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We classify all possible implementations of an Abelian symmetry in the two-Higgs-doublet model with

fermions. We identify those symmetries which are consistent with nonvanishing quark masses and a

Cabibbo-Kobayashi-Maskawa quark-mixing matrix (CKM), which is not block-diagonal. Our analysis

takes us from a plethora of possibilities down to 246 relevant cases, requiring only 34 distinct matrix

forms. We show that applying Zn with n � 4 to the scalar sector leads to a continuous Uð1Þ symmetry in

the whole Lagrangian. Finally, we address the possibilities of spontaneous CP violation and of natural

suppression of the flavor-changing neutral currents. We explain why our work is relevant even for non-

Abelian symmetries.
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I. INTRODUCTION

The least known aspect of the electroweak interactions is
its scalar sector. In the standard model (SM) there is only
one Higgs but, although this is an economical choice, there
is no fundamental reason for nature to adopt it. Ultimately,
the number of Higgs fields, like the number of fermion
families before it, must be assessed experimentally. Partly
for this reason, there has been a great interest in multi-
Higgs models. This is also due to the fact that many
interesting new effects arise, such as the presence of
charged scalars, the possibility for CP violation in the
scalar sector, and the possibility for spontaneous CP vio-
lation, to name a few.

One problem with multi-Higgs models is that they in-
volve many more parameters than needed in the SM. This
problem can be tamed by invoking discrete symmetries. A
complete classification of the impact of discrete and con-
tinuous symmetries in the scalar sector of the two-Higgs-
doublet model (THDM) has been discussed in the literature
[1,2], and some incursions exist into theories with more
than two Higgs doublets [3,4]. There are also several
articles discussing specific implementations of discrete
symmetries in both the scalar and fermion sectors, but
no complete classification exists. This is the problem we
tackle here.

This article is organized as follows: In Sec. II we in-
troduce our notation and show the impact that a choice of
Abelian symmetries in the scalar and fermion sectors has
on the Yukawa matrices. A priori there are 318 possibilities.
In Sec. III we show how simple experimental considera-
tions, such as the absence of massless quarks and the non-
block-diagonal nature of the CKM matrix can be used to
curtail this number down to 246. Up to permutations, these
involve only 34 forms of Yukawa matrices, which we show
explicitly. Since any finite discrete group has an Abelian
subgroup, our classification is important even for those

considering non-Abelian family symmetries. We present
two important results in Sec. IV. Our classification is then
used to address two questions: whether one can have
spontaneous CP violation, in Sec. V; and whether one
can relate the flavor changing neutral current interactions
with the CKMmatrix, in Sec. VI. We draw our conclusions
in Sec. VII.

II. NOTATION

A. The Lagrangian

Let us consider a SUð2Þ �Uð1Þ gauge theory with two
hypercharge-one Higgs doublets, denoted by �a, where
a ¼ 1, 2. The scalar potential may be written as

�LH ¼ Yabð�y
a�bÞ þ 1

2
Zab;cdð�y

a�bÞð�y
c�dÞ; (1)

where Hermiticity implies

Yab ¼ Y�
ba; Zab;cd � Zcd;ab ¼ Z�

ba;dc: (2)

Minimization of this potential leads to the vacuum expec-
tation values (vevs) h�ai ¼ va.
The theory contains also 3 families of left-handed quark

doublets (qL), right-handed down-type quarks (nR), and
right-handed up-type quarks (pR). For the most part, we
will ignore the leptonic sector, since the analysis would be
similar. The Yukawa Lagrangian may be written as

LY ¼ � �qL½ð�1�1 þ �2�2ÞnR þ ð�1
~�1 þ �2

~�2ÞpR�
þ H:c:; (3)

where ~�k � i�2�
�
k, and qL, nR, and pR are 3-vectors in

flavor space. The 3� 3 matrices �k, �k, contain the com-
plex Yukawa couplings to the right-handed down-type
quarks and up-type quarks, respectively.
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B. Basis transformations

The Lagrangian can be rewritten in terms of new fields
obtained from the original ones by simple basis transfor-
mations

�a ! �0
a ¼ Uab�b; qL ! q0L ¼ ULqL;

nR ! n0R ¼ UnRnR; pR ! p0
R ¼ UpRpR;

(4)

where U 2 Uð2Þ is a 2� 2 unitary matrix, while
fUL;UnR; UpRg 2 Uð3Þ are 3� 3 unitary matrices. Under

these unitary basis transformations, the gauge-kinetic
terms are unchanged, but the coefficients Yab and Zab;cd

are transformed as

Yab ! Y0
ab ¼ Ua�Y��U

�
b�; (5)

Zab;cd ! Z0
ab;cd ¼ Ua�Uc�Z��;��U

�
b�U

�
d�; (6)

while the Yukawa matrices change as

�a ! �0
a ¼ UL��U

y
nRðUyÞ�a

�a ! �0
a ¼ UL��U

y
pRðU>Þ�a:

(7)

Notice that we have kept the notation of showing explicitly
the indices in scalar space, while using matrix formulation
for the quark flavor spaces. The basis transformations may
be utilized in order to absorb some of the degrees of free-
dom of Y, Z, �, and/or �, which implies that not all
parameters in the Lagrangian have physical significance.

C. Symmetries in the THDM

We will now assume that the Lagrangian is invariant
under the symmetry

�a ! �S
a ¼ Sab�b; qL ! qSL ¼ SLqL;

nR ! nSR ¼ SnRnR; pR ! pS
R ¼ SpRpR;

(8)

where S 2 Uð2Þ, while fSL; SnR; SpRg 2 Uð3Þ. As a result
of this symmetry,

Yab ¼ Sa�Y��S
�
b�; (9)

Zab;cd ¼ Sa�Sc�Z��;��S
�
b�S

�
d�; (10)

�a ¼ SL��S
y
nRðSyÞ�a; (11)

�a ¼ SL��S
y
pRðS>Þ�a: (12)

Under the basis transformation of Eq. (4), the specific
form of the symmetry in Eq. (8) is altered as

S0 ¼ USUy; (13)

S0L ¼ ULSLU
y
L; (14)

S0nR ¼ UnRSnRU
y
nR; (15)

S0pR ¼ UpRSpRU
y
pR: (16)

Suppose that one has chosen to apply the symmetry
fS; SL; SnR; SpRg in some basis. By a judicious choice

of fU;UL;UnR; UpRg one may bring the symmetry into

the form

S ¼ diagfei�1 ; ei�2g; (17)

SL ¼ diagfei�1 ; ei�2 ; ei�3g; (18)

SnR ¼ diagfei�1 ; ei�2 ; ei�3g; (19)

SpR ¼ diagfei�1 ; ei�2 ; ei�3g: (20)

What about global phases? Clearly, an overall phase
change has no effect on the symmetry. For example, taking
U ¼ ei�12, leaves S

0 ¼ S. However, it is easy to see from
Eqs. (9)–(12) that the symmetry

~S¼ ei
~�S; ~SL¼ ei~�SL; ~SnR¼ ei

~�SnR; ~SpR¼ ei~�SpR;

(21)

imposes the same restrictions on the Lagrangian as the
symmetry fS; SL; SnR; SpRg, as long as

eið ~��~��~�Þ ¼ 1 and eið~��~�þ~�Þ ¼ 1: (22)

This can be used to bring Eqs. (17)–(20) into the form

S ¼ diagf1; ei�g; (23)

SL ¼ diagfei�1 ; ei�2 ; ei�3g; with �1 ¼ 0; (24)

SnR ¼ diagfei�1 ; ei�2 ; ei�3g; (25)

SpR ¼ diagfei�1 ; ei�2 ; ei�3g: (26)

For � ¼ �, S ¼ diagð1;�1Þ leads to the usual Z2 Higgs
potential. Any other value of 0< �< 2�, leads to the
full Uð1Þ symmetric Higgs potential. For example, with
� ¼ 2�=3, S3 ¼ 12, and a Z3 symmetry is imposed on the
scalar fields. Nevertheless, because the scalar potential
only has quadratic and quartic terms, the resulting Higgs
potential has the full Uð1Þ Peccei-Quinn symmetry [3]. If
this symmetry is broken spontaneously by the vacuum, we
will have massless particles. As a result, great care must be
taken when imposing what may look like discrete symme-
tries in multi-Higgs models. Substituting Eqs. (17)–(20) in
Eqs. (11) and (12), we find

ð�aÞij ¼ eið�i��j��aÞð�aÞij; (27)

ð�aÞij ¼ eið�i��jþ�aÞð�aÞij; (28)

where no sum over i and j is intended on the right-hand
sides. For the simplified form in Eq. (23) we set �1 ¼ 0 and
�2 ¼ �. Furthermore, wewill always take � � 0 ðmod 2�Þ,
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since we are only interested in symmetries which do trans-
form the scalar fields. It will prove useful to keep �1

explicitly, bearing in mind that it can be set equal to zero
without loss of generality. These equations constitute our
starting point for what follows.

D. Preliminary constraints on the Yukawa matrices

We will concentrate first on the down-type Yukawa
matrices �a. Given a symmetry written in the form of
Eqs. (23)–(26) we conclude from Eq. (27) that

(i) ð�1Þij can take any value if �ij ¼ 0;

(ii) ð�1Þij ¼ 0 if �ij � 0;

(iii) ð�2Þij can take any value if �ij ¼ �;

ð�2Þij ¼ 0 if �ij � �;

where we have defined

�ij ¼ �i � �j: (29)

We conclude that, for a matrix S characterized by a given
� � 0, there are only three possibilities:

(i) �ij ¼ 0 ) ð�1Þij ¼ any and ð�2Þij ¼ 0;

(ii) �ij ¼ � ) ð�1Þij ¼ 0 and ð�2Þij ¼ any;

(iii) �ij � 0; � ) ð�1Þij ¼ 0 ¼ ð�2Þij.

All conditions on �ij are modð2�Þ. Noticing that only five

�ij are independent, we will take these to be �11, �12, �13,

�21, and �31. Then,

�22 ¼ �21þ�12��11; �23 ¼ �21þ�13��11;

�32 ¼ �31þ�12��11; �33 ¼ �31þ�13��11:
(30)

For each � � 0, we must only consider five �ij. The

possibilities �ij ¼ 0 and �ij ¼ � are simple to enumerate.

Unfortunately, the impact of �ij � 0, � depends on the

exact value of �ij. Thus, there are far more than the 35

possibilities one might naively expect. For example, choos-

ing f�11; �12; �21g ¼ f7�; 2�; 2�g and � ¼ ffiffiffi

2
p

�, we con-
clude that the (1, 1), (1, 2), and (2, 1) entries of �1 and �2

matrices vanish, as do the (2, 2) entries. In contrast, choos-

ing f�11; �12; �21g ¼ f4�; 2�; 2�g and � ¼ ffiffiffi

2
p

� we con-
clude that the (1, 1), (1, 2), and (2, 1) entries of �1 and
�2 matrices vanish, but the (2, 2) entry of �1 need not
vanish.1

Some possibilities are trivially inconsistent with experi-
ment. For example, choosing f�11; �12; �13; �21; �31g ¼
f0; �; �; �; �g, then the matrix

� ¼ f�ijg (31)

becomes

� ¼
0 � �
� 2� 2�
� 2� 2�

2

6

4

3

7

5: (32)

For � � 0 (identity operation) and � � � (usual Z2 sym-
metry), we are lead to Yukawa matrices of the form

�1 ¼
a11 0 0
0 0 0
0 0 0

2

6

4

3

7

5; �2 ¼
0 b12 b13
b21 0 0
b31 0 0

2

6

4

3

7

5:

(33)

Upon spontaneous electroweak symmetry breaking, the
down-type quark mass matrix will arise from the bidiagon-
alization of

v1�1 þ v2�2 ¼
v1a11 v2b12 v2b13
v2b21 0 0
v2b31 0 0

2

6

4

3

7

5; (34)

whose determinant is zero. As a result, this model
would lead to one massless quark, which is ruled out by
experiment. Notice that choosing f�11; �12; �13; �21; �31g ¼
f�; 0; 0; 0; 0g would lead to Yukawa matrices of the form

�1 ¼
0 b12 b13
b21 0 0
b31 0 0

2

6

4

3

7

5; �2 ¼
a11 0 0
0 0 0
0 0 0

2

6

4

3

7

5:

(35)

This is the same as Eq. (33), with the substitution
�1 $ �2. Said otherwise, these possibilities represent
the same model. The interchange �1 $ �2 cuts down
the number of distinct models by almost a factor of 2.
An old model by Lavoura [5] had

S ¼ diagf1;�1g; SL ¼ diagf1; 1; 1g;
SnR ¼ diagf1; 1;�1g; SpR ¼ diagf1; 1; 1g:

(36)

Thus

� ¼
0 0 �
0 0 �
0 0 �

2

6

4

3

7

5; (37)

leading to Yukawa matrices of the form

�1 ¼
a11 a12 0
a21 a22 0
a31 a32 0

2

6

4

3

7

5; �2 ¼
0 0 b13
0 0 b23
0 0 b33

2

6

4

3

7

5: (38)

A model where

� ¼
0 � 0
0 � 0
0 � 0

2

6

4

3

7

5; (39)

will be indistinguishable from Lavoura’s model, as will a
model where the �s move to the first column. Such permu-
tations will further cut down the number of distinct models.

1Notice that the freedom to choose �1 ¼ 0 does not reduce the
number of possibilities.
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For the up-type sector we define

�� ij ¼ �i � �j: (40)

As before, for a matrix S characterized by a given � � 0,
there are only three possibilities:

(1) ��ij ¼ 0 ) ð�1Þij ¼ any and ð�2Þij ¼ 0;

(2) ��ij ¼ �� ) ð�1Þij ¼ 0 and ð�2Þij ¼ any;

(3) ��ij � 0;�� ) ð�1Þij ¼ 0 ¼ ð�2Þij.
All conditions on ��ij are modð2�Þ. Clearly we can

choose independently ��11, ��12, and ��13, and then

��21 ¼ �21��11þ ��11 ��22 ¼ �21��11þ ��12;

��23 ¼ �21��11þ ��13; ��31 ¼ �31��11þ ��11

��32 ¼ �31��11þ ��12; ��33 ¼ �31��11þ ��13:

(41)

There are 9 entries in the down-type Yukawa matrices. For
each there are only three possibilities (the entry exists in �1

but not in �2; the entry exists in �2 but not in �1; the entry
does not exist in either). The same occurs for the up-type
Yukawa matrices. As a result, we would have potentially
318 possibilities. But, as we have illustrated above, inter-
change and permutations help cut this number down. More
importantly, many of the models entail massless quarks, a
diagonal CKM matrix, or other inconsistencies with ex-
periment. These are ruled out. This is what we turn to next.

III. MODEL CLASSIFICATION

A. The left-space

The left-handed space (where the left-handed quark
doublets live) is rather constrained because it affects the
down-type quark mass matrix, the up-type quark mass
matrix, and also the CKMmatrix. The quark mass matrices
are obtained by bi-diagonalizing the matrices

� � v1�1 þ v2�2; (42)

� � v�
1�1 þ v�

2�2; : (43)

whose two indices live in different spaces. But both indices
of the Hermitian matrices

Hd � ��y

¼ jv1j2�1�
y
1 þ jv2j2�2�

y
2 þ v1v

�
2�1�

y
2 þ v�

1v2�2�
y
1

(44)

Hu ���y

¼ jv1j2�1�
y
1 þjv2j2�2�

y
2 þv�

1v2�1�
y
2 þv1v

�
2�2�

y
1

(45)

live on the left-space. These matrices can be diagonalized
through unitary matrices VdL and VuL as

VdLHdV
y
dL ¼ D2

d ¼ diagfm2
d; m

2
s ; m

2
bg; (46)

VuLHuV
y
uL ¼ D2

u ¼ diagfm2
u;m

2
c; m

2
t g; (47)

where V ¼ VuLV
y
dL is the CKM matrix.

We may now see the impact of the symmetry on the left-
space and how it affects the quark masses and mixings. We
start from Eq. (11) in the form

�1 ¼ SL�1S
y
nR; �2 ¼ SL�2S

y
nRe

�i�; (48)

which, using the simplified form of SL in Eq. (18), we can
combine into

�1�
y
1 ¼ SL�1�

y
1S

y
L

¼
A11 A12e

i�12 A13e
�i�31

A21e
�i�12 A22 A23e

i�23

A31e
i�31 A32e

�i�23 A33

2

6

4

3

7

5; (49)

�2�
y
2 ¼ SL�2�

y
2S

y
L

¼
B11 B12e

i�12 B13e
�i�31

B21e
�i�12 B22 B23e

i�23

B31e
i�31 B32e

�i�23 B33

2

6

4

3

7

5; (50)

�1�
y
2 ¼ SL�1�

y
2S

y
Le

i�

¼
C11e

i� C12e
ið�12þ�Þ C13e

�ið�31��Þ
C21e

�ið�12��Þ C22e
i� C23e

ið�23þ�Þ
C31e

ið�31þ�Þ C32e
�ið�23��Þ C33e

i�

2

6

4

3

7

5;

(51)

�2�
y
1 ¼ SL�2�

y
1S

y
Le

�i�

¼
D11e

�i� D12e
ið�12��Þ D13e

�ið�31þ�Þ
D21e

�ið�12þ�Þ D22e
�i� D23e

ið�23��Þ
D31e

ið�31��Þ D32e
�ið�23þ�Þ D33e

�i�

2

6

4

3

7

5:

(52)

In the previous four equations, A ¼ �1�
y
1 , B ¼ �2�

y
2 ,

C ¼ �1�
y
2 , and D ¼ �2�

y
1 , respectively. We have defined

�12 ¼ �1 ��2; �23 ¼ �2 ��3; �31 ¼ �3 ��1;

(53)

which satisfy

�12 þ �23 þ �31 ¼ 0: (54)

It is easy to see that the up-type Yukawa matrices satisfy
identical equations, with � ! ��.
We define the set

J ¼ fx: x ¼ 0ðmod2�Þ _ x ¼ �ðmod2�Þ _ x

¼ ��ðmod2�Þg: (55)

If�12,�23,�31 =2 J , then the matrices �1�
y
1 , �2�

y
2 ,�1�

y
1 ,

and �2�
y
2 are diagonal, while all 12 and 21 combinations

vanish. As a result, Hd and Hu are diagonal and the
CKM matrix V is unity. This is ruled out by experiment.
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As a result, at least one �ij must belong to J . Let us

imagine that �12 2 J , while �23, �31 =2 J . In that case,
Hd and Hu are block-diagonal, so are the matrices VdL and
VuL, and so is the CKM matrix V. This is also ruled out by
experiment. We are left with the cases where

(1) one �ij is not in J , while the two others are in J ;

(2) all �ij belong to J . Next we study these cases in

detail.

B. Odd one out

We look at the case where only one �ij is not in J . Let

us take this to be �12 =2 J , �23, �31 2 J . It is easy to
see that the only possibilities that satisfy this requirement
are f�12; �23; �31g ¼ f2�;��;��g and f�12; �23; �31g ¼
f�2�; �; �g. The second possibility arises from the first
through the interchange �1 $ �2. These symmetries act
on the left of the Yukawa matrices and, thus, we go from
one to the other by simply interchanging the first two
rows of the corresponding Yukawa matrices. Similarly,
the relevant cases where �23 =2 J , �31, �13 =2 J , and
�31 =2 J , �12, �23 2 J are related to the case shown
here by mere permutations among the rows of the respec-
tive Yukawa matrices. As a result, we show only the
case f�12; �23; �31g ¼ f2�;��;��g. Using Eqs. (29), we
obtain �21 ¼ �11 � 2�, �31 ¼ �11 � �. From Eqs. (30)
we get

� ¼
�11 �12 �13

�11 � 2� �12 � 2� �13 � 2�
�11 � � �12 � � �13 � �

2

6

4

3

7

5: (56)

The entries of this matrix which equal 0ðmod2�Þ lead to
corresponding entries in �1; those which equal �ðmod2�Þ
lead to corresponding entries in �2; all others lead to
vanishing entries in �1, �2, and, thus, in �. Recall that �
cannot have a row of zeros nor a column of zeros; other-
wise there would be a massless quark. This is a very
powerful constraint. Let us consider the columns first.
Since there must be at least one entry on each column,
we conclude that �1j 2 f0; �; 2�; 3�gðmod2�Þ. This would
seem to lead to 43 possibilities. However, if �11 ¼ �12 ¼
�13, then there would be a (forbidden) row of zeros. The
reason for this is that we are considering the case where
2� ¼ �12 =2 J , implying that � � z1� and � � z22�=3
with z1 and z2 integers—keeping the interval ½0; 2��,
� =2 f0; 2�=3; �; 4�=3g. This means that ��, �2�, and
3� can never equal 0ðmod2�Þ, nor can they equal
�ðmod2�Þ. Consider, for example, the possibility that
�11 ¼ �12 ¼ �13 ¼ 3�. Then,� would have 3� on the first
row, � on the second row, and 2� on the last row. Because
3� and 2� cannot equal 0 nor �ðmod2�Þ, this would imply
that the first and last rows of �1, �2, and � vanish, leading
to massless quarks. Also, possibilities where two �ij are

equal to 0 or to 3� lead to a 2� 2 block of zeros in �
(implying massless quarks) and are, thus, excluded. There

remain only eight independent forms for the �i matrices
(� =2 f0; 2�=3; �; 4�=3g):2
(i) �11 ¼ �12 ¼ �, �13 ¼ 2� (mod2�)

�1 ¼ x

x x

2

6

6

4

3

7

7

5

; �2 ¼
x x

x

2

6

6

4

3

7

7

5

;

� � 2�=3; �; 4�=3; (57)

(ii) �11 ¼ �12 ¼ �, �13 ¼ 3� (mod2�)

�1 ¼
x x

2

6

6

4

3

7

7

5

; �2 ¼
x x

x

2

6

6

4

3

7

7

5

;

� � 2�=3; �; 4�=3; (58)

(iii) �11 ¼ �12 ¼ 2�, �13 ¼ 0 (mod2�)

�1 ¼
x

x x

2

6

6

4

3

7

7

5

; �2 ¼
x x

2

6

6

4

3

7

7

5

;

� � 2�=3; �; 4�=3; (59)

(iv) �11 ¼ �12 ¼ 2�, �13 ¼ � (mod2�)

�1 ¼ x x

x

2

6

6

4

3

7

7

5

; �2 ¼
x

x x

2

6

6

4

3

7

7

5

;

� � 2�=3; �; 4�=3; (60)

(v) �11 ¼ 0, �12 ¼ 2�, �13 ¼ � (mod2�)

�1 ¼
x

x

x

2

6

6

4

3

7

7

5

; �2 ¼
x

x

2

6

6

4

3

7

7

5

;

� � 2�=3; �; 4�=3; (61)

2Equations (57)–(64) are invariant under the symmetry for all
�, but they are only the most general forms consistent with the
symmetry for those symmetries where � � 2�=3, �, 4�=3. See
Sec. IVB for details.
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(vi) �11 ¼ 0, �12 ¼ 3�, �13 ¼ � (mod2�)

�1 ¼
x

x

2

6

6

4

3

7

7

5

; �2 ¼
x

x

2

6

6

4

3

7

7

5

;

� � 2�=3; �; 4�=3; (62)

(vii) �11 ¼ 0, �12 ¼ 2�, �13 ¼ 3� (mod2�)

�1 ¼
x

x

2

6

6

4

3

7

7

5

; �2 ¼ x

x

2

6

6

4

3

7

7

5

;

� � 2�=3; �; 4�=3; (63)

(viii) �11 ¼ �, �12 ¼ 2�, �13 ¼ 3� (mod2�)

�1 ¼ x

x

2

6

6

4

3

7

7

5

; �2 ¼
x

x

x

2

6

6

4

3

7

7

5

;

� � 2�=3; �; 4�=3: (64)

The x denotes an allowed complex entry; vacant positions
mean that the entry is zero. All other allowed cases with
f�12; �23; �31g ¼ f2�;��;��g are related to these by
permutations among the columns. This corresponds to
a mere renaming of the down-type right-handed fields
fnR1; nR2; nR3g, having no physical significance. As ex-
plained above, all permutations of the rows correspond
to physically allowed cases other than f�12; �23; �31g ¼
f2�;��;��g. As a result, all column and row permutations
of the matrices in Eqs. (57)–(64) correspond to physically
allowed models; permutations on columns have no physi-
cal effect; permutations on rows also have no physical
effect but must be performed simultaneously on the
down-type matrices � and on the up-type matrices �. For
example, a specific THDM with Z4 was proposed in [6] in
the context of nearest neighbor interaction matrices, cor-
responding to our Eq. (61) for both the up-type and down-
type quarks (with rows 1 and 2 interchanged).

C. All in J

We now turn to the cases where �12, �23, �31 2 J .
This means that each �ij can only take the values 0, �, or

�� (mod2�). There would seem to be 33 possibilities.
But Eq. (54) allows us to exclude a few. For example,
taking ��12 ¼ �23 ¼ �31 ¼ �ðmod2�Þ into Eq. (54)
would mean that � ¼ 0ðmod2�Þ, a case we are not con-
sidering since it corresponds to unconstrained scalar
fields: �1 ! �1, �2 ! �2. There are some cases which
are possible only for specific values of �. Postponing
those for subsections III C 4 and III C 5, we are left
with the following cases: (i) f�12; �23; �31g ¼ f0; 0; 0g;

(ii) f�12; �23; �31g ¼ f0;��; �g (interchanging rows
on the Yukawa matrices for this case one reaches the
cases f�12; �23; �31g ¼ f��; �; 0g) and f�12; �23; �31g ¼
f�; 0;��g); and (iii) f�12; �23; �31g ¼ f0; �;��g (inter-
changing rows on the Yukawa matrices for this case
one reaches the cases f�12; �23; �31g ¼ f�;��; 0g) and
f�12; �23; �31g ¼ f��; 0; �g).

1. f�12; �23; �31g ¼ f0; 0; 0g and any �

In this case, �1 ¼ �2 ¼ �3 and �11 ¼ �21 ¼ �31,
leading to

� ¼
�11 �12 �13
�11 �12 �13
�11 �12 �13

2

6

4

3

7

5: (65)

Because a column of zeros in both �1 and �2 would lead to
massless quarks, we must have �1j 2 f0; �g. There are 23

possibilities; each column must exist in either �1 or �2.
Ignoring cases which differ only by permutation of the
columns, we are left with the following structures:
(i) All �1j equal 0

�1 ¼
x x x
x x x
x x x

2

6

4

3

7

5; �2 ¼
2

6

4

3

7

5; any �;

(66)

(ii) Two �1j equal 0

�1 ¼
x x
x x
x x

2

6

4

3

7

5;

�2 ¼
x
x
x

2

6

4

3

7

5; any �;

(67)

(iii) One �1j equals 0

�1 ¼
x
x
x

2

6

4

3

7

5;

�2 ¼
x x
x x
x x

2

6

4

3

7

5; any �:

(68)

This is the same as Eq. (67), with the interchange
�1 $ �2.
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(iv) No �1j equals 0

�1 ¼
2

6

4

3

7

5;

�2 ¼
x x x
x x x
x x x

2

6

4

3

7

5; any �:

(69)

This is the same as Eq. (66), with the interchange
�1 $ �2.

2. f�12; �23; �31g ¼ f0;��; �g and any �

Here3 �21 ¼ �11, �31 ¼ �11 þ �, and

� ¼
�11 �12 �13
�11 �12 �13

�11 þ � �12 þ � �13 þ �

2

6

4

3

7

5; (70)

implying that �1j 2 f0; �;��g. Ignoring cases which differ
only by permutation of the columns, we are left with the
following structures:

(i) f�11; �12; �13g ¼ f0; 0; 0g

�1 ¼
x x x
x x x

2

6

4

3

7

5;

�2 ¼
x x x

2

6

4

3

7

5; any �;

(71)

(ii) f�11; �12; �13g ¼ f0; 0; �g

�1 ¼
x x
x x

2

6

4

3

7

5;

�2 ¼
x
x

x x

2

6

4

3

7

5; � � �;

(72)

�1 ¼
x x
x x

x

2

6

4

3

7

5;

�2 ¼
x
x

x x

2

6

4

3

7

5; � ¼ �:

(73)

The cases with f�11; �12; �13g equal to f�; 0; 0g and
f0; �; 0g are obtained from these through column
permutations.

(iii) f�11; �12; �13g ¼ f0; �; �g

�1 ¼
x
x

2

6

4

3

7

5;

�2 ¼
x x
x x

x

2

6

4

3

7

5; � � �;

(74)

�1 ¼
x
x

x x

2

6

4

3

7

5;

�2 ¼
x x
x x

x

2

6

4

3

7

5; � ¼ �:

(75)

The cases with f�11; �12; �13g equal to f�; �; 0g and
f�; 0; �g are obtained from these through column
permutations.

(iv) f�11; �12; �13g ¼ f0; 0;��g

�1 ¼
x x
x x

x

2

6

4

3

7

5;

�2 ¼
x x

2

6

4

3

7

5; � � �:

(76)

Setting � ¼ � we reobtain Eq. (73). The cases with
f�11; �12; �13g equal to f0;��; 0g and f��; 0; 0g are
obtained from these through column permutations.

(v) f�11; �12; �13g ¼ f0; �;��g

�1 ¼
x
x

x

2

6

4

3

7

5;

�2 ¼
x
x

x

2

6

4

3

7

5; � � �:

(77)

Setting � ¼ � we reobtain Eq. (75). The cases
with f�11; �12; �13g equal to f0;��; �g, f�;��; 0g,
f�; 0;��g, f��; 0; �g, and f��; �; 0g are obtained
from these through column permutations.

(vi) f�11; �12; �13g ¼ f�; �;��g

�1 ¼
x

2

6

4

3

7

5;

�2 ¼
x x
x x

2

6

4

3

7

5; � � �;

(78)

3Recall that the cases f�12; �23; �31g ¼ f��; �; 0g) and
f�12; �23; �31g ¼ f�; 0;��g are obtained from this through per-
mutations on the rows of the Yukawa matrices.
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�1 ¼
x x x

2

6

4

3

7

5;

�2 ¼
x x x
x x x

2

6

4

3

7

5; � ¼ �:

(79)

The cases with f�11; �12; �13g equal to f�;��; �g,
and f��; �; �g are obtained from these through
column permutations.

For those wishing to check that all possibilities have been
considered, we refer to the footnote.4

3. f�12; �23; �31g ¼ f0; �;��g and any �

Here5 �21 ¼ �11, �31 ¼ �11 � �, and

� ¼
�11 �12 �13
�11 �12 �13

�11 � � �12 � � �13 � �

2

6

4

3

7

5; (80)

implying that �1j 2 f0; �; 2�g.
Ignoring cases which differ only by permutation of the

columns, we are left with the following structures:
(i) f�11; �12; �13g ¼ f0; 0; �g

�1 ¼
x x
x x

x

2

6

4

3

7

5;

�2 ¼
x
x

2

6

4

3

7

5; � � �;

(81)

Performing �1 $ �2 and exchanging the first and
third columns on Eq. (81) we obtain Eq. (74). Setting
� ¼ � in this case would lead directly to Eq. (73).
The cases with f�11; �12; �13g equal to f0; �; 0g and
f�; 0; 0g are obtained from these through column
permutations.

(ii) f�11; �12; �13g ¼ f0; �; �g

�1 ¼
x
x

x x

2

6

4

3

7

5;

�2 ¼
x x
x x

2

6

4

3

7

5; � � �;

(82)

Performing �1 $ �2 and exchanging the first and
third columns on Eq. (82) we obtain Eq. (72).
Setting � ¼ � in this case would lead directly to
Eq. (75). The cases with f�11; �12; �13g equal to
f�; 0; �g and f�; �; 0g are obtained from these
through column permutations.

(iii) f�11; �12; �13g ¼ f0; 0; 2�g

�1 ¼
x x
x x

2

6

4

3

7

5;

�2 ¼
x

2

6

4

3

7

5; � � �;

(83)

Performing �1 $ �2 on Eq. (83) we obtain
Eq. (78). Setting � ¼ � in this case would lead
directly to the special case of � ¼ � in Eq. (71).
The cases with f�11; �12; �13g equal to f0; 2�; 0g and
f2�; 0; 0g are obtained from these through column
permutations.

(iv) f�11; �12; �13g ¼ f0; �; 2�g

�1 ¼
x
x

x

2

6

4

3

7

5;

�2 ¼
x
x

x

2

6

4

3

7

5; � � �:

(84)

Performing �1 $ �2 and exchanging the first and
second columns on Eq. (84) we obtain Eq. (77).
Setting � ¼ � in this case would lead to Eq. (73),
after interchanging the second and third columns.
The cases with f�11; �12; �13g equal to f0; 2�; �g,
f�; 2�; 0g, f�; 0; 2�g, f2�; 0; �g, and f2�; �; 0g are
obtained from these through column permutations.

(v) f�11; �12; �13g ¼ f�; �; �g

�1 ¼
x x x

2

6

4

3

7

5;

�2 ¼
x x x
x x x

2

6

4

3

7

5; any �:

(85)

Performing �1 $ �2 on Eq. (85) we obtain
Eq. (71). Notice that the special case of � ¼ � had
already shown up in Eq. (79).

4We have also checked that

(i) The cases where f�11; �12; �13g equal f0;��;��g,
f��; 0;��g, and f��;��; 0g lead to vanishing
quark masses, if � � �, and to Eq. (75), if � ¼ �;

(ii) The cases where f�11; �12; �13g equal f�; �; �g lead to
vanishing quark masses, if � � �, and to Eq. (79), if
� ¼ �;

(iii) The cases where f�11; �12; �13g equal f�;��;��g,
f��; �;��g, and f��;��; �g lead to vanishing
quark masses, if � � �, and to Eq. (79), if � ¼ �;
The cases where f�11; �12; �13g equal f��;��;��g
lead to vanishing quark masses, if � � �, and to
Eq. (79), if � ¼ �.

5Recall that the cases f�12; �23; �31g ¼ f�;��; 0g) and
f�12; �23; �31g ¼ f��; 0; �g are obtained from this through per-
mutations on the rows of the Yukawa matrices.
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(vi) f�11; �12; �13g ¼ f�; �; 2�g

�1 ¼
x x

2

6

4

3

7

5;

�2 ¼
x x
x x

x

2

6

4

3

7

5; � � �;

(86)

Performing �1 $ �2 on Eq. (86) we obtain
Eq. (76). Setting � ¼ � in this case would lead to
Eq. (75), after interchanging the first and third
columns. The cases with f�11; �12; �13g equal to
f�; 2�; �g and f2�; �; �g are obtained from these
through column permutations.

For those wishing to check that all possibilities have been
considered, we refer to the footnote.6

4. Special cases with � ¼ �

We continue to explore the cases where each �ij

can only take the values 0, �, or �� (mod2�). Certain
cases are only valid for � ¼ �. For example, consider
�12 ¼ 0ðmod2�Þ and �23 ¼ �31 ¼ �ðmod2�Þ. Taking
� 2 ½0; 2��, this can only happen for � ¼ �, due to
Eq. (54). This forces us to consider the case
f�12; �23; �31g ¼ f0; �; �g. The cases f�12; �23; �31g ¼
f�; 0; �g and f�12; �23; �31g ¼ f�;�; 0g are obtained
from this by permuting the rows on the respective
Yukawa matrices. In this case, �21 ¼ �11, �31 ¼ �11 þ �,
and

� ¼
�11 �12 �13
�11 �12 �13

�11 þ � �12 þ � �13 þ �

2

6

4

3

7

5; (87)

implying that �1j 2 f0; �g. There are 23 such cases, all of

which lead to a matrix � where all entries may be non-
vanishing.7 We continue to ignore cases which differ only

by permutation of the columns. It is easy to see that we
have already considered all possible structures. Indeed,
when all �1j equal �, we recover Eq. (71); when two �1j
equal �, we recover Eq. (73); when only one �1j equals �,

we recover Eq. (75); and when no �1j equals �, we recover

Eq. (79).

5. Special cases with � ¼ 2�=3

We now turn to the last two cases where each �ij can

only take the values 0, �, or �� (mod2�). Because of
Eq. (54), we can have �12 ¼ �23 ¼ �31 ¼ �� if and only
if � ¼ 2�=3. The case �12 ¼ �23 ¼ �31 ¼ �2�=3
(or, which is the same, 4�=3) is obtained by exchanging
any two rows of the Yukawa matrices. We choose the
case �12 ¼ �23 ¼ �31 ¼ 2�=3, implying that �21 ¼
�11 � 2�=3, �31 ¼ �11 þ 2�=3, and

� ¼
�11 �12 �13

�11 � 2�=3 �12 � 2�=3 �13 � 2�=3
�11 þ 2�=3 �12 þ 2�=3 �13 þ 2�=3

2

6

4

3

7

5; (88)

implying that �1j 2 f0; 2�=3;�2�=3g. Recall that

�11 ¼ �12 ¼ �13 is excluded because it would lead to
massless quarks.
Ignoring cases which differ only by permutation of the

columns, we are left with the following structures:
(i) f�11; �12; �13g ¼ f0; 0; 2�=3g

�1 ¼
x x x

x

2

6

4

3

7

5;

�2 ¼
x

x x

2

6

4

3

7

5; � ¼ 2�=3;

(89)

(ii) f�11; �12; �13g ¼ f0; 0;�2�=3g

�1 ¼
x x

x

2

6

4

3

7

5;

�2 ¼ x
x x

2

6

4

3

7

5; � ¼ 2�=3;

(90)

(iii) f�11; �12; �13g ¼ f0; 2�=3; 2�=3g

�1 ¼
x

x x

2

6

4

3

7

5;

�2 ¼
x x

x

2

6

4

3

7

5; � ¼ 2�=3;

(91)

6We have also checked that

(i) The cases where f�11; �12; �13g equal f0; 0; 0g lead to
vanishing quark masses, if � � �, and to Eq. (71), if
� ¼ �;

(ii) The cases where f�11; �12; �13g equal f0; 2�; 2�g,
f2�; 0; 2�g, and f2�; 2�; 0g lead to vanishing quark
masses, if � � �, and to Eq. (71), if � ¼ �;

(iii) The cases where f�11; �12; �13g equal f�; 2�; 2�g,
f2�; �; 2�g, and f2�; 2�; �g lead to vanishing quark
masses, if � � �, and to Eq. (73), if � ¼ �;

(iv) The cases where f�11; �12; �13g equal f2�; 2�; 2�g
lead to vanishing quark masses, if � � �, and to
Eq. (71), if � ¼ �.

7Of course, some entry may be zero by accident. The point is
that this value is not required by a symmetry of this type and,
as such, it is not invariant under the renormalization group
equations.
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(iv) f�11; �12; �13g ¼ f0; 2�=3;�2�=3g

�1 ¼
x

x
x

2

6

4

3

7

5;

�2 ¼
x

x
x

2

6

4

3

7

5; � ¼ 2�=3;

(92)

(v) f�11; �12; �13g ¼ f0;�2�=3;�2�=3g

�1 ¼
x

x x

2

6

4

3

7

5;

�2 ¼ x x
x

2

6

4

3

7

5; � ¼ 2�=3;

(93)

(vi) f�11; �12; �13g ¼ f2�=3; 2�=3;�2�=3g

�1 ¼ x x
x

2

6

4

3

7

5;

�2 ¼
x x

x

2

6

4

3

7

5; � ¼ 2�=3;

(94)

(vii) f�11; �12; �13g ¼ f2�=3;�2�=3;�2�=3g

�1 ¼ x
x x

2

6

4

3

7

5;

�2 ¼
x

x x

2

6

4

3

7

5; � ¼ 2�=3;

(95)

Care must be exercised when comparing these matrices
with those shown previously. Consider, for example,
Eq. (89). f�11; �12; �13g ¼ f0; 0; 2�=3g, with f�21; �31g ¼
f�11 � 2�=3; �11 þ 2�=3g ¼ f�2�=3; 2�=3g. We might
worry about Eq. (72), where one can also choose
f�11; �12; �13g ¼ f0; 0; 2�=3g. However, there, f�21; �31g ¼
f�11; �11 þ 2�=3g ¼ f0; 2�=3g.

D. Yukawa matrices for up-type quarks

So far, we have only shown the Yukawa matrices for the
down-type quarks. We will now show that it is trivial to get
the Yukawa matrices for the up-type quarks from those for
the down-type quarks. Let us start from some specific
transformation of the left-handed fields, characterized by

�12 and �31. From Eqs. (30) and (41) we get �21 ¼ �11 �
�12, �31 ¼ �11 þ �31, so that

� ¼
�11 �12 �13

�11 � �12 �12 � �12 �13 � �12

�11 þ �31 �12 þ �31 �13 þ �31

2

6

4

3

7

5; (96)

�� ¼
��11 ��12 ��13

��11 � �12
��12 � �12

��13 � �12
��11 þ �31

��12 þ �31
��13 þ �31

2

6

4

3

7

5: (97)

Each entry on the column j of � is of the form �1j þ b.

We then followed the procedure

�1j þ b ¼ 0ðmod2�Þ ) entry is in �1;

�1j þ b ¼ �ðmod2�Þ ) entry is in �2:
(98)

Let us call ��1j ¼ �1j � �. Then, if �1j þ b ¼ 0ð�Þ, we find
��1j þ b ¼ ��ð0Þ, meaning that this is an entry in �2 (�1).

Thus

��1jþb¼ ð�1j��Þþb¼��ðmod2�Þ ) entry is in �2;

��1jþb¼ ð�1j��Þþb¼ 0ðmod2�Þ ) entry is in �1:

(99)

The argument goes both ways, so we can find all cases for
the up-type Yukawa matrices � by starting from all cases
for the down-type Yukawa matrices � and performing the
following procedure:
(i) �1j ! ��1j ¼ �1j � �;

(ii) �1 ! �2;
(iii) �2 ! �1.

Of course, one can shuffle differently the columns of
f�1;�2g and f�2;�1g, since they live on different right-
handed spaces.

E. Counting the number of models

The only purpose of our parameter counting is to show
the enormous amount of cases which have been killed by
the simple requirements that there be no massless quarks
and that the CKM matrix not be block-diagonal. As
pointed out at the end of Sec. II, there are potentially
318 ¼ 387:420:489 different models. Notice that this num-
ber does not include permutations that lead to the same
form for the Yukawa matrices. But, it does include permu-
tations which, although leading to different forms of the
Yukawa matrices, have no impact on the physical observ-
ables. This same procedure must be followed when we
count the number of distinct forms of the Yukawa matrices
based on the analysis of the previous sections.
The forms shown in Sec. III B correspond to 6L � ð3 þ

3 þ 3 þ 3 þ 6 þ 6 þ 6 þ 6ÞnR � ð3 þ 3 þ 3 þ 3 þ 6 þ
6 þ 6 þ 6ÞpR ¼ 7776. The subindices L, nR, and pR

correspond to the permutations of rows, down-type
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columns, and up-type columns (respectively), that lead to
the same physics. But, as in the 318 possibilities above, the
counting has been performed so that no two structures
look the same. The numbers in ð3þ 3þ 3þ 3þ 6þ 6þ
6þ 6ÞnR correspond to the number of possibilities in
Eqs. (57)–(64), respectively.

To be specific, let us look at Eq. (57). Exchanging the
first and second column leaves the form invariant. This is
counted as one structure. However, exchanging the third
and first columns leads to a new structure. So does an
exchange between the third and second column. There
are thus three possibilities. This explains the first ‘‘3’’ in
ð3þ 3þ 3þ 3þ 6þ 6þ 6þ 6ÞnR. The rest of the count-
ing procedure follows the same lines.

The forms shown in Sec. III C 1 correspond to 1L � ð1þ
3þ 3þ 1ÞnR � ð1þ 3þ 3þ 1ÞpR ¼ 64. The forms

shown in Sec. III C 2 with � � � correspond to 3L�ð1þ
3þ 3þ 6þ 3þ 3ÞnR�ð1þ 3þ 3þ 6þ 3þ 3ÞpR ¼ 1083.

The forms shown in Sec. III C 2 with � ¼ � correspond to
3L � ð3þ 3þ 3ÞnR � ð3þ 3þ 3ÞpR ¼ 243. The forms

shown in Sec. III C 3 correspond to 3L � ð1þ 3þ
3þ 6þ 3þ 3ÞnR � ð1þ 3þ 3þ 6þ 3þ 3ÞpR ¼ 1083.

Finally, forms shown in Sec. III C 5 correspond to 6L �
ð3þ 3 þ 3þ 6þ 3þ 3þ 3ÞnR � ð3þ 3þ 3þ 6 þ 3þ
3 þ 3ÞpR ¼ 3456. There are thus 13 705 distinct surviving

possibilities.
This may seem like a large number, but notice that we

have eliminated 387 406 784 a priori conceivable Yukawa
structures. The simple requirements of quarks with non-
zero mass and a CKM matrix which is not block-diagonal
provides a drastic reduction in the number of possibilities.
Said otherwise, the huge majority of Yukawa matrices
consistent with Abelian symmetries do not survive simple
experimental constraints. We should also point out that any
two structures which differ only by permutations of the
rows (simultaneously in � and �), and/or by permutations
of the columns of �, and/or by permutations of the columns
of� give exactly the same physics. Permutations aside, we
are left with the 8þ 4þ 9þ 6þ 7 ¼ 34 possibilities for
the down-type Yukawa matrices shown in Eqs. (57)–(64),
(66)–(69), (71)–(79), (81)–(86), and (89)–(95), with simi-
lar structures for the up-type Yukawa matrices. Combining
appropriately, we get 8� 8þ 4� 4þ 9� 9þ 6� 6þ
7� 7 ¼ 246 overall models. Those that differ only by
�1 $ �2 will lead to the same physics. Of those, a few
can be further excluded because they do not yield any CP
violation. The possibility of spontaneous CP violation will
be addressed in Sec. V.

IV. TWO IMPORTANT RESULTS

A. Most discrete symmetries have the same impact

We have considered a symmetry in the scalar sector
S ¼ diagf1; ei�g. Of course, if the Lagrangian is invariant
under S, it is invariant under any power of S. In this way, if

� ¼ 2�=n, then the Zn group is generated. If � � 2�=n,
then one generates a discrete, but infinite, group. For
simplicity we will refer to the Zn groups in what follows.
We now turn to an important result from our previous

analysis. We know that choosing � ¼ 2�=3 or � ¼ 2�=5
leads to the same Higgs potential. Indeed, any � � 0, �
leads to the same Higgs potential as the continuous Uð1Þ
Peccei-Quinn symmetry [3]. From this point of view, ap-
plying any Zn (n � 3), or even Uð1Þ is the same. With the
results presented in the previous section, we see that this is
no longer the case when the fermions are added. As shown
here, the symmetry Z3 allows Yukawa structures not al-
lowed for other Zn. Remarkably, all Zn with n � 4 have the
same impact on the full Lagrangian, even when fermions
are introduced.

B. Most discrete symmetries imply an accidental
continuous symmetry

The notation � � 2�=3, �, 4�=3 used in Eqs. (57)–(64)
means that the form of the matrices shown is the most
general consistent with values of � which differ from
2�=3, �, and 4�=3. But one should notice that the form
of the matrices shown is left invariant even if � ¼ 2�=3,�,
4�=3. The point is that, in general, for those special values
of � these matrix forms are not the most general consistent
with the symmetries. For example, Eq. (57) is not the most
general matrix consistent with �11 ¼ �12 ¼ �, �13 ¼ 2�
(mod2�) when � ¼ �. That form is shown in Eq. (75).
But one can see that, indeed, Eq. (57) is a particular case of
Eq. (75). So, Eqs. (57)–(64) are invariant under the sym-
metry for all �, but they are only the most general forms
consistent with the symmetry for those symmetries where
� � 2�=3, �, 4�=3. The dedicated reader can check this
explicitly by comparing these forms with the forms pre-
sented for the special cases � ¼ � and � ¼ 2�=3.
This has a very important consequence. A matrix form

which is invariant under the symmetry for some value of
� � 2�=3, �, 4�=3 will be invariant under the symmetry
for all values of �, meaning that the Yukawa sector will be
invariant under Uð1Þ. Since this is also true for the Higgs
potential, we conclude that, for the cases in Sec. III B:
(i) Imposing Z2 on the scalars does not imply a larger
symmetry, neither in the Higgs sector, nor in the Yukawa
sector; (ii) Imposing Z3 on the scalars implies a continuous
symmetry in the Higgs sector, but not in the Yukawa sector;
(iii) Imposing Zn, n � 4 on the scalars implies a continu-
ous symmetry, both in the Higgs sector and in the Yukawa
sector.
The other cases can be analyzed in a similar fashion. For

the cases in Sec. III C 1: (i) Imposing Z2 on the scalars
implies a continuous symmetry in Yukawa the sector,
but not in the Higgs sector; (ii) Imposing Zn, n � 3 on
the scalars implies a continuous symmetry, both in the
Higgs sector and in the Yukawa sector. For the cases in
Secs. III C 2 and III C 3: (i) Imposing Z2 on the scalars does
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not imply a larger symmetry, neither in the Higgs sector,
nor in the Yukawa sector; (ii) Imposing Zn, n � 3 on the
scalars implies a continuous symmetry, both in the Higgs
sector and in the Yukawa sector.

V. SPONTANEOUS CP VIOLATION

A. Strict two-Higgs-doublet model

Let us now look at the possible vacua of a theory with
only two Higgs doublets and three fermion generations,
and their implications for CP violation at the Lagrangian
level. We are interested in implementations of discrete
Abelian symmetries, like Zn, for which the scalar potential
of Eq. (1) can be written as

V ¼ m2
11�

y
1�1 þm2

22�
y
2�2 �m2

12ð�y
1�2 þ H:c:Þ

þ 1

2
�1ð�y

1�1Þ2 þ 1

2
�2ð�y

2�2Þ2

þ �3ð�y
1�1Þð�y

2�2Þ þ �4ð�y
1�2Þð�y

2�1Þ
þ 1

2
�5½ð�y

1�2Þ2 þ H:c:�; (100)

where all the parameters are real. We have included the
soft-breaking parameter m2

12, taken to be real so that CP is
not explicitly broken. For a Z2 symmetry—� ¼ � in
Eq. (23)—the �5 coupling is present in the potential. For
Zn, n � 3, or indeed any other value for � different from
0 or �, the symmetry sets �5 to zero and the potential is
indistinguishable from the Peccei-Quinn one [7]. At the
minimum, the scalar fields develop vevs which we take to
be given by, without loss of generality

h�1i ¼ v1 ¼ u1; h�2i ¼ v2 ¼ u2 þ iu3; (101)

with all ui real. A vacuum with u3 � 0 may lead to sponta-
neous CP violation (SCPV) in the scalar sector—however,
the presence of a phase in the vacuum is no guarantee of
SCPV. To verify whether SCPVoccurs in the scalar sector,
we must calculate the basis invariant quantities of Ref. [8],
which was done for all possible THDM scalar potentials in
[9]. The minimization conditions are given by @V=@ui ¼
0, from which we obtain

0 ¼ ½m2
11 þ �1u

2
1 þ ð�3 þ �4Þðu22 þ u23Þ

þ �5ðu22 � u23Þ�u1 �m2
12u2 (102)

0 ¼ ½m2
22 þ �2ðu22 þ u23Þ þ ð�3 þ �4 þ �5Þu21�u2 �m2

12u1

(103)

0 ¼ ½m2
22 þ �2ðu22 þ u23Þ þ ð�3 þ �4 � �5Þu21�u3: (104)

From these we see that solutions with u3 ¼ 0 are always
possible. There are several interesting cases:

(i) � ¼ �, exact Z2 symmetry (m2
12 ¼ 0, �5 � 0):

from Eqs. (104) and (103), any solution with
u3 � 0 automatically implies either u1 ¼ 0 or

u2 ¼ 0. Both solutions lead to no SCPV in the scalar
sector (see [9]).

(ii) � ¼ �, soft-broken Z2 symmetry (m2
12, �5 � 0):

both solutions without SCPV in the scalar sector
(u3 ¼ 0) and with SCPV in the scalar sector
(u3 � 0) are possible, depending on the values of
potential’s parameters [10].

(iii) � � f0; �g, exact Uð1Þ symmetry (m2
12 ¼ �5 ¼ 0):

the equations above only determine the sum
u22 þ u23, and as such the relative phase of the

vevs is arbitrary. These vacua lead to no SCPV in
the scalar sector [9] and in fact generate an axion.

(iv) � � f0; �g, soft-broken Uð1Þ symmetry (m2
12 � 0,

�5 ¼ 0): from Eqs. (104) and (103), we see that any
solution with u3 � 0 leads to u1 ¼ 0 which, con-
sidering Eq. (102), also implies u2 ¼ 0. Thus, no
SCPV vacuum can occur in this case. Vacua with
u3 ¼ 0 possess no axion.

The existence of an axion in one of the cases above is easy
to understand: as was explained earlier, the imposition of a
discrete symmetry with � � f0; �g (for instance a Zn sym-
metry with n � 3) on the scalar potential leads to an
accidental Peccei-Quinn continuous Uð1Þ symmetry. Any
vacuum for which both fields acquire a vev will break that
symmetry and lead to a zero mass for the pseudoscalar.
This corresponds in fact to the appearance of an additional
Goldstone boson (other than the three usual ones arising
from the breaking of the gauge symmetry). Analytically,
the pseudoscalar mass is given by

m2
A ¼ v2

u1u2
m2

12 � 2�5v
2; (105)

with v2 ¼ u21 þ u22, for vacua with u3 ¼ 0.8 From this we
see that: the Z2 potential will never lead to an axion, since
�5 � 0; the exact Uð1Þ symmetry forces this mass to be
zero; and the soft-broken Zn potential again has no axion,
as the pseudoscalar mass is directly proportional to the
soft-breaking parameter.
The scalar vevs originate the fermion masses, but also

have a contribution to CP breaking at the Lagrangian level,
whether they are real or complex. In fact, the Jarlskog
invariant, which measures CP violation in the weak inter-
actions, is given by [11]

J ¼ Tr½Hu;Hd�3
¼ 6iðm2

t �m2
cÞðm2

t �m2
uÞðm2

c �m2
uÞðm2

b �m2
sÞ

� ðm2
b �m2

dÞðm2
s �m2

dÞImðVusVcbV
�
ubV

�
csÞ; (106)

where the matrices Hd and Hu have been defined in
Eqs. (44) and (45). In the SM, since no CP breaking can

8In the case of the exact Uð1Þ symmetry an arbitrary phase
between the vevs is possible, but it has no effect on the scalar
masses whatsoever.
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arise spontaneously, it is explicitly broken with complex
Yukawa couplings. In the THDM, we can study models
where one has demanded that the full Lagrangian be CP
invariant, such that the matrices �i and �i will be real, and
the only possibility of producing a nonzero Jarlskog in-
variant will be the vevs having a relative phase. Since such
a vacuum is impossible for the soft-broken Uð1Þ scalar
potential, we conclude that models with an Abelian sym-
metry (other than Z2) and with an explicit CP conservation
are ruled out, since for them J would always be zero.
Nonetheless, there is a distinction worth making: the spe-
cial forms found for the matrices with � ¼ 2�=3 (Z3

symmetry), given in Sec. III E, would give a nonzero
Jarlskog invariant if a vacuum with a complex phase could
be produced; all the other Yukawa matrices we have
obtained for the cases � � �, 2�=3 give J ¼ 0 even if a
complex vacuum existed. As such, the only models allowed
are those, like the SM, whereCP is explicitly broken by the
Yukawa couplings.

As for the Z2 model, the exact symmetry is also ruled out
when CP is explicitly preserved—no phase from the vevs
can originate J � 0, even for the odd case u2 ¼ 0, allowed
by Eqs. (102)–(104): in that case, there is a phase of �=2 in
the vaccum, but it has no bearing on J, which gives zero. In
the soft-broken Z2 model, a vacuum with a relative phase
in the vevs may be obtained and it leads to CP violation,
both in the scalar and the Yukawa sectors [10]. And as
before, Z2 models with explicit CP breaking are in princi-
ple perfectly viable. We summarize this analysis in Table I.

A few observations are in order:
(i) We have not considered in this analysis the so-called

‘‘inert vacua’’, where either h�1i ¼ 0 or h�2i ¼ 0,
possible in the case of exact symmetries (Z2 or
Uð1Þ). These give an acceptable J only in the case
of explicit CP breaking.

(ii) The Z3 case is special. Let us again consider the
case of explicitCP conservation. Unlike the remain-
ing symmetries with � � �, 2�=3, a vacuum with
complex vevs would give J � 0. Such a vacuum is
impossible in the THDM, but one can conceive (like
the authors of [12] did) models with two doublets

and additional gauge singlets, capable of producing
the desired form for the vevs [13].

B. Complex vacua and the Jarlskog invariant

The vacua of a Zn potential may be easily altered by
introducing soft-breaking terms, as discussed in the pre-
vious section, or by the inclusion of extra singlet scalars.

TABLE I. Possibilities of CP violation for THDM with Abelian symmetries. ‘‘Yes’’ means
that the model’s parameters can generate a nonzero value for the Jarlskog invariant. The ‘‘Uð1Þ’’
models are those for which one has imposed a discrete symmetry of the form of Eq. (23), with
� � 0, �.

Model

Lagrangian with explicit

CP breaking CP-conserving Lagrangian

Exact Z2 Yes No—real vacuum or vev phase

gives J ¼ 0
Soft-broken Z2 Yes Yes

Exact Uð1Þ Yes No—vacuum gives axion

Soft-broken Uð1Þ Yes No—vacuum with phase impossible

TABLE II. We assume that � ¼ �, that all Yukawa entries are
real, that the vevs have a relative complex phase, and we
calculate J. The down-type Yukawas were chosen according to
the equations along the first line, and the up-type Yukawas were
chosen according to the equations along the first column. We
denote the entries where J ¼ 0, all others allow for J � 0,
depending on the values of the parameters.

Equations for Yukawa

matrices

(71) (73) (75) (79)

(71) 0

(73)

(75)

(79) 0

TABLE III. We assume that � ¼ 2�=3, that all Yukawa entries
are real, that the vevs have a relative complex phase, and we
calculate J. The down-type Yukawas were chosen according to
the equations along the first line, and the up-type Yukawas were
chosen according to the equations along the first column. We
denote the entries where J ¼ 0, all others allow for J � 0,
depending on the values of the parameters.

Equations for Yukawa

matrices

(89) (90) (91) (92) (93) (94) (95)

(89) 0 0

(90) 0 0

(91) 0 0

(92)

(93) 0 0

(94) 0 0

(95) 0 0
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Here we discuss those cases where the introduction of
singlet scalars implies a relative phase between v1 and
v2, and we ask whether this provokes the appearance of a
phase in the CKM matrix when all Yukawa couplings are
real.9

To do this, we calculated the Jarlskog invariant of
Eq. (106), assuming a relative phase between v1 and v2

for all the 246 models of Yukawa matrices (assumed real)
which we have identified. In almost all cases J ¼ 0. The
only exceptions occur for � ¼ � or � ¼ 2�=3. The results
are presented in Tables II and III, respectively. These tables
will be useful for the study of spontaneous CP violation in
models with two scalar doublets and various scalar sin-
glets, in the presence of Abelian symmetries.

VI. NATURAL SUPPRESSION OF FLAVOR
CHANGING NEUTRAL SCALAR INTERACTION

Measurements in the mixing of neutral mesons (such as
K � �K, Bd � �Bd, etc.) lead to tight constraints on flavor
changing neutral scalar interactions (FCNSI). The discrete
symmetry Z2 was introduced in the scalar sector by
Glashow and Weinberg [14] and, independently, by
Paschos [15], precisely to preclude such FCNSI. But there
are several other options to curtail FCNSI. For example,
one may invoke large scalar masses, or introduce approxi-
mate flavor symmetries [16]. Perhaps more interestingly,
one may relate the FCNSI with the CKM matrix. In a very
nice article, Branco, Grimus, and Lavoura (BGL) used
discrete Abelian symmetries in order to construct one
such THDM [12], following earlier work by Lavoura [5].
The BGL model corresponds to the use of our Eq. (78) for
the up-type Yukawa matrices and of our Eq. (71) for the
down-type Yukawa matrices.

One may now ask the question: is there any other
implementation of Abelian symmetries which leads to a
relation between FCNSI and the CKM matrix? Although
we have all possible implementations of Abelian sym-
metries, the question is difficult to answer analytically
because it involves diagonalizing the mass matrices.
Indeed, the quark mass basis is obtained with the basis
transformation

dL¼VdLnL; dR¼VdRnR; uL¼VuLpL; uR¼VuRpR;

(107)

where we have used qL ¼ ðnL; pLÞ>. The unitary matrices
VdL, VdR, VuL, and VuR are chosen such that

diagfmd;ms;mbg ¼ Dd ¼ VdL½v1�1 þ v2�2�Vy
dR;

diagfmu;mc;mtg ¼ Du ¼ VuL½v�
1�1 þ v�

2�2�Vy
uR:

(108)

The CKMmatrix is V ¼ VuLV
y
dL. The matrices controlling

the FCNSI are

Nd ¼ VdL½v�
2�1 � v�

1�2�Vy
dR;

Nu ¼ VuL½v2�1 � v1�2�Vy
uR:

(109)

Botella, Branco, and Rebelo [17] have proposed a
method to identify BGL-type implementations while side-
stepping the diagonalization procedure. They start from the
relation [5]

Nd ¼ v�
2

v1

Dd � v2

v1

VdL�2V
y
dR; (110)

obtained by combining Eqs. (108) and (109), and
using v2 ¼ jv1j2 þ jv2j2. Based on this they propose the
following sufficient conditions for BGL implementation:
(i) v�

1�1 þ v�
2�2 is block-diagonal; and (ii) there exists a

matrix P such that (iia) P�2 ¼ k�2 (for some number k),
and (iib) P�1 ¼ 0. As they stress, the condition can be
applied with an up-type/down-type quark interchange.
We start by noticing that Eqs. (108) and (109) can also

be combined into

Nd ¼ �v�
1

v2

Dd þ v2

v2

VdL�1V
y
dR; (111)

implying that an equally good sufficient conditions for
BGL implementation is: (i) v�

1�1 þ v�
2�2 is block-

diagonal; and (ii) there exists a matrix P such that
(iia) P�1 ¼ k�1 (for some k), and (iib) P�2 ¼ 0. Again,
the condition can be applied with an up-type/down-type
quark interchange. The new condition is just a �1 $ �2

transformation of the previous condition, useful to us when
looking for all possible BGL-type implementations.
Since we have tabled all possible matrices, we are able

to see that only Eq. (78) can lead to a block-diagonal
v�
1�1 þ v�

2�2 for the up-type quarks. We must now check
all compatible down-type Yukawa matrices, namely,
Eqs. (71), (72), (74), (76), and (77), and see whether
they satisfy condition ii).10 We have checked that only
for Eq. (71) can one find a matrix P consistent with the
constraints (ii).
This gives a unique character to the work of Branco,

Grimus, and Lavoura [12]. They have developed the only
possible implementation of a relation between FCNSI and
the CKM matrix which uses Abelian symmetries and is
consistent with the sufficient conditions above. There are
only two caveats. First, we have only checked the sufficient
conditions developed by Ref. [17] and extended here.
A priori, one can entertain the possible existence of cases
which do not satisfy the sufficient conditions presented,

9Of course, the inclusion of scalar gauge singlets has no
impact on the Yukawa matrices we have found in the previous
sections, since singlet scalars have no coupling to the fermions.

10The possibility that both the up-type and down-type Yukawa
matrices are given by Eq. (78) is excluded, since it would lead to
a block-diagonal CKM matrix.
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but where the FCNSI are indeed related to the CKM
matrix. In the cases where we could perform the analysis
analytically, we have found no such case. Second, in some
cases condition (ii) is violated because it leads to con-
straints on the nonzero matrix elements of the Yukawa
matrices. It could be that some non-Abelian group might
lead to further zeros on the Yukawa matrices, thus evading
the problem. Although possible, such a case would be
difficult to construct because more zeros in the Yukawa
matrices will, more often than not, lead to massless quarks
or to a block-diagonal CKM matrix.

In light of our analysis, that a BGL [12] case was found
by inspection in the THDM is truly remarkable.

VII. CONCLUSIONS

We have studied the restrictions on the Yukawa matrices
imposed by discrete Abelian symmetries acting on the
scalar and fermion sectors of the THDM. Using known
experimental constraints, we have reduced the number of
possible cases from 318 to 246. Ignoring row and column
permutations, we are left with 34 types of down-type
Yukawa matrices (and the same for up-type quarks), which
we table explicitly.

We have found that imposing a symmetry Zn (n � 4) on
the scalars always leads to an accidental Uð1Þ symmetry;
that applying a Z3 symmetry on the scalars leads to an
accidental Uð1Þ symmetry in the scalar sector but not
necessarily in the fermion sector; and that applying a Z2

symmetry on the scalars does not lead to an accidental
Uð1Þ symmetry in either sector.

We show that only Z2 with soft-breaking in the scalar
sector enables spontaneous CP violation. We also show
that the proposal of Branco, Grimus and Lavoura [12] is
unique, in our context, and conjecture that this uniqueness
might hold even when non-Abelian symmetries are con-
sidered in the THDM.
Finally, we stress that our results have a very wide

applicability in model building because all discrete non-
Abelian groups have a Zn subgroup, for some value of n.
For a given non-Abelian group, pick one of its Zn sub-
groups and diagonalize its generator. Applying that gen-
erator as a symmetry of the Lagrangian, one falls into one
of the 34 Yukawa matrices we have shown explicitly. The
action of further generators (which, of course, need not be
diagonalizable in the same basis) will, in general, lead to
further constraints on the Yukawa matrices. Given the low
number of entries in many of our Yukawa matrices, and the
likelihood of further constraints setting them to zero, the
action of further generators will often lead to matrices
inconsistent with experimental constraints.
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