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We propose a natural scenario for the cosmological inflation with the nonminimal coupling term

invoking compact hyperbolic extra dimensions. Thanks to the unique mathematical properties of compact

hyperbolic space, the large volume of extra dimensions, which provides a natural understanding of the

proper size of couplings, does not necessarily accompany with the low Kaluza-Klein scale so that the

model allows a single field inflation with a scale around 1013 GeV. The model fulfills all the observed data

and predicts a sizable gravitational perturbation, r ’ 3� 10�3.
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I. INTRODUCTION

A compelling idea is the presence of the inflationary era
in the early universe [1]. Inflation solves several cosmo-
logical problems and its generic predictions are consistent
with various observations [2]. Recently inflation models
based on the nonminimal (NM) coupling term, the direct
coupling term between a scalar field and the Ricci scalar,
�2R, have drawn a sizable attention among physicists and
cosmologists [3] as the standard model Higgs field is
claimed to play the role of inflation without invoking
additional field contents [4].

Indeed the underlying mechanism of the NM inflation is
shown that the slow-roll potential for the proper inflation-
ary era is quite generically obtainable provided that the
ratio between the potential in the Jordan frame and the NM
coupling term, Vð�Þ=K2ð�Þ, is asymptotically constant [5]
where VðKÞ is the potential (NM coupling term) in the
Jordan frame, respectively. One should note that the ap-
pearance of the NM coupling term is allowed in super-
gravity theories taking generic Kähler potential into
account [6]. Also the quadratic NM term ��2R is of the
same order of the leading Einstein-Hilbert action so that
one should consider the NM term in the effective field
theory point of view [7].

Even though the class of models with the NM term
provides successful inflation, a fine-tuning problem,
however, appears in fitting the observed temperature
fluctuation in cosmic microwave background radiation,
�T=T � 10�5 quite generically [5]. For instance, when
V ¼ ��4 and K ¼ ��2, the ratio between the coupling
constants �=�2 is required to be extremely small
as the value is determined by the precisely measured
value of primordial density perturbation by WMAP [8],
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75�M6
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� ð1:91� 10�5Þ2:

�

�2 � 4:4� 10�10: (1)

Since the smallness is not a consequence of a symmetry of
the model, we would regard the appearance as a fine-tuning
problem in the ’t Hooft sense [9]. The main purpose of the
current paper is to address this fine-tuning problem by
extending the model to the higher dimensions with com-
pact hyperbolic space (CHS) as extra dimensions.
For a quite long time, mathematicians [10] have noticed

that CHS has a unique property, dubbed, rigidity after G.
Mostow [11] and the mass gap on CHS is conjectured to be
greater than 1=2 in the unit of the curvature scale after A.
Selberg [12–14]. Relatively recently in physics there have
been works focused on phenomenoloy with a rather low
Kaluza-Klein (KK) scale (� TeV) [15–18] and a compac-
tification scheme in string theory [19–21]. Also there have
been works considering CHS in the context of cosmology
[15], in particular, inflation by embedding the chaotic in-
flation model into higher dimensions with CHS without
considering the NM term [22]. The attempt in Ref. [22],
however, still requires further fine-tuning as the simple
model with ��4 potential does not fit the recent WMAP
data in (ns � r) plane within 2� confidence level.1 In this
regard, onemay consider themodel in the current paper as a
successful refinement of the model.
The rest of this paper is organized as follows. In Sec. II

we review the unique mathematical properties of CHS
which allows us to consider a big volume without a low
mass gap. In Sec.n III we recapitulate the inflationary
models with NM coupling in (1þ 3) dimensions and
show the fine-tuning problem in detail. In Sec. IV, finally,
we extend the model in higher dimensions with CHS and
show how the fine-tuning problem is solved. We conclude
in Sec. V with some comments on consistency of the
proposed model.

*yoonbai@skku.edu
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1Indeed a phenomenologically modified potential V ¼
�e2��

2=v2 ð�2 � v2Þ2 is tried in [22] to reduce the deviation.
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II. COMPACT HYPERBOLIC SPACE

Hyperbolic space in d dimensions, H d (d � 2), is
visualized as a hyperboloid embedded in 1þ d dimen-
sions, keeping SOðd; 1Þ symmetry manifest,

� x20 þ x21 þ x22 þ � � � þ x2d ¼ �‘2; (2)

where ‘ represents the length scale from the negative
curvature R

R ¼ � dðd� 1Þ
‘2

: (3)

Its source can be a negative cosmological constant � for
d � 3,

� ¼ �ðd� 1Þðd� 2Þ
2‘2

: (4)

In terms of a radial variable �ðj�j � ‘Þ and d� 1 angular
variables 	a, the induced metric can be expressed by

dsd ¼ ‘2ðd�2 þ sinh2�d�2
d�1Þ; (5)

d�2
d�1 ¼

Xd�1

a¼1

�Ya�1

b¼1

sin2	b

�
d	a: (6)

A CHS, H d=�, is constructed from H d by acting
freely the fundamental group �, a discrete subgroup of
SOðd; 1Þ. In case of d ¼ 2, a tessellation of the hyperbolic
space H 2 by the tiles of identical regular 2ðgþ 2Þ-gon
leads to a string of doughnuts of genus gwithout boundary.
Substituting the curvature (3) into the Gauss-Bonnet theo-
rem, we compute the area A of the obtained orientable
CHS,

A ¼ 4�ðg� 1Þ‘2; ðg � 2Þ: (7)

For a fixed length scale ‘, the large area can be achieved by
the large number of genii g. When d � 3 [10], CHSs are
rigid [11] that all the metrical quantities are determined by
the topology and the scale ‘, including their volume,

Vol ðH d=�Þ ¼ e�‘d; (8)

where � is a topological number fixed by the fundamental
group, �, of the CHS. Suppose that we have a
d-dimensional CHS of its maximum distance 2L. Then
its volume is smaller than a disk D having a radius 2L
out of the hyperbolic space,

Vol ðH d=�Þ< VðDÞ � e�D‘d ¼ �dIdðL=‘Þ‘d; (9)

where �d ¼ �d=2=�ðd=2þ 1Þ is the volume of the
d-sphere and IdðxÞ ¼

R
x
0 dysinh

d�1y. For a sufficiently

large volume of L=‘ � 1, �D � ðd� 1Þ L‘ þ log�d=C

where C ¼ 2; 23; 6; . . . for d ¼ 2; 3; 4; . . . , respectively.
When d � 3, the rigidity theorem tells us that L=‘ cannot
be chosen arbitrarily but determined by the fundamental
group of CHS, �.

Though we have two mass scales in this CHS, 1=‘ from

the constant curvature and 1=ðVoldÞ1=d � e�ð�=dÞ=‘ from
the volume, the first eigenmode of Laplace-Beltrami op-
erator is mainly decided by 1=‘. The bound of the first
eigenmode is conjectured to be [12]

k1‘ � 1=2; (10)

and the number theory approach proved up to k1‘ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
171=784

p � 0:22 [13]. (See [14] for the higher KK
excitations.)
If we consider 2-dimensional CHS with a large genus g

or higher-dimensional (d � 3) CHS, we can construct
extra dimensions with a large volume but an undetectably
large KK mass gap.
For instance, a model with 2-dimensional extra dimen-

sions of 1 fm scale thickness and 1TeVKKmass gap requires
g ¼ Oð106Þ for d ¼ 2 and �=d ¼ Oð10Þ for d � 3. On the
other hand, with 1=‘� 1013 GeV and �� 23, we get a
sufficiently large volume for a natural scenario for inflation
with NM coupling, which we shall show later on.

III. INFLATIONWITH NON-MINIMAL COUPLING

In this section we briefly recapitulate slow-roll inflation
with NM coupling in (1þ 3) dimensions and point out the
naturalness problem in fitting the CMB data. In the Jordan
frame, the action is given as follows:

SJ ¼
Z

d4x
ffiffiffiffiffiffiffiffiffi�gJ

p �
�M2 þ Kð�Þ

2
RJ � 1

2ð@�Þ2 � Vð�Þ
�
;

(11)

whereM is a mass scale for gravity, RJ is the Ricci scalar in
the Jordan frame, Kð�Þ is a generic function of �, and
Vð�Þ is the scalar potential.
One can always find a function �ð�Þ,

e�2� ¼ M2
Pl

M2 þ Kð�Þ ; (12)

so that the Weyl transformation,

gJ
� ! gE
�e
�2�ð�Þ; (13)

leads to Einstein frame. The gravity is canonically normal-
ized as

SE ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffi�gE

p �
�M2

Pl

2
R� 1

2ð@�̂Þ2 �UEð�̂Þ
�
; (14)

where the scalar field �̂ in the Einstein frame is chosen to
make its kinetic term canonical by

d�̂

d�
¼ e��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3

2M2
Pl

e�2�K0ð�Þ2
s

: (15)

Subsequently the scalar potential is now read as
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UEð�̂Þ ¼ M4
Pl

½M2 þ Kð�ð�̂ÞÞ	2 Vð�ð�̂ÞÞ: (16)

WhenM�MPl,UEð�̂Þ � Vð�ð�̂ÞÞ at the small field limit,
lim�!0K 
 M2.

Suppose K and V satisfy the asymptotic relation,
lim�!1ðV=K2Þ ! C> 0 [3,5]. Then the potential (16)

involves a flat plateau at the large field limit,
UE!�!1M4

PlV=K
2 � M4

PlC, which can be responsible

for the slow-roll inflation, and thus �̂ can be identified as
an inflaton field [5].

With K ¼ �eff�
2 and V ¼ �eff�

4 [4], the inflaton po-
tential in the Einstein frame is explicitly read as

UE ¼ �effM
4
4

2mð�effÞ2
�
1þ M2

4

K4ð�Þ
��2

; (17)

where � is related to the canonically normalized field,

�̂, as

� ’ M4ffiffiffiffiffiffiffiffi
�eff

p exp
�̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ 1=�eff

p
M4

: (18)

From the observation of primordial density perturbation
by WMAP [8],

�2
H ¼ 1

75�M6
4

U3
E

U0
E

� ð1:91� 10�5Þ2; (19)

we get the ratio �eff=ð�effÞ2 [5]
�eff

ð�effÞ2 � ð2:1� 10�5Þ2: (20)

We regard the appearance of this small number as an
unnatural fine-tuning. In the next section, we address this
fine-tuning problem by introducing CHS.

Other cosmological observables, the spectral index of
scalar perturbation and tensor perturbation, are calculated
in terms of the number of e-foldings and a useful coeffi-
cient

a ¼ 1þ 1

6�eff

;

as

ns � 1� 2

N
� 9a

2N2
� 0:965; (21)

r � 12a

N2
� 0:003; (22)

which are completely consistent with the current WMAP
7 yr data [8].

IV. INFLATION WITH NONMINIMAL COUPLING
IN HIGHER D WITH COMPACT HYPERBOLIC

EXTRA DIMENSIONS

Let us consider a model with d-dimensional compact
hyperbolic extra dimensions. The model in D ¼ 4þ d
dimensions is described by the action

S ¼
Z

d4x
Z

H d=�
ddy

�
�M2þd

D þ KD

2
RD

� 1
2ð@�DÞ2 � VD

�
; (23)

whereMD is a scale forD-dimensional gravity and KD and
VD are (polynormial) functions of �D satisfying
VD=K

2
D ! C at a large field limit.

If we assume a factorizable geometry,

ds2D ¼ ds24 þ ds2H d=�
; (24)

it is straightforward to get the Ricci scalar,

RD ¼ R4 þ RH d=�: (25)

As the curvature of the hyperbolic space is negative, the
second term in (25) can have a contribution to the cosmo-
logical constant, probably negatively, in 4 dimensions.
Here the cosmological constant in the dimensionally re-
duced effective theory is assumed to be zero at the mini-
mum of the scalar potential, which is measured to be
extremely tiny in the present Universe. In this paper, we
will not deal with the cosmological constant problem but
will focus on the slow-roll inflation at the large field limit.
Integrating over the extra dimensions of the volume Vd

the 4-dimensional effective action becomes

S4 ¼
Z

d4x

�
�M2

4 þ K4

2
R4 � 1

2ð@�Þ2 � V4ð�Þ
�
; (26)

where � ¼ ffiffiffiffiffiffi
Vd

p
�D, M2

Pl � M2
4 ¼ M2þd

D Vd, and K4 ¼
KDVd. This action recovers Eq. (11). Here the possible
contribution from KK states could be neglected once the
scale from the curvature of CHS is greater than the scale
of our interest, the inflation scale, as we have discussed in
Eq. (10).
Without loss of much generality,2 let us consider an

explicit case: KDð�DÞ ¼ �D�
2
D and VDð�DÞ ¼ �D�

4
D. In

general, the slow-roll inflation is achieved when VD=K
2
D !

constant, as discussed previously [5]. In D dimensions,
½KD	 ¼ D� 2, ½VD	 ¼ D, and ½�D	 ¼ D�2

2 . Hence, re-

gardless of D, the NM coupling is always dimensionless,
½�D	 ¼ 0, but the quartic self-coupling is dimensionful
except D ¼ 4 as ½�D	 ¼ �ðD� 4Þ. Here we introduce
dimensionless couplings �0 � 1 and �0 � 1 which count
the strength of the coupling in the fundamental unit:

2The conclusion remains the same as p ¼ 2 even when we
take more general polynomial terms as KD ��p

D and VD ��2p
D

with p 2 Zþ.
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�D � �0; �D � �0

MD�4
D

: (27)

Together with �eff ¼ �, the effective quartic coupling is
obtained in terms of � as

�eff ¼ �0

Md
DVd

¼ �0

V d

: (28)

When the scale of D-dimensional gravity is the same
as the curvature scale of CHS, MD1=‘, V d becomes a
dimensionless measure of the volume of extra dimensions,
V d ¼ VolðH d=�Þ=‘d. An immediate result is

�eff

ð�effÞ2 ’ 1

V d

� �0

�2
0


 1 (29)

provided that the CHS has a large volume, V d � 1. This
is naturally understood as the Oð10Þ topological number
appears in the exponent which determines the volume of
CHS as in Eq. (9).

For V d � 1010, the scales in D-dimensions are MD �
1013 GeV, �D � 1 and �D � 10�13=GeV. For the mass
term of the bulk scalar field, there will be additional
contribution from the �KDRD=2 term so that we get

m2
eff ¼ m2 þ dðd�1Þ�D

‘2
� 1=‘2 which is of the same scale

of the KK mass gap.

V. SUMMARYAND DISCUSSION

A nonminimally coupled scalar field has a potential
which has a flat plateau in the Einstein frame when the
ratio of the square of the NM coupling term and
the potential energy is asymptotically constant
Vð�Þ=K2ð�Þ ! C. For this scalar field being an inflaton
field fitting CMB data a fine-tuning is required as given in
Eq. (20). In the theory with a single scale, 1013 GeV, and
NM coupling, we show that the large volume of CHS,
which is controlled by a topological number of the order
of a few tens, can provide a plausible resolution of the fine-
tuning problem without accompanying a light KK state. In
the high scale inflation, reheating takes place at high
energy so that the late time cosmology is seamlessly con-
sistent with the current model. Again, the situation in the
current paper is very different from the conventional mod-
els with large extra dimensions [23] where the low mass

gap (� 1=V1=n
n �MeV) often spoils the successful

slow-roll inflation. The prediction of a r � 0:3% level
gravitational wave in CMB might be testable in future
experiments such as Planck.

Last but not least, some comments on consistency of the
current model are in order.

(i) Quantum gravity correction: One may worry if the
energy density of inflaton during the inflation might
be too high so that it exceeds the critical density at

which black hole forms. This is not the case as is
easily checked by Eq. (17). Indeed, the energy den-
sity is highly suppressed by the large volume

UE � M4
4

V d


 M4
Pl: (30)

Thus, we can safely neglect quantum gravity effects
here.

(ii) KK correction: The de Sitter temperature during the
inflation is certainly less than the scale of the first
KK excitation:

HE

2�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UE

12�2M2
4

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

72�2m�2

s
MD <

1

‘
; (31)

which is well below the first KK scale in Eq. (10).
The validity of the purely four dimensional effective
description is fully consistent when V d � 1.

(iii) Higher order correction: The current model re-
quires the large field behavior V=K2 ! C to realize
the flat potential for slow rolling. Certainly this
might bring unwanted difficulties in understanding
the effective field theory description since higher
order terms �nð�=MÞn with large n may become
important at�=M > 1 where inflation took place if
the Wilson coefficients of these terms, �n, are
Oð1Þ. This problem is common in large field in-
flation models such as chaotic inflation model with
m2�2 or ��4 potential. However, currently we do
not have any evidence for �n ¼ Oð1Þ. For more
discussion, see [24].

(iv) Astrophysical bounds: If there remains a light KK
graviton like in Ref. [23], several astrophysical
processes including supernova cooling process
can be significantly affected. With CHS, on the
other hand, the KK scale is high enough not to
have a light graviton mode.
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