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We propose a duality between the 2dW N minimal models in the large N ’t Hooft limit, and a family of

higher spin theories on AdS3. The 2d conformal field theories (CFTs) can be described as Wess-Zumino-

Witten coset models, and include, for N ¼ 2, the usual Virasoro unitary series. The dual bulk theory

contains, in addition to the massless higher spin fields, two complex scalars (of equal mass). The mass is

directly related to the ’t Hooft coupling constant of the dual CFT. We give convincing evidence that the

spectra of the two theories match precisely for all values of the ’t Hooft coupling. We also show that the

renormalization group flows in the 2d CFT agree exactly with the usual AdS/CFT prediction of the gravity

theory. Our proposal is in many ways analogous to the Klebanov-Polyakov conjecture for an AdS4 dual

for the singlet sector of large N vector models.
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I. INTRODUCTION

Two-dimensional conformal field theories are probably
the best understood amongst all quantum field theories.
The local conformal symmetry described by the Virasoro
algebra is in many cases powerful enough to lead to a
complete determination of the operator spectrum, as well
as to explicit formulas for the correlation functions. These
theories thus give concrete instances of nontrivial fixed
points of the renormalization group, many of which have
a realization in statistical mechanical systems.

In higher dimensional conformal field theories (CFTs),
without the luxury of the local Virasoro symmetry, we have
had to resort to other techniques to learn about nontrivial
fixed points. One of the fruitful approaches has been to
consider theories in which one has very many interacting
degrees of freedom, the so-called large N limit. For ex-
ample, for vector models in 2þ 1 dimensions with OðNÞ
number of fields, one can infer the existence of nontrivial
fixed points in the large N limit. In fact, in this limit, the
fixed points are perturbatively accessible, and one can
compute, in a systematic 1

N expansion, anomalous dimen-

sions and correlation functions. Thus the OðNÞ vector
model exhibits the analogue of the Wilson-Fisher fixed
point without having to resort to methods such as the �
expansion.

While it has always been surmised that the large N limit
is some kind of mean field like description, it was not until
the advent of the AdS/CFT duality that one could make this
idea precise (at least for gauge theories). This duality gives
a classical description of the leading large N behavior. The
unexpected feature was that this was in terms of a higher
dimensional theory which typically involves gravity in an

asymptotically AdS spacetime. In the case of matrix valued
fields withOðN2Þ degrees of freedom, the relevant descrip-
tion is believed to be in terms of a classical string theory.
If one then takes the further limit of ultrastrong coupling
(�� 1), the classical (super-)string theory reduces to
Einstein (super-)gravity. This idea has had tremendous
success in the last decade or so, and its repercussions are
now even being felt in domains once far removed from
string theory.
The connection of the large N limit to gravity, however,

remains very mysterious, and our current understanding is
very much tied to the origins of the duality in D-branes and
string theory (with all its additional baggage of supersym-
metry and so on). One would like to have examples which
are shorn of any unnecessary ingredients, and which give
an idea of how this connection comes about. Such ‘‘dis-
tilled’’ versions of the gauge-gravity duality are also inter-
esting from the point of view of applications to realistic
systems which often do not involve supersymmetry, for
example. Moreover, since an Einstein gravity dual forces
us into the regime of very strong coupling one would need
to move away from this limit to describe systems with a
coupling of order one. Generically, this would require us to
be in a stringy regime with a large number of operators of
finite anomalous dimensions. The technical complications
of quantizing strings in (asymptotically) AdS spacetimes
prevents us from studying this regime easily.
An interesting via media is afforded by the so-called

higher spin theories in AdS spacetimes [1]. These are
theories containing (generically) an infinite number of
massless interacting fields with spin s � 2 (see [2] for an
introduction). It has been suggested by several people
[3–6] that these theories might be relevant for the descrip-
tion of (a sector of) the weak coupling limit of large N
gauge theories. However, a striking and concrete conjec-
ture was made in 2002 by Klebanov and Polyakov [7] who
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suggested that a particular higher spin theory on AdS4
might be exactly dual to the singlet sector of the interacting
(as well as the free) OðNÞ vector model in 2þ 1 dimen-
sions at large N. This is interesting for several of the
reasons discussed above. The OðNÞ model has a close
relation to various statistical mechanical systems. The
interacting fixed point is nontrivial and yet not strongly
coupled. Finally, it is a concrete duality which goes beyond
the Einstein gravity limit and yet does not involve an entire
stringy spectrum of operators. Recent calculations have
provided nontrivial, interesting evidence for this conjec-
ture, see in particular [8–10].

The aim of this paper is to propose another duality of this
nature. In fact, we shall return to the well-understood class
of 2d CFTs and look for signatures of a higher dimensional
classical gravity like description in a suitable large N limit.
This will give rise to a controlled environment in which to
study the puzzle of the emergence of a gravity dual.

The large N limit of various field theories in two and
higher dimensions has been much studied. For some rea-
son, however, this limit does not appear to have been much
explored in the context of 2d CFTs (see however [11–13]),
perhaps because they are solvable by other means. In this
paper we study a family of minimal model CFTs which
are given by coset WZW models

suðNÞk � suðNÞ1
suðNÞkþ1

; (1.1)

where the denominator is the diagonal suðNÞ subalgebra,
and the subscripts refer to the level of the current algebra.
This family of CFTs includes in the special case of N ¼ 2
the usual coset description of the unitary minimal models
(c < 1) of the Virasoro algebra [14]. Though the general-
ization of these theories to arbitraryN has been less studied
compared to the N ¼ 2 case, several important facts about
them are known. In particular, the spectrum of primaries
and the fusion rules follow directly from those of the Wess-
Zumino-Witten (WZW) models, and the characters can in
principle be deduced. More interestingly, these theories
are known [15] to possess a higher spin W N symmetry
[16–18] (for a review see [19]), and the different minimal
models (for finite, fixed N and different values of k) are
related to one another by an integrable renormalization
group (RG) flow. More details about the W N minimal
models are explained in Sec. II.

Here, we will look at these theories in the large N limit.
Specifically, we will define a ’t Hooft limit (see also [13])
in which we take

N; k! 1; 0 � � � N

kþ N
� 1 fixed: (1.2)

It is interesting that the limit appears to be well defined and
nontrivial. In particular, these theories behave like vector
models, since their central charge equals cNð�Þ ’ Nð1�
�2Þ and hence scales as N. The discrete set of CFTs

coalesce into a line labeled by the ’t Hooft coupling �,
where � ¼ 0 behaves like a free theory (of N complex
fermions), while � ¼ 1 is some sort of ‘‘strong’’ coupling
region. Notice that the coupling always remains of order
one—an indication of the absence of a dual Einstein
gravity regime. Furthermore, the spectrum of primaries
simplifies remarkably in the ’t Hooft limit, in that the
dependence of the conformal dimensions on the coupling
� becomes essentially linear. One of the nice features
of this model compared to the OðNÞ vector model is the
existence of the additional continuous parameter �, which
makes it closer to the supersymmetric gauge theories in
higher dimensions. The details of the ’t Hooft limit are
explained in Sec. III.
In Sec. IV we describe the higher spin theories on AdS3

which are dual to these large N CFTs. As was mentioned
before, the CFTs have a higher spinW N symmetry, and so
it is natural that the bulk theory also possesses such a
symmetry. In fact, it was recently pointed out in [20,21]
that higher spin theories in AdS3 possess, at the classical
level, an asymptotic symmetry group which is indeed
a two-dimensional W -algebra. This generalizes the
observation of Brown-Henneaux for asymptotic Virasoro
symmetries in Einstein gravity on AdS3 [22]. Here we will
consider a theory of higher spins, which contains, in addi-
tion to a largeN tower of massless higher spin gauge fields,
two complex scalar fields (of equal mass). It is known that
scalar fields can appear as additional matter fields in these
AdS3 theories (precisely in pairs of equal mass). However,
their mass cannot be arbitrary since it is related to a
parameter � of the algebra which plays the role analogous
to �0 [23–25].1 We will see that this parameter (and hence
the mass) is indeed mapped to the ’t Hooft coupling (1.2)
of the CFT via

� ¼ 1� � ) M2 ¼ �ð1� �2Þ: (1.3)

In Sec. V we provide support for this conjecture. The
first piece of evidence consists in matching the spectrum
of the CFT with that of the bulk theory. In fact, a 1-loop
computation for the higher spin gauge fields in AdS3 [26]
had already revealed a match with the vacuum character
of theW N algebra. In the specific higher spin theory being
considered here one has additional scalar fields in the bulk,
as well as additional primary fields in the CFT. We find
highly nontrivial evidence that the two match for all values
of the coupling �. This requires the spectrum of dimen-
sions in the CFT to take a special form which it obligingly
does, but only in the large N ’t Hooft limit.
The next piece of evidence consists of relating the

behavior of the CFTs under the RG flow with that in
AdS3. The lowest nontrivial primary operator O has con-
formal dimension h� ¼ �h� ¼ 1

2 ð1� �Þ in the ’t Hooft

limit. The ‘‘double trace’’ operator OOy is thus relevant,

1We thank Misha Vasiliev for this remark.
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and it is known to be the operator that induces the RG flow
to the nearby minimal model. Furthermore, one knows that
it flows in the IR to an irrelevant operator of the form
O0O0y, where O0 has dimensions (in the ’t Hooft limit)
hþ ¼ �hþ ¼ 1

2 ð1þ �Þ. Note that
�þ ¼ ðhþ þ �hþÞ ¼ 2� �� ¼ 2� ðh� þ �h�Þ: (1.4)

This precisely corresponds to what we have learnt from
AdS/CFT. In fact, one of the bulk complex scalar fields �
that one has to add to the higher spin theory is precisely
dual to O, while the other, �0, is dual to O0. Though both
fields in AdS3 have the same mass, there is a choice in how
they are quantized [27,28]. In fact, we have to quantize
them in opposite ways such that they correspond to the two
different dimensions �� for the operators dual to them. As
was argued on general grounds in [29] (see also [30]), the
RG flow takes one from the quantization corresponding to
�� in the UV to that for �þ in the IR. In other words, the
operator corresponding to �, namely O, must flow in the
IR to the operator corresponding to �0, namely O0. This is
thus in perfect agreement with the CFT result we men-
tioned earlier.

In Sec. VI we outline a heuristic way to ‘‘derive’’ this
duality. This uses the fact that the bulk description of the
higher spin fields is a Chern-Simons theory [31,32]. One
might therefore imagine the boundary theory to be a WZW
theory. In fact, there is a very specific set of boundary
conditions associated with requiring the spacetime to be
asymptotically AdS3—this is, for example, clearly ex-
plained in [33], see also [20,21]. From the point of view
of the WZW theory, these boundary conditions lead to a
specific gauging (Hamiltonian reduction) which goes by
the name of (classical) Drinfeld-Sokolov (DS) reduction.
The bulk description in terms of the higher spin theories is,
of course, classical and we do not have a quantum defini-
tion of the theory. What we propose is that the quantum
version of the above classical DS reduction would define
the quantum theory. This quantum theory is believed to
be equivalent to the above coset model, provided that the
levels are suitably identified [17,34–37]. In order to apply
this line of reasoning to our situation the main open prob-
lem is to understand how to describe the scalar fields in
this formulation. This approach should hopefully lead to a
detailed understanding of the emergence of gravity and
higher spin diffeomorphisms in AdS3.

Finally, Sec. VII contains concluding remarks. We have
sequestered various details of the CFT and higher spin
theories into three appendices.

II. A FAMILYOFMINIMALMODELCONFORMAL
FIELD THEORIES

In this section we describe the 2d CFTs which will be the
key players on the field theory side. Here we outline some
of their important properties. In the next section we will
take the ’t Hooft large N limit of these models.

A. The minimal WN models

The CFTs we are interested are the so-called W N

minimal models. They are most easily described in terms
of a coset [15]

gk � g1
gkþ1

; (2.1)

where, in order to obtain W N , we consider g ¼ suðNÞ.
The central charge of the coset equals

c ¼ dimðgÞ
�

k

kþ h_
þ 1

1þ h_
� kþ 1

kþ 1þ h_

�
; (2.2)

where h_ is the dual Coxeter number of g. For g ¼ suðNÞ
we have h_ ¼ N, and the central charge becomes

cNðpÞ ¼ ðN � 1Þ
�
1� NðN þ 1Þ

pðpþ 1Þ
�
� ðN � 1Þ; (2.3)

where we have introduced the parameter p ¼ kþ N �
ðN þ 1Þ that will sometimes be useful. Note that for
N ¼ 2 this is just the familiar unitary series of the
Virasoro minimal models that can be described by the above
Goddard-Kent-Olive construction with g ¼ suð2Þ [14].
For the smallest value p ¼ N þ 1, (i.e. k ¼ 1), we have

a theory with central charge c ¼ 2ðN�1Þ
Nþ2 which has an

alternative realization in terms of a theory of ZN parafer-
mions [38]. The other extreme case corresponds to p! 1
(taking k! 1 while keeping N finite), where c ¼
ðN � 1Þ, and the symmetry algebra is equivalent to the
Casimir algebra of the suðNÞ affine algebra at level k ¼ 1
[15,18]. The Casimir algebra consists of all suðNÞ singlets
in the affine vacuum representation. Since the affine alge-
bra is at level one, it can be realized in terms of ðN � 1Þ
free bosons.

B. The minimal model representations

The actual coset theory does not just involve the vacuum
representation of the coset algebra (2.1). The other states of
the theory fall into highest weight representations of the
coset algebra. These are labeled by ð�;�;�Þ, where � is a
highest weight representation (hwr) of gk, � is a hwr
of g1, and � is a hwr of gkþ1.

2 Only those combinations
are allowed where � appears in the decomposition of
(� ��) under the action of gkþ1. The relevant selection
rule is simply

�þ�� � 2 �RðgÞ; (2.4)

where �RðgÞ is the root lattice of g. In addition, there are
field identifications: the two triplets

ð�;�;�Þ ffi ðA�; A�;A�Þ; (2.5)

2It is important to note though that the states in the coset do not
transform under any nontrivial representations of suðNÞ.
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define the same highest weight representation of the coset
algebra, provided that A is an outer automorphism of the
affine algebra corresponding to gl, with l ¼ k, l ¼ 1 and
l ¼ kþ 1, respectively. For g ¼ suðNÞ, the group of outer
automorphisms is ZN , generated by the cyclic rotation of
the affine Dynkin labels, i.e. the map

½�0;�1; . . . ; �N�1	� ½�1;�2; . . . ; �N�1; �0	; (2.6)

where the first entry is the affine Dynkin label. In this
notation, the allowed highest weight representations of
suðNÞ at level k are labeled by

Pþk ðsuðNÞÞ ¼
�
½�0;�1; . . . ; �N�1	: �j 2N0;

XN�1
j¼0

�j ¼ k

�
:

(2.7)

Note that the field identification (2.5) does not have any
fixed points since ZN acts transitively on the highest weight
representations of suðNÞ at level k ¼ 1.

C. Conformal weights

It is easy to see that for any choice of highest weight
representations ð�;�Þ, there always exists a unique � 2
Pþ1 ðsuðNÞÞ, such that �þ�� � 2 �RðsuðNÞÞ. Thus we
may label the highest weight representations of the coset
algebra in terms of unconstrained pairs ð�;�Þ. These pairs
are still subject to the field identifications

ð�;�Þ ffi ðA�;A�Þ: (2.8)

The conformal weight of the corresponding highest weight
representation equals then

hð�;�Þ ¼ CNð�Þ
N þ k

þ CNð�Þ
N þ 1

� CNð�Þ
N þ kþ 1

þ n; (2.9)

where CNð�Þ is the eigenvalue of the quadratic Casimir
operator of g ¼ suðNÞ—hence the N-dependence—in the
representation �, see Appendix B 1 for our normalization
convention. Here the representation � 2 Pþ1 ðsuðNÞÞ is
uniquely determined by the condition that �þ�� � 2
�RðsuðNÞÞ. Furthermore, n is a non-negative integer, de-
scribing the ‘‘height’’ (i.e. the conformal weight above the
ground state) at which the gkþ1 primary � appears in the
representation ð� ��Þ. Unfortunately, an explicit formula
for n is not available, but it is not difficult to work out n for
simple examples. Alternatively, one may use the Drinfeld-
Sokolov description of these models (that is briefly re-
viewed in Appendix B). In that language the highest weight
representations are labeled by ð�þ;��Þ ffi ð�;�Þ, and the
conformal weights equal

hð�þ;��Þ ¼ 1

2pðpþ 1Þ ðjðpþ 1Þð�þ þ �̂Þ
� pð�� þ �̂Þj2 � �̂2Þ; (2.10)

where �̂ is the Weyl vector of suðNÞ. For N ¼ 2 (the
Virasoro minimal models), (2.10) reduces to the familiar
formula

hðr; sÞ ¼ ðrðpþ 1Þ � spÞ2 � 1

4pðpþ 1Þ ¼ hðp� r; pþ 1� sÞ
(2.11)

with 1 � r � p� 1, 1 � s � p. Here we have identified

�þ ¼ ðr�1Þffiffi
2
p and �� ¼ ðs�1Þffiffi

2
p .

In the following, the primary where � ¼ ½1; 0N�1	 ¼ f
is the fundamental representation3 with � ¼ ½0N�1	 ¼ 0
the trivial representation will play an important role.
Then (2.9) gives—in this case � ¼ f with n ¼ 0

hð0; fÞ ¼ CNðfÞ
N þ 1

� CNðfÞ
N þ kþ 1

¼ ðN � 1Þ
2N

�
1� N þ 1

N þ kþ 1

�
; (2.12)

where we have used that CNðfÞ ¼ 1
2 ð�f ;�f þ 2�̂Þ ¼ N2�1

2N .

On the other hand, for the coset representation with
� ¼ f and � ¼ 0, � is the antifundamental representation,
� ¼ �f, and we get (again with n ¼ 0)

hðf; 0Þ ¼ CNðfÞ
N þ k

þ CNðfÞ
N þ 1

¼ ðN � 1Þ
2N

�
1þ N þ 1

N þ k

�
:

(2.13)

An example with n ¼ 1 arises for the case where � ¼ 0
and � ¼ adj, the adjoint representation. Then � ¼ 0 but
n ¼ 1, and we obtain

hð0; adjÞ ¼ 1� CNðadjÞ
N þ kþ 1

¼ 1� N

N þ kþ 1
; (2.14)

where we have used that CNðadjÞ ¼ h_ ¼ N. Finally, the
representation with � ¼ adj and � ¼ 0 also has� ¼ 0 and
n ¼ 1, and the conformal weight is

hðadj; 0Þ ¼ 1þ CNðadjÞ
N þ k

¼ 1þ N

N þ k
: (2.15)

D. Fusion rules and characters

The fusion rules of the coset theory follow directly
from the mother and daughter theory. Indeed, in terms of
the triplets ð�;�;�Þ the fusion rules are simply

N ð�1;�1;�1Þð�2;�2;�2Þ
ð�3;�3;�3Þ ¼N ðkÞ

�1�2
�3N ð1Þ

�1�2
�3N ðkþ1Þ

�1�2
�3 ;

(2.16)

3Note that the representation of the affine suðNÞ algebra has N
entries as in (2.6). Below we will mostly drop the affine Dynkin
label, and use a description in terms of the usual (N � 1) Dynkin
labels for representations of suðNÞ.
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where the fusion rules on the right-hand side are those of
gk, g1 and gkþ1, respectively. Note that the fusion rules
are invariant under the field identification (2.5). Since the
fusion rules of the level one factor are just a permutation
matrix, we can also directly give the fusion rules for the
representatives ð�;�Þ as

N ð�1;�1Þð�2;�2Þ
ð�3;�3Þ ¼N ðkÞ

�1�2
�3N ðkþ1Þ

�1�2
�3 : (2.17)

Closed form expressions for the characters of the mini-
mal W N highest weight representations are known in
terms of branching functions, see, for example, Eq. (7.51)
of [19]. However, these expressions are often difficult to
evaluate explicitly. In the following we shall mainly be
interested in the large k limit of these models, in which
case the low-lying terms of the characters simplify. In
particular, the vacuum character becomes in this limit

	ð0;0ÞðqÞ ¼ q�ðcN=24Þ
�YN
s¼2

Y1
n¼s

1

ð1� qÞn þOðqkþ1Þ
�
;

(2.18)

since for k! 1 the character is that of the Casimir alge-
bra, see Eq. (7.18) of [19]. For finite k the corrections to
this formula are a consequence of the null-vectors of the gk
and gkþ1 factors in (2.1). For the case of the vacuum
representation with � ¼ � ¼ 0, these appear first at height
h ¼ kþ 1.

For the other characters there is a similar formula in
terms of branching functions of the affine level one repre-
sentation to the horizontal (finite-dimensional) Lie algebra.
However, as far as we are aware, no simple explicit for-
mulas for these branching functions are known.4 We have
worked out the first few branching rules for some small
representations in Appendix C, and from that we can
conclude that

	ð0;fÞðqÞ ¼ qhð0;fÞð1þ qþ 2q2 þ 4q3 þ 
 
 
Þ (2.19)

	ð0;adjÞðqÞ ¼ qhð0;adjÞð1þ 2qþ 4q2 þ 
 
 
Þ (2.20)

	ð0;½0;1;0N�3	ÞðqÞ ¼ qhð0;½0;1;0N�3	Þð1þ qþ 3q2 þ 
 
 
Þ
(2.21)

	ð0;½2;0N�2	ÞðqÞ ¼ qhð0;½0;1;0N�3	Þðqþ q2 þ 
 
 
Þ
¼ qhð0;½2;0N�2	Þð1þ qþ 
 
 
Þ: (2.22)

These formulas will play an important role below.

E. The RG flows

For fixed (finite) N the models with different values of k
(or p) are related to one another by an RG flow. This is

most familiar for the Virasoro minimal models, for which
the perturbing field in the UV is the (1,3) field with

h1;3 ¼ p�1
pþ1 [39].

5 In the above conventions this field corre-

sponds to ð�;�Þ ¼ ð0; adjÞ, which has indeed hð0; adjÞ ¼
p�1
pþ1 , see (2.14). The RG flow that is induced by this

relevant perturbation connects the p-th unitary minimal
model in the UV, to the (p� 1)st in the IR. In the IR, the
perturbing (1,3) field of the UV theory has become irrele-
vant. Indeed, it can be identified with the (3,1) field of the
(p� 1)’st minimal model [39]. The latter field has confor-

mal dimension h3;1 ¼ pþ1
p�1 in the (p� 1)’st minimal model,

and hence can be identified with the ð�;�Þ ¼ ðadj; 0Þ field
in that theory, see (2.15).
Similarly, the (1,2)-field can be identified with ð�;�Þ ¼

ð0; fÞ. In the IR it flows to the (2,1)-field of the ðp� 1Þ’st
minimal model [40]. The latter field can be identified with
the ð�;�Þ ¼ ðf; 0Þ field in that theory. Note that this is
compatible with the above since we have the fusion rules
(for p � 4)

ð1; 2Þ � ð1; 2Þ ¼ ð1; 1Þ � ð1; 3Þ
ð2; 1Þ � ð2; 1Þ ¼ ð1; 1Þ � ð3; 1Þ: (2.23)

Thus the normal-ordered product of the (1,2) field with
itself is the (1,3) field, and similarly for the (2,1) and (3,1)
field.
The generalization to N > 2 is believed to follow a

similar pattern, see for example [41]. The relevant field
ð0; adjÞ of the p’th W N minimal model induces an RG
flow, whose IR fixed point is the (p� 1)’st W N minimal
model. In the IR the perturbing field becomes irrelevant,
and is to be identified with the ðadj; 0Þ field of the
(p� 1)’st model, i.e.

ð0; adjÞp !RG�flow by ð0;adjÞ ðadj; 0Þp�1: (2.24)

The analogue of the (1,2) field for N > 2 is slightly more
subtle. For N > 2, charge conjugation of SUðNÞ is non-
trivial, and there are therefore two fields that play that role.
Indeed, the analogues of the fusion rules (2.23) are now

ð0; fÞ � ð0; �fÞ ¼ ð0; 0Þ � ð0; adjÞ
ðf; 0Þ � ð�f; 0Þ ¼ ð0; 0Þ � ðadj; 0Þ; (2.25)

where �f denotes the antifundamental representation of
suðNÞ. Note that the conformal dimension of the ð0; �fÞ
field obviously equals that of ð0; fÞ, and similarly, hð�f; 0Þ ¼
hðf; 0Þ. The analogue of the RG-flow for the (1,2) field
is then

ð0; fÞp !RG�flow by ð0;adjÞ ðf; 0Þp�1 (2.26)

4We thank Terry Gannon for discussions about this point.

5Here, and in the following, we mean by (1,3) the field whose
left- and right-moving conformal dimension is h ¼ �h ¼ hð1; 3Þ.
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ð0; �fÞp !RG�flow by ð0;adjÞ ð�f; 0Þp�1: (2.27)

As we shall see, these RG flows have a very nice interpre-
tation in the bulk theory, following the general analysis
of [29]; see also [7].

III. THE LARGE N ’T HOOFT LIMIT

With all of these preparations in place, we can now
explain the large N limit we shall be considering. If we
take N ! 1 for constant k, then it follows from (2.3) that
cN ’ 2kþOðN�1Þ, remembering that p ¼ kþ N [11,12].
In this limit, however, many important fields will have
vanishing conformal dimension. For example, this will be
the case for ð0; fÞ and ð0; adjÞ, see (2.12) and (2.14).

It is therefore more interesting to consider the ’t Hooft
like limit (see also [13]), where we take both N, k! 1,
but keep the (renormalized) ’t Hooft coupling

� ¼ N

kþ N
< 1 (3.1)

fixed. In this limit we get a family of CFTs with an
effectively continuous central charge

cNð�Þ ’ Nð1� �2Þ<N: (3.2)

Note that the central charge scales asN. In this sense, these
theories behave like vector like models (whose degrees of
freedom scale as N), rather than like gauge theory models
(where the number of degrees of freedom scales as N2).

Note that the ‘‘free case’’, � ¼ 0, corresponds to first
taking k! 1, before taking N ! 1. At finite N, the limit
k! 1 leads to a theory with c ¼ N � 1. In the large N
limit, we then expect this theory to have a description
in terms of a singlet sector of N free complex fermions.6

This would be closely analogous to the free vector model
considered in [7]. In our context, the ‘‘singlet sector’’
condition arises automatically as a consequence of the
coset construction, and does not have to be added in by
hand.

Next we turn to the conformal weights. It follows from
(2.10) that they become in this limit

hð�þ;��Þ ’ 1

2
ð�þ ���Þ2 þ 1

N þ k
ð�þ ���; �̂Þ:

(3.3)

Note that the second term is typically at least of the same

order, since �̂2 ¼ NðN2�1Þ
12 . For example, for the fields

discussed above, we find in this ’t Hooft limit

hð0; fÞ ¼ 1

2
ð1� �Þ; hðf; 0Þ ¼ 1

2
ð1þ �Þ; (3.4)

as well as

hð0; adjÞ ¼ 1� �; hðadj; 0Þ ¼ 1þ �: (3.5)

Obviously, this also agrees with the formulas obtained
from the coset description, Eqs. (2.12), (2.13), (2.14), and
(2.15).
We should stress that there are ambiguities in how to

define the largeN limit, and that we have implicitly made a
choice in the above. For example, for N ¼ 2, there exist
at least two different (natural) k! 1 limits of the unitary
minimal models that have been considered in the literature
[42,43]. They lead to quite different limit theories: the
spectrum of [42] is continuous, and the resulting theory
seems to be similar to Liouville theory (see also [44,45]),
while the spectrum of [43] is discrete. Both are believed
to lead to consistent correlation functions, and thus both
seem to define viable large k limits.
While these limits have only been analyzed for N ¼ 2,

it is not difficult to see how their respective analogues
would differ in our case. In order to explain this, let us
consider the representations of the form ðR;RÞ, whose
conformal dimension equals

hðR;RÞ ¼ CNðRÞ
�

1

N þ k
� 1

N þ kþ 1

�

¼ CNðRÞ
ðN þ kÞðN þ kþ 1Þ : (3.6)

Since the Casimir CNðRÞ is of order OðNÞ (for representa-
tions with a finite number of boxes in the Young tableau,
the coefficient is one half times the number of boxes BðRÞ,
see (B11)), the conformal weight then behaves in the large
N limit as

hðR;RÞ ¼ BðRÞ
2
� �2

N
; (3.7)

where BðRÞ is an integer. In the ’t Hooft limit, bothN and k
become large, and hence representations RN with an arbi-
trarily large number of boxes BðRNÞ are allowed. There
are now essentially two possibilities we can consider:
we can either define the fields of the limit theory to be
those associated to a family of representations RN with
fixed BðRNÞ, and then take N ! 1—in this case the con-
formal weight will approach hðRN;RNÞ ! 0. Or, we con-
sider fields, where, as we take N ! 1, we also take
BðRNÞ ! 1, keeping only their ratio fixed. The latter
prescription leads to a continuous spectrum (and is the
analogue of the proposal of [42]), while the former leads
to a discrete spectrum as in [43]. As will become clear
below, the dual of the bulk gravity theory we are about
to discuss corresponds to the second option, i.e. to a limit
theory with a discrete spectrum. Indeed, the fields associ-
ated to the gravity dual are those that appear in finite tensor
powers of the fundamental (and antifundamental) repre-
sentation, and therefore BðRNÞ will not grow with N.

6For large N, we may ignore the difference between suðNÞ1
and uðNÞ1. The latter theory has a description in terms of N
complex free fermions.

MATTHIAS R. GABERDIEL AND RAJESH GOPAKUMAR PHYSICAL REVIEW D 83, 066007 (2011)

066007-6



We should also note that h ¼ 0 is not the only limit
point; for example, for the representations of the form
ðR � f;RÞ the conformal dimension behaves as

hðR � f;RÞ ’ 1

2
þ BðRÞ

2
� �2

N
; (3.8)

etc. Finally, we note that excitations of order 1
N are typically

seen in symmetric orbifold CFTs arising from fractional-
ized momentum; the above behavior could therefore be
indicative of some string theory interpretation of our higher
spin theory.

IV. THE HIGHER SPIN AdS3 DUAL

Now we want to switch gears and describe the dual
gravity theory for the above large N family of 2d CFTs;
this will turn out to be a higher spin theory.

Higher spin field theories in three dimensions are rela-
tively more tractable than their higher dimensional coun-
terparts. First, the massless higher spin fields themselves
do not contain any propagating degrees of freedom (see
e.g. [26] for a recent discussion). Second, one can (classi-
cally) truncate consistently to a finite number of them [46].
For instance, one can have theories in which one has
massless fields of spin s ¼ 2; 3; . . . ; N only, for any
N � 2. Third, there exists a Chern-Simons formulation
of the classical action for these theories [47,48]. For theo-
ries with a maximal spin N, the Chern-Simons gauge
group is SLðN;RÞ � SLðN;RÞ (in Lorentzian signature)
or SLðN;CÞ in Euclidean signature. Thus the interacting
theory of the higher spin fields can be expressed relatively
compactly compared to the higher dimensional cases.

To be a bit more specific, the higher spin gauge fields can
be expressed in terms of generalized vielbein and connec-
tion variables (generalizing the familiar case of gravity)

e
a1


as�1
� ; !

a1


as�1
� ; (4.1)

where s is the spin of the gauge field. In a theory with
maximal spin N, all these variables for the fields with
s ¼ 2; 3; . . . ; N can be packaged together into two
SLðN;RÞ (or one SLðN;CÞ, depending on the signature)
gauge fields. This reflects the fact that all these fields are
part of one single multiplet under the higher spin symme-
try. The action is then given by

S ¼ SCS½A	 � SCS½ ~A	; (4.2)

where

SCS½A	 ¼ kCS
4


Z
TrðA ^ dAþ 2

3
A ^ A ^ AÞ: (4.3)

The Chern-Simons level kCS (to be distinguished from the
k that appeared in the previous section) is related to the
AdS radius by the classical relation

kCS ¼ ‘

4GN

: (4.4)

In [21] (see also [20]) it was argued, using the above
Chern-Simons formulation, that the theory with maximal
spin N has an asymptoticW N symmetry algebra. Already
at the classical level one sees a centrally extended algebra
with a central charge whose value was determined to be
the same as the Brown-Henneaux result for Einstein grav-
ity on AdS3

c ¼ 3‘

2GN

: (4.5)

In Appendix A we summarize, for completeness, the sa-
lient features of the framelike formulation and its relation
to the more conventional Fronsdal description in terms
of symmetric tensor fields of higher rank.
So far we have only discussed pure higher spin theories.

In three dimensions one can also have, in addition to the
higher spin fields, separate matter multiplets (for a survey
of these matters see [25]). While in higher dimensions the
matter fields always lie in the same multiplet as the higher
spin fields, in three dimensions the matter multiplet is
distinct and contains only scalar and/or fermion fields.
Moreover, the fields in the matter multiplet can be massive
since they are not in the same representation as the gauge
fields. The mass is related to a deformation parameter7 of
the higher spin algebra as

M2 ¼ �ð�� 2Þ: (4.6)

Typically the matter multiplet contains four scalars,
two with mass (4.6), and two with M2 ¼ �ð�þ 2Þ.
These scalars can additionally transform under a global
symmetry group. However, it is consistent to truncate this
multiplet8 to just the two scalars of mass (4.6), and this is
what will be relevant for the following. The interacting
theory of these scalars with the higher spin fields was
constructed in [23,24]. Finally, we should mention that
for generic �, it is no longer possible to truncate the
massless fields to a maximal spin. Thus once we have
added such fields (as we are about to do), we have to
take the N ! 1 limit.
We can now describe the higher spin theory we are

interested in. It contains, in addition to the higher spin
gauge fields, a matter multiplet containing two complex
scalar fields of the same mass (4.6). We will take M2 to lie
in the window

� 1 � M2 � 0: (4.7)

As is by now familiar from various AdS/CFT applications
this implies that there are two alternative conformally

7The deformation parameter is sometimes denoted by � in the
literature on higher spin theories [25]. We suggestively call it �
here since it has exactly the same relation to the mass as the
conformal dimension of the boundary operator.

8We thank Misha Vasiliev for discussions about this point.
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invariant quantizations (which we denote by (� )) of these
scalar fields. These correspond to the two different roots
�� of (4.6) determining the asymptotic fall-off behavior.
We shall take one of the scalars, which we call �, in the
(�)-quantization and thus corresponding to � ¼ ��. The
other scalar, �0, will be taken in the (þ)-quantization
corresponding to � ¼ �þ. We will denote this particular
one parameter family of theories by HSðM2Þ.

Our proposal can now be stated as follows. The W N

minimal model CFT with ’t Hooft coupling � is dual, in
the large N ’t Hooft limit, to the HSðM2Þ theory with the
identification

�� ¼ 1� �; �þ ¼ 1þ �: (4.8)

Note that both scalars have the same mass which is given
by

M2 ¼ �ð1� �2Þ: (4.9)

Before we begin to discuss this proposal further, let us
note that both the CFT and the higher spin theory have
the same W1 symmetry. It then makes sense to identify
the central charges; this leads to

cbulk ¼ 3‘

2GN

¼ cNð�Þ ¼ Nð1� �2Þ: (4.10)

The bulk theory is only well-defined in the large N limit
(since we can only add massive scalar fields in this limit).
Note that large N means that GN is small 
 1

N (in units

where ‘ ¼ 1); thus the large N limit is indeed the semi-
classical limit, where one can trust the bulk description.
For finite N, we may view the CFT (in its full 1

N expansion)

as the quantum definition of the higher spin theory.
In the next section we will present some nontrivial

checks of the proposal at leading order in N. We shall
also give a heuristic derivation of some parts of the duality
in Sec. VI.

V. CHECKS OF THE PROPOSAL

In this section we shall subject the above proposal to
essentially two consistency checks. First we shall explain
in quite some detail (see Sec. VA) that the spectrum of the
two theories agrees. More specifically, we shall study
the quantum 1-loop partition function of the higher spin
theory, and see how it reproduces the full CFT spectrum in
the ’t Hooft limit. This is quite a detailed consistency
check, and it probes much of the structure of the CFT.
The second consistency check concerns the RG-flow for
which we observe a beautiful matching with the bulk
analysis (Sec. VB).

A. The spectrum

In this section we want to calculate the 1-loop partition
function of the higher spin theory and compare it to the
full CFT spectrum. There are basically two parts to this

calculation. For the higher spin fields, the 1-loop determi-
nant was computed recently in [26] using the heat kernel
techniques of [49]. For N ! 1 the answer is

Zð1ÞHS ¼
Y1
s¼2

Y1
n¼s

1

j1� qnj2 : (5.1)

The higher spin theory HSðM2Þ we are interested in also
contains two complex scalar fields, one corresponding
to � ¼ �þ and one with � ¼ ��, see (4.8). The 1-loop
contribution from each complex scalar field is [50] (see
also [49])

Zð1Þscalar ¼
Y1

l¼0;l0¼0

1

ð1� qhþl �qhþl0 Þ2 ; (5.2)

where h ¼ �
2 . Thus defining

h� ¼ 1

2
ð1� �Þ ¼ 1

2
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2

p
Þ; (5.3)

the total 1-loop partition function is

Zð1Þtotal ¼
Y1
s¼2

Y1
n¼s

1

j1� qnj2 �
Y1

l1¼0;l01¼0

1

ð1� qh�þl1 �qh�þl01Þ2

� Y1
l2¼0;l02¼0

1

ð1� qhþþl2 �qhþþl02Þ2 : (5.4)

Our claim is that this partition function agrees with
the full CFT partition function of the W N model in the
’t Hooft limit!
We have so far not managed to find an analytic proof of

this statement, but we shall give below what we regard to
be highly nontrivial evidence in favor of this claim. Before
we begin with the detailed checks, we should first explain
intuitively why this could be true.

The first factor coming from Zð1ÞHS can be identified with a
(generic) vacuum character of theW1-algebra [26]. In our
case, the character of the vacuum representation of the
coset CFT is not generic since we consider the limit of
rational theories at finite k. However, as was explained in
Sec. II D, see, in particular, Eq. (2.18), the null vectors only
modify the answer at height kþ 1, and thus this modifica-
tion does not play any role in the ’t Hooft limit. We there-
fore conclude that the contribution from the higher spin

gauge fields—the first factor of Zð1Þtotal—reproduces pre-

cisely the vacuum character from the CFT perspective.
The full CFT has obviously many additional states;

indeed, the coset representations are labeled by the pairs
ðR1;R2Þ, and the full spectrum (at finite k and N) will
include all such sectors. However, given the structure of
the fusion rules, all states of the CFT can be obtained by
taking successive fusion products of the generating fields

ð0; fÞ; ð0; �fÞ and ðf; 0Þ; ð�f; 0Þ; (5.5)
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where f and �f are the fundamental and antifundamental
representation of suðNÞ. Note that in the large N limit, the
two sectors corresponding to ð0; fÞ and ð0; �fÞ (and similarly
for ðf; 0Þ and ð�f; 0Þ) effectively decouple; at finite N, the
field ð0; �fÞ obviously appears in the ðN � 1Þ-fold fusion
of ð0; fÞ with itself, but in the ’t Hooft limit we have to
include both separately.

Now the key observation is that the conformal dimen-
sion of the first two fields in (5.5) is h ¼ h�, while that
of the second two fields is h ¼ hþ, see Eq. (3.4). This
suggests the identification

Y1
l1¼0;l01¼0

1

ð1� qh�þl1 �qh�þl01Þ2  ! ð0; fÞ�s1 � ð0; �fÞ�s2 ;

(5.6)

i.e. that the product on the left gives the contributions of the
fusion products involving multiple copies of ð0; fÞ and
ð0; �fÞ. Similarly, the other term should be identified with

Y1
l2¼0;l02¼0

1

ð1� qhþþl2 �qhþþl02Þ2  ! ðf; 0Þ�r1 � ð�f; 0Þ�r2 :

(5.7)

Putting all factors together then accounts for the full spec-
trum of the CFT. In the following we want to check this
proposal in more detail. We shall consider the different
pieces in turn.

1. The fusion powers of ð0; fÞ
The simplest consistency check is to consider the

square root of (5.6), and confirm that it reproduces the
states that appear in the fusion powers of ð0; fÞ, say.
(Obviously, the analysis is identical for the fusion powers
of ð0; �fÞ.) Expanding out the first few terms in (5.2) with
h ¼ h� leads to

Zð1Þ ¼ qh �qhð1þ qþ q2 þ q3 þ 
 
 
Þð1þ �qþ �q2 þ �q3

þ 
 
 
Þ þ q2h �q2hð1þ qþ 2q2 þ 
 
 
Þð1þ �q

þ 2 �q2 þ 
 
 
Þ þ q2hþ1 �q2hþ1ð1þ qþ 
 
 
Þ
� ð1þ �qþ 
 
 
Þ þ 
 
 
 : (5.8)

In order to identify this withW N characters, we also have
to multiply the expression with the 1-loop determinant

coming from the higher spin fields, Zð1ÞHS (5.1). Then the

low-lying terms of Zð1Þ 
 Zð1ÞHS look like the sum of three

representations with conformal dimensions h1 ¼ h,
h2 ¼ 2h and h3 ¼ 2hþ 1, whose characters are

	h1ðqÞ ¼ qhð1þ qþ 2q2 þ 4q3 þ 
 
 
Þ (5.9)

	h2ðqÞ ¼ q2hð1þ qþ 3q2 þ 
 
 
Þ (5.10)

	h3ðqÞ ¼ q2hþ1ð1þ qþ 
 
 
Þ; (5.11)

respectively. Since h ¼ h� ¼ 1
2 ð1� �Þ ¼ hð0; fÞ, these

characters agree then precisely, in the ’t Hooft limit, with
the characters for the representation ð0; fÞ, see (2.19),
the representation ð0; ½0; 1; 0N�3	Þ, see (2.21), and the
representation ð0; ½2; 0N�2	Þ, see (2.22), respectively.
Here we have used that the conformal dimension of these
fields, in the ’t Hooft limit, are

hð0; ½0; 1; 0N�3	Þ ¼ ðN� 2ÞðNþ 1Þ
N

�
1

Nþ 1
� 1

Nþ kþ 1

�

’ 1� � ¼ 2hð0; fÞ; (5.12)

as well as

hð0; ½2; 0N�2	Þ ¼ 2ðN þ kÞ
N þ kþ 1

N � 1

N
� N � 1

N þ kþ 1

’ 2� � ¼ 2hð0; fÞ þ 1: (5.13)

Note that these two representations are precisely the rep-
resentations that appear in the fusion of ð0; fÞ with itself,

ð0; fÞ � ð0; fÞ ¼ ð0; ½0; 1; 0N�3	Þ � ð0; ½2; 0N�2	Þ; (5.14)

in accordance with the fact that the terms that are propor-
tional to second powers of h correspond to two-particle
states in the bulk.

2. Higher orders

We would expect that this pattern continues for higher
powers of q and �q. While we have not yet attempted to
prove this in general, there is one simple consistency check
we have performed. Since h has a nontrivial �-dependence,
the above can only work out if the �-dependence is addi-
tive under taking tensor products. It follows from (3.3) that
the �-dependent term is proportional to ð�þ ���; �̂Þ. For
representations that have a finite number of boxes in the
Young tableau, the argument in (B11) then implies that in
the large N limit

1

N þ k
ð�þ ���; �̂Þ ’ �

2
ðBð�þÞ � Bð��ÞÞ; (5.15)

where Bð��Þ is the number of boxes in the Young tableau
of ��. For representations that appear in finite tensor
powers of the fundamental, the number of boxes is con-
served under taking tensor products (for N sufficiently
large), and since the fusion rules do not mix �þ and ��
(that contribute with opposite sign), the statement follows.

3. Fusion products of ð0; fÞ and ð0; �fÞ
It is clear that the above analysis works identically

for the other factor in (5.6), the one associated to fusion
products of ð0; �fÞ. However, in order to check (5.6), we also
have to verify that the fusion products involving both ð0; fÞ
and ð0; �fÞ work out. The leading ‘‘mixed’’ term arises by

taking terms proportional to qhþl �qhþl0 from both factors
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in (5.6); it is easy to see that their total contribution is
precisely

q2h� �q2h�

ð1� qÞ2ð1� �qÞ2 : (5.16)

Taking into account the W -descendants, this then implies
that the character of the corresponding CFT representation
should be (in the ’t Hooft limit)

	ð0;adjÞðqÞ ¼ q1��
1

ð1� qÞ2
YN
s¼2

Y1
n¼s

1

ð1� qnÞ
¼ q1��ð1þ 2qþ 4q2 þ 
 
 
Þ: (5.17)

Because these states are single-particle in each factor,
they should arise from the tensor product (2.25), and hence
transform in the ð0; adjÞ representation of the coset alge-
bra—the other representation that appears in this fusion
product is the identity representation that is already ac-

counted for by Zð1ÞHS. This works out precisely (to the order

to which we have done the calculation), because (5.17)
agrees exactly with the character of ð0; adjÞ, see Eq. (2.20).

4. Fusion products of ðf; 0Þ and ð�f; 0Þ
It is fairly straightforward to see that the analysis works

essentially identically for the terms in (5.7). The main
difference is that we now have to determine the leading
behavior of the characters of the representations ðR; 0Þwith
R being in turn R ¼ f, �f, adj, etc. It is not difficult to show
that the leading behavior of the character of ðR; 0Þ is in fact
the same as that for ð0; �RÞ. For concreteness, let us con-
centrate on the case when R ¼ f. For ðf; 0Þ, i.e. � ¼ f and
� ¼ 0, we have � ¼ �f. Then the leading behavior of the
character is described by the branching function where we
count the multiplicities with which the �f-representation
appears in the level k ¼ 1 representation based on � ¼
�f, since we have to look at those representations of the
level k ¼ 1 factor that lead to the trivial representation
when tensored with the ground state representation � ¼ f.
However, this branching function is precisely what gives
the leading part of the ð0; �fÞ character. The other cases work
essentially identically. Thus we conclude that the contri-
bution from the left-hand-side of (5.7) accounts for the
tensor products of ðf; 0Þ and ð�f; 0Þ.

5. Fusion product of ðf; 0Þ and ð0; �fÞ
Finally we also have to look at the terms that involve

both contributions from (5.6) and (5.7). By the same argu-
ment as that leading up to (5.16) it is clear that the leading
term of the gravity calculation is

qhþþh� �qhþþh�

ð1� qÞ2ð1� �qÞ2 : (5.18)

Since hþ þ h� ¼ 1, and taking into account the
W -descendants, this then implies that the character of

the corresponding CFT representation should be (in the
’t Hooft limit)

	ðqÞ ¼ q1
1

ð1� qÞ2
YN
s¼2

Y1
n¼s

1

ð1� qnÞ
¼ q1ð1þ 2qþ 4q2 þ 
 
 
Þ: (5.19)

Let us first consider the case ðf; 0Þ � ð0; �fÞ ¼ ð�f; fÞ, in
which case we should expect (5.19) to agree with the
character of ð�f; fÞ. For � ¼ �f, � ¼ f, the level k ¼ 1 rep-
resentation is � ¼ ½0; 1; 0N�3	. In this level k ¼ 1 affine
representation we then have to look for those representa-
tions S of the finite-dimesional suðNÞ algebra that have
the property that

�f � S � f: (5.20)

Among the representations S that appear in the affine level
k ¼ 1 representation of � ¼ ½0; 1; 0N�3	, the only ones
that satisfy (5.20) are

S ¼ ½0; 1; 0N�3	 and S ¼ ½2; 0N�2	: (5.21)

Thus the leading behavior of the character 	ð�f;fÞ equals the
sum of the branching functions of the level k ¼ 1 repre-
sentation � ¼ ½0; 1; 0N�3	 into ½0; 1; 0N�3	 and ½2; 0N�2	,
respectively. This can be read off from (C10)–(C12), and
at least the first terms we have worked out reproduce
precisely (5.19). Note that the conformal dimension of
the primary of the ð�f; fÞ representation is

hð�f; fÞ ¼ CNð�fÞ
N þ k

þ CNð½0; 1; 0N�3	Þ
N þ 1

� CNðfÞ
N þ kþ 1

¼ N2 � 1

2N

1

ðN þ kÞðN þ kþ 1Þ
þ 1

N þ 1

ðN � 2ÞðN þ 1Þ
N

’ 1 (5.22)

in the ’t Hooft limit, thus accounting also correctly for
the q1 leading power.

6. Fusion product of ðf; 0Þ and ð0; fÞ
For the case where we consider instead the fusion

product

ðf; 0Þ � ð0; fÞ ¼ ðf; fÞ (5.23)

the gravity calculation is identical. However, now the CFT
character is different. For ðf; fÞ, we have � ¼ 0, and we
have to look for the multiplicities with which S ¼ ½0N�1	
and S ¼ ½1; 0N�3; 1	 appear in the decomposition of the
level k ¼ 1 vacuum representation. Actually, by the argu-
ment leading to (5.17), the latter contribution corresponds
precisely to (5.19), and thus we have

	ðf;fÞðqÞ ¼ 	ð0;0ÞðqÞ þ q1ð1þ 2qþ 4q2 þ 
 
 
Þ: (5.24)

The fact that the limit character decomposes in this manner
suggests that the underlying representation ðf; fÞ becomes
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reducible in this limit. Actually, this phenomenon is famil-
iar from the k! 1 limit of the N ¼ 2 unitary minimal
models, see [43] [Remark 4.1.7]. What it means is that in
the limit k! 1, the representation ðf; fÞ contains a ‘‘null-
vector’’ that generates the subrepresentation corresponding
to the second sum in (5.24). A natural way to deal with
these additional null-vectors was proposed in [43] (see also
[51]), where it was referred to as ‘‘scaling up the additional
null-vectors.’’ It amounts to rescaling the states in such a
way that only the descendants of the null-vectors, i.e. the
second sum in (5.24) survives in the limit.9 This is pre-
cisely what the gravity calculation also seems to require.
We therefore find again perfect agreement between the
CFT and the gravity calculation.

B. The RG flow

As mentioned in Sec. II E, the minimal models have an
RG flow relating two nearby theories ( labeled by p and
p� 1). The operator responsible for the flow is the least
relevant operator ð0; adjÞ. In the ’t Hooft limit we saw in
(3.5) that its dimension becomes h ¼ 1� �. Combining
with the similar operator for the right mover we have a
relevant operator for the full CFT. In the ’t Hooft limit,
the RG flow going from p to p� 1 changes the ’t Hooft
coupling as

�� ¼ �2

N
: (5.25)

Though the ’t Hooft coupling only changes infinitesimally
in the large N limit, there is nevertheless an order one
change in the central charge

�c ¼ �2�3: (5.26)

This indicates that one should be able to see a reflection
of this RG flow in the bulk as well.

As we have seen above, see (2.25), the field ð0; adjÞ is
actually the normal ordered product of the two fields ð0; fÞ
and ð0; �fÞ. Writing O ¼ ð0; fÞ, and using that ð0; �fÞ is the
conjugate of ð0; fÞ, the full perturbation is of the form

Spert ¼ g
Z

d2zOOy; (5.27)

where both O and Oy have conformal dimension 1
2 ð1�

�; 1� �Þ (see (3.4)). Thus the perturbation is indeed by a
‘‘double trace’’ operator [52]. As is familiar from general
AdS/CFT considerations, see in particular [29], it corre-
sponds to a flow between two different bulk theories. The
scalar field corresponding to O (with dimension ��) is
quantized in the (�)-quantization in the UV. Under the RG
flow, it flows to a theory with the (þ)-quantization in the IR
where it corresponds to an irrelevant operator O0 with

dimension �þ. Here �� are the two roots of the equation
M2 ¼ �ð�� 2Þ for the mass of the bulk scalar field.
This now ties in perfectly with what we know of the

corresponding RG flow in the 2d CFT. As was explained in
Sec. II E, the RG flow takes the operator ð0; adjÞ to ðadj; 0Þ,
and indeed ð0; fÞ to ðf; 0Þ (as well as ð0; �fÞ to ð�f; 0Þ).
Translated into the above language it follows that the
operator O0 can be identified with ðf; 0Þ (and similarly
for the conjugate field). This operator has conformal di-
mension 1

2 ð1þ �; 1þ �Þ, see (3.4). In particular, we see

that it is dual to the scalar field in the (þ)-quantization, as
expected. Note that this statement only holds in the ’t Hooft
limit, where we have the relation hð0; fÞ þ hðf; 0Þ ¼ 1 (and
similarly hð�f; 0Þ þ hð0; �fÞ ¼ 1).
Thus the two complex scalar fields in the bulk with mass

M2 ¼ �ð1� �2Þ, where one is in the (þ)-quantization and
the other in the (�)-quantization, fit exactly with what one
expects from general consideration of RG flows in AdS/
CFT. Furthermore, the picture ties in perfectly with what
is known about the flow in the dual CFT.

VI. TOWARDS A DERIVATION

Finally, we want to sketch a possible way in which one
can at least heuristically establish the relation between the
bulk theory of higher spins in AdS3, and the dual coset
models studied in Secs. II and III. Our starting point will be
the Chern-Simons description of the higher spin theory
which was mentioned in Sec. IV. Let us consider, for
definiteness, the Lorentzian signature theory with gauge
group SLðN;RÞ � SLðN;RÞ. As in Sec. IV we denote the

corresponding gauge fields by A and ~A. We will be inter-
ested in taking the large N limit eventually (to consistently
couple with matter) but for now we will take N to be finite
for simplicity.
In describing the bulk gravity (or higher spin theories)

in a Chern-Simons formulation it is absolutely crucial to
specify the boundary conditions properly. Since there are
no propagating modes in the bulk, all the dynamics essen-
tially arises from the boundary conditions. For the case of
pure gravity on AdS3 (corresponding to N ¼ 2) this has
been carefully studied over the years, and there is a rea-
sonably straightforward generalization for any value of N
[20,21]. We will mainly follow the very clear presentation
by [33], and refer to this paper as well as [20,21] for more
details as well as references to the original literature.
We will work in coordinates where the global AdS3

metric reads as

ds2 ¼ ‘2
�
1þ r2

‘2

�
dt2 �

�
1þ r2

‘2

��1
dr2 � r2d�2: (6.1)

The boundary is a cylinder parametrized by t, � or more
naturally w ¼ t��, ~w ¼ tþ�. To have a well-defined
variational principle for the Chern-Simons action (4.2), we
need to either add a boundary term, or specify suitable
boundary conditions for the gauge fields. The natural

9In addition, there will be an overall infinite normalization
factor, reflecting the volume divergence of the gravity calcula-
tion (that has been dropped in these 1-loop calculations).
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choice of boundary conditions on the boundary cylinder,
which obviates the need for an additional boundary term is
(see [21,33])

A ~w ¼ 0; ~Aw ¼ 0: (6.2)

In other words, the gauge fields A, ~A have only left-moving
and right-moving components at the boundary, respec-
tively. It also suggests (using Eqs. (A5) and (A6))
that the gauge fields are effectively in SUðNÞ at the bound-
ary [33].

At this stage one is tempted to view the boundary
dynamics as that of two chiral WZW theories with gauge
group SUðNÞ. However, the above boundary conditions are
not complete, since they do not guarantee that the geome-
try is asymptotically AdS3, i.e. they do not yet include the
analogue of the Brown-Henneaux boundary conditions. In
the case of pure gravity the relevant boundary condition
for the gauge fields in the Chern-Simons formulation was
first worked out in [53]. This was recently generalized to
any N in [21]. Roughly speaking, the additional condition
removes all components of the gauge field, except for the
lowest-spin components in the decomposition of the alge-
bra with respect to some principal slð2;RÞ embedding, see
Eq. (54) of [33] and Sec. 4.2 of [21]. As a consequence the
WZW model is gauged, and the resulting theory describes
the (classical) Drinfeld-Sokolov reduction [21]. This is
what is responsible for reducing the affine Kac-Moody
algebra to a W N-algebra, and by this route the classical
W -algebra for the asymptotic symmetry generators was
established [20,21].

At the quantum level, we propose that the analogous
statement should involve the quantum Drinfeld-Sokolov
reduction of the affine suðNÞ algebra. The quantum me-
chanical treatment of the DS reduction is more involved
(and quite different) from the classical reduction. In par-
ticular, it necessitates the introduction of ghosts to take
care of the constraints (gauging). A full BRSTanalysis was
carried out in [37], and we summarize some of the results
in Appendix B. What is important for us is the observation
[17,19,34,35,37] that the CFT at the quantum level is
equivalent precisely to the coset theory

suðNÞk � suðNÞ1
suðNÞkþ1

: (6.3)

It is important to note here that the level k of the coset
theory is not the same as that of the quantum DS reduced
theory (and therefore of the original Chern-Simons theory),
but rather that given in (B2).

Obviously, the discussion so far only involves the higher
spin degrees of freedom. Our proposal also suggests that
we have to add two massive complex scalar fields (of the
same mass) to this theory in order to identify it with the full
dual CFT. It would be very interesting to understand these
scalar fields from the point of view of the Chern-Simons

theory. This could then also open the way to a more
conceptual understanding of the duality.

VII. FINAL REMARKS

In this paper we have made a proposal for a duality
between a family of higher spin theories on AdS3, and a
’t Hooft like limit of a family of 2d CFTs. More specifi-
cally, we have argued that the ’t Hooft limit of the W N

minimal models is dual to the higher spin theory on AdS3,
where one adds to the massless higher spin fields two
massive complex scalars. Unlike the massless higher spin
fields, these massive scalars actually have propagating
degrees of freedom. There is a free parameter on either
side, namely, the ’t Hooft coupling � of the 2d CFT, and
the mass parameter M of the massive scalars, and they are
directly related to one another, see Eq. (4.9). We have
checked this proposal by matching the spectra in quite
some detail. We have also shown that the RG flow of
the 2d CFT, relating the different minimal models to one
another, agrees very nicely with the gravity description.
Our proposal is in some sense the natural 3d analogue of

the 4d higher spin conjecture of Klebanov & Polyakov [7].
Indeed, at the free point, � ¼ 0, the 2d CFT is described by
some sort of singlet sector of free fermions transforming in
the fundamental and antifundamental representation, and
is thus the natural lower dimensional analogue of the OðNÞ
vector model of Klebanov and Polyakov. However, unlike
their case where the duality is only defined for two special
CFTs, we actually have a full 1-parameter family of con-
formal fixed points for which we can identify the dual
higher spin theory. Furthermore, our 2d CFTs are limits
of consistent W N minimal models, and there is no need
for a projection to a singlet sector. Indeed, the coset con-
struction seems to take care of this automatically.
The family of theories we consider interpolate between

the free theory at � ¼ 0, and the � ¼ 1 theory. The latter,
from the point of view of the bulk theory, corresponds
to the higher spin algebra with massless scalars, � ¼
M2 ¼ 0. Indeed, nonzero� plays the role of �0 corrections
as already mentioned in the introduction. It would be good
to see in detail how the interpolation between these two
limits via the general interacting theories takes place. From
the field theory point of view it would be nice to understand
the interacting theories from a Landau-Ginzburg picture as
in the case of N ¼ 2.10 We note that the RG flow between
the W N minimal models is integrable [41]. Thus, one
should be able to study the bulk interpretation of the
massive two dimensional field theories which are in
some sense deformed Gross-Neveu models.
The W N minimal models that appear on the CFT side

are nonsupersymmetric conformal field theories that are
believed to describe the multicritical behavior of ZN

10We thank Shiraz Minwalla for a stimulating discussion on
this topic.
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symmetric statistical systems [16]. Our proposed duality
could therefore also lead to new insights into such statis-
tical systems.

There are a number of open problems that deserve
further study. First of all, it would be good to establish
the matching of the spectra to all orders, i.e. to complete
the analysis of Sec. V. On the bulk side, it is important to
write down the interactions involving the massive scalar
fields in the Chern-Simons formulation which appears not
to have been done in the higher spin literature. This would
also be necessary in order to flesh out the arguments of
Sec. VI and thus understand the underlying mechanism of
the duality. The close connection between theW1 algebra
and the algebra of area-preserving diffeomorphisms of
2-surfaces [11] could be important in this context. One
could also compute correlation functions in the CFT (in the
planar limit) and compare with the bulk computation using,
for instance, the techniques of [5,8,9]. As far as we are
aware, the correlation functions for theseW N models have
not yet been worked out for general N, and it would be
important to understand their large N limit. It is conceiv-
able that the bulk description might give an alternative, less
tedious way of determining them (at least, in the planar
limit), thus making the bulk description useful from a
practical point of view in 2d CFTs! There are also some
natural generalizations one can envisage, in particular, to
cases involving fermions and/or supersymmetry, as well as
to cosets of OðNÞ and SpðNÞ, rather than SUðNÞ.
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APPENDIX A: HIGHER SPIN THEORIES ON AdS3

Let us first recall some basic features of massless higher
spin theories at the noninteracting level [54,55] (see for
example [2,56] for reviews and more references).

The massless spin s fields in three dimensions are com-
pletely symmetric tensors ’�1�2


�s

subject to a double

trace constraint

’�5


�s��
�� ¼ 0: (A1)

This constraint only makes sense if s � 4. In, addition we
have a gauge invariance leading to the identification of
field configurations

’�1�2


�s

 ’�1�2


�s

þrð�1
��2


�sÞ: (A2)

The gauge parameter ��2


�s
is a symmetric tensor of rank

(s� 1) which is, in addition, traceless, i.e. ��
�3


�s�

¼ 0.

This last constraint only makes sense for s � 3.
In higher dimensional AdS spacetimes we need to have

an infinite tower of these fields to obtain classically
consistent interacting theories. It is a special property of
AdS3 [46] that, for every N � 2, we can have consistent
(again classical) truncations to theories which have a
spectrum containing a single massless field for each spin
s ¼ 2; . . . ; N.
While it is possible to write down an action for these

theories in terms of the Fronsdal fields given above, it is
much simpler to recast it in terms of Chern-Simons gauge
fields [47]. This generalizes the observation of [31,32]
for the case of pure gravity, i.e. N ¼ 2, for which the
Einstein-Hilbert action can be reexpressed in terms of an
SLð2;RÞ � SLð2;RÞ (or SLð2;CÞ in Euclidean signature)
Chern-Simons theory. In the case of maximal spin N
the higher spin theory has an SLðN;RÞ � SLðN;RÞ (or
SLðN;CÞ in Euclidean signature) Chern-Simons descrip-
tion. Thus the theory is labeled by two parameters, N and
the AdS radius ‘.
Many of the properties of the Chern-Simons description

have been reviewed and studied in detail in [21]. We just
summarize a few of the central points. One describes the
higher spin fields in terms of generalized vielbein and
connection variables

e
a1


as�1
� !

a1


as�1
� ; (A3)

and relates these to the Fronsdal fields (about an AdS
background) via the relation (at the linearized level)

’�1�2


�s
¼ 1

s
�ea1ð�1

 
 
 �eas�1�s�1e�sÞa1


as�1 : (A4)

Here �ea� is the (usual) vielbein for the background AdS3
metric. In addition, to the diffeomorphism invariance,
the generalized vielbeins and connections transform under
local ‘‘frame rotations’’ which are parametrized by a gauge
parameter �ba1


as�1 .
For the Chern-Simons formulation, one considers the

combinations

j
a1


as�1
� ¼

�
!þ e

‘

�
a1


as�1
�

;

~ja1


as�1� ¼
�
!� e

‘

�
a1


as�1
�

;

(A5)

and then defines the gauge potentials as
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A ¼ ðja�Ta þ 
 
 
 þ j
a1


aN�1
� Ta1


aN�1Þdx�

~A ¼ ð~ja�Ta þ 
 
 
 þ ~j
a1


aN�1
� Ta1


aN�1Þdx�:

(A6)

Here the Ta are generators of SLð2;RÞ, while
Ta1


as�1 
 Tða1 
 
 
Tas�1Þ: (A7)

We can thus view the A, ~A as SLðN;RÞ gauge fields. The
action of these higher spin fields is given by (4.2) together
with (4.3).

Note that in this description in terms of gauge fields, the
‘‘physical’’ Fronsdal fields are actually singlets under the
diagonal SLðN;RÞ gauge group. This generalizes the well-
known fact that the metric field is a singlet under local
Lorentz frame rotations (which are the diagonal SLð2;RÞ
transformations). However, all observables in the bulk
higher spin theory should be singlets under the SLðN;RÞ �
SLðN;RÞ (or SLðN;CÞ) gauge transformations.

While (A4) gives the relation between the Fronsdal
fields and the frame fields (gauge fields) at the linearized
level, there is a generalization to the full nonlinear theory
as well—see Sec. 4.3 of [21]. It was observed there that the
Fronsdal fields (for the case of N ¼ 3) are simply ex-
pressed in terms of the Casimir generators of SLð3;RÞ.
This is expected to generalize to the case of arbitrary N
[21]. This also fits in with the present proposal in which the
vacuum sector of the CFT, which contains the Casimir
algebra of SUðNÞ, describes the pure higher spin field
excitations.

APPENDIX B: THE DRINFELD-SOKOLOV
DESCRIPTION

In the Drinfeld-Sokolov description of theW N theories
one starts with some WZW model, and then reduces the
theory by imposing suitable constraints, see e.g. [19] for
a review. These constrained WZW models also give a
description of Toda theories [36] that were known to be
closely related to the W N models [17]. In the case of
interest to us, the WZW model is SUðNÞ at level kDS,
and in the quantum version the resulting theory has central
charge

cNðkDSÞ ¼ ðN � 1Þ
�
1� NðN þ 1Þ ðkDS þ N � 1Þ2

ðkDS þ NÞ
�
:

(B1)

For large kDS the central charge goes as cNðkDSÞ ’
�kDSNðN2 � 1Þ; for N ¼ 2 this reduces to the relation
c2ðkDSÞ ’ �6kDS of [33], where it is also argued that kDS
should be chosen to be negative. In order to relate the
Drinfeld-Sokolov construction to the coset construction
described in section II, we have to identify

1

p
¼ 1

kþ N
¼ 1

kDS þ N
� 1: (B2)

Then (B1) agrees with (2.2).

In the Drinfeld-Sokolov description the highest weight
representations are labeled by ð�þ;��Þ ffi ð�;�Þ—we are
using the notation of [19]—and the conformal weight
equals (see Eqs. (6.74) and (7.53) of [19])

hð�þ;��Þ¼ cN
24
�ðN�1Þ

24
þ 1

2pðpþ1Þ
��������ðpþ1Þð�þþ �̂Þ

�pð��þ �̂Þ
��������

2

; (B3)

where the central charge cN is given by (B1), with the
relation between p, k and kDS being determined by (B2).
Furthermore, �̂ is the Weyl vector of suðNÞ, i.e. one
half the sum of all positive roots, whose square equals

�̂2 ¼ NðN2�1Þ
12 . This then leads to (2.10).

1. Examples and Casimirs

It is not difficult to check that the two formulas (2.9) and
(2.10) actually agree in simple cases. For example, both
give h ¼ 0 for the vacuum representation with ð�;�Þ ¼
ð0; 0Þ (and n ¼ 0). A more interesting case arises if either �
( ¼ �þ) or � ( ¼ ��) vanish. In that case, (2.10) becomes

hð0;��Þ ¼ 1

2ðpþ 1Þ ðpð�
�Þ2 � 2ð��; �̂ÞÞ (B4)

or

hð�þ; 0Þ ¼ 1

2p
ððpþ 1Þð�þÞ2 þ 2ð�þ; �̂ÞÞ: (B5)

Specializing further to the case that �� equals the funda-
mental (f) or adjoint (adj) representation, we then obtain

hð0; fÞ ¼ ðN � 1Þ
2N

�
1� N þ 1

pþ 1

�
;

hðf; 0Þ ¼ ðN � 1Þ
2N

�
1þ N þ 1

p

�
;

(B6)

and

hð0; adjÞ ¼ 1� N

pþ 1
; hðadj; 0Þ ¼ 1þ N

p
: (B7)

Here we have used that the inverse Cartan matrix
C�1ij ¼ C�1ji for suðNÞ equals

C�1ij ¼
iðN � jÞ

N
for ði � jÞ;

and
XN�1
i¼1

C�1ij ¼
j

2
ðN � jÞ;

(B8)

from which it follows that

ð�fÞ2 ¼ ðN � 1Þ
N

; ð�f ; �̂Þ ¼ ðN � 1Þ
2

; and

ð�adjÞ2 ¼ 2; ð�adj; �̂Þ ¼ ðN � 1Þ: (B9)
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In our conventions the quadratic Casimir is defined to be

CNð�Þ ¼ 1

2
½ð�;�Þ þ 2ð�; �̂Þ	

¼X
i<j

�i�j

iðN � jÞ
N

þ 1

2

XN�1
j¼1

�2
j

jðN � jÞ
N

þ XN�1
j¼1

�j

j

2
ðN � jÞ; (B10)

where �j are the Dynkin labels of the weight �. For

weights that appear in finite powers of the fundamental
representation—these are the weights with a finite number
of boxes in the Young tableau—the leading term in the
large N limit is

CNð�Þ ’ N

2

XN�1
j¼1

j�j ¼ N

2
Bð�Þ; (B11)

where Bð�Þ denotes the number of boxes in the Young
tableau of �.

APPENDIX C: BRANCHING FUNCTIONS

In order to determine the low-lying terms of the coset
characters in the large k limit, we have to determine the
decomposition of level k ¼ 1 affine representations in
terms of representations of the horizontal (zero-mode)
algebra. Since the zero modes commute with L0, we can
do this separately level by level. This is to say, we decom-
pose the affine level k ¼ 1 representation � in terms of L0

eigenspaces as

H � ¼
M1
n¼0

H ðnÞ
� ; (C1)

and then decompose each H ðnÞ
� under the action of the

zero modes. We have performed this analysis for the first
few values of n and some small representations (assuming
that N is sufficiently large—for the following N � 5 will
suffice).11 Explicitly we find

H ðn¼0Þ
½0N�1	 ¼ ½0N�1	 (C2)

H ðn¼1Þ
½0N�1	 ¼ ½1; 0N�3; 1	 (C3)

H ðn¼2Þ
½0N�1	 ¼ ½0; 1; 0N�5; 1; 0	 � 2 
 ½1; 0N�3; 1	 � ½0N�1	

(C4)

H ðn¼3Þ
½0N�1	 ¼ ½2; 0N�4; 1; 0	 � ½0; 1; 0N�4; 2	

� 2 
 ½0; 1; 0N�5; 1; 0	 � 4 
 ½1; 0N�3; 1	
� 2 
 ½0N�1	; (C5)

H ðn¼0Þ
f ¼ ½1; 0N�2	 (C6)

H ðn¼1Þ
f ¼ ½0; 1; 0N�4; 1	 � ½1; 0N�2	 (C7)

H ðn¼2Þ
f ¼ ½2; 0N�3; 1	 � ½0N�3; 2; 0	 � 2 
 ½0; 1; 0N�4; 1	

� 2 
 ½1; 0N�2	 (C8)

H ðn¼3Þ
f ¼ ½1; 1; 1; 0N�4	 � ½0N�3; 1; 2	 � 2 
 ½2; 0N�3; 1	

� ½0N�3; 2; 0	 � 5 
 ½0;1;0N�4; 1	 � 4 
 ½1; 0N�2	;
(C9)

and

H ðn¼0Þ
½0;1;0N�3	 ¼ ½0; 1; 0N�3	 (C10)

H ðn¼1Þ
½0;1;0N�3	 ¼ ½2; 0N�2	 � ½0N�3; 1; 1	 � ½0; 1; 0N�3	

(C11)

H ðn¼2Þ
½0;1;0N�3	 ¼ ½1; 1; 0N�4; 1	 � ½2; 0N�2	 � 2 
 ½0N�3; 1; 1	

� 3 
 ½0; 1; 0N�3	: (C12)
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