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We report on a potentially new class of non-Fermi liquids in (2þ 1)-dimensions. They are identified via

the response functions of composite fermionic operators in a class of strongly interacting quantum field

theories at finite density, computed using the AdS/CFT correspondence. We find strong evidence of Fermi

surfaces: gapless fermionic excitations at discrete shells in momentum space. The spectral weight exhibits

novel phenomena, including particle-hole asymmetry, discrete scale invariance, and scaling behavior

consistent with that of a critical Fermi surface postulated by Senthil.
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I. INTRODUCTION

The normal state of the high-TC superconducting cup-
rates, and metals close to a quantum critical point, are
examples of non-Fermi liquids, which have sharp Fermi
surfaces but whose low-energy properties differ signifi-
cantly from those predicted from Landau’s Fermi liquid
theory [1–3]. While Landau Fermi liquids are controlled by
a free Fermi gas fixed point with (almost) no relevant
perturbations [4–7], a proper theoretical framework char-
acterizing non-Fermi liquid metals, which likely involves
strong couplings, is lacking. In this paper we search for
new universality classes of non-Fermi liquids using the
AdS/CFT correspondence [8–10].

According to the correspondence, any (quantum) gravity
theory in a (dþ 1)-dimensional asymptotically anti-de
Sitter (AdSdþ1) spacetime is dual to a d-dimensional quan-
tum field theory ‘‘living at its boundary.’’ Through the
AdS/CFT dictionary, a gravity theory can (in principle)
be used to obtain all physical observables of its boundary
dual, like the physical spectrum and correlation functions.
Compared to conventional approaches, the gravity ap-
proach offers some remarkable features which make it a
valuable tool for discovering new strongly coupled phe-
nomena:

(1) At small curvature and low energies known gravity
theories reduce to a universal sector: classical
Einstein gravity plus matter fields. Through the
duality, this limit typically translates into the
strong-coupling and large-N limit of the boundary
theory, where N characterizes the number of spe-
cies. Thus by working with Einstein gravity (plus
various matter fields) one can extract certain univer-
sal properties of a large number of strongly coupled
quantum field theories.1

(2) Highly dynamical, strong-coupling phenomena in
the dual field theories can often be understood on
the gravity side using simple geometric pictures.

Familiar examples include confinement and chiral
symmetry breaking in a non-Abelian gauge theory.

(3) Putting the boundary theory at finite temperature
and finite density corresponds to putting a black
hole in the bulk geometry. Questions about compli-
cated many-body phenomena at strong coupling can
be answered by solving linear wave equations in this
black hole background.

Consider a quantum field theory which contains fermi-
ons charged under a global Uð1Þ symmetry.2 When a finite
Uð1Þ charge density is introduced into such a theory, it is
natural to ask whether the system possesses a Fermi sur-
face and if yes, what are the low-energy excitations.
One approach to these questions is to study spectral func-
tions of a fermionic composite operator.3 The presence
of a Fermi surface may be revealed by the appearance of
gapless excitations of the operator at discrete shells in
momentum space.
This will be the approach taken here. We obtain the

spectral functions for fermionic operators using the classi-
cal Einstein gravity. We will work in (2þ 1) dimensions
and leave other-dimensional theories for future study.
While the string theory landscape in principle provides a
large number of AdS/CFT dual pairs, only a few explicit
examples are understood in detail; in (2þ 1)-dimensions,
these include the N ¼ 8 M2-theory and recently discov-
ered ABJM theories [11–13]. As emphasized earlier, how-
ever, by working with the classical Einstein gravity we are
extracting universal properties of a large number of bound-
ary field theories, even if their explicit Hamiltonians are
not known. The spectral functions we find give strong
indications of the presence of Fermi surfaces of some
non-Fermi liquid. We find poles representing ‘‘marginal’’

1The field theory origin of such universality is still rather
mysterious.

2The theory may also contain charged scalars, and both scalars
and fermions may couple additionally to some non-Abelian
gauge bosons.

3The spectral function of an operator is a measure of the
density of states which couple to the operator. It is proportional
to the imaginary part of the retarded function GR of the operator
in momentum space.
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quasiparticles at discrete shells in momentum space,
with scaling behavior different from that of a Landau
quasiparticle. We also observe some other novel phe-
nomena, including particle-hole asymmetry and discrete
scale invariance for a continuous range of momenta.

Our investigation was motivated in part by earlier work
of Sung-Sik Lee [14], which initiated the study of spectral
functions of fermionic operators using a gravity dual. Our
results differ from those of [14]; we believe the difference
lies in the implementation of the real-time holographic
prescription [15–17].

The plan of the paper is as follows. In the next section we
set up the framework for calculating the spectral functions
of a fermionic operator at finite density using the gravity
description. In Sec. III we discuss properties of the spectral
functions, including scaling behavior near a Fermi surface.
We conclude in Sec. IV with a discussion of the interpre-
tation of the results and possible caveats.

II. SETUP OF THE CALCULATION

Consider a three-dimensional relativistic conformal
field theory (CFT) with a global Uð1Þ symmetry that has
a gravity dual. Such a system at finite charge density can be
described by a charged black hole in four-dimensional
anti-de Sitter spacetime (AdS4) [18], with the current J�
in the CFT mapped to a Uð1Þ gauge field AM in AdS. A
fermionic operator O in the CFT with charge q and con-
formal dimension � is mapped to the gravity side to a
spinor field c with charge q and a mass

mR ¼ �� 3

2
(1)

where R is the AdS curvature radius. The spectral function
of O at finite charge density can then be extracted by
solving the Dirac equation for c in the charged AdS black
hole geometry. Which pairs of ðq;�Þ arise depends on the
specific dual CFT. However, since we are working with a
universal sector common to many gravity theories, we will
take the liberty of considering an arbitrary pair of ðq;�Þ,
scanning many possible CFTs.

A. Black hole geometry

The action for a vector field AM coupled to AdS4 gravity
can be written as

S ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p �

R� 6

R2
� R2

g2F
FMNF

MN

�
(2)

where g2F is an effective dimensionless gauge coupling.4

The equations of motion following from (2) are solved by
the geometry of a charged black hole [18,19]5

ds2 ¼ r2

R2
ð�fdt2 þ dx2i Þ þ

R2dr2

r2f
(3)

with

f ¼ 1þQ2

r4
�M

r3
; A0 ¼ �

�
1� r0

r

�
; � � gFQ

R2r0
(4)

where r0 is the horizon radius determined by fðr0Þ ¼ 0,
and � can be identified as the chemical potential of
the boundary theory. For calculational purposes it is
convenient to use dimensionless quantities. Consider the
rescaling

r ! r0r; ðt; ~xÞ ! R2

r0
ðt; ~xÞ; A0 ! r0

R2
A0;

M ! Mr30; Q ! Qr20

(5)

after which the metric becomes

ds2

R2
� gMNdx

MdxN ¼ r2ð�fdt2þd~x2Þþ 1

r2
dr2

f
; (6)

with now the horizon at r ¼ 1 and

f ¼ 1þQ2

r4
� 1þQ2

r3
; A0 ¼ �

�
1� 1

r

�
;

� ¼ gFQ:

(7)

The dimensionless temperature is given by

T ¼ 1

4�
ð3�Q2Þ: (8)

The zero-temperature limit is obtained by setting Q ¼ ffiffiffi
3

p
.

At zero temperature, near the horizon the metric (6)
becomes AdS2 � R2 with the curvature radius of AdS2
given by

R2 ¼ Rffiffiffi
6

p : (9)

B. Dirac equation

To compute the spectral functions for O we need only
the quadratic action of c in the geometry (6)–(9)

Sspinor ¼
Z

ddþ1x
ffiffiffiffiffiffiffi�g

p
ið �c�MDMc �m �c c Þ (10)

where

�c ¼ c y�t; DM ¼ @M þ 1

4
!abM�

ab � iqAM (11)

and !abM is the spin connection.6 Note that the Dirac
action (10) depends on q only through

�q � �q ¼ gFqQ (12)

4It is defined so that for a typical supergravity Lagrangian it is
a constant of order Oð1Þ.

5For a generic embedding of (2) into 4d N ¼ 2 supergravity,
this solution can be lifted to an M-theory solution [20].

6We will use M and a, b to denote bulk spacetime and tangent
space indices, respectively, and �; � � � � to denote indices along
the boundary directions, i.e. M ¼ ðr; �Þ. All indices on Gamma
matrices refer to tangent space ones. For notational convenience
below we will take m to be defined in units of 1=R, i.e.mR ! m.
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i.e. through the combination of gFq. This is expected; � is
the minimal amount energy needed to add a unit charge to
the system, thus for a field of charge q, the effective
chemical potential is given by �q. Below, for notational

simplicity, we will set gF ¼ 1 and treat q as a free parame-
ter, but one should keep in mind only the product of them is
the relevant quantity.

To analyze the Dirac equations following from (10), it is
convenient to use the following basis

�r ¼ 1 0

0 �1

 !
; �� ¼ 0 ��

�� 0

 !
; c ¼ cþ

c�

 !
(13)

where c� are two-component spinors and �� are gamma
matrices of the (2þ 1)-dimensional boundary theory.
Writing

c� ¼ ð�ggrrÞ�ð1=4Þe�i!tþikix
i
��; (14)

the Dirac equation becomesffiffiffiffiffiffiffi
gii
grr

s
ð@r �m

ffiffiffiffiffiffiffi
grr

p Þ�� ¼ �iK��
���; (15)

with

K�ðrÞ¼ ð�uðrÞ;kiÞ; u¼
ffiffiffiffiffiffiffiffiffiffi
gii
�gtt

s �
!þ�q

�
1�1

r

��
: (16)

Note that since as r ! 1, u ! !þ�q, ! should corre-

spond to the difference of the boundary theory frequency
from �q, i.e. ! ¼ 0 corresponds to the Fermi energy.

To extract the retarded Green function forO, we need to
solve (15) with the in-falling boundary condition at the
horizon [15], and to identify the source and the expectation
value for O from the asymptotic behavior of c near the
boundary. Such an identification can be carried out from
the prescription of [16,17], which amounts to identifying
cþ as the source and its canonical momentum in terms
of r-slicing (which is essentially c�) as the expectation
value. More explicitly, �� have the following asymptotic
behavior near r ! 1,

�þ ¼ Arm þ Br�m�1; �� ¼ Crm�1 þDr�m (17)

with

C¼ i��k�
2m�1

A; B¼ i��k�
2mþ1

D; k� ¼ð�ð!þ�qÞ;kiÞ:
(18)

Suppose the coefficients D (corresponding to expectation
value) and A (corresponding to source) are related by
D ¼ SA, then the retarded Green function GR is given
by [17]7

GR ¼ �iS�0: (19)

Eqs. (15) can be further simplified by choosing the basis
�0 ¼ i�2, �

1 ¼ �1, �
2 ¼ �3 and setting k2 ¼ 0,8 after

which one finds two sets of decoupled equationsffiffiffiffiffiffiffi
gii
grr

s
ð@r �m

ffiffiffiffiffiffiffi
grr

p Þy� ¼ �iðk1 � uÞz�; (20)

ffiffiffiffiffiffiffi
gii
grr

s
ð@r �m

ffiffiffiffiffiffiffi
grr

p Þz� ¼ �iðk1 þ uÞy� (21)

where we have written

�� ¼ y�
z�

� �
:

Introducing the ratios

�þ ¼ iy�
zþ

; �� ¼ � iz�
yþ

; (22)

and using (19), the retarded Green function GR can be
written as

GR ¼ lim
	!0

	�2m �þ 0
0 ��

� �
jr¼ð1=	Þ; (23)

where one should extract the finite terms in the limit.
It is convenient to derive flow equations directly for ��

as in [16]. From (20), we findffiffiffiffiffiffiffi
gii
grr

s
@r�� ¼ �2m

ffiffiffiffiffiffi
gii

p
�� � ðk1 � uÞ � ðk1 � uÞ�2�:

(24)

The in-falling boundary condition at the horizon implies

��jr¼1 ¼ i: (25)

With the boundary condition (25), one can now integrate
(24) to r ! 1 to obtain the boundary correlation function
directly. Below we will drop the subscript 1 on k1.
At zero temperature, the ! ! 0 limit of Eqs. (20), (21),

and (24) is singular, since gtt then has a double zero at the
horizon. As we will see this has important consequences
for the behavior of GR near ! ¼ 0. Also, at ! ¼ 0 the in-
falling boundary conditions (25) do not apply and should
be replaced by

��jr¼1;!¼0 ¼
�m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2 � �2

q

6 � i	
q

�qffiffi
6

p � k
: (26)

Note that the 1=
ffiffiffi
6

p
factor multiplying �q in (26) has the

same origin as the one appearing in (9).

7Here we assumem � 0. Form< 0, one simply exchanges the
roles of A and D. For m 2 ½0; 12Þ, both quantization procedures
are allowed. Also note that the factor �0 in (19) comes from
GR � hfO;Oygi while in perturbing the boundary action we add
�i

R
d3xð �c 0Oþ �Oc 0Þ with �O ¼ Oy�0. As noted in [17], we

must choose the sign of the overall gravity action to be consistent
with unitarity.

8Since the system is rotationally symmetric, there is no loss of
generality.
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III. PROPERTIES OF SPECTRAL FUNCTIONS

A. General behavior

We now describe the properties of GR obtained by
solving (24). First note that by taking k ! �k the equa-
tions for �� exchange with each other, leading to

G22ð!; kÞ ¼ G11ð!;�kÞ: (27)

Similarly by taking q ! �q, ! ! �! we find that

G11ð!; k;�qÞ ¼ �G	
22ð�!; k; qÞ: (28)

So it is enough to restrict to positive k and q. One can also
check that as j!j; jkj 
 �q, both components reduce to

those of the vacuum. When m ¼ 0, by dividing the equa-
tion for �þ in (24) by �2þ, we find that �� ¼ � 1

�þ
, which

implies that

G22ð!; kÞ ¼ � 1

G11ð!; kÞ ; m ¼ 0: (29)

Combining (27) and (29) we thus conclude that at k ¼ 0,

G11ð!; k ¼ 0Þ ¼ G22ð!; k ¼ 0Þ ¼ i; m ¼ 0: (30)

Further study of GR is possible by numerically solving
(24). We will first consider T ¼ 0 and will mostly discuss
the massless case. The mass dependence will be discussed

briefly at the end. There are several consistency checks on
our numerics. First, ImG11 and ImG22 are both positive,
which is a requirement of unitarity since the diagonal
components are proportional to spectral densities. For a
fixed large k 
 �q, ImG11 has a linearly-dispersing

constant-height peak at !þ�q � �k and ImG22 has a

peak at !þ�q � k, while both components are roughly

zero in the region !þ�q 2 ð�k; kÞ (see Figs. 1 and 2).

This recovers the behavior in the vacuum, which is given
by [21,22]

G11 ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�ð!þ i	Þ
kþð!þ i	Þ

s
; G22 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþð!þ i	Þ
k�ð!þ i	Þ

s
(31)

with now the divergences at ! ¼ �k smoothed out into
finite size peaks.

B. Fermi surface

As one decreases k to �q and smaller, the behavior of

GR deviates significantly from that of the vacuum. For

definiteness, let us now focus on q ¼ 1 (with �q ¼
ffiffiffi
3

p
).

In this case the finite peak of ImG22 in the large k
region develops into a sharp quasi-particle-like peak near
kF ¼ 0:918528499ð1Þ (see Fig. 2). The behavior of ImG22

2 1 0 1 2

0

2

4

6

8

Im G22

10 5 0 5

0

2

4

6

8

Im G22

FIG. 1 (color online). Spectral function ImG22ð!Þ at k ¼ 1:2<�q (left plot) and k ¼ 3:0>�q (right plot) for m ¼ 0 and
q ¼ 1ð�q ¼ ffiffiffi

3
p Þ. The function asymptotes to 1 as j!j ! 1 as in the vacuum (31). Right plot: The onset of the finite peak at

! � 1:2 � k��q roughly corresponds to the location of divergence at ! ¼ k in the vacuum (31). The function is roughly zero

between ! 2 ð�k��q; k��qÞ, as it is in vacuum. Left plot: The deviation from the vacuum behavior becomes significant.

FIG. 2 (color online). 3d plots of ImG11ð!; kÞ and ImG22ð!; kÞ for m ¼ 0 and q ¼ 1ð�q ¼ ffiffiffi
3

p Þ. In the right plot the ridge at
k 
 �q corresponds to the smoothed-out peaks at finite density of the divergence at ! ¼ k in the vacuum. As one decreases k to a

value kF � 0:92<�q, the ridge in ImG22 develops into an (infinitely) sharp peak indicative of a Fermi surface.
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in the region of small k? � k� kF and ! can be summa-
rized as follows:

(1) For k? < 0, we find a sharp quasi-particle-like peak
in the region !< 0 and a small ‘‘bump’’ (with a
broad maximum) in the region !> 0 (see Fig. 3).
This appears to indicate that there is a quasi-parti-
cle-like pole in the left quadrant of the lower-half
complex !-plane. As k? ! 0�, both the peak and
the maximum of the bump approach ! ¼ 0, their
heights go to infinity, and their widths go to zero. By
carefully examining when the peak and the bump
meet we are able to determine the accuracy of
kF ¼ 0:918528499ð1Þ to 10th digit.

(2) For k? > 0, one does not see a sharp peak along real
!-axis for either sign of!. Instead one finds a bump
(with a broad maximum) on the !> 0 side and a
smaller bump on the !< 0 side. See Fig. 4. In the
limit k? ! 0þ, both bumps approach ! ¼ 0 and
their heights go into infinity.

(3) The quasi-particle-like peak and various bumps can
also be studied by plotting ImG22ðk;!Þ as a function
of k for a given ! (see the left panel of Fig. 5 for a
plot at ! ¼ �0:001). In the limit ! ! 0�, the
height of the peak goes to infinity with its width
going to zero. At exactly ! ¼ 0, however, the func-
tions ImG11 and ImG22 become identically zero for
k >

�qffiffi
6

p ¼ 1ffiffi
2

p (see the right panel of Fig. 5). This

behavior can be understood from (26) and (24) as
follows. For k � �qffiffi

6
p (at m ¼ 0), the boundary con-

ditions (26) become real and since (24) are real
equations, ImGiið! ¼ 0; kÞ are then identically
zero in this region. Note that kF > 1ffiffi

2
p .

Denoting the location of the maximum of the quasi-
particle-like peak as !	ðk?Þ we find that !	ðk?Þ scales
with k? ! 0� as

!	ðk?Þ � kz?; z ¼ 2:09� 0:01 (32)

and the height of ImG22 at the maximum scales as

ImG22ð!	ðk?Þ; k?Þ � k�

? ; 
 ¼ 1:00� 0:01 (33)

(see Fig. 6). One finds exactly the same scaling behavior
also for the maxima of the other three ‘‘bumps.’’ This
strongly suggests that in the limit of small k? and !
ImG22ð!; k?Þ has the following scaling form

ImG22ð�z!; �k?Þ ¼ ��
ImG22ð!; k?Þ (34)

with the scaling exponents 
; z given by

z ¼ 2:09� 0:01; 
 ¼ 1:00� 0:01: (35)

The scaling behavior (32)–(35) suggests an underlying
sharp Fermi surface with Fermi momentum kF. It is, how-
ever, not of the form corresponding to a Landau Fermi
liquid which would have exponents z ¼ 
 ¼ 1. It is an
example of the more general scaling behavior discussed
recently by Senthil [23,24] for a critical Fermi surface
occurring at a continuous metal-insulator transition.9 The
system also has a rather curious particle-hole asymmetry;
the quasi-particle-like peak at k? < 0 morphs into a bump
at k? > 0 as the Fermi surface is crossed (compare feature

0.002 0.001 0.000 0.001 0.002
200

100

0

100

200

300

Re G22 , Im G22

FIG. 3 (color online). ReG22ð!Þ (blue) and ImG22ð!Þ (orange,
positive curve) at k ¼ 0:90< kF. In ImG22, at !< 0 there is a
quasi-particle-like peak; for !> 0, there is a much smaller
‘‘bump.’’ As k approaches kF, the peak and the bump approach
! ¼ 0 and their heights approach infinity. The dashed lines are
the real and imaginary parts of the fit function (36). Although the
real part slightly deviates from the fit, there is a qualitative
match.

0.0002 0.0001 0.0000 0.0001 0.0002
0

50

100

150

Re G22 , Im G22

FIG. 4 (color online). ReG22ð!Þ (blue curve with peak near
origin) and ImG22ð!Þ (orange) at k ¼ 0:925> kF. One finds a
bump at !> 0 and a much smaller bump at !< 0. As k?
approaches 0þ, both bumps approach ! ¼ 0 and their heights
approach infinity. The dashed lines are the real and imaginary
parts of the fit function (39). The fit is not so good for !< 0,
though the qualitative trend matches.

9For early work, see [25,26].
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1 and 2 of previous page). The fact that �q > kF suggests

that the system has repulsive interactions.
For a given ! � 0, Giiðk;!Þ are nonsingular for any

value of k including kF, while for a given value of k,
Giiðk;!Þ is continuous but nonsmooth at ! ¼ 0.10 This
nonsmooth behavior at ! ¼ 0 for momenta away from the
Fermi momentum is puzzling and it would be nice to
understand its physical interpretation better. From the
gravity side, this is related to the aforementioned singular
behavior of Eqs. (20), (21), and (24) near ! ! 0, as dis-
cussed around (26). This can be further attributed to the
existence of an AdS2 region (9) in the bulk geometry at
zero temperature.

Further support for the scaling behavior (34) near the
Fermi surface can be obtained by fitting the whole curves
of G22ð!Þ (rather than just the behavior near the maxima)
for different k? by a scaling function which is analytic in
the upper half !-plane1112:

(1) For k? < 0, G22 can be fitted13 for both signs of !,
by (see Fig. 3)

G22ð!; k?Þ � c0ð�k?Þ�


logð �!
c1ð�k?ÞzÞ � i�

(36)

where � � 0:34 and c0; c1 are positive constants (in
the scaling region). The above function has a pole in
the lower-half !-plane at

!c ¼ �c1ð�k?Þzei�: (37)

As k? ! 0�, !c approaches to the origin of the
complex plane along a straight line which has an
angle �� � with respect to the positive real axis.
Since Re!c gives the location !	ðk?Þ of the peak
and �Im!c gives the width � of the peak, for (36),

� ¼ tan�j!	ðk?Þj: (38)

This linear dependence of the width on !?
14 is

reminiscent of the behavior in e.g. [2].
(2) For k? > 0, we have not found a good global fit for

both signs of !. A reasonable fit for the imaginary
part is

G22ð!; k?Þ �
a0k

�

?

a1 � iðj!j
kz?
Þð
=zÞ ; (39)

where a0 and a1 are positive constants which take
different values for !< 0 and !> 0.15 It is impor-
tant to note that the functions (36) and (39) are
only best numerical fits we could find and should
not be taken too seriously as the ‘‘genuine’’
functions which describe the system. Both are con-
sistent with the requirement from Fig. 5 that
ImG22ðk?Þ ¼ 0 at! ¼ 0. The different fit functions
for k? < 0 and k? > 0 may reflect the ‘‘particle-
hole asymmetry’’ discussed earlier. Also note that
for a nonzero k? both (36) and (39) indicate a
branch point singularity at! ¼ 0, but have different
k? ! 0 limits. The behavior of ImG22ð!Þ at exactly
k ¼ kF is not completely clear to us at the moment.

C. Discrete scale invariance

In the region k <
�qffiffi
6

p , where ImGiið! ¼ 0; kÞ are non-

zero (see Fig. 5), a new phenomenon occurs in the ! ! 0
limit. One finds that ImGiið!; kÞ become oscillatory with

FIG. 5 (color online). Left: Plots of ImG11ðkÞ (dashed line) and
ImG22ðkÞ as a function of k at ! ¼ �0:001 (m ¼ 0 and q ¼ 1).
A sharp peak in ImG22ðkÞ is clearly visible near kF � 0:9185.
The height of the peak is finite. In the limit! ! 0�, the height of
the peak goes to infinity and the location of the peak approaches
kF from left. Right: Plots of ImG11ðkÞ (dashed line) and ImG22ðkÞ
as a function of k at ! ¼ 0. For ! ¼ 0, both functions become
identically zero in the region k >

�qffiffi
6

p ¼ 1ffiffi
2

p . Since kF > 1=
ffiffiffi
2

p
, at

! ¼ 0, ImG22 is identically zero around kF.

0.914 0.916 0.918 0.920 0.922
–0.00004

–0.00002
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0.00002

0.00004

k

0

6 7 8 9 10 11

2.00

2.05

2.10

2.15

log k⊥

z

FIG. 6 (color online). Left plot: Dispersion relation !	ðkÞ �
kz? around kF. The dashed lines indicate the !-values of the

maxima of the bumps. The solid line shows the dispersion of the
quasiparticle peak. Right plot: Convergence of the z scaling
exponent for k > kF (red, upper curve) and k < kF (blue). The
horizontal axis is the natural log of k?.

10From numerical calculation, it does appear that the functions
become smoother for k 
 �q.
11We would like to thank S. Sachdev for a discussion of
possible subtleties.
12The following discussion of numerical fits is superseded by
the analysis of [27] where the exact functional form near the
Fermi surface is found.
13The function fits well not only along the real !-axis, but also
in the upper half plane. There are numerical instabilities at zero
temperature in the lower half complex !-plane and we have not
been able to perform a direct fit there.

14Recall that for a Landau quasiparticle, ��!2	.
15Again we are handicapped by a numerical instability in the
lower half !-plane which prevents a fit directly around the
singularities in the lower half plane.
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oscillatory peaks periodic in logj!j with constant heights,
see Fig. 7. More explicitly we find

Giið!;kÞ ¼Giið!en�ðkÞ; kÞ; n2 Z; !! 0 (40)

where �ðkÞ is a (k-dependent) positive constant. In other
words, Gii is invariant under a discrete scaling in !. �ðkÞ
appears to decrease with k and approaches a constant in the
limit k ! 0. In the limit k ! �qffiffi

6
p , �ðkÞ approaches infinity.

The height of the oscillatory peaks also decreases with k,
approaching zero as k ! 0 (where the whole function
approaches unity) and a finite constant as k ! �qffiffi

6
p . It would

be interesting to understand whether (40) is associated with
some kind of complex scaling exponents. Below we will
refer to the region k <

�qffiffi
6

p as the oscillatory region. Note

that the oscillatory region appears to be the counterpart for
fermions of the unstable region for a charged boson, where
the corresponding bosonic modes have complex energies
and want to condense. In the fermion case, the oscillatory
region does not appear to indicate an instability, e.g. there
is no singularity in the upper half of the complex !-plane.

D. Finite temperature

Turning on a small temperature T appears to smooth
everything out. There is no longer a sharp Fermi surface,
i.e. there no longer exists a sharp momentum at which
ImG22 becomes singular for any real ! and k. Going to
the lower half !-plane, one finds that all the singularities
are a finite distance away from the real axis, with the
closest distance given by T which happens at k � 0:90
(see Fig. 8).16 This behavior is different from the Fermi
liquid where the width is quadratic in temperature. Note
that for a given small k? < 0, as one turns on the tempera-
ture, the corresponding quasi-particle-like pole in the com-
plex !-plane appears to move down and to the right. It is
also interesting to note that at finite T, there are now quasi-
particle-like poles for momenta k > kF. Perhaps they are
generated from the branch point at T ¼ 0.

At finite T, the functions ImGii become smooth at
! ¼ 0 and in the oscillatory region there are only a finite
number of oscillations as the ! ! 0 limit is approached.

E. Charge dependence

When we increase (decrease) q to be greater (smaller)
than 1, the Fermi momentum kF increases (decreases) with
q approximately linearly. As q is further increased, new
branches of Fermi surfaces appear. These features can be
seen in Fig. 9, which gives the density plots of ImG11 and
ImG22 in the q� k plane at a fixed value of ! ¼ �0:001.

We have sampled the exponents z; 
 for a few other
values of q for the lowest branch of Fermi surface in

0 10 20 30 40 50 60

2

0

2

4

6

log

Re G22 , Im G22

FIG. 7 (color online). Both ReG22ð!; k ¼ 0:5Þ (blue curve)
and ImG22ð!; k ¼ 0:5Þ (orange, positive curve) are periodic in

log! as ! ! 0. The period appears to be given by �ðlog!Þ �
�
ffiffi
6

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

q=6�ðk2þm2Þ
p . This formula was guessed based on the behavior

of the solution in the AdS2 region; the formula is confirmed by
the numerics.

FIG. 8 (color online). The complex omega plane for T ¼
4:13� 10�4: now the quasiparticle pole is finite distance below
the real !-axis. The dashed line indicates the trajectory of the
pole between k ¼ 0:87 (left) . . . 0:93 (right). The closest distance
to the real axis is equal to the temperature T (up to 1% accuracy).
There is a numerical instability for Im!<��T which can also
be seen directly from the wave equation. We leave it for future
work to explore this part of the lower half plane. Also shown is
the density plot for ImG22ð!Þ at k ¼ 0:90, where the corre-
sponding pole is closest to the real axis.

FIG. 9 (color online). Density plot of ImGijðk; qÞ!¼�0:001 with
k 2 ½0; 5� and q 2 ½0; 7� at T ¼ 2:76� 10�6. A negligible
temperature was turned on in order to increase the speed of
the computation. The results were not affected by this. The
orange lines are locations where the functions become very
large. Also note that the width of the peaks in ImGðkÞ decreases
quickly as one moves towards larger charge. The black line is
k ¼ �q=

ffiffiffi
6

p
to the left of which is the oscillatory region.

16Similar results have also been obtained by Carlos Fuertes. We
thank Carlos Fuertes and Subir Sachdev for communicating the
results to us.
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ImG22, e.g. for q ¼ 0:6, z � 5:32; 
 � 1:00, and for
q ¼ 1:2, z � 1:53; 
 � 1:00. Compared to the values for
q ¼ 1 described earlier, it then appears that z decreases
rapidly with increasing q, while 
 ¼ 1 is independent
of q. Note that in [23] it was argued that z � 
 and
z � 1. Thus it could be that z will asymptote to 1 for
larger values of q.17 We also find that the constant � in
(36) appears to decrease rapidly with q. Thus it seems
likely that as q is increased, the non-Fermi liquid will
become more like a Landau Fermi liquid. Given that kF
increases with q, this is reminiscent of asymptotic freedom
in high-density QCD.

The q� k space in Fig. 9 is separated into two regions
by the (black) k ¼ �qffiffi

6
p line. In the region to the right (stable

region), the locations of the quasiparticle lines (i.e. orange
lines in Fig. 9) stabilize in the limit ! ! 0 and indicate
locations of Fermi surfaces. The region to the left is the
oscillatory region discussed earlier, where the log-periodic
oscillatory behavior is reflected in a downward motion of
the orange lines as j!j is decreased; they seem to become
infinitely dense in the limit ! ! 0. Also recall that in the
oscillatory region, the heights of the peaks remain finite in
the ! ! 0 limit.

As one decreases q, a Fermi surface line in Fig. 9 will
intersect the line k ¼ �qffiffi

6
p , disappear into the oscillatory

region, and lose its status as a Fermi surface. Thus the
behavior of ImGii in the oscillatory region is strongly
correlated with the sprouting of new branches of Fermi
surface as q is varied (see Fig. 10).

We have also studied other values of the mass (with
m< 1

2 ) at q ¼ 1, and find the Fermi momentum kF de-

creases linearly with increasing mass. At finite mass, the

oscillatory region is now given by k2 þm2 <
�2

q

6 (see (26)).

We find that for q ¼ 1, the Fermi surface disappears into
the oscillatory region at roughly m � 0:4. For m>

�qffiffi
6

p , the

oscillatory region disappears; we expect the Fermi surface
will also disappear beyond this value if not before.

F. Summary

To conclude this section, let us summarize the main
features of the spectral functions which we have observed.
The system we study is conformally invariant at zero
density. Turning on a finite charge density breaks Lorentz
and scale invariance. The energy scale of the problem is
controlled by the chemical potential � which for a charge
q particle becomes �q ¼ �q. At q ¼ 1 the spectral func-

tions also exhibit two other interesting scales. The first is
the Fermi momentum kF < �q around which we observe a

quasi-particle-like peak which suggests an underlying
Fermi surface. The scaling behavior and the particle-hole
asymmetry around the Fermi surface indicate that this is a
non-Fermi liquid. The other scale is kS � �qffiffi

6
p , which lies

below kF. We find that for k < kS, the spectral functions
have log-periodic oscillatory behavior near ! ¼ 0, which
indicates some underlying discrete scale invariance. At
larger values of q new scales corresponding to more
branches of Fermi surface also appear.
It is important to emphasize that the scaling behavior

observed here is not related to the scale invariance of the
vacuum, which is broken by the nonzero charge density. It
is emergent, arising as a consequence of the collective
behavior of many particles. Note that both the scaling
behavior around the Fermi surface and the discrete scale
invariance involve the small ! limit, which on the gravity
side can be attributed to the AdS2 region in the near
horizon geometry of the black hole at zero temperature.
It may be possible that this emergent scaling behavior can
be understood from the AdS2 region.

18

IV. DISCUSSION

Finally, we discuss some caveats and possible interpre-
tation of the results. While the black hole geometry (6) is

FIG. 10 (color online). (i) ImGijðkÞ!¼0 with q ¼ 1:6. Near k ¼ �q=
ffiffiffi
6

p
, a bump is seen in ImG22ðkÞ. At slightly higher value of the

charge, the Fermi surface crosses the boundary of the oscillatory region and this bump becomes a peak. (ii) ImG11ðq; kÞ!¼0 along the

�q ¼ ffiffiffi
6

p
k line. The spacing between the peaks is constant, �k� ffiffiffiffiffiffiffiffi

7=2
p ð�1%Þ.

17At larger values of q the convergence of the exponents
becomes slower; we leave this for future work. Also note that
the value 
 ¼ 1 is special according to the scaling theory of [23]. 18Work in progress with T. Faulkner [27].
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by itself thermodynamically and perturbatively stable,
when it is embedded into a specific gravity theory, new
instabilities may occur. For example, it is possible for
charged (bulk) scalars to condense, spontaneously
breaking the Uð1Þ symmetry [28,29]. This happens if the
bulk spectrum includes a charged scalar of sufficiently
large charge or sufficiently small mass [30]. The boundary
theories considered in [30] all contain such scalars
including the N ¼ 8 M2 brane theory and ABJM theory.
It would be very interesting to understand how the con-
densate affects the Fermi surfaces and scaling behavior
observed here, and how generic the existence of such
scalars is.

The black hole solution (6) has a finite entropy at
zero temperature, and thus describes an ensemble of an
exponentially large number of states. Given that the solu-
tion is not supersymmetric, it is likely that beyond the
classical gravity approximation these states are energeti-
cally closely-spaced, rather than exactly degenerate. This
‘‘frustrated property’’ is shared by many known models of
spin liquids. The behavior described above then reflects
average behavior of a large number of states rather than
that of a single ground state.

A rather mysterious feature of our results is that different
probe operators appear to find different Fermi surface
structure which depends on (and only on) their charges
and operator dimensions. One possible explanation is as
follows.19 Let us look at the OPE of e.g. the first compo-
nent O1 of a fermionic operator O, which has the sche-
matic form

O 1ð	ÞyO1ð0Þ � 1

	2�
þ cð�Þ

N2

qJ0

	2��2
þ � � � ; (41)

where J0 is the zero component of global Uð1Þ
current. Equation (41) implies that the density for O1 can
be written as

nO1
¼ hO1ð	ÞyO1ð0Þi� 1

	2�
þ cð�Þ

N2

qhJ0i
	2��2

þ�� � 	! 0

(42)

where 	 should be considered as a short-distance cutoff.
The first term on RHS of (42) is the standard piece due to
vacuum fluctuations, which can be subtracted. In a state of
finite density, the second term induces a density for O1,
which is proportional to q, the background charge density
and depends on the UV cutoff through the dimension of the
operator. Since the Fermi surface involves modes with
wavelengths of order k�1

F , which is parametrically distinct
from the short wavelength of the modes contributing the
UV divergence, we expect that the fermionic density which
is responsible for the Fermi surface should be insensitive to

the UV cutoff. The background charge density hJ0i / N2

induces a nonzero charge density of order OðN0Þ for each
charged operator, which depends on its charge and confor-
mal dimension. The induced density increases with its
charge, which is consistent with our empirical observation
that kF increases with the charge of the bulk particle.
In the large N limit, the effective interactions of O with

itself and other gauge invariant operators are all suppressed
by 1=N. This may lead one to conclude that the effective
theory for O should be a free Fermi gas, which would
contradict our observed scaling behavior near kF. Note,
however, the effective dynamics ofO can be different from
that of a free fermion, again due to large N effects. To see
this, let us look at the current density fromO, which can be

schematically written as j� ¼ �O��O. The fluctuations of
j�, which can be read from its connected two point func-
tions, are suppressed by 1=N2. Thus in the largeN limit, j�

does not fluctuate. One can try to model this by coupling a
free fermion to a gauge field, which acts as a Lagrange
multiplier suppressing the fluctuations of the associated
current. When coupling a Fermi liquid to a dynamical
gauge field, it is well known (see e.g. [31–40]) that long-
range magnetic interactions result in a non-Fermi liquid,
which appears to be consistent with our picture. It would be
desirable to make this argument more precise. Note that the
particle-hole asymmetry is not seen in previously known
models. The above suggestion does not preclude the ex-
istence of some fundamental non-Fermi liquid structure
from which the behavior of probe fermionic operators
could be derived.
The fact that the induced charge density for each probe

operator is of order Oð1Þ also implies that their contribu-
tions to the transport of the system are not visible at leading
order in the large N expansion. Indeed, to leading order in
N none of the observables like specific heat, conductivity,
entanglement entropy can depend on the charge or dimen-
sion of probe spinor fields. However, if there exists a
fundamental non-Fermi liquid structure, some effects
might still be visible at leading order. We will leave this
for future study.
Finally, as indicated earlier, the near horizonAdS2 region

appears to play a role for the appearance of both the log-
periodic behavior in the oscillatory region and the Fermi-
surfaces. Clearly it would be interesting to have a better
understanding of the CFT interpretation of theAdS2 region.
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