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We present simple new approximate formulas, for both scalar and spinor QED, for the number of

particles produced from vacuum by a time-dependent electric field, incorporating the interference effects

that arise from an arbitrary number of distinct semiclassical turning points. Such interference effects are

important when the temporal profile of the laser pulse has subcycle structure. We show how the resulting

semiclassical intuition may be used to guide the design of temporal profiles that enhance the momentum

spectrum due to interference effects. The result is easy to implement and generally applicable to time-

dependent tunneling problems, such as those that appear in many other contexts in particle and nuclear

physics, condensed matter physics, atomic physics, chemical physics, and gravitational physics.
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I. INTRODUCTION

The Heisenberg-Schwinger effect is the nonperturbative
production of electron-positron pairs when an external
electric field is applied to the QED vacuum [1–7]. It was
one of the first nontrivial predictions of QED, but the effect
is so weak that it has not yet been directly observed.
However, new experimental developments in ultrahigh
intensity lasers [8,9] may soon bring us to the verge of
this extreme ultrarelativistic regime [10]. This experimen-
tal progress has renewed theoretical interest [11], and
recent results suggests that the effect may become observ-
able in the 1025–1026 W=cm2 intensity range, 3 or 4 orders
of magnitude below the ‘‘Schwinger limit’’ of
4� 1029 W=cm2, which comes from an estimate based
on a constant electric field. New theoretical ideas involve
combining multiple copies of identical pulses [12,13], and
also shaping pulses in special ways using the ‘‘dynamically
assisted Schwinger mechanism’’ [14], in which a superpo-
sition of two time-dependent pulses, one strong but slow,
and the other weak but fast, can lead to a significant
enhancement of the tunneling process associated with the
Schwinger effect. An explicit experimental realization has
been proposed [15] that suggests an observable rate of
particle production. A closely related theoretical idea is
that of a ‘‘catalyzed Schwinger mechanism’’ [16], which
can also be viewed as photon-stimulated pair production
[17], realizing the more general mechanism of an induced
metastable decay process [18]. The importance of cascad-
ing effects has been emphasized in [19]. These, and other
theoretical analyses of more realistic laser fields, such as
plane waves of finite extent [20], show that the precise
form of the laser field can have a significant effect on the
resulting pair-production yield and momentum distribu-
tion. The strong sensitivity is not so surprising since it is
a nonperturbative effect, but this makes it correspondingly
difficult to do precise computations.

In the quantum field theoretic approach [2], the theoreti-
cal problem is to compute the nonperturbative imaginary

part of the ‘‘effective action,’’ �½A� ¼ ℏ ln det½i 6D�m�,
where the Dirac operator, 6D � ��ð@� � i e

ℏc A�Þ, defines
the coupling between electrons and the applied (classical)
electromagnetic field A� that represents the field produced

by the laser pulse. However, computationally we are cur-
rently limited to one-dimensional fields such as time-
dependent electric fields EðtÞ, in which case the problem
can be more conveniently expressed as a ‘‘quantum me-
chanical’’ scattering problem, invoking Feynman’s picture
of antiparticles as particles traveling backward in time
[21]. This requires the computation of a reflection proba-
bility for an over-the-barrier scattering problem, which can
be done numerically or using WKB [22–26], or in the
quantum kinetic approach [27–30]. The WKB approach
is based on a relativistic extension of Keldysh’s seminal
work for atomic ionization in time-dependent electric
fields [31]. Recently it has become clear that this WKB
analysis must be extended to incorporate interference ef-
fects when the temporal profile of the laser pulse has sub-
cycle structure.
For example, it has been shown [32] that the momentum

distribution of the produced particles is extremely sensitive
to the ‘‘carrier phase’’ of a laser pulse, the phase offset
between the pulse envelope and its oscillatory function.
Moreover, this sensitivity reveals a distinct difference be-
tween spinor and scalar QED, which are conventionally
treated on an equal footing at leading nonperturbative
order. The oscillatory behavior of the momentum distribu-
tion is an interference effect, and can be quantitatively
explained by incorporating the interference between differ-
ent semiclassical saddle points. This was done in [33] for
the case of two distinct saddle points, using the phase
integral method and the Stokes phenomenon. In this paper,
we use another even simpler method, based on the Riccati
form of the scattering problem, and present new results for
the case of an arbitrary number of distinct saddle points.
Physically, such interference phenomena are familiar

from strong-field atomic and molecular physics, discussed
long ago in the theory of atomic ionization [34–36], and
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observed experimentally in photoionization spectra
[37,38]. These ideas have even led to the proposal for an
all-optical double-slit experiment in the time domain, us-
ing vacuum polarization effects [32,39]. They also appear
naturally in any time-dependent tunneling effect, such as
the Landau-Zener effect or other condensed matter systems
[40], chemical physics [41], as well as gravitational [42,43]
and particle physics [44].

In Sec. II we briefly review the scattering formalism for
the QED pair-production effect. In Sec. III we recall the
numerical approach, and present our approximate expres-
sions for the particle number. Sections IV and V contain
explicit examples of particular temporal profiles for the
electric field EðtÞ that illustrate various features of the
interference phenomena, and the final section contains
our conclusions.

II. SCATTERING FORMALISM

In this section we recall briefly the scattering formalism
of the pair-production problem for both scalar and spinor
QED, as we wish to compare the two cases in subsequent

sections. For a linearly polarized electric field ~E ¼
ð0; 0; EðtÞÞ that is time dependent and pointing in the x3

direction, we choose a vector potential ~A ¼ ð0; 0; AðtÞÞ,
with EðtÞ ¼ � _AðtÞ. For such a field, spatial momentum is
a good quantum number for the produced particles, so we
can decompose the quantum field operators in terms of
spatial momenta. For both scalar and spinor QED, the
number of particles produced in each momentum mode
can be expressed in terms of the reflection coefficient for
an effective Schrödinger-like scattering problem.
Physically, this is due to Feynman’s interpretation of anti-
particles as particles propagating backwards in time [21],
and has been used as a basic tool in the WKB analysis of
the particle production problem [22–24,26]. The point of
this current paper is to extend such semiclassical analyses
to incorporate interference effects due to multiple saddle
points, as this phenomenon naturally occurs for time-
dependent electric fields with subcycle structure, as is the
case for more realistic representations of intense laser
pulses.

A. Scalar QED

We decompose the scalar field operator as

�ð ~x; tÞ ¼
Z

d3kei
~k� ~xð�kðtÞak þ��

kðtÞby�kÞ; (1)

where ak and by�k satisfy standard bosonic commutation

relations, for each mode k. The Klein-Gordon equation for
�ð ~x; tÞ translates into the following equation for the mode
functions �kðtÞ:

€� kðtÞ þQ2
kðtÞ�kðtÞ ¼ 0; (2)

where we define

Q2
kðtÞ ¼ m2 þ k2? þ ðkk � qAðtÞÞ2: (3)

Equation (2) has the form of a Schrödinger-like equation in
the variable t,

� €�kðtÞ � ðkk � qAðtÞÞ2�kðtÞ ¼ ðm2 þ k2?Þ�kðtÞ (4)

with ‘‘potential’’ VðtÞ ¼ �ðkk � qAðtÞÞ2 and ‘‘energy’’

(m2 þ k2?). We implement the Bogoliubov transformation

by defining �kðtÞ and �kðtÞ as follows:

�kðtÞ ¼ �kðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2QkðtÞ

p e�i
R

t
Qk þ �kðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2QkðtÞ
p ei

R
t
Qk ;

_�kðtÞ ¼ �iQkðtÞ
�

�kðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2QkðtÞ

p e�i
R

t
Qk � �kðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2QkðtÞ
p ei

R
t
Qk

�
:

(5)

For each mode, the Bogoliubov coefficients �k and �k

satisfy the first-order coupled equations:

_� kðtÞ ¼
_QkðtÞ

2QkðtÞ�kðtÞe2i
R

t
Qk ; (6)

_� kðtÞ ¼
_QkðtÞ

2QkðtÞ�kðtÞe�2i
R

t
Qk : (7)

This Bogoliubov transformation implements a change
from the time-independent basis of creation and annihila-

tion operators, ak and by�k, to a time-dependent basis of

creation and annihilation operators, ~akðtÞ and ~by�kðtÞ, via
the linear transformation

~akðtÞ
~by�kðtÞ

� �
¼ �k ��

k

�k ��
k

� �
ak
b�k

� �
: (8)

The bosonic commutation relations are preserved by the
unitarity condition: j�kðtÞj2 � j�kðtÞj2 ¼ 1. The number
of pairs produced in the momentummode k, from vacuum,
is given in terms of the modulus of the coefficient �k at
t ¼ þ1:

Nk ¼ j�kðt ¼ þ1Þj2: (9)

The relation to quantum mechanical scattering arises
because we can express Nk in terms of the reflection

probability, jRkj2 ¼ j �kðtÞ
�kðtÞ j2t¼þ1, for the effective

‘‘Schrödinger’’ problem (2):

Nk ¼ jRkj2
1� jRkj2

: (10)

Recall from (4) that this describes the situation of over-the-
barrier scattering, so the reflection probability is exponen-
tially small; thus we can often make the approximation
Nk � jRkj2.
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B. Spinor QED

An analogous mode decomposition exists for spinor
QED. We expand the spinor field operator �ð ~x; tÞ as

�ð ~x; tÞ ¼ X
s

Z
d3kei

~k� ~xðuk;sðtÞak;s þ v�k;sðtÞby�k;sÞ;

(11)

where ak and by�k satisfy standard fermionic anticommu-
tation relations, for each mode k, and the sum is over
helicity s ¼ �1. In a suitable Dirac matrix basis, the
time-dependent spinors uk;sðtÞ and vk;sðtÞ can be written

in terms of a single complex function c kðtÞ that satisfies
the Schrödinger-like equation:

€c kðtÞ þ ðQ2
kðtÞ þ i _kkðtÞÞc kðtÞ ¼ 0: (12)

We implement the Bogoliubov transformation by defining
�kðtÞ and �kðtÞ as follows:

c kðtÞ ¼ �kðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2QkðtÞðQkðtÞ � kkðtÞÞ

q e�i
R

t
Qk

þ �kðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2QkðtÞðQkðtÞ þ kkðtÞÞ

q ei
R

t
Qk ;

_c kðtÞ ¼ �iQkðtÞ
0
@ �kðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2QkðtÞðQkðtÞ � kkðtÞÞ
q e�i

R
t
Qk

� �kðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2QkðtÞðQkðtÞ þ kkðtÞÞ

q ei
R

t
Qk

1
A: (13)

For each mode, the Bogoliubov coefficients satisfy the
first-order coupled equations:

_� kðtÞ ¼
_kkðtÞ�?
2Q2

kðtÞ
�kðtÞe2i

R
t
Qk ; (14)

_� kðtÞ ¼ �
_kkðtÞ�?
2Q2

kðtÞ
�kðtÞe�2i

R
t
Qk ; (15)

where �2? � m2 þ k2?. This Bogoliubov transformation

implements a change from the time-independent basis of
creation and annihilation operators to a time-dependent
basis of creation and annihilation operators, with the uni-
tarity condition j�kðtÞj2 þ j�kðtÞj2 ¼ 1. Note the opposite
sign from the scalar QED case. The number of pairs
produced in the momentummodek, from vacuum, is given
in terms of the modulus of the coefficient �k at t ¼ þ1:

Nk ¼ j�kðt ¼ þ1Þj2 ¼ jRkj2
1þ jRkj2

; (16)

where jRkj2 is defined as the reflection probability,

jRkj2 ¼ j �kðtÞ
�kðtÞ j2t¼þ1. Again, the reflection is typically

very small, so we often make the approximation
Nk � jRkj2.

III. SCATTERING FORMALISM: NUMERICAL
AND SEMICLASSICAL APPROACHES

A. Scalar QED: Numerical computation

It is straightforward to convert the Schrödinger-like
scattering problem (4) into a Riccati equation [23] that is
suitable for simple numerical evaluation. (We now sup-
press the momentum mode label k since all modes de-
couple, and so can be treated separately.) From Eq. (7) it is
clear that the reflection amplitude R ¼ �=� evolves with
time as

_R ¼ � _�� � _�

�2
¼

_Q

2Q
ðe�2i

R
t
Q � R2e2i

R
t
QÞ: (17)

This Riccati equation is trivial to integrate numerically, for
a givenAðtÞ and longitudinal momentum kk, with the initial
condition Rð�1Þ ¼ 0, to obtain Rð1Þ, whose magnitude
squared gives the particle number (10). As discussed in
[45], this is completely equivalent to the quantum kinetic
equation approach. We will use this numerical formalism
in order to obtain ‘‘exact’’ particle spectra, with which we
can compare our semiclassical approximations.

B. Spinor QED: Numerical computation

For spinor QED, the argument is very similar. From
Eq. (15) it is clear that the reflection amplitude R ¼ �=�
evolves with time as

_R ¼ � _�� � _�

�2
¼ �

_kk�?
2Q2

ðe�2i
R

t
Q þ R2e2i

R
t
QÞ: (18)

Note the different signs from the scalar case (17), and the
different form of the function out the front. Again, it is
simple to implement numerically, with the initial condition
Rð�1Þ ¼ 0, to obtain Rðþ1Þ, and hence the particle
number from (16).

C. Scalar QED: Semiclassical approximation

To motivate a semiclassical approximation to the Riccati
equation (17), consider the fact that RðtÞ is always small,
and so neglect the nonlinear term on the right-hand side
[46]. Then we have simply

Rð1Þ �
Z 1

�1

_Q

2Q
e�2i

R
t

�1 Qðt0Þdt0dt: (19)

This integral is dominated by the contributions of the poles,
where Q ¼ 0, which are the semiclassical turning points
tp. In the neighborhood of such a turning point, change

variables from t to the ‘‘singulant’’ function

�ðtÞ ¼
Z t

Qðt0Þdt0: (20)
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Now assume there is a first-order zero of Q2ðtÞ (a similar
argument applies for other orders of poles), so that near the

turning point, Q	 c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t� tp

p
and �	 2

3 cðt� tpÞ3=2 þ �p.

Then the approximate equation for RðtÞ can be
expressed as

dR

d�
	 1

6

1

�� �p

e�2i�: (21)

Therefore, each pole �p will contribute a term Rð1Þ �
� �i

3 e
�2i�p , where �p ¼ Rtp�1 QðtÞdt, and we have chosen

to refer all the phase integrals to t ¼ �1. In fact, this
approximation does not give the correct prefactor. This
prefactor problem was noted already in the seminal papers
[47], where it was resolved by comparison with soluble
cases. In order to obtain the correct prefactor, we must also
consider the nonlinear term in (17), and keep all the
multiple-integral iteration terms. This procedure yields a
prefactor of magnitude 1 [48–51]. This is a nontrivial
result, relying on a sophisticated combinatorial argument
for the resummation of the iterated terms. In [51] this result
is explicitly extended to the case of multiple turning points,
under the assumption that these turning points are well
separated. We also make this assumption, and note that we
will, in subsequent sections of this paper, confirm the
validity of this approximation by direct comparison with
the exact numerical results. Using these results, we obtain
an approximate expression for the reflection amplitude
with a contribution from each turning point in the upper
half complex plane:

Rð1Þ � X
tp

e�2i
R

tp
�1 QðtÞdt: (22)

Integrals of QðtÞ along the real axis are real, while those
along the imaginary direction are imaginary, so it is natural
to split the exponents into phases and real parts. Let us
define sp ¼ ReðtpÞ as the real part of a complex turning

point tp. Then we can separate out a common phase factor

e�2i
R

s1
�1 QðtÞdt in the sum in (22), and write

Rð1Þ � e�2i
R

s1
�1 QðtÞdt

�X
tp

e�2i	pe
�2j

R
tp
sp

QðtÞdtj�
; (23)

where the phase 	p ¼ Rsp
s1 QðtÞdt is the phase accumulated

by integratingQðtÞ along the real axis between neighboring
turning points. These phases incorporate the interference
effect between distinct turning points and yield a simple
expression for the reflection probability, when we take the
modulus squared of the reflection amplitude in (23).
Within this approximation, there is actually no distinction
between the particle number N in (10) and the reflection
probability jRj2, so we obtain the approximate expression

Nscalar
k � X

tp

e�2KðpÞ
k þ X

tp�tp0
2 cosð2	ðp;p0Þ

k Þe�KðpÞ
k

�Kðp0Þ
k ;

(24)

where we have defined

KðpÞ
k �

��������
Z tp

t�p
QkðtÞdt

��������; (25)

	ðp;p
0Þ

k �
Z sp0

sp

QkðtÞdt: (26)

We have restored the momentum label k to emphasize the
fact that the answer depends on k, because QkðtÞ depends
on k. It should of course be remembered that this means
that the location of the turning points tp also depends on k,

and so do the interference terms 	ðp;p
0Þ

k . The first term in

(24) is the sum over the contributions of independent turn-
ing points, while the second sum characterizes the inter-
ference between different turning points. The dominant
contributions are from turning points with the smallest

values of KðpÞ
k , and interference effects are significant for

pairs of turning points for which these integrals are com-
parable in magnitude. Loosely speaking, this often corre-
sponds to a rule of thumb that turning points closest to the
real axis tend to dominate, and interference effects are
strongest between pairs of turning points that have a com-
parable distance from the real axis.
For later use, we record the approximate expressions for

one, two, and three complex conjugate pairs of turning
points. If a single turning point pair dominates, then we
have the familiar textbook expression [52]

Nscalar
k � e�2KðpÞ

k : (27)

If there are two pairs of turning points, ðt1; t�1Þ and ðt2; t�2Þ,
with comparable real exponential factors e�2Kð1Þ

k and

e�2Kð2Þ
k , then there is a single interference term

Nscalar
k � e�2Kð1Þ

k þ e�2Kð2Þ
k þ 2 cosð2	ð1;2Þk Þe�Kð1Þ

k
�Kð2Þ

k ;

(28)

where 	ð1;2Þk ¼ R
s2
s1
QkðtÞdt. This is the case that was

studied in [33]. If there are three turning point pairs,
ðt1; t�1Þ, ðt2; t�2Þ, and ðt3; t�3Þ, each with comparable real ex-

ponential factors e�2KðpÞ
k , then there are three interference

terms:

Nscalar
k � e�2Kð1Þ

k þ e�2Kð2Þ
k þ e�2Kð3Þ

k

þ 2 cosð2	ð1;2Þk Þe�Kð1Þ
k
�Kð2Þ

k

þ 2 cosð2	ð2;3Þk Þe�Kð2Þ
k
�Kð3Þ

k

þ 2 cosð2	ð1;3Þk Þe�Kð1Þ
k
�Kð3Þ

k ; (29)
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where 	ð1;2Þk ¼ R
s2
s1
QkðtÞdt, 	ð2;3Þk ¼ R

s3
s2
QkðtÞdt, and

	ð1;3Þk ¼ R
s3
s1
QkðtÞdt. The extension to more pairs of turn-

ing points is clear.
In the next section we will illustrate these interference

effects with explicit examples of electric fields that pro-
duce exactly one, two, and three pairs of turning points. In
the semiclassical regime, the expression (24) is an excel-
lent approximation, and describes the interference effects
both qualitatively and quantitatively for a broad range of
physical parameters.

D. Spinor QED: Semiclassical approximation

For spinor QED, we can apply a similar argument to the
Riccati equation (18). The difference is that the initial
approximation, which is then iterated, yields a different
function:

Rð1Þ � �
Z 1

�1

_kk�?
2Q2

e�2i
R

t
Qdt: (30)

In the vicinity of a turning point, we have

�
_kk�?
2Q2

	
_Q

2Q

�?
kk � AðtÞ 	 �i

_Q

2Q
(31)

with the sign depending on the branch. Here we have used
the fact that a turning point is defined by Q2 ¼ 0, which

means ðkk � AðtÞÞ ¼ 
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2?

q
� 
i�?. These signs

alternate between successive turning points, so we obtain
an extra (alternating sign) phase

Rð1Þ � X
tp

ð�1Þpei�=2e�2i
R

tp

�1 QðtÞdt (32)

which leads to an approximate expression for the particle
number for spinor QED:

N
spinor
k �X

tp

e�2KðpÞ
k

þ X
tp�tp0

2cosð2	ðp;p0Þ
k Þð�1Þðp�p0Þe�KðpÞ

k
�Kðp0Þ

k ; (33)

where KðpÞ
k and 	ðp;p

0Þ
k are defined exactly as in (25) and

(26). The only difference from the scalar QED case lies in
the signs of the interference terms. For example, if a single
turning point pair dominates, because of a dominant real

factor e
�2j

Rtp

t�p
QkðtÞdtj

, then there is no interference and we
just have

N
spinor
k � e�2KðpÞ

k (34)

which is the same as for scalar QED. If there are two pairs
of turning points, ðt1; t�1Þ and ðt2; t�2Þ, with comparable real

exponential factors e�2Kð1Þ
k and e�2Kð2Þ

k , then there is a single
interference term, with the opposite sign from the scalar
case:

Nspinor
k � e�2Kð1Þ

k þ e�2Kð2Þ
k � 2 cosð2	ð1;2Þk Þe�Kð1Þ

k
�Kð2Þ

k :

(35)

This is the case that was studied in [33]. If there are three
turning point pairs, ðt1; t�1Þ, ðt2; t�2Þ, and ðt3; t�3Þ, each with

comparable real exponential factors e�2KðpÞ
k , then there are

three interference terms, with signs as follows:

Nspinor
k � e�2Kð1Þ

k þ e�2Kð2Þ
k þ e�2Kð3Þ

k

� 2 cosð2	ð1;2Þk Þe�Kð1Þ
k
�Kð2Þ

k

� 2 cosð2	ð2;3Þk Þe�Kð2Þ
k
�Kð3Þ

k

þ 2 cosð2	ð1;3Þk Þe�Kð1Þ
k
�Kð3Þ

k ; (36)

where 	ð1;2Þk ¼ R
s2
s1
QkðtÞdt, 	ð2;3Þk ¼ R

s3
s2
QkðtÞdt, and

	ð1;3Þk ¼ R
s3
s1
QkðtÞdt. The extension to more pairs of turn-

ing points is clear.

IV. ILLUSTRATIVE EXAMPLES

In this section, we compare our semiclassical approx-
imations (24) and (33) that incorporate interference effects,
with the (exact) numerical approach based on the Riccati
equations (17) and (18), for both scalar and spinor QED.
For this comparison, we have constructed electric fields
such that the corresponding over-the-barrier scattering
problem has precisely one, two, and three pairs of complex
conjugate turning points. The interesting interference ef-
fects occur in the dependence of the particle number Nk on
the longitudinal momentum kk. Thus, in all the following

illustrative examples, we neglect the dependence on the
transverse momentum k?, setting k? ¼ 0.

A. One pair of turning points

An example of a gauge field with only a single pair of
turning points is the single-bump field

EðtÞ ¼ E0

ð1þ!2t2Þ3=2 ; (37)

where E0 is the field strength amplitude, and ! is the
inverse width, as shown in the left panel of Fig. 1. The
associated vector potential can be taken as

t

E(t)

t

A(t)

FIG. 1 (color online). The form of the electric field EðtÞ in (37)
and the corresponding vector potential AðtÞ in (38) for a single
complex conjugate pair of turning points. EðtÞ is an even
function, while AðtÞ is an odd function.
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AðtÞ ¼ � E0tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ!2t2

p : (38)

This vector potential is plotted in the right panel of Fig. 1.
Note that EðtÞ is an even function, while AðtÞ is an odd
function. This field has exactly one pair of complex con-
jugate turning points, ðt1ðkkÞ; t�1ðkkÞÞ, with

t1ðkkÞ ¼ �ðkk � iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 þ!2 þ 2ikk!2 � k2k!

2
q : (39)

Note that as a function of the longitudinal momentum, kk,
the pair of turning points moves around in the complex
plane, as shown in Fig. 2, but remains a complex conjugate
pair.

Figure 3 shows a comparison between the approxima-
tions (27) and (34) and the exact numerical results, for the
particle number as a function of longitudinal momentum.
The left plot is for scalar QED and the right plot is for
spinor QED. There is no oscillatory structure in this mo-
mentum spectrum, as expected since there is no interfer-
ence term for just a single pair of turning points. Thus, the

spectra are the same for scalar and spinor QED, and there is
good agreement between the approximate and exact re-
sults. While the form of the electric field (37) was chosen
so that there is precisely one complex conjugate pair
of turning points, similar behavior is obtained for other
‘‘single-bump’’ electric fields such as EðtÞ ¼ E0sech

2ð!tÞ
or EðtÞ ¼ E0 expð�!2t2Þ, for which there is an infinite
tower of turning point pairs, but only one pair (the one
closest to the real axis) dominates, and the approximate
expressions (27) and (34) again provide extremely accurate
answers.

B. Two pairs of turning points

To illustrate the effect of interference between pairs of
turning points, we now consider an example of a vector
potential leading to precisely two pairs of complex con-
jugate turning points. This field was considered already in
[33], and here we give more details. Consider the electric
field

EðtÞ ¼ � 2E0!t

ð1þ!2t2Þ2 ; (40)
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FIG. 2. The locations of the complex conjugate pair of turning points, in the complex t plane, for three different values of
longitudinal momentum. These plots are for the vector potential AðtÞ in (38), with E0 ¼ 0:1 and ! ¼ 0:1, for longitudinal momentum
values kk ¼ �1 (left panel), kk ¼ 0 (center panel), and kk ¼ 1 (right panel), in units with m ¼ 1. Note that the turning points are

closest to the real axis for kk ¼ 0.
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FIG. 3 (color online). Scalar (left diagram) and spinor (right diagram) QED momentum spectra for vacuum pair production, as a
function of longitudinal momentum, for the electric field (37) that has one pair of turning points. The thick (blue) lines show the
numerical calculation, and the dashed (red) lines show the approximate expressions (27) and (34). The field parameters were chosen as
E0 ¼ 0:1 and ! ¼ 0:1, in units with m ¼ 1.
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where E0 is the field strength amplitude, and ! is the
inverse width, as shown in the left panel of Fig. 4. The
associated vector potential can be taken as

AðtÞ ¼ � E0=!

ð1þ!2t2Þ : (41)

This vector potential is plotted in the right panel of Fig. 4.
Note that EðtÞ is an odd function, while AðtÞ is an even
function. For this vector potential, there are two complex
conjugate pairs of turning points, ðt1ðkkÞ; t�1ðkkÞÞ and

ðt2ðkkÞ; t�2ðkkÞÞ, where

t1ðkkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�E0 � kk!þ i!

p
!3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kk � i

p ; (42)

t2ðkkÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�E0 � kk!� i!

p
!3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kk þ i

p : (43)

These turning points are illustrated in Fig. 5. An important
difference from the case of a single pair of turning points
shown in Fig. 2 is that now the point of closest approach of
the turning points to the real axis occurs at a nonzero value
of kk. This is reflected in the momentum spectrum for the

two-pair case, shown in Fig. 6, which is centered around a
nonzero value of kk, while the momentum spectrum for

the single-pair case, shown in Fig. 3, is centered around
kk ¼ 0. Also, observe that since the two pairs are equidis-

tant from the real axis, we should expect strong interfer-
ence effects between the two pairs of turning points, as
indeed is seen in Fig. 6 for both scalar and spinor QED.
Figure 6 shows a comparison between the approxima-

tions (28) and (35) and the exact numerical results, for the
particle number as a function of longitudinal momentum.
Note the oscillatory behavior of the spectrum, due to the
interference terms. Also notice that the interference term
has the opposite sign for scalar and spinor QED, as re-
flected in the exact momentum spectrum. The agreement
between the exact numerical results (solid, blue lines)
and the approximate semiclassical expressions (dashed,
red lines) is extremely good, both qualitatively and
quantitatively.
The form of the electric field (40) was chosen so that

there are precisely two complex conjugate pairs of turning
points. In fact, for other electric fields with a temporal
profile that is an odd function of t, as in Fig. 4, we find
that there are two dominant pairs of turning points. For
example, this occurs when EðtÞ ¼ E0!tsech2ð!tÞ or
EðtÞ ¼ E0!t expð�!2t2Þ, for which there is an infinite
tower of turning point pairs, but only two pairs (those
closest to the real axis) dominate, and the approximate
expressions (28) and (35) again provide extremely accurate
answers.

C. Three pairs of turning points

To illustrate further the effect of interference between
pairs of turning points, we now consider an example of a
vector potential leading to precisely three pairs of complex
conjugate turning points. This goes beyond the field
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FIG. 5 (color online). The locations of the complex conjugate pair of turning points, in the complex t plane, for three different values
of longitudinal momentum. These plots are for the vector potential AðtÞ in (41), with E0 ¼ 0:1 and ! ¼ 0:1, for longitudinal
momentum values kk ¼ 0 (left panel), kk ¼ 1 (center panel), and kk ¼ 2 (right panel), in units with m ¼ 1. Note that the two turning

points are always equidistant from the real axis, and note that they are closest to the real axis at a nonzero value of kk, which for these

parameters is kk � 1:2.
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FIG. 4 (color online). The form of the electric field EðtÞ in (40)
and the corresponding vector potential AðtÞ in (41) for two
complex conjugate pairs of turning points. EðtÞ is an odd
function, while AðtÞ is an even function.
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considered already in [33], and permits us to verify the sign
pattern of the interference terms in the spinor QED ex-
pression (36). Consider the electric field

EðtÞ ¼ E0ð1� ð3!2
1 þ 2!2

2Þt2Þ
ð1þ!2

2t
2Þ5=2 ; (44)

where E0 is the field strength amplitude, and !1 and !2

represent two independent inverse width scales. The form
of this electric field is shown in the left panel of Fig. 7. The
associated vector potential can be taken as

AðtÞ ¼ �E0tð1�!2
1t

2Þ
ð1þ!2

2t
2Þ3=2 : (45)

This vector potential is plotted in the right panel of Fig. 7.
Note that EðtÞ is an even function, while AðtÞ is an odd
function, as in the case of one pair of turning points, shown
in Fig. 1. The equation for the turning points is a cubic
equation in t2, so we obtain three complex conjugate pairs
of turning points, ðt1ðkkÞ; t�1ðkkÞÞ, ðt2ðkkÞ; t�2ðkkÞÞ, and

ðt3ðkkÞ; t�3ðkkÞÞ. We do not write the expressions explicitly,

as they are long and not particularly instructive. These
turning points are illustrated in Fig. 8, for various values
of the longitudinal momentum. As in the case of a single
pair of turning points shown in Fig. 2, the point of closest
approach of the turning points to the real axis occurs at
kk ¼ 0. This is reflected in the momentum spectrum for the

three-pair case, shown in Fig. 9, which is centered around

kk ¼ 0, but in contrast to the momentum spectrum for the

two-pair case, shown in Fig. 3, which is centered around a
nonzero value of kk. Also, observe that since the three pairs
are almost equidistant from the real axis, we should expect
significant interference effects between the various pairs of
turning points, as indeed is seen in Fig. 9 for both scalar
and spinor QED. The momentum spectrum resulting from
vector potentials that are odd functions of time (and hence
electric fields that are even functions of time) exhibit
symmetric oscillations centered around kk ¼ 0, since

for odd gauge fields the phase integrands have the symme-
tryQkk ðtÞ ¼ Q�kk ð�tÞ. Therefore Eqs. (7) and (15) remain

invariant under the transformations kk ! �kk and t ! �t.
In the WKB framework, this fact is manifest as the sym-
metry of the turning point distribution under kk ! �kk, as
can be seen from Fig. 8.
Figure 9 shows a comparison between the approxima-

tions (29) and (36) and the exact numerical results, for the
particle number as a function of longitudinal momentum.
Note the oscillatory behavior of the spectrum, due to the
interference terms. Also notice that the interference terms
have different signs for scalar and spinor QED, leading to
different oscillatory behavior in the longitudinal momen-
tum spectrum. The agreement between the exact numerical
results (solid, blue lines) and the approximate semiclassi-
cal expressions (dashed, red lines) is extremely good, both
qualitatively and quantitatively.

V. PULSE CONFIGURATIONS WITH
FLAT ENVELOPES

A significant advantage of the semiclassical approach is
that it provides us with some physical intuition to guide the
problem of designing the temporal shape of the electric
field EðtÞ in order to produce a desired momentum spec-
trum. This is an interesting, and difficult, ‘‘inverse prob-
lem,’’ and in this section we illustrate the idea with some
examples. The treatment of temporally localized electric
fields with subcycle structure is important within the con-
text of vacuum pair production in that these types of fields
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FIG. 6 (color online). Scalar (left diagram) and spinor (right diagram) QED momentum spectra for vacuum pair production, as a
function of longitudinal momentum, for the electric field (40) that has two pairs of turning points. The thick (blue) lines show the
numerical calculation, and the dashed (red) lines show the approximate expressions (28) and (35). The field parameters were chosen as
E0 ¼ 0:1 and ! ¼ 0:1, in units with m ¼ 1.
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FIG. 7 (color online). The form of the electric field EðtÞ in (44)
, and the corresponding vector potential AðtÞ in (45) for three
complex conjugate pairs of turning points. EðtÞ is an even
function, while AðtÞ is an odd function.
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represent more realistic pulse configurations with a rich
structure of the momentum spectrum for the produced
pairs. Further, from the experimental point of view, the
investigation of field parameter dependence of the spec-
trum might be useful for achieving more prolific pair
production.

The first observation is that interference effects are more
likely with an electric field with more temporal structure:
the single-bump field exhibits no interference, while the
fields with increasing numbers of maxima and minima tend
to increase the level of interference in the momentum
spectrum. This is obvious from the scattering picture, but
it is not the whole story. We also see that there is a marked
difference between cases where EðtÞ is an even or odd
function. Indeed, for a complicated form (with many os-
cillations and possibly an envelope) of EðtÞ, and hence
correspondingly for AðtÞ, the effective scattering potential
�ðkk � AðtÞÞ2 changes dramatically as a function of kk,
and it is not easy to see from the form of this scattering
potential when there would be a minimum or maximum of
the particle number. The best indicator comes from looking

at the location of the turning points in the complex plane.
This also shows us that interference effects will be most
pronounced when different sets of turning points are ap-
proximately equidistant from the real axis. As in the pre-
vious section, since the interesting interference effects
occur in the dependence of the particle number Nk on
the longitudinalmomentum kk, we neglect the dependence
on the transverse momentum k?, setting k? ¼ 0.
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FIG. 8 (color online). The locations of the complex conjugate pair of turning points, in the complex t plane, for three different values
of longitudinal momentum. These plots are for the vector potential AðtÞ in (45), with E0 ¼ 0:1, !1 ¼ 0:1, and !2 ¼ 1=15, for
longitudinal momentum values kk ¼ �1 (left panel), kk ¼ 0 (center panel), and kk ¼ 1 (right panel), in units with m ¼ 1. Their
distribution suggests we should expect significant interference effects, especially near kk ¼ 0.
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FIG. 9 (color online). Scalar (left diagram) and spinor (right diagram) QED momentum spectra for vacuum pair production, as a
function of longitudinal momentum, for the electric field (44) that has three pairs of turning points. The thick (blue) lines show the
numerical calculation, and the dashed (red) lines show the approximate expressions (29) and (36). The field parameters were chosen as
E0 ¼ 0:1, !1 ¼ 0:1, and !2 ¼ 1=15, in units with m ¼ 1.
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FIG. 10 (color online). The form of the electric field EðtÞ in
(47) and the corresponding vector potential AðtÞ in (48) for two
complex conjugate pairs of turning points. EðtÞ is an even
function, while AðtÞ is an odd function.
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We can illustrate these trends with some electric field
configurations looking more and more like realistic laser
pulses, with subcycle structure. In [32], the effect of the
carrier phase was investigated for fields of a given fre-
quency !, convolved with a Gaussian envelope function,
with a phase offset �:

EðtÞ ¼ E0 cosð!tþ�Þe�t2=ð2
2Þ: (46)

Strong interference effects are seen for the odd field where
� ¼ �=2, and we now understand this as due to the
interference between two dominant pairs of turning points
[33]. Now we ask what happens if we change the shape of
the field so that more than two pairs of turning points
contribute. There should then be stronger interference
effects. This can be achieved by ‘‘flattening’’ the envelope

function from a Gaussian to a factor e�t4=
4 or e�t8=
8 . We
show below that this simple change in the envelope func-
tion increases the number of relevant turning point pairs,
and correspondingly has a significant effect on the inter-

ference terms. We consider such envelope functions both
for ‘‘cosinelike’’ and ‘‘sinelike’’ electric fields, corre-
sponding to carrier phases � ¼ 0 and � ¼ �=2,
respectively.

A. Envelope functions: exp½�t4=�4�
Consider electric fields with an envelope function

e�t4=
4 , which is ‘‘flatter’’ than a Gaussian envelope. This
leads to more turning points with approximately equal real
parts, and therefore to stronger interference effects.
Specifically, we first take an electric field temporal profile
that is an even function of time,

EevenðtÞ ¼ E0e
�t4=
4ð
4! cosðt!Þ � 4t3 sinðt!ÞÞ


4!
; (47)

which comes from an odd vector potential

AðtÞ ¼ �E0=!e�t4=
4 sinð!tÞ: (48)

The forms of these fields are plotted in Fig. 10, and the
turning point distribution is sketched in Fig. 11.We see that
there are more turning point pairs approximately equidis-
tant from the real axis, suggesting stronger interference
effects. The results for the produced particle number, as a
function of longitudinal momentum, are shown in Fig. 12,
for both scalar QED (solid, blue curve) and spinor QED
(dashed, red curve). Notice the single-peak structure for
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FIG. 11. The locations of the complex conjugate pair of turning points, in the complex t plane, for three different values of
longitudinal momentum. These plots are for the vector potential AðtÞ in (48), with E0 ¼ 0:1 and ! ¼ 0:1, for longitudinal momentum
values kk ¼ �1 (left panel), kk ¼ 0 (center panel), and kk ¼ 1 (right panel), in units with m ¼ 1.
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FIG. 12 (color online). The particle numbers for vacuum pair
production, as a function of longitudinal momentum, for the
electric field (47), with the solid (blue) line showing scalar QED
and the dashed (red) line showing spinor QED. The field
parameters E0, !, and 
 were chosen as E0 ¼ 0:1, ! ¼ 0:5,
and 
 ¼ 0:05, in units with m ¼ 1.
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FIG. 13 (color online). The form of the electric field EðtÞ in
(49) and the corresponding vector potential AðtÞ in (50) for two
complex conjugate pairs of turning points. EðtÞ is an odd
function, while AðtÞ is an even function.
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scalar QED, and double-peak structure for spinor QED, a
reflection of the opposite sign of interference terms.

As a second example with the same envelope function,
we consider an electric field temporal profile that is an odd
function of time,

EoddðtÞ ¼�E0e
�ðt4=
4Þð4t3 cosðt!Þþ 
4! sinðt!ÞÞ


4!
; (49)

which comes from a vector potential

AðtÞ ¼ �E0=!e�t4=
4 cosð!tÞ: (50)

The forms of these fields are plotted in Fig. 13, and
the turning point distribution is sketched in Fig. 14. We
see that there are more turning point pairs approximately
equidistant from the real axis, suggesting stronger interfer-
ence effects. The results for the produced particle number,
as a function of longitudinal momentum, are shown in
Fig. 15, for both scalar QED (solid, blue curve) and spinor

QED (dashed, red curve). Again, notice the single-peak
structure for scalar QED and double-peak structure for
spinor QED, but now observe the asymmetry of the spinor
spectrum.

B. Envelope functions: exp½�t8=�8�
Now consider fields with an even flatter envelope func-

tion: e�t8=
8 . This leads to even more turning points with
approximately equal real parts, and therefore to even
stronger interference effects. Specifically, we first take an
electric field temporal profile that is an even function of
time,

EevenðtÞ ¼ E0e
�t8=
8ð
8! cosðt!Þ � 8t7 sinðt!ÞÞ


8!
; (51)

which comes from an odd vector potential

AðtÞ ¼ �E0=!e�t8=
8 sinð!tÞ: (52)

The forms of these fields are plotted in Fig. 16, and the
turning point distribution is sketched in Fig. 17. We see that
there are even more turning point pairs approximately
equidistant from the real axis, suggesting stronger interfer-
ence effects. The results for the produced particle number,
as a function of longitudinal momentum, are shown in
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FIG. 14. The locations of the complex conjugate pair of turning points, in the complex t plane, for three different values of
longitudinal momentum. These plots are for the vector potential AðtÞ in (50), with E0 ¼ 0:1 and ! ¼ 0:1, for longitudinal momentum
values kk ¼ �1 (left panel), kk ¼ 0 (center panel), and kk ¼ 1 (right panel), in units with m ¼ 1.
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FIG. 15 (color online). The particle numbers for vacuum pair
production, as a function of longitudinal momentum, for the
electric field (49), with the solid (blue) line showing scalar QED
and the dashed (red) line showing spinor QED. The field
parameters E0, !, and 
 were chosen as E0 ¼ 0:1, ! ¼ 0:5,
and 
 ¼ 0:05, in units with m ¼ 1.
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FIG. 16 (color online). The form of the electric field EðtÞ in
(51) and the corresponding vector potential AðtÞ in (52) for two
complex conjugate pairs of turning points. EðtÞ is an even
function, while AðtÞ is an odd function.
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Fig. 18, for both scalar QED (solid, blue curve) and spinor
QED (dashed, red curve). Notice the very different forms
of the momentum spectra, and, in particular, notice that the
peak values for spinor QED are almost an order of magni-
tude greater than for scalar QED.

As a second example with the same envelope function,
we consider an electric field temporal profile that is an odd
function of time,

EoddðtÞ ¼ �E0e
�t8=
8ð8t7 cosðt!Þ þ 
8! sinðt!ÞÞ


8!
; (53)

which comes from a vector potential

AðtÞ ¼ �E0=!e�t8=
8 cosð!tÞ: (54)

The forms of these fields are plotted in Fig. 19, and
the turning point distribution is sketched in Fig. 20.
Again, we see that there are even more turning point pairs

approximately equidistant from the real axis, suggesting
stronger interference effects. The results for the produced
particle number, as a function of longitudinal momentum,
are shown in Fig. 21, for both scalar QED (solid, blue
curve) and spinor QED (dashed, red curve). Notice the very
different form of the spectra, and note that again the spinor
QED peaks are noticeably higher than those for scalar
QED.
These examples clearly show that the flatter the enve-

lope function, the stronger the interference effects, and
with such a large number of turning points participating,
there can be large differences between the pair production
for spinor and scalar QED. For example, in Fig. 18 we see
almost an order of magnitude difference between the
spinor and scalar QED peak particle numbers. Contrast
this with the earlier examples, where even though the
interference effects have different signs, they do not con-
spire to increase the overall magnitude of the peak values.

VI. CONCLUSIONS

In this paper we have investigated interference effects in
the longitudinal momentum spectrum for particles pro-
duced from vacuum by a linearly polarized electric
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FIG. 17. The locations of the complex conjugate pair of turning points, in the complex t plane, for three different values of
longitudinal momentum. These plots are for the vector potential AðtÞ in (52), with E0 ¼ 0:1 and ! ¼ 0:1, for longitudinal momentum
values kk ¼ �1 (left panel), kk ¼ 0 (center panel), and kk ¼ 1 (right panel), in units with m ¼ 1.
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FIG. 18 (color online). The particle numbers for vacuum pair
production, as a function of longitudinal momentum, for the
electric field (51), with the solid (blue) line showing scalar QED
and the dashed (red) line showing spinor QED. The field
parameters E0, !, and 
 were chosen as E0 ¼ 0:1, ! ¼ 0:5,
and 
 ¼ 0:05, in units with m ¼ 1.
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FIG. 19 (color online). The form of the electric field EðtÞ in
(53) and the corresponding vector potential AðtÞ in (54) for two
complex conjugate pairs of turning points. EðtÞ is an odd
function, while AðtÞ is an even function.
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field that is spatially uniform but time dependent. The
interference is due to the interaction between multiple
semiclassical turning points, and becomes important
when the temporal profiles have subcycle structure, as is
true for more realistic laser pulse fields rather than just the
well-studied single-bump fields like EðtÞ ¼ E0sech

2ð!tÞ.
We have given simple new approximate formulas (24) and
(33) for the number of produced particles, as a function of
longitudinal momentum, for both scalar and spinor QED,
for an arbitrary number of turning points, extending the
result of [33] for the interference between two distinct
turning points. As expected, the interference terms have
different signs depending on the particle statistics. We have
confirmed that these approximate expressions agree very
well with the exact results, obtained by numerical integra-
tion of the Riccati form of the corresponding scattering

problem, for electric fields having precisely one, two, and
three complex conjugate pairs of semiclassical turning
points. The approximate expressions provide important
physical intuition that may be used to guide the shaping
of the temporal profile of electric field pulses in order to
obtain a particular momentum spectrum. In particular, we
have shown that flattening the temporal envelope function
leads to stronger interference effects, since more turning
points interfere, and tends to increase the particle number
for spinor QED relative to scalar QED. We hope that this
semiclassical approach may be useful in guiding the design
of planned laser experiments in order to observe this
elusive nonperturbative Heisenberg-Schwinger effect for
the first time. For example, the recent numerical results of
Orthaber et al. [53] concerning the momentum spectrum of
vacuum particle production for the dynamically assisted
Schwinger mechanism [14], in which a strong enhance-
ment is seen when a weak but rapidly varying field is
superimposed on a stronger but slower field, can be under-
stood semiclassically in terms of the appearance of new
saddle points that arise due to the additional weak field. In
addition, such time-dependent tunneling problems appear
in many other contexts [54], in particle and nuclear phys-
ics, condensed matter physics, atomic physics, chemical
physics, and gravitational physics, and we anticipate that
the simplicity of these results may prove useful in these
other areas also. Finally, the semiclassical perspective in
terms of interfering saddle points may prove useful in the
search for a computationally effective formalism that also
incorporates spatial inhomogeneities of the laser pulses,
for example, using worldline instantons [55] or Wigner
function methods [56,57].
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[37] P. Szriftgiser, D. Guéry-Odelin, M. Arndt, and J. Dalibard,
Phys. Rev. Lett. 77, 4 (1996); F. Lindner et al., Phys. Rev.
Lett. 95, 040401 (2005).

[38] G. G. Paulus et al., Phys. Rev. Lett. 80, 484 (1998).
[39] B. King, A. Di Piazza, and C.H. Keitel, Nat. Photon. 4, 92

(2010); M. Marklund, Nat. Photon. 4, 72 (2010).
[40] T. Oka and H. Aoki, in Quantum and Semi-classical

Percolation and Breakdown in Disordered Solids,
Lecture Notes in Physics Vol. 762, edited by A.K. Sen,
K. K. Bardhan, and B.K. Chakrabarti (Springer, New
York, 2009).

[41] W.H. Miller, J. Chem. Phys. 48, 1651 (1968).
[42] G. Mahajan and T. Padmanabhan, Gen. Relativ. Gravit. 40,

661 (2007); 40, 709 (2007).
[43] S. P. Kim, J. High Energy Phys. 09 (2010) 054.
[44] D. Kharzeev and K. Tuchin, Nucl. Phys. A753, 316

(2005); D. Kharzeev, E. Levin, and K. Tuchin, Phys.
Rev. C 75, 044903 (2007).

[45] C. K. Dumlu, Phys. Rev. D 79, 065027 (2009).
[46] Such a truncation has been considered in a discussion

of bounds on transmission probabilities in one-
dimensional scattering: M. Visser, Phys. Rev. A 59, 427
(1999); P. Boonserm and M. Visser, J. Phys. A 42, 045301
(2009).

[47] V. L. Pokrovskii, S. K. Savvinykh, and F. R. Ulinich, Sov.
Phys. JETP 34, 879 (1958); 34, 1119 (1958); V. L.
Pokrovskii and I.M. Khalatnikov, Sov. Phys. JETP 13,
1207 (1961).

[48] M.V. Berry and K. E. Mount, Rep. Prog. Phys. 35, 315
(1972).

[49] M.V. Berry, J. Phys. A 15, 3693 (1982).
[50] J. Hu and M.D. Kruskal, in Asymptotics Beyond All

Orders, H. Segur et al. (Plenum, New York, 1991).
[51] R. E. Meyer, J. Math. Phys. (N.Y.) 17, 1039 (1976).
[52] L. D. Landau and L.M. Lifshitz, Quantum Mechanics

(Nonrelativistic Theory) (Pergamon, New York, 2003).
[53] M. Orthaber, F. Hebenstreit, and R. Alkofer, Phys. Lett. B

698, 80 (2011).

CESIM K. DUMLU AND GERALD V. DUNNE PHYSICAL REVIEW D 83, 065028 (2011)

065028-14

http://dx.doi.org/10.1007/BF01343663
http://dx.doi.org/10.1103/PhysRev.82.664
http://dx.doi.org/10.1007/3-540-45585-X_1
http://dx.doi.org/10.1007/3-540-45585-X_1
http://dx.doi.org/10.1016/S0370-2693(01)00496-8
http://dx.doi.org/10.1016/j.physrep.2009.10.004
http://dx.doi.org/10.1016/j.physrep.2009.10.004
http://dx.doi.org/10.1140/epjd/e2009-00107-8
http://www.extreme-light-infrastructure.eu/eli-home.php
http://www.extreme-light-infrastructure.eu/eli-home.php
http://dx.doi.org/10.1103/RevModPhys.78.309
http://dx.doi.org/10.1103/RevModPhys.78.309
http://dx.doi.org/10.1103/RevModPhys.78.591
http://dx.doi.org/10.1103/RevModPhys.78.591
http://dx.doi.org/10.1016/j.physrep.2006.01.002
http://dx.doi.org/10.1140/epjd/e2009-00022-0
http://dx.doi.org/10.1016/j.physleta.2004.07.013
http://dx.doi.org/10.1016/j.physleta.2004.07.013
http://dx.doi.org/10.1103/PhysRevLett.104.220404
http://dx.doi.org/10.1103/PhysRevLett.101.130404
http://dx.doi.org/10.1103/PhysRevLett.101.130404
http://dx.doi.org/10.1103/PhysRevLett.103.170403
http://dx.doi.org/10.1103/PhysRevD.80.111301
http://dx.doi.org/10.1103/PhysRevD.80.111301
http://dx.doi.org/10.1103/PhysRevD.81.025001
http://dx.doi.org/10.1103/PhysRevD.81.025001
http://dx.doi.org/10.1103/PhysRevD.81.085014
http://dx.doi.org/10.1103/PhysRevLett.101.200403
http://dx.doi.org/10.1103/PhysRevLett.101.200403
http://arXiv.org/abs/1010.4528
http://dx.doi.org/10.1016/j.physletb.2010.07.044
http://dx.doi.org/10.1016/j.physletb.2010.07.044
http://arXiv.org/abs/1010.5505
http://dx.doi.org/10.1103/PhysRev.76.749
http://dx.doi.org/10.1103/PhysRevD.2.1191
http://dx.doi.org/10.1103/PhysRevD.2.1191
http://dx.doi.org/10.1002/prop.19770250111
http://dx.doi.org/10.1002/prop.19770250111
http://dx.doi.org/10.1134/1.1410216
http://dx.doi.org/10.1103/PhysRevD.53.7162
http://dx.doi.org/10.1103/PhysRevD.65.105002
http://dx.doi.org/10.1103/PhysRevD.73.065020
http://dx.doi.org/10.1103/PhysRevD.75.045013
http://dx.doi.org/10.1103/PhysRevLett.67.2427
http://dx.doi.org/10.1103/PhysRevD.45.4659
http://dx.doi.org/10.1103/PhysRevD.45.4659
http://dx.doi.org/10.1103/PhysRevD.58.125015
http://dx.doi.org/10.1103/PhysRevD.50.6911
http://dx.doi.org/10.1016/0370-1573(95)00077-1
http://arXiv.org/abs/hep-ph/9712377
http://arXiv.org/abs/hep-ph/9712377
http://dx.doi.org/10.1142/S0218301398000403
http://dx.doi.org/10.1142/S0218301398000403
http://dx.doi.org/10.1140/epjd/e2009-00156-y
http://dx.doi.org/10.1140/epjd/e2009-00156-y
http://dx.doi.org/10.1103/PhysRevLett.102.150404
http://dx.doi.org/10.1142/S0217751X1004944X
http://dx.doi.org/10.1142/S0217751X1004944X
http://dx.doi.org/10.1103/PhysRevLett.104.250402
http://dx.doi.org/10.1103/PhysRevLett.104.250402
http://dx.doi.org/10.1134/1.1378169
http://dx.doi.org/10.1134/1.1378169
http://dx.doi.org/10.1070/PU2004v047n09ABEH001812
http://dx.doi.org/10.1134/1.1903097
http://dx.doi.org/10.1134/1.1903097
http://dx.doi.org/10.1016/j.physleta.2009.10.058
http://dx.doi.org/10.1016/j.physleta.2009.10.058
http://dx.doi.org/10.1103/PhysRevLett.77.4
http://dx.doi.org/10.1103/PhysRevLett.95.040401
http://dx.doi.org/10.1103/PhysRevLett.95.040401
http://dx.doi.org/10.1103/PhysRevLett.80.484
http://dx.doi.org/10.1038/nphoton.2009.261
http://dx.doi.org/10.1038/nphoton.2009.261
http://dx.doi.org/10.1038/nphoton.2009.277
http://dx.doi.org/10.1063/1.1668891
http://dx.doi.org/10.1007/s10714-007-0526-z
http://dx.doi.org/10.1007/s10714-007-0526-z
http://dx.doi.org/10.1007/s10714-007-0527-y
http://dx.doi.org/10.1007/JHEP09(2010)054
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.001
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.001
http://dx.doi.org/10.1103/PhysRevC.75.044903
http://dx.doi.org/10.1103/PhysRevC.75.044903
http://dx.doi.org/10.1103/PhysRevD.79.065027
http://dx.doi.org/10.1103/PhysRevA.59.427
http://dx.doi.org/10.1103/PhysRevA.59.427
http://dx.doi.org/10.1088/1751-8113/42/4/045301
http://dx.doi.org/10.1088/1751-8113/42/4/045301
http://dx.doi.org/10.1088/0034-4885/35/1/306
http://dx.doi.org/10.1088/0034-4885/35/1/306
http://dx.doi.org/10.1088/0305-4470/15/12/021
http://dx.doi.org/10.1063/1.523013
http://dx.doi.org/10.1016/j.physletb.2011.02.053
http://dx.doi.org/10.1016/j.physletb.2011.02.053


[54] E. Keski-Vakkuri and P. Kraus, Phys. Rev. D 54, 7407
(1996).

[55] G. V. Dunne and C. Schubert, Phys. Rev. D 72, 105004
(2005); G.V. Dunne, Q.-h. Wang, H. Gies, and C.
Schubert, Phys. Rev. D 73, 065028 (2006).

[56] F. Hebenstreit, R. Alkofer, and H. Gies, Phys. Rev. D 82,
105026 (2010).

[57] F. Hebenstreit, A. Ilderton, M. Marklund, and J.
Zamanian, arXiv:1011.1923 [Phys. Rev. D (to be pub-
lished)].

INTERFERENCE EFFECTS IN SCHWINGER VACUUM PAIR . . . PHYSICAL REVIEW D 83, 065028 (2011)

065028-15

http://dx.doi.org/10.1103/PhysRevD.54.7407
http://dx.doi.org/10.1103/PhysRevD.54.7407
http://dx.doi.org/10.1103/PhysRevD.72.105004
http://dx.doi.org/10.1103/PhysRevD.72.105004
http://dx.doi.org/10.1103/PhysRevD.73.065028
http://dx.doi.org/10.1103/PhysRevD.82.105026
http://dx.doi.org/10.1103/PhysRevD.82.105026
http://arXiv.org/abs/1011.1923

