ob-
served periodicity in time relates to a peculiar property of
AdS; this is the convergence of null geodesics when pass-
ing to the universal cover and can be also understood as a
consequence of the eigenmodes (46) being equally spaced
(see [38–40]).

In the massless case (� ¼ 1
2 ), the two-point functions

take the form

h0jTO�ðtÞO�ðt0Þj0i ¼ � 1

8�sin2ðt�t0
2 Þ ;

h0jTO�ðtÞO
ðt0Þj0i ¼ 
 1

4�cos2ðt�t0
2 Þ

(52)

B. Wormhole

We now turn to the analysis of two-point functions in a
wormhole background; this is a spacetime geometry with
two conformal boundaries connected through the bulk. We
will work with a toy model wormhole, which permits
analytical treatment consisting of a static geometry that
connects two asymptotically locally AdS regions with base
manifolds of the form H3 or S1 �H2, with Hn a
n-dimensional (quotiented) hyperbolic space. The geome-
try does not contain horizons anywhere, and the two
asymptotic regions are causally connected. The spacetime

was found as a solution of Einstein-Gauss-Bonnet gravity,
which in dþ 1 ¼ 5 dimensions takes the form

S5¼	
Z
�abcde

�
RabRcdþ 2

3l2
Rabecedþ 1

5l4
eaebeced

�
ee:

Here Rab ¼ d!ab þ!a
f!

fb is the curvature two form for

the spin connection !ab, and ea is the vielbein. The
(dþ 1)-dimensional wormhole metric found in [21] reads

ds2 ¼ R2½�cosh2�dt2 þ d�2 þ cosh2�d~�2
d�1�

¼ R2

�
� dt2

1� x2
þ dx2

ð1� x2Þ2 þ
d~�2

d�1

1� x2

�
(53)

where d~�2
d�1 is a constant negative curvature metric on the

compact base manifold ~�d�1. Note that two disconnected
conformal boundaries are located at x ¼ �1.
To construct the boundary to bulk propagators K� dis-

cussed above, we propose

K�ðt; x;�jt0; �0Þ ¼
Z 1

�1
d!

2�

X
Q

e�i!ðt�t0ÞYQð�ÞY�
Qð�0Þf�!QðxÞ

(54)

where YQð�Þ are harmonic functions11 on ~�d�1. Inserting

(54) into the KG Eq. (6), one finds that f!Q satisfies

ð1� x2Þ d
2f�!QðxÞ
dx2

þ ðd� 2Þx df
�
!QðxÞ
dx

þ
�
ð!2 �Q2Þ � m2R2

1� x2

�
f�!QðxÞ ¼ 0: (55)

The solutions to (55) can be written in terms of generalized
Legendre polynomials as [22]

f�!QðxÞ ¼ ð1� x2Þd=4½a�!QP
�
� ðxÞ þ b�!QQ

�
� ðxÞ� (56)

where � is given by (5) and

� ¼ $� 1

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
d� 1

2

�
2 þ!2 �Q2

s
� 1

2
: (57)

a�!Q, b
�
!Q in (56) are constant coefficients which get fixed

when we impose the conditions (31); these are

f�!Qð�x�Þ ¼ 1; f�!Qð
x�Þ ¼ 0: (58)

The solutions for (56) satisfying (58) are

10This interpretation assumes that the boundary spatial folia-
tions �ðtÞ

þ and �ðt0Þ� should be identified as being the same Cauchy
surface ~� of a single base manifold where the dual field theory
lives in.

11These functions satisfy r2
�YQ ¼ �Q2YQ and a compact

manifold without boundaries has Q2 � 0. The eigenmodes and
eigenvalues for the Laplacian on a smooth compact hyperbolic
manifold cannot be expressed in closed analytic form and
depend on the freely acting discrete subgroup of SOðd� 1; 1Þ
chosen to perform the quotient. See [41] and references therein
for a numerical treatment of the problem.
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fþ!QðxÞ ¼
�
1� x2

1� x2�

�
d=4

� P�
� ðxÞQ�

� ð�x�Þ � P�
� ð�x�ÞQ�

� ðxÞ
P
�
� ðx�ÞQ�

� ð�x�Þ � P
�
� ð�x�ÞQ�

� ðx�Þ

f�!QðxÞ ¼
�
1� x2

1� x2�

�
d=4

� P�
� ðxÞQ�

� ðx�Þ � P�
� ðx�ÞQ�

� ðxÞ
P�
� ð�x�ÞQ�

� ðx�Þ � P�
� ðx�ÞQ�

� ð�x�Þ :

(59)

The possibility for two independent bulk-boundary propa-

gators arises from the fact that the base manifold ~� never
shrinks to zero size inside the bulk (see (53)) and therefore
regularity in the interior imposes no constraint in the
solutions (56). Normalizable modes appear for

!nQ ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�þ 1

2
þ nÞ2 þQ2 �

�
d� 1

2

�
2

s
; n¼ 0;1; . . . ;

and
b!Q

a!Q

¼�2 tan��

�
: (60)

For these frequencies, the index � in (57) takes the value
�n ¼ �þ n and the resulting solution becomes normal-
izable. The two-point functions (35) and (36) between
operators O� on the same boundary and opposite bounda-
ries take the form

hc fjTO�ðt; �ÞO�ðt0; �0Þjc ii

¼ �i
2��d

�2d
�ð1��Þ
�ð1þ�Þ

X
Q

YQð�ÞY�
Qð�0Þ

�
Z d!

2�
e�i!ðt�t0Þ�

�
1

2
þ��$

�

� �

�
1

2
þ�þ$

�
cosð�$Þ (61)

hc fjTO�ðt;�ÞO
ðt0;�0Þjc ii

¼�i
2��

2d�1

1

�ð�Þ2
X
Q

YQð�ÞY�
Qð�0Þ

�
Z d!

2�
e�i!ðt�t0Þ�

�
1

2
þ��$

�
�

�
1

2
þ�þ$

�
: (62)

A few comments on these expressions: (i) in the large
frequency limit $�! and the integrands in (61) and
(62) coincide with those of AdS2 (cf. (47) and (48)),
(ii) when a Feynman contour is chosen, a time ordered
product should be understood on the rhs of (61) and (62)
and (iii) although the Gamma functions �ð12 þ��$Þ
present two branch cuts at !¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 �ðd�1

2 Þ2
q

(see (57)),

the product in the integrands (61) and (62) is free of them.
The correlation between operators inserted on opposite

boundaries is nonvanishing, and this result has been ex-
plained in different ways depending on the context: (i) as

the result of being computing the correlator (62) on an
entangled state of two noninteracting boundary theories
black hole (BH) context [15]) or (ii) as due to an interaction
between the theories defined on each of the boundaries
(D1/D5 orbifold in [19]). The crucial point in both argu-
ments was the absence/existence of causal connection
between the asymptotic regions.

IV. ENTANGLEMENT VS. COUPLING

In this section, wewill review several thoughts regarding
the interpretation of the results (51) and (62). We would
like to address the issue of whether the results (51) and (62)
are the consequence of: (i) an interaction between the two
dual QFT theories, or (ii) due to the correlators being
evaluated on an entangled state, or (iii) both.

A. Entanglement entropy

The entanglement entropy SA is a nonlocal quantity (as
opposed to correlation functions) that measures how two
subsystems A and B are correlated. For a d-dimensional
QFT, it is defined as the von Neumann entropy of the
reduced density matrix �A obtained when we trace out
the degrees of freedom inside a (d� 1)-dimensional space-
like submanifold B which is the complement of A (see [42]
for a review).
In [43,44], a proposal was made for a holographic

formula for the entanglement entropy of a CFTd dual to
an AdSdþ1 geometry. It reads

S A ¼ Areað
AÞ
4Gðdþ1Þ

N

; (63)

where 
A is a (d� 1)-dimensional minimal surface in
AdSdþ1 whose boundary S, located at AdS infinity, co-

incides with that of A; this is S ¼ @
A ¼ @A and Gðdþ1Þ
N

and is the Newton constant inAdSdþ1. This formula, which
assumes the supergravity approximation of the full string
theory, has been applied in the AdS3=CFT2 setup showing
agreement with known 2D CFT results [42].
One can imagine applying a generalization of (63) to the

wormhole geometry (53) as follows12: the wormhole
presents two disconnected spatial regions �� at which
two identical degrees of freedom are supposed to be living
on. Imagine constructing a codimension 1 closed surface S
bounding a small region B on ��; experience fromWilson
loops and brane embeddings show that as B remains small,
the minimal surface will be located near x ¼ �1. As we
gradually increase the size of B, the minimal surface
anchored on �� dips deeper into the bulk and in the limit
when B occupies all space B ! �� the boundary S col-
lapses and the minimal surface gets localized at the throat
x ¼ 0 of the geometry, giving a nonzero result

12See [45] for an generalization of (63) to the Euclidean worm-
hole constructed in [10].

LORENTZIAN AdS GEOMETRIES, WORMHOLES, AND . . . PHYSICAL REVIEW D 83, 066015 (2011)

066015-9



S ~� ¼ Areað~�Þ
4Gðdþ1Þ

N

: (64)

This result should be understood as indicating that the
quantum state in the dual QFT described by the wormhole
geometry is not separable; stated otherwise, the result (62)
can be attributed to the wormhole geometry realizing
an entangled state on the Hilbert space product H ¼
Hþ �H� with the entropy (64) resulting from integrat-
ing out H�.

B. Interaction between the dual copies

We will now argue that apart from the entanglement
discussed above, the causal contact between the wormhole
asymptotic boundaries leads to an interaction term between
the two sets of degrees of freedom living at each boundary.
In particular, we argue that a coupling between the field
theories will exist whenever the asymptotic regions are in
causal contact.

We start quoting the partition function on the gravity
side for the wormhole geometry in the semiclassical limit;
its form is

Z gravity½�ð�þ
0 ; �

�
0 ; CÞ� � e�ði=2Þ

R
dydy0�i

0
ðyÞ�ijðy;y0Þ�j

0
ðy0Þ

(65)

where y ¼ ðt; �Þ denote the boundary points and
i; j ¼ þ;� refer to the asymptotic boundaries where pre-
scribed data ��

0 is given, the contour C fixes the normal-

izable solution in the bulk and the expression for �ij is

given by (34). According to the GKPW prescription, the
partition function (65) is the generating functional for O�
correlators; this is

Zgravity½�ð�þ
0 ; �

�
0 ; CÞ�

¼ hc fjTei
R

dy�þ
0
ðyÞOþðyÞþi

R
dy��

0
ðyÞO�ðyÞjc iiQFT; (66)

where the observables O� should be constructed as local
functionals of the fundamental fields �� living on each
boundary. These fields are assumed to describe indepen-
dent degrees of freedom: ½Oþ;O�� ¼ 0 on the same spa-
tial slice (see footnote 10).

Consider the simplest situation corresponding to choos-
ing C to be the Feynman contour; that is, we are computing
the vacuum to vacuum transition amplitude on the field
theory side. The rhs in (66) can be written as

hc 0jTei
R

dy�þ
0
ðyÞOþðyÞþi

R
dy��

0
ðyÞO�ðyÞjc 0iQFT

¼ Tr½�c 0
Tei

R
dy�þ

0 ðyÞOþðyÞþi
R

dy��
0 ðyÞO�ðyÞ�; (67)

where the trace operation is performed over a complete
set of states of the dual field theory Hilbert space and
�c 0

¼ jc 0ihc 0j is the density matrix associated to the

vacuum wormhole state. This vacuum state belongs to
the Hilbert space H ¼ Hþ �H� and according to the

arguments reviewed in the last subsection, it is not sepa-
rable as a single tensor product jc 0i � jcþi � jc�i.
To analyze the possibility of interaction between the

fields living at each boundary we consider the system at
finite temperature T ¼ ��1. The absence of singularities
in the Euclidean continuation implies that the wormhole
spacetime can be in equilibrium with a thermal reservoir of
arbitrary temperature, or stated otherwise, the periodicity
in Euclidean time is arbitrary. At thermal equilibrium the
field theory state is described by the Boltzmann distribu-
tion �� ¼ e��H, with H ¼ Hþ½�þ� þH�½��� þ
Hint½�þ;��� the dual field theory Hamiltonian, and Hint

a possible coupling between the two identical sets of
degrees of freedom ��.
Let us see now that an interaction term Hint should be

present in the Hamiltonian in order to avoid a contradic-
tion. The argument goes as follows: finite temperature
correlation functions on the field theory side are obtained
from the Euclidean rotation of (67), which reads

he�
R

dy�þ
0
ðyÞOþðyÞ�

R
dy��

0
ðyÞO�ðyÞi�

¼ Tr½��e
�
R

dy�þ
0
ðyÞOþðyÞ�

R
dy��

0
ðyÞO�ðyÞ�; (68)

the field theory is defined on an Euclidean manifold with

S1� � ~� topology (see footnote 10). The AdS/CFT pro-

posal equates this expression to the Euclidean continuation
of the lhs in (66), the result is

T r½e��He�
R

dy�þ
0
ðyÞOþðyÞ�

R
dy��

0
ðyÞO�ðyÞ�

¼ ZEgravity½�ð�þ
0 ; �

�
0 Þ� � e�SE½�þ

0
;��

0
�: (69)

On the right, SE½�þ
0 ; �

�
0 � corresponds to the on-shell

scalar field action on the Euclidean wormhole background,
with time compactified on a circle of radius �. Upon
Euclidean rotation and time compactification, the resulting

geometry is cylinder-like with topology S1� � I� ~�; the

two boundaries at which one imposes the boundary data
��

0 are located at the endpoints x� of the finite interval I.13

Note that in the Euclidean context the solution in the
interior (bulk) is completely specified by the boundary
data, no normalizable solutions exist, and rotating the
Feynman contour to the imaginary time axis is straightfor-
ward and leads to a nonsingular solution. The explicit
expression for the rhs of (69) is

Z Egravity½�ð�þ
0 ; �

�
0 Þ� � e�ð1=2Þ

R
dydy0�i

0
ðyÞ~�ijðy;y0Þ�j

0
ðy0Þ;
(70)

where ~�ij denotes the Euclidean rotated bulk-boundary

propagators (34). Finally, from (69) and (70) we obtain
for the gauge/gravity prescription for a wormhole at finite
temperature

13Note the similarity with the geometry studied in [10].
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T r½e��He�
R

dy�þ
0
ðyÞOþðyÞ�

R
dy��

0
ðyÞO�ðyÞ�

� e�ð1=2Þ
R

dydy0�i
0
ðyÞ~�ijðy;y0Þ�j

0
ðy0Þ: (71)

This is the key formula for our argument because if one
now assumes that the degrees of freedom �þ, �� are
decoupled, this is

H½�þ;��� ¼ Hþ½�þ� þH�½���; (72)

then �� ¼ e��Hþe��H� , and the lhs of (71) factorizes into

a product of two quantities: one depending on �þ
0 and one

depending on ��
0 .

14 However, the gravity computation

does not factorize because of the nonvanishing ~��
 terms.
We interpret this result as manifesting the existence of a
nontrivial coupling Hint between the two dual degrees of
freedom��: the field theory dual to the wormhole geome-
try contains a nontrivial coupling term between the two
boundary degrees of freedom �þ and ��.

C. Highlights and applications

The outcome of the above observations is that the worm-
hole geometry encodes the description of a dual field
theory with two copies of fundamental fields in interaction.
Moreover, the quantum state described by the wormhole is
entangled. In particular, the Euclidean continuation can be
seen as prescription to separate, in the dual field theory,
entanglement effects from possible interaction terms Hint.
A nonvanishing Euclidean two-point function between
operators located at different boundaries must be inter-
preted as originated from an interaction term Hint, rather
than an entanglement effect. In the following we confront
this point of view with two other relevant geometries
appearing in the literature: the AdS1þ1 geometry and the
eternal AdS black hole [15].

AdS1þ1 geometry: The analysis of the AdS1þ1 back-
ground (39) is entirely analogous to the one performed
for the wormhole case above. The Euclidean section of the
global metric (39) has two boundaries upon compactifying
the time direction and therefore two boundary conditions
��

0 are required in the semiclassical limit (see (65)). The

arguments leading to (71) apply with the Euclidean corre-

lation functions ~�ij immediately obtained from the

Lorentzian formulas (51). We therefore conclude from

the fact that ~��
 � 0 that AdS1þ1 is dual to a conformal
quantum mechanics composed of two interacting sectors.

Eternal AdS black hole: The crucial difference between
the wormhole (53) and the maximally extended AdS-BH
gravity solution is well known [15]: upon performing the
Euclidean continuation of the AdS-BH solution, the
existence of a horizon in Lorentzian signature generates a

conical singularity in the Euclidean manifold that can only
be avoided by demanding a precise periodicity in
Euclidean time. The resulting Riemannian geometry has
inevitably only one asymptotic boundary, and therefore
requires imposing only one asymptotic boundary data
�0; this indicates the existence of a single set of degrees

of freedom � and a unique Bulk-Boundary propagator ~�.
The system in equilibrium with a thermal bath of fixed
temperature (determined by the BH mass) has a generating
function that reads

T r½e��He�
R
dy�0ðyÞOðyÞ��e�ð1=2Þ

R
dydy0�0ðyÞ~�ðy;y0Þ�0ðy0Þ:

(73)

The real time (maximally extended BH) solution was
analyzed and interpreted in the AdS/CFT context in [15].
The second causally disconnected boundary, present in
Lorentzian signature, was understood as supporting the
TFD partners needed for obtaining a thermal state upon
their integration and lead to a doubling of the Hilbert space
as H ¼ Hþ �H�. We stress the fact that the second set
of degrees of freedom is causally disconnected from the
original zero temperature set; although they appear in
Lorentzian signature and give rise to a nontrivial �ij,

they are fictitious from a physical point of view. The causal
disconnection between the boundaries relates to the two-
point function ��
 never becoming singular.

V. DISCUSSION

We have reviewed the GKPW prescription in the
Lorentzian context relating the ambiguity in adding nor-
malizable modes to (3) to the integration contour C re-
quired to bypass the integrand singularities in (27) and (61)
arising from the existence of normalizable modes. To
compute Lorentzian quantities, one needs to fix a reference
contour Cref and the two sensible choice are retarded or
Feynman. These choices relate on the QFT side to being
computing either response or correlation functions. When
choosing the Feynman path as reference contour, any given
contour C differs from CF by contributions from encircling
poles, these encircled poles fix the initial and final states
that appear in the correlation functions (see (16)).
In Sec. III, we extended the GKPW prescription to

spacetimes with more than one asymptotic timelike
boundaries; in particular, we studied the simplest two
boundaries case. We proposed to write the bulk field in
terms of the two independent asymptotic boundary values
and as a toy example we applied the construction to
AdS1þ1 reobtaining previous results, we afterwards com-
puted the two-point correlation functions for the Einstein-
Gauss-Bonnet wormhole (53). At this point, we must
emphasize that the principal difference of our method
with the one performed in [19], for an AdS3 orbifold,
consists in that we considered the boundary values ��

0 of

14Note that in the absence of interaction ½Oþ;O�� ¼ 0 no
matter if the operators insertion points are spacelike/timelike
separated.
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the bulk scalar field as independent quantities; moreover,
we explicitly showed the possibility of constructing two
boundary-bulk propagators K� (their boundary conditions
were given in (31)). The construction performed in [19]
showed a relation between the boundary values ��

0 and

this was understood as indicating that the� sources for the
dual field theory are turned on in a correlated way. A
question remained as whether the two sets of data are
independent or redundant in the dual formulation, on the
other hand another question is the origin of the nonzero
result for operators located at different boundaries (��
)
this could either be due to entanglement or interactions or
both.

In Sec. IV, we applied the ideas on holographic entan-
glement entropy developed in[44] to the wormhole geome-
try. The nonvanishing of S~� obtained for the degrees of

freedom living on opposite boundaries suggests that the
wormhole should be understood as representing an en-
tangled state in H ¼ Hþ �H�. On the other hand,
the causal connection between the boundaries suggests
that a coupling might exist as well. To attack this issue
we consider putting the wormhole system in contact with a
thermal bath upon Euclideanization; the resulting geome-
try still has two boundaries connected through the bulk,
this indicated, to avoid a contradiction, that the dual QFT
consists of two copiesH� in interaction. In summary, the
number of disconnected boundaries of the Euclidean

section determines the number of physical degrees of
freedom.
We would like to emphasize finally the implications of

this approach on quantum gravity, which could be seen as
one of our main motivations. This subject has been dis-
cussed in different contexts in the last years and referred to
as emergent spacetime [46]. In this sense, we showed how
important topological and causal properties (connectivity)
of the spacetime geometry are encoded in the QFT action,
and that part of this information is not only in the ground
state but in its interacting structure. We hope this conclu-
sion might contribute to the construction of rules towards a
geometry engineering.
We should mention that in the presence of interactions

one needs to address the way the points on opposite
boundaries are identified. A first approach to this problem
is to identify the points y, y0 in configuration space at which
��
 diverges and study the consistency of identifying
them, this is currently under investigation and will be
reported elsewhere.
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