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Some time ago, Thies et al. showed that the Gross-Neveu model with a bare mass term possesses a

kink-antikink crystalline phase. Corresponding self-consistent solutions, known earlier in polymer

physics, are described by a self-isospectral pair of one-gap periodic Lamé potentials with a Darboux

displacement depending on the bare mass. We study an unusual supersymmetry of such a second-order

Lamé system, and show that the associated first-order Bogoliubov-de Gennes Hamiltonian possesses its

own nonlinear supersymmetry. The Witten index is ascertained to be zero for both of the related exotic

supersymmetric structures, each of which admits several alternatives for the choice of a grading operator.

A restoration of the discrete chiral symmetry at zero value of the bare mass, when the kink-antikink

crystalline condensate transforms into the kink crystal, is shown to be accompanied by structural changes

in both of the supersymmetries. We find that the infinite period limit may or may not change the index.

We also explain the origin of the Darboux-dressing phenomenon recently observed in a nonperiodic

self-isospectral one-gap Pöschl-Teller system, which describes the Dashen, Hasslacher, and Neveu

kink-antikink baryons.
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I. INTRODUCTION

The Gross-Neveu (GN) model [1–3] is a remarkable
(1þ 1)-dimensional theory of self-interacting fermions
that has no gauge fields or gauge symmetries, but exhibits
some important features of quantum chromodynamics,
namely, asymptotic freedom, dynamical mass generation,
and chiral symmetry breaking [4]. It has been widely
studied over the years and the richness of its properties
is still astonishing. Some time ago, Thies et al. showed
that at finite density, the ground state of the model with a
discrete chiral symmetry is a kink crystal [5], while the
kink-antikink crystalline phase was found in the GN
model with a bare mass term [6]. Then, Dunne and
Basar derived a new self-consistent inhomogeneous con-
densate, the twisted kink crystal in the GN model with
continuous chiral symmetry [7,8]. On the other hand, the
relation of the GN model with the sinh-Gordon equation
and classical string solutions in AdS3 has been observed
recently [9,10].

These two classes of the results seem to be different, but
both are rooted in the integrability features of the GN
model, and may be related to the Bogoliubov-de Gennes
(BdG) equations incorporated implicitly in its structure. It
is because of these properties that the model finds many
applications in diverse areas of physics. Particularly, the
model has provided very fruitful links between particle and
condensed matter physics, see [11–13].

The origin of the model itself may also be somewhat
related to the BdG equations. We briefly discuss these
equations to formulate the aim of the present paper.

The BdG equations [14] in the Andreev approximation
[15] is a set of two coupled linear differential equations,

which can be presented in the form of a stationary Dirac-
type matrix equation,

Ĝ 1c ¼ !c ; Ĝ1 ¼ a�1

1

i

d

dx
� �2�ðxÞ: (1.1)

The scalar field �ðxÞ is determined via a self-consistency
condition, which is often referred to as a gap equation.
Equation (1.1) arose in the theory of superconductivity by
linearizing the nonrelativistic energy dispersion
(in the absence of magnetic field), or, equivalently, by
neglecting the second derivatives of the Bogoliubov
amplitudes, see [16]. A constant a is proportional there
to the Fermi momentum ℏkF. In what follows, we put
a ¼ 1 and ℏ ¼ 1.
The Lagrangian of the GN model of the N species of

self-interacting fermions is

L GN ¼ �c ði��@� �m0Þc þ 1
2g

2ð �c c Þ2; (1.2)

where g2 is a coupling constant, the summation in the
flavor index is suppressed, and a bare mass term �m0,
which breaks explicitly the discrete chiral symmetry
c ! �5c of the massless model, is included.1 It is the
two-dimensional version of the Nambu-Jona-Lasinio
model [17] (with continuous chiral symmetry reduced to
the discrete one). The latter is based on an analogy with
superconductivity, and was introduced as a model
of symmetry breaking in particle physics. There are
two equivalent methods to seek solutions for the

1The investigation of model (1.2) is motivated in [6] by a
massive nature of quarks; there, the ’t Hooft limit N ! 1,
Ng2 ¼ const, is considered.
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GN model. One of them is the Hartree-Fock approach, in
which self-consistent solutions to the Dirac equation
ði��@� � SÞc ¼ 0 are looked for, with spinor and scalar

fields subject to a constraint of the form ðSðxÞ �m0Þ ¼
�Ng2h �c c i, see [4,5,18]. For static solutions, under the
appropriate choice of the gamma matrices, the Dirac equa-

tion takes the form of the BdG matrix Eq. (1.1), with Ĝ1 as
a single particle fermionic Hamiltonian. The condensate
field SðxÞ is identified with a gap function �ðxÞ, while the
constraint corresponds to the above-mentioned gap equa-
tion. Another approach to seek solutions for the GN model,
in which the BdG equations also play a key role, is via a
functional gap equation [19,20]. There, the condensate
field is given by stationary points of effective action, and
a connection of the GN model with integrable hierarchies
can be revealed, see [7,8,20,21]. In light of this, the relation
of the GN model to the sinh-Gordon equation does not
seem to be so surprising as the BdG equations arise
(in a slightly modified form) as an important ingredient
in solving the sine-Gordon equation, see [22,23].

We now return to the BdG matrix system (1.1). By
squaring, the equations decouple,

Ĥc ¼ Ec ; E ¼ !2;

Ĥ ¼ � d2

dx2
þ �2 � �3�

0:
(1.3)

From the viewpoint of the second-order system Ĥ ¼ Ĝ2
1,

the first-order matrix operator Ĝ1 is a nontrivial integral of

motion, ½Ĥ; Ĝ1� ¼ 0. Having also an integral �3,

½Ĥ; �3� ¼ 0, which anticommutes with Ĝ1, we obtain a
pattern of supersymmetric quantum mechanics with �3

identified as a grading operator. Though a system of the
first- and second-order Eqs. (1.1) and (1.3) was exploited in
investigations on superconductivity, its superalgebraic
structure, which also includes the second supercharge

Ĝ2 ¼ i�3Ĝ1, seems to have gone unnoticed before the
theoretical discovery of supersymmetry in particle physics.
Supersymmetric quantum mechanics was then developed
by Witten as a toy model for studying the supersymmetry
breaking in quantum field theories [24]. Later, the relation
of supersymmetric quantum mechanics with Darboux
transformations was noticed [25], and found many appli-
cations [26].

Braden and Macfarlane [27], and, in a broader context,
Dunne and Feinberg [28], observed that the Darboux trans-
formed, supersymmetric partner of the one-gap periodic
Lamé system [29] with a zero energy ground state is
described by the same potential but translated for a half
period. The superpartner, therefore, also has a zero ground
state. Such a system is described by unbroken supersym-
metry, in which, however, the Witten index takes a zero
value. For a class of supersymmetric systems with super-
partner potentials of the same form the term self-
isospectrality was coined by Dunne and Feinberg [28].

The supersymmetric Lamé system considered in [27,28]
corresponds to the kink crystalline phase discussed
in [5], which describes a periodic generalization of the
Callan-Coleman-Gross-Zee kink configurations of the GN
model, see [2,16,18,30]. It was known earlier as a self-
consistent solution to the GN model in the context of
condensed matter physics [31], see also [32–34].
The Lamé system, like nonperiodic reflectionless solu-

tions of the GN model, belongs to a special class of the
finite-gap systems [25,35].2 Some time ago, it was found
that such systems in an unextended case (i.e., when a
second-order Hamiltonian has a single component), are
characterized by a hidden, peculiar nonlinear supersym-
metry [37,38]. It is associated with a corresponding Lax
operator (integral), and the grading is provided there by a
reflection operator. As a consequence, the supersymmetric
structure of an extended system [with a matrix
Hamiltonian of the form (1.3)] turns out to be much richer
than that associated with only the first-order supercharges

Ĝa, a ¼ 1, 2, and integral �3, see [39]. It has also been
shown recently [40] that the self-isospectral Pöschl-Teller
system (PT), which describes the Dashen-Hasslacher-
Neveu kink-antikink baryons [2], is characterized by a
very unusual nonlinear supersymmetric structure that ad-
mits six more alternatives for the grading operator in
addition to the usual choice of �3. All the local and non-
local supersymmetry generators turn out to be the
Darboux-dressed integrals of a free nonrelativistic particle.
Moreover, it was shown there that the associated BdG
system, with the matrix operator (1.1) identified as a
first-order (Dirac) Hamiltonian, possesses its own, non-
trivial nonlinear supersymmetry.
In the present paper we investigate the exotic super-

symmetric structure of the kink-antikink crystal of [6,31],
which is a self-consistent solution of the GN model (1.2)
with a real gap function �ðx; �Þ. Parameter � is related to
m0 and controls a central gap in the spectrum of the first-
order BdG Hamiltonian operator (1.1). Simultaneously, it
defines a mutual displacement, 2�, of superpartner Lamé
potentials in correspondence with the structure of the
second-order Schrödinger operator (1.3). One more pa-
rameter, not shown explicitly here, defines a period
of the crystal. A quarter-period value of � corresponds to
the kink crystal solution of [5] for the model (1.2) with
m0 ¼ 0, which was considered in [27,28]. We also study
different forms of the infinite period limit applied to the
supersymmetric structure. A priori the picture of such a
limit has to be rather involved: the Darboux dressing
relates the nonperiodic kink-antikink system to a free
particle, while the Darboux transformations in the periodic
case are expected to be just self-isospectral displacements,
see [31,39,41,42].

2There is also the relation of the one-gap Lamé equation with
the sine-Gordon equation, see [36].
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The outline of the paper is as follows. In the next section,
we discuss the main properties of the one-gap Lamé sys-
tem. In Sec. III we construct its self-isospectral extension
by employing certain eigenfunctions of the Lamé
Hamiltonian. We investigate the action of the first-order
Darboux displacement generators, and discuss the spectral
peculiarities of the obtained supersymmetric system.
Section IV is devoted to the study of the properties of a
superpotential (gap function) that is an elliptic function
both in a variable and a shift parameter. These properties
are employed in Sec. V, where we construct the second-
order intertwining operators, identify further local matrix
integrals of motion, and compute a corresponding non-
linear superalgebra. In Sec. VI we show that the system
possesses six more, nonlocal integrals of motion, each of
which may be chosen as a Z2 grading operator instead of
the usual integral �3 of the supersymmetric quantum me-
chanics. We discuss alternative forms of the superalgebra
associated with these additional integrals and their action
on the physical states of the system. In Sec. VII, we
investigate a peculiar nonlinear supersymmetry of the as-
sociated first-order BdG system. Section VIII is devoted to
the infinite period limit of the both, second- and first-order
supersymmetric systems. In Sec. IX we clarify the origin of
the Darboux-dressing phenomenon that takes place in the
nonperiodic self-isospectral PT system, which was re-
vealed in [40]. In Sec. X we discuss the obtained results.
To provide a self-contained presentation, the necessary
properties of Jacobi elliptic functions and of some related
nonelliptic functions are summarized in the two
appendices.

II. ONE-GAP LAMÉ EQUATION

In this section we discuss the properties of the Lamé
system, which is necessary for further constructions and
analysis.

Consider the simplest (and unique) one-gap periodic
second-order system described by the Lamé Hamiltonian

H ¼ � d2

dx2
þ 2k2sn2x� k2: (2.1)

An additive constant term is chosen here such that a mini-
mal energy value (the lower edge of the valence band, see
below) is zero. Potential VðxÞ ¼ 2k2sn2x� k2 is a periodic
function with a real period 2K (and a pure imaginary period
2iK0).3 The general solution of the equation

H�ðxÞ ¼ E�ðxÞ (2.2)

is given by [29]

���ðxÞ ¼
Hðx� �Þ
�ðxÞ exp½�xZð�Þ�: (2.3)

HereH,�, andZ are Jacobi’s Eta, Theta, andZeta functions,
and the eigenvalue E ¼ Eð�Þ is defined by the relation

Eð�Þ ¼ dn2�: (2.4)

The Hamiltonian (2.1) is Hermitian, and we treat (2.2) as the
stationary Schrödinger equation on a real line. We are inter-
ested in the values of the parameter �, which give real
E. dn2� is an elliptic function with periods 2K and 2iK0,
and its period parallelogram in a complex plane is a rect-
anglewith vertices in 0, 2K, 2Kþ 2iK0, and 2iK0. We then
look for those � in the period parallelogram for which dn�
takes real or pure imaginary values. They can be taken, for
instance, on the border of the rectangle shown on Fig. 1. We
have, particularly,

EðKþ i�Þ¼k02cn2ð�jk0Þnd2ð�jk0Þ; 0���K0;

k02�EðKþ i�Þ�0;
(2.5)

Eði�Þ ¼ dn2ð�jk0Þnc2ð�jk0Þ ¼ k02 þ k2nc2ð�jk0Þ;
0 � �<K0; 1 � Eði�Þ<1:

(2.6)

For (2.5) and (2.6), the eigenfunctions in (2.2) are bounded
on a real line that corresponds to the two allowed (valence
and conduction) bands in the spectrum. In contrast,
for � ¼ � and � ¼ �þ iK0, � 2 ð0;KÞ, a real part of
Zð�Þ is nonzero, and eigenfunctions (2.3) are not bounded
for jxj ! 1. This corresponds to the two forbidden zones,
�1<E< 0 and k02 <E< 1.
Differentiation of (2.5) and (2.6) in � gives the relation

dE

d�
¼ 2�ðEÞ

ffiffiffiffiffiffiffiffiffiffi
PðEÞ

p
; PðEÞ ¼ EðE� k02ÞðE� 1Þ: (2.7)

The third-order polynomial PðEÞ takes positive values in-
side the allowed bands, and turns into zero at their edges.
�ðEÞ takes values �1 and þ1 in the valence and conduc-
tion bands, respectively.
Inside the two allowed bands, (2.3) are quasiperiodic

Bloch wave functions,

FIG. 1 (color online). The sides of the rectangle are mapped by
(2.4) onto the indicated energy intervals. The vertical (horizon-
tal) sides shown in green (red) correspond to the two allowed
(forbidden) bands. Vertices � ¼ Kþ iK0, K and 0 are mapped,
respectively, into the edges E ¼ 0, k02, and 1 of the valence,
0 � E � k02, and conduction, 1 � E <1, bands, which are
described by periodic, dnx (E ¼ 0), and antiperiodic, cnx
(E ¼ k02) and snx (E ¼ 1), functions. Vertex iK0 as a limit point
on a horizontal (vertical) side corresponds to E ¼ �1
(E ¼ þ1).

3See Appendices A and B for the notations and properties we
use for Jacobi elliptic and related functions.
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���ðxþ 2KÞ ¼ e�i2K�ðEÞ���ðxÞ;
�ðEÞ ¼ 	

2K
� iZð�Þ;

(2.8)

where the first term in quasimomentum (crystal momen-
tum) �ðEÞ originates from the imparity of the H function.
In the valence, (2.5), and conduction, (2.6), bands its values
are given by

�ðEðKþ i�ÞÞ ¼ 	

2K
� ½Zð�jk0Þ þ 	

2KK0 �

� k02cnð�jk0Þsnð�jk0Þndð�jk0Þ�; (2.9)

�ðEði�ÞÞ ¼ 	

2K
� ½Zð�jk0Þ þ 	

2KK0 �

� dnð�jk0Þsnð�jk0Þncð�jk0Þ�: (2.10)

With the help of (2.4) and (2.7), one finds a differential
dispersion relation

d�

dE
¼ �ðEÞE� ðE=KÞ

2
ffiffiffiffiffiffiffiffiffiffi
PðEÞp ; (2.11)

where E is a complete elliptic integral of the second kind,
see (B1). Taking into account the relation k02 < E

K < 1, see

Appendix B, one finds that within both the allowed bands,
quasimomentum is an increasing function of energy. It
takes values 0 and 	=2K at the edges E ¼ 0 and E ¼ k02
of the valence band, where the Bloch-Floquet functions
reduce to the periodic, dnx, and antiperiodic, cnx, functions
in the real period 2K of the system. Within the conduction
band, quasimomentum increases from 	=2K to þ1. At
the lower edge E ¼ 1, two functions (2.3) reduce to the
antiperiodic function snx. At all three edges of the allowed
bands, the derivative of quasimomentum in the energy is
þ1. For large values of energy, E ! þ1, we find that

�ðEÞ � ffiffiffiffi
E

p
, i.e., Bloch functions (2.3) behave as the plane

waves, ���ðxþ 2KÞ � e�i2K
ffiffiffi
E

p
���ðxÞ.

Second, linear independent solutions at the edges of the
allowed bands Ei ¼ 0, k02, 1 are �iðxÞ ¼ c iðxÞI i, where
I i ¼

R
dx=c 2

i ðxÞ, and c i ¼ dnx, cnx, snx, i ¼ 1, 2, 3.
The integrals are expressed in terms of a nonperiodic
incomplete elliptic integral of the second kind (B2),
I1 ¼ 1

k02 EðxþKÞ, I2 ¼ x� 1
k02 EðxþKþ iK0Þ, I3 ¼

x� Eðxþ iK0Þ. �iðxÞ are not bounded on R and corre-
spond to nonphysical states. These nonphysical solutions
follow also from general solutions (2.3). For instance,
�3ðxÞ may be obtained as a limit of ð��þðxÞ ����ðxÞÞ=�
as � ! 0. Equation (2.3) provides a complete set of solu-
tions for (2.2) as the second-order differential equation.
Notice also that Bloch states (2.3) within the allowed bands
are related under complex conjugation as ð��þðxÞÞ	 ¼
����ðxÞ, where � is the same as in (2.7).

In concluding this section, we note that the function
PðEÞ in Eqs. (2.7) and (2.11) is a spectral polynomial.

It will play a fundamental role in the nonlinear supersym-
metry we discuss below.

III. SELF-ISOSPECTRAL LAMÉ SYSTEM

Consider the lower in energy E forbidden band by ex-
tending it with the edge value E ¼ 0 of the valence band.
We introduce the notation �2�þ iK0 for the parameter �
that corresponds to the extended interval�1<E � 0. By
taking into account relations dnð�uÞ ¼ dnðuþ 2KÞ ¼
�dnðuþ 2iK0Þ ¼ dnu, it will be convenient to not restrict
the values of � to the interval ½�K=2; 0Þ, but assume that
� 2 R, while keeping in mind that E ! �1 for � ! nK,
n 2 Z. After a shift of the argument x ! xþ �, the cor-
responding function ��þ from (2.3) with � ¼ �2�þ iK0
takes, up to an inessential multiplicative constant, the form

�ðx�Þ
�ðxþÞ

exp½xzð�Þ� 
 Fðx; �Þ; (3.1)

where we have introduced the notations xþ ¼ xþ �, x� ¼
x� �,

z ð�Þ ¼ �i�ðEð�2�þ iK0ÞÞ ¼ &ð�Þ þ Zð2�Þ

¼ 1

2

d

d�
lnð�ð2�Þsn2�Þ; (3.2)

&ð�Þ ¼ 1

2

d

d�
lnsn2� ¼ ns2�cn2�dn2�: (3.3)

Fðx; �Þ is a quasiperiodic in x and periodic in the � function,
Fðxþ 2K; �Þ ¼ expð2Kzð�ÞÞFðx; �Þ, Fðx; �þ 2KÞ ¼
Fðx; �Þ. It is a regular function of �, save for � ¼ nK,
n 2 Z, [which correspond to the poles � ¼ 2nKþ iK0 of
dn� in (2.4)], where Fðx; �Þ with x � 0 undergoes infinite
jumps from 0 to þ1. Since zðK=2Þ ¼ 0, function (3.1)
reduces at � ¼ K=2 (up to an inessential multiplicative con-
stant) to a periodic in the x function dnðxþ 1

2KÞ, which
describes a physical state with energy E ¼ 0 at the lower
edge of the valence band of the systemHðxþ 1

2KÞ.Fðx; �Þ is
a nodeless function that obeys the relations Fðx;��Þ ¼
Fð�x; �Þ ¼ 1=Fðx; �Þ and

½HðxþÞ þ "ð�Þ�Fðx; �Þ ¼ 0;

where "ð�Þ ¼ �Eð�2�þ iK0Þ
¼ cn22�ns22�: (3.4)

A first-order differential operator is defined as

Dðx; �Þ ¼ Fðx; �Þ d
dx

1

Fðx; �Þ ¼
d

dx
� �ðx; �Þ;

Dyðx; �Þ ¼ �Dðx;��Þ;
(3.5)

where

�ðx; �Þ ¼ F0ðx; �Þ
Fðx; �Þ : (3.6)
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Operator (3.5) annihilates the function (3.1),
Dðx; �ÞFðx; �Þ ¼ 0, and we find that

Dyðx; �ÞDðx; �Þ ¼ HðxþÞ þ "ð�Þ;
Dðx; �ÞDyðx; �Þ ¼ Hðx�Þ þ "ð�Þ:

(3.7)

By virtue of "ð12KÞ ¼ 0, a nonshifted Lamé

Hamiltonian operator (2.1) then factorizes as HðxÞ ¼
Dðxþ 1

2K; 12KÞDyðxþ 1
2K; 12KÞ. The alternative product

produces a shift in the half-period K, HðxþKÞ ¼
Dyðxþ K

2 ;
1
2KÞDðxþ 1

2K; 12KÞ. It is this factorization

of a pair of Lamé Hamiltonians HðxÞ and HðxþKÞ that
underlies the usual supersymmetric structure studied in [28]
while considering the phenomenon of self-isospectrality.

Notice that while Fðx�; �Þ is, up to a multiplicative con-

stant, a nonphysical eigenfunction ��2�þiK0
þ ðxÞ of HðxÞ of

energy�"ð�Þ, functionFðxþ;��Þ ¼ 1=Fðxþ; �Þ coincides,
up to a multiplicative constant, with another eigenfunction

��2�þiK0
� ðxÞ of HðxÞ with the same eigenvalue.
According to (3.7), the mutually shifted Hamiltonians

Hðxþ �Þ and Hðx� �Þ form a supersymmetric, self-
isospectral periodic one-gap Lamé system

H ¼ diagðHðxþÞ; Hðx�ÞÞ; (3.8)

see Fig. 2, for which �ðx; �Þ plays the role of the super-
potential, which obeys the Ricatti equations

�2ðx; �Þ � �0ðx; �Þ ¼ 2k2sn2ðx� �Þ � k2 þ "ð�Þ: (3.9)

Indeed, from factorizations (3.7) it follows that theDðx; �Þ
and Dyðx; �Þ intertwine the Hamiltonians HðxþÞ and
Hðx�Þ,

Dðx; �ÞHðxþÞ ¼ Hðx�ÞDðx; �Þ;
Dyðx; �ÞHðx�Þ ¼ HðxþÞDyðx; �Þ;

(3.10)

and interchange the eigenstates of the superpartner systems,

Dðx; �Þ���ðxþÞ ¼ FD� ð�; �Þ���ðx�Þ;
Dyðx; �Þ���ðx�Þ ¼ �FD� ð�;��Þ���ðxþÞ:

(3.11)

The second relation in (3.11) follows from the first one via a

substitution � ! ��. A complex amplitude, FD� ð�;�Þ¼
e�i’Dð�;�ÞMDð�;�Þ, is given by

FD� ð�;�Þ¼�exp

�
�2i

�
�ð�Þ� 	

2K

�
�

�

�ns2�
�ð2���Þ�ð0Þ
�ð2�Þ�ð�Þ : (3.12)

It satisfies ðFD� ð�; �ÞÞ	 ¼ FD� ð�; �Þ ¼ �FD� ð�;��Þ. Its
modulus may be presented in the form MDð�; �Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð�Þ þ "ð�Þp

, where Eð�Þ for the valence and conduction
bands is given by Eqs. (2.5) and (2.6). This agrees with
Eq. (3.7). Notice that the modulus is even in the � function,

MDð�; �Þ ¼ MDð�;��Þ, which is nonzero except for the
lower edge states of the valence band (E ¼ 0) in
the case of � ¼ ð12 þ nÞK. A phase is well defined for

MD � 0, and satisfies the relation

ei’
Dð�;��Þ ¼ �e�i’Dð�;�Þ: (3.13)

It can be presented in the form

ei’
Dð�;�Þ ¼ �signðns2�Þ exp

�
�2i

�
�ð�Þ � 	

2K

�
�

þ i’�ð�; �Þ
�
; (3.14)

where signð:Þ is a sign function, and ’�ð�; �Þ is a phase of
�ð2�þ �Þ, ’�ð�; �Þ ¼ ImðR2�þ�

0 ZðuÞduÞ, see Eq. (B9).

Particularly, for the edge states (i ¼ 1, 2, 3), Eq. (3.12)

givesDðx; �Þc iðxþÞ ¼ FD
i ð�Þc iðx�Þ,Dyðx; �Þc iðx�Þ ¼

FD
i ð�Þc iðxþÞ, where

c iðxÞ ¼ dnx; cnx; snx;

FD
i ð�Þ ¼ �cn2�ns2�;�dn2�ns2�;�ns2�;

(3.15)

and so,

MD
i ð�Þ¼

ffiffiffiffiffiffiffiffiffi
"ð�Þ

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02þ"ð�Þ

q
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ"ð�Þ

p
; (3.16)

and ei’
D
i ð�Þ ¼�signðcn2�ns2�Þ,�signðns2�Þ,�signðns2�Þ.

As a consequence of the intertwining relations (3.10),
the first-order matrix operators

S1 ¼ 0 Dyðx; �Þ
Dðx; �Þ 0

� �
; S2 ¼ i�3S1 (3.17)

are the integrals of motion for system (3.8). Integrals (3.17)
correspond here (up to a unitary transformation of sigma

matrices) to the first-order operators Ĝa in Sec. I. Operator
� ¼ �3 is a trivial integral for (3.8), ½�;H � ¼ 0, which
anticommutes with Sa, a ¼ 1, 2, f�; Sag ¼ 0, and classifies

FIG. 2 (color online). The self-isospectral potentials V� ¼
2k2snðx�Þ � k2 are shown together with the edges of the valence
(0 � E � k02) and conduction (1 � E<1) bands. V� have
maxima at x ¼ ��þ ð2nþ 1ÞK and minima at x ¼
��þ 2nK. Here k2 ¼ 0:75, K ¼ 2:16, and � ¼ 0:8.
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them as supercharges. Bosonic, H , and fermionic, Sa,
operators then satisfy the N ¼ 2 supersymmetry algebra,

fSa; Sbg ¼ 2
abðH þ "ð�ÞÞ; ½H ; Sa� ¼ 0: (3.18)

In correspondence with (3.11) and (3.13), the eigenstates
of the supercharge S1 are

S1�
�
�;S1;�

¼ �MDð�; �Þ��
�;S1;�

;

���;S1;�
¼ ���ðxþÞ

�e�i’Dð�;�Þ���ðx�Þ

 !
; � ¼ �1:

(3.19)

Since "ð�Þ> 0 for � � ð12 þ nÞK, n 2 Z, the first-order
supersymmetry (3.18)4 is dynamically broken in the general
case. It is unbroken, however, for � ¼ ðnþ 1

2ÞK by virtue of

"ðð12 þ nÞKÞ ¼ 0. For these values of the shift parameter,

the supercharges Sa annihilate the ground states dnðxþ
ðnþ 1

2ÞKÞ and dnðx� ðnþ 1
2ÞKÞ of the superpartner sys-

tems Hðxþ ðnþ 1
2ÞKÞ and Hðx� ðnþ 1

2ÞKÞ. Notice that

with the variation of the shift parameter � � nK, which
simultaneously governs the scale of the supersymmetry
breaking "ð�Þ, the spectrum of the second-order system
(3.8) does not change. Each of its two superpartners has
the same spectrum as a nonshifted Lamé system (2.1)
does. Therefore, each energy level inside the valence,
0<E< k02, and conduction, 1<E<1, bands is fourth-
fold degenerate in accordance with the existence of the two
Bloch states, ���ðxþÞ and ���ðx�Þ, of the form (2.3) for
each subsystem, see Eq. (3.19). We have a two-fold degen-
eration at the edges E ¼ 0, E ¼ k02, and E ¼ 1 of the
valence and conduction bands in the spectrum of the super-

symmetric systemH . Bosonic,�ðþÞ, and fermionic,�ð�Þ,
states are defined as eigenstates of the grading operator � ¼
�3, ��

ð�Þ ¼ ��ð�Þ, and have the general form �ðþÞ ¼
ð�ðxþÞ; 0ÞT and �ð�Þ ¼ ð0;�ðx�ÞÞT , where T means a
transposition. In summary, we see that in both the broken
and unbroken cases, the Witten index, which characterizes
the difference between the number of bosonic and fermi-
onic zero modes, is the same and equals zero.

For � � ð12 þ nÞK [when "ð�Þ � 0], supersymmetric

relations (3.18) look different from the usual form of super-
algebra in supersymmetric quantum mechanics. A simple

redefinition of the matrix Hamiltonian (3.8), H ! ~H ¼
H þ "ð�Þ, will correct the form of superalgebraic rela-
tions, but will not change the conclusions on the broken
(for � � ð12 þ nÞK) form of the supersymmetric structure

that we have analyzed. We shall return to this point in the
discussion of the peculiar supersymmetry of the first-order
Bogoliubov-de Gennes system in Sec. VII.

The described degeneracy of the energy levels in both
the broken and unbroken cases is unusual for N ¼ 2
supersymmetry. We will show that additional nontrivial

integrals of motion may be associated with this peculiarity
of the self-isospectral supersymmetric system (3.8). To
identify such integrals, in the next section we investigate
the function �ðx; �Þ in greater detail.

IV. SUPERPOTENTIAL

Being the logarithmic derivative ofFðx; �Þ, see Eq. (3.6),
the superpotential �ðx; �Þ may be written with the help of
(B11) and (B14) in terms of Jacobi’s Z, or � and H
functions,

�ðx; �Þ ¼ zð�Þ þ Zðx�Þ � ZðxþÞ

¼ 1

2

@

@�
ln

�
Hð2�Þ

�2ðx�Þ�2ðxþÞ
�
: (4.1)

The addition formula (B6) for the Z function gives another,
equivalent representation,

�ðx; �Þ ¼ &ð�Þ þ k2sn2�snðx�ÞsnðxþÞ: (4.2)

Functions zð�Þ and &ð�Þ are defined in (3.2) and (3.3). Yet
another useful representation for the superpotential may be
derived from (4.2),

�ðx; �Þ ¼ snx�cnx�dnx� þ snxþcnxþdnxþ
sn2xþ � sn2x�

: (4.3)

Having in mind relations (3.10), (3.7), and (3.9), in what
follows we treat x as a variable and � as a shift parameter.
�ðx; �Þ is an elliptic function in both its arguments with the
same periods 2K and 2iK0. It is even in x and odd
in the � function with respect to the points 0, K (modulo
periods), �ð�x;�Þ¼�ðx;�Þ, �ðK� x; �Þ ¼ �ðKþ x; �Þ,
�ðx;��Þ¼��ðx;�Þ, �ðx;K��Þ¼��ðx;Kþ�Þ. It also
obeys the relation �ðxþK;�þKÞ¼�ðx�K;�þKÞ¼
�ðx;�Þ. In � ¼ 0,K the function undergoes infinite jumps.
Being the elliptic function in x, �ðx; �Þ obeys a non-

linear differential equation

�02 ¼ �4 þ 2
2ð�Þ�2 þ 
1ð�Þ�þ 
0ð�Þ; (4.4)

where 
2ð�Þ¼1þk2�3ns22�, 
1ð�Þ ¼ 8ns32�cn2�dn2�,
and 
0ð�Þ ¼ �3ns42�þ 2ð1þ k2Þns22�þ k04. As a con-
sequence of (4.4), it also satisfies the nonlinear higher-
order differential equations

�00 ¼ 2�3 þ 2
2ð�Þ�þ 1
2
1ð�Þ;

�000 ¼ 2�0ð3�2 þ 
2ð�ÞÞ:
(4.5)

Making use of (4.1), one finds the relation

�ðxþ�þ�;�Þ��ðxþ�;�þ�Þþ�ðx;�Þ¼gð�;�Þ: (4.6)
The function gð�; �Þ ¼ &ð�Þ þ &ð�Þ � &ð�þ �Þ þ
k2sn2�sn2�sn2ð�þ �Þ has symmetry properties gð�; �Þ ¼
gð�; �Þ ¼ gð�;��� �Þ ¼ �gð��;��Þ, and may be
written as

4This refers to the order of the polynomial in H that appears
in the anticommutator of the supercharges.
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gð�;�Þ¼ns2�ns2�ns2ð�þ�Þ
�½1�cn2�cn2�cn2ð�þ�Þ�: (4.7)

For a particular case � ¼ K=2, to be important for nonperi-
odic limit,

gð�; 12KÞ ¼ Cð�Þ; Cð�Þ ¼ ns2�nc2�dn2�: (4.8)

Notice that gð�; �Þ takes nonzero values for all real values of
its arguments.5 Equation (4.6) is a kind of addition formula for
elliptic function �ðx; �Þ. Differentiating (4.6) in x and using
Ricatti Eqs. (3.9), we obtain the relation

�0ðxþ �þ �;�Þ ��ðxþ �; �þ �Þ�ðxþ �þ �;�Þ
¼ �1

2ð�2ðx; �Þ þ�0ðx; �Þ þ 
2ð�ÞÞ
� gð�; �Þ�ðx; �Þ þGð�; �Þ; (4.9)

where Gð�; �Þ ¼ 1
2 ½1þ k2 þ g2ð�; �Þ � ns22�� ns22��

ns22ð�þ �Þ� 
 0.
In concluding this section we note that the functions


að�Þ, a ¼ 0, 1, 2 can be given a physical sense by
expressing them in terms of the band edges energies and

of "ð�Þ: 
2ð�Þ ¼ �ð ~E2
1 þ ~E2

2 þ ~E2
3Þ, 
1ð�Þ ¼ �2 d ~E1

d� ,


0ð�Þ¼�
2ð�Þ�2ð ~E1
~E2þ ~E1

~E3þ ~E2
~E3Þ, where ~Eið�Þ ¼

Ei þ "ð�Þ, E1 ¼ 0, E2 ¼ k02, and E3 ¼ 1. Particularly, 
1

measures a velocity with which a scale of supersymmetry
breaking changes as a function of the shift parameter.
Notice also that the first equation in (4.5) has the form of
a modified Ginzburg-Landau equation, see [43], which
corresponds here to a gap equation for the real condensate
field in the kink-antikink crystalline phase in the Gross-
Neveu model with a bare mass term, see [6,8]. At � ¼
ð12 þ nÞK, we have 
1 ¼ 0, and the superpotential �ðxÞ
satisfies the nonlinear Schrödinger equation, the lowest
nontrivial member of the modified Korteweg-de Vries hi-
erarchy [44]. This homogenization of the second-order
nonlinear differential equation can be associated
with restoration of the discrete chiral symmetry in (1.2)
at m0 ¼ 0.

V. HIGHER-ORDER INTEGRALS AND
NONLINEAR SUPERALGEBRA

Now we are in a position to identify higher-order
local intertwining operators and integrals of motion
for the system H . First, we find the second-order inter-
twining operators. Changing � ! �� and shifting the
argument x ! xþ �þ � in the first relation from (3.10),
we obtain

D ðxþ �þ �;��ÞHðxþ �Þ
¼ Hðxþ �þ 2�ÞDðxþ �þ �;��Þ: (5.1)

Multiplying (5.1) by Dðxþ �; �þ �Þ from the left, and
using once again (3.10) on the right-hand side, we obtain
the intertwining relation

B ðx; �; �ÞHðxþÞ ¼ Hðx�ÞBðx; �; �Þ: (5.2)

It is generated by the second-order differential operator

B ðx; �; �Þ ¼ Dðxþ �; �þ �ÞDyðxþ �þ �;�Þ; (5.3)

which is defined for �, �þ � � nK. For the adjoint opera-
tor we have Byðx;�;�ÞHðx��Þ¼Hðxþ�ÞByðx;�;�Þ. In
accordance with (5.1), the second-order intertwining opera-
tor (5.3) shifts the Hamiltonian’s argument first for 2� and
then for �2ð�þ �Þ. An equivalent representation of the
operator (5.3) is

B ðx; �; �Þ ¼ �Yðx; �Þ � gð�; �ÞDðx; �Þ; (5.4)

Yðx;�Þ¼ d2

dx2
��ðx;�Þ d

dx
�1

2
ð�2ðx;�Þþ�0ðx;�Þþ
2ð�ÞÞ;

Yyðx;�Þ¼Yðx;��Þ: (5.5)

We have used here Eq. (4.6). So, the dependence of
Bðx; �; �Þ on � is localized only in the x-independent
multiplier gð�; �Þ, see Eq. (4.7).
From Eqs. (5.3) and (3.10), it follows that at � ¼ 0 the

second-order intertwining operators Bðx; �; �Þ and
Byðx; �; �Þ reduce, up to an additive term "ð�Þ, to
the isospectral superpartner Hamiltonians, Bðx; 0; �Þ ¼
HðxÞ þ "ð�Þ,6 Byðx; 0; �Þ ¼ Hðxþ 2�Þ þ "ð�Þ.
Forgetting for the moment the � ¼ 0 case, from the

viewpoint of the intertwining relation (5.2), one could
conclude that the parameter � has a ‘‘gaugelike,’’ non-
observable nature. Such a conclusion, however, is not
correct. We will return to this point later.
Since gð�; �Þ is nonzero for real � and �, operator

Yðx; �Þ, unlike Bðx; �; �Þ, is not factorizable in terms of
our first-order intertwining operators (with real shift pa-
rameters).7 Nevertheless, it is the second-order intertwin-
ing operator as well as Bðx; �; �Þ. It can be presented as a
linear combination of the second- and first-order intertwin-
ing operators, Yðx; �Þ ¼ �Bðx; �; �Þ � gð�; �ÞDðx; �Þ,
and also may be used together with the first-order operator
Dðx; �Þ to characterize the system. At the end of this
section we shall discuss the peculiarities associated with
such an alternative.

5It takes zero values at some complex values of the arguments,
for instance, Cð12K� i

2K
0Þ ¼ 0.

6One could conclude that Eq. (5.4) contradicts this relation
since gð�; �Þ diverges at � ¼ 0, and the operators Dðx; �Þ and
Yðx; �Þ are not defined for � ¼ 0. Equation (5.4) correctly
reproduces this relation by treating � ¼ 0 as a limit � ! 0,
and employing addition formulae (A6) for Jacobi elliptic
functions.

7It can be factorized in terms of our first-order Darboux
operators D in special cases of � ¼ ð12 þ nÞK. Such a factoriza-
tion corresponds to complex values of the shift parameters, see
the discussion below in this section.
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Having in mind a nonperiodic limit, which we discuss
later, it is convenient to fix � ¼ K=2, and introduce the
notation Aðx; �Þ ¼ Bðx; �; 12KÞ, i.e.,
Aðx; �Þ ¼ Dðxþ 1

2K; �þ 1
2KÞDyðxþ �þ 1

2K; 12KÞ
¼ �Yðx; �Þ � Cð�ÞDðx; �Þ; (5.6)

where Cð�Þ is defined in Eq. (4.8). Employing the proper-
ties of Yðx; �Þ and Dðx; �Þ under Hermitian conjugation,
from (5.6) one finds Ayðx; �Þ ¼ Aðx;��Þ, and then a
representation alternative to (5.6) is obtained, Aðx; �Þ ¼
Dðx� �þ 1

2K; 12KÞDyðxþ 1
2K;��þ 1

2KÞ. Unlike the

operators Dðx; �Þ and Yðx; �Þ, Aðx; �Þ is well defined at
� ¼ 0 and reduces to just a nonshifted Hamiltonian,
Aðx; 0Þ ¼ Ayðx; 0Þ ¼ HðxÞ. Notice, however, that unlike
Dðx; �Þ, it is not defined for � ¼ ð12 þ nÞK.

The second-order intertwining operator of the most
general form (5.3) may be presented in terms of the inter-
twining operators Aðx; �Þ and Dðx; �Þ, Bðx; �; �Þ ¼
Aðx; �Þ þ ðCð�Þ � gð�; �ÞÞDðx; �Þ.

Because of Eq. (5.2), the self-isospectral system pos-
sesses (for � � ð12 þ nÞK) the second-order integrals

Q1 ¼ 0 Ayðx; �Þ
Aðx; �Þ 0

� �
; Q2 ¼ i�3Q1 (5.7)

to be nontrivial for � � nK and independent from the first-
order integrals (3.17).

With some algebraic manipulations, we find

Ayðx; �ÞAðx; �Þ ¼ HðxþÞ½HðxþÞ þ %ð�Þ�;
where %ð�Þ ¼ k02sn22�nc22�:

(5.8)

A similar relation is obtained from (5.8) by a simple change
� ! ��, Aðx; �ÞAyðx; �Þ ¼ Hðx�Þ½Hðx�Þ þ %ð�Þ�, cf.
the relations in (3.7) for the first-order intertwining
operators.

The intertwining second-order operator Aðx; �Þ
annihilates the lower-energy state dnðxþ �Þ of the system
Hðxþ �Þ. Another state annihilated by it is

fðx; �Þ ¼ dnðxþ �Þ
Z x Fðuþ 1

2K; �þ 1
2KÞ

dnðuþ �Þ du; (5.9)

and we have fðxþ 2K; �Þ ¼ exp½2Kzð�þ 1
2KÞ�fðx; �Þ.

Function (5.9) for � � 0 is unbounded and describes there-
fore a nonphysical eigenstate of Hðxþ �Þ from the lower
forbidden band with energy E ¼ �%ð�Þ< 0, see Eq. (5.8).
At � ¼ 0, the function (5.9) reduces to EðxþKÞdnx,
which corresponds to the nonphysical state of HðxÞ of
zero eigenvalue.

Like the first-order operator Dðx; �Þ, Aðx; �Þ trans-
forms the eigenstates of Hðxþ �Þ into those of Hðx� �Þ,

A ðx; �Þ���ðxþÞ ¼ FA� ð�; �Þ���ðx�Þ; (5.10)

where

FA� ð�; �Þ ¼ e�i’Að�;�ÞMAð�; �Þ;
MAð�; �Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð�ÞðEð�Þ þ %ð�ÞÞ

q
:

(5.11)

The modulus and the phase of the complex amplitude

FA� ð�; �Þ are expressed in terms of those for the first-
order intertwining operator by employing Eqs. (5.1), (5.6),
and (3.11),

MAð�; �Þ ¼ MDð�; �þ 1
2KÞMDð�; 12KÞ;

’Að�; �Þ ¼ ’Dð�; �þ 1
2KÞ � ’Dð�; 12KÞ:

(5.12)

A phase ’Að�; �Þ 2 R has, unlike (3.13), the property

ei’
Að�;��Þ ¼ e�i’Að�;�Þ due to the relation Ayðx; �Þ ¼

Aðx;��Þ being different in sign from that of the first-
order intertwining operator, Dyðx; �Þ ¼ �Dðx;��Þ. For
the edge band states, particularly, we have

Aðx; �Þc iðxþÞ ¼ FA
i ð�Þc iðx�Þ, Ayðx; �Þc iðx�Þ ¼

FA
i ð�Þc iðxþÞ, where FA

i ð�Þ ¼ 0, k02nc2�, dn2�nc2�,
i ¼ 1, 2, 3, cf. (3.15). The eigenstates of the integral Q1,
see (5.7), have a form similar to that for S1,

Q1�
�
�;Q1;�

¼�MAð�;�Þ��
�;Q1;�

;

���;Q1;�
¼ ���ðxþÞ

�e�i’Að�;�Þ���ðx�Þ

 !
; �¼�1:

(5.13)

Two relations are valid for the first and second-order
intertwining operators:

Dyðx; �ÞAðx; �Þ ¼ P ðxþÞ � Cð�ÞHðxþÞ;
Dðx; �ÞAyðx; �Þ ¼ �P ðx�Þ � Cð�ÞHðx�Þ:

(5.14)

Here P ðxþÞ ¼ P ðxþ �Þ is an anti-Hermitian third-order
differential operator

P ðxþÞ ¼ d3

dx3
� 3

2

�
�2 þ�0 þ 1

3

2ð�Þ

�
d

dx
� 3

4
ð�2 þ�0Þ0

¼ d3

dx3
þ ð1þ k2 � 3k2sn2xþÞ ddx

� 3k2snxþcnxþdnxþ: (5.15)

Notice that like the Lamé Hamiltonian, the operator (5.15)
is well defined for any value of the shift parameter �. Two
related equalities may be obtained from (5.14) by
Hermitian conjugation.
Making use of intertwining relations (3.10) and (5.2), we

find that Hðxþ �Þ commutes with Dyðx; �ÞAðx; �Þ,
and, therefore, P ðxþ �Þ is an integral for the subsystem
Hðxþ �Þ. For the self-isospectral supersymmetric system
H , we then have two further, third-order Hermitian integrals

L1 ¼ �idiagðP ðxþÞ;P ðx�ÞÞ; L2 ¼ �3L1: (5.16)

Operator P ðxÞ is a Lax operator for the periodic one-gap
Lamé system HðxÞ, see [38,39].
The following relations that involve the operator P ðxþÞ

are valid:

PLYUSHCHAY, ARANCIBIA, AND NIETO PHYSICAL REVIEW D 83, 065025 (2011)

065025-8



D ðx; �ÞP ðxþ �Þ ¼ Aðx; �Þ½HðxþÞ þ "ð�Þ�
þ Cð�ÞDðx; �ÞHðxþÞ; (5.17)

A ðx;�ÞP ðxþÞ¼�Dðx;�ÞHðxþÞ½HðxþÞþ%ð�Þ�
�Cð�ÞAðx;�ÞHðxþÞ; (5.18)

�P 2ðxþÞ ¼ PðHðxþÞÞ;
PðHÞ ¼ HðH � k02ÞðH � 1Þ:

(5.19)

The third-order polynomial PðHÞ is the same spectral
polynomial of the Lamé system that arose before in (2.7)
and in the differential dispersion relation (2.11): it turns
into zero when it acts on the edge states with energies Ei ¼
0, k02, 1. Since the third-order differential operator P ðxþÞ
is an integral of motion for HðxþÞ, the relation (5.19)
means that the edge states dnxþ, cnxþ, and snxþ form its
kernel [39]. The spectral polynomial is a semipositive
definite operator, while P ðxÞ is an anti-Hermitian operator.
Its action on physical Bloch states (2.3) should reduce

therefore to �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðEð�ÞÞp

. The phase cannot change
abruptly within the allowed bands. To correctly fix the
sign, one can consider the limit k ! 0, in which the
Lamé system (2.1) reduces to a free particle, the integral
P ðxÞ reduces to a third-order operator d3=dx3 þ d=dx, the
forbidden zone k02 <E< 1 disappears, Bloch states trans-
form into the plane wave states, whereas the edge states
dnx, cnx, and snx reduce, respectively, to 1, cosx, and sinx
with energies E ¼ 0, 1, and 1. Summarizing all of this, one
finds that the operator (5.15) acts on the physical Bloch
states (2.3) as follows:

P ðxÞ���ðxÞ ¼ �i�ðEÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðEð�ÞÞ

p
���ðxÞ; (5.20)

where, as in (2.7) and (2.11), �ðEÞ ¼ �1 for the valence
and þ1 for the conduction bands.8 Relation (5.20) means,
particularly, that the Lax operator is not reduced just to a
square root from the spectral polynomial since the
Hamiltonian does not distinguish index �. This is a true,
nontrivial integral of motion that is related with the
Hamiltonian H by polynomial Eq. (5.19).9 Equation
(5.19) corresponds to a nondegenerate spectral elliptic

curve of genus one associated with a one-gap periodic
Lamé system [35].
Let us now discuss the superalgebra generated by the

zero �3, first Sa, secondQa, and third La order integrals of
the motion of the self-isospectral system H . The operator
� ¼ �3 commutes with La and anticommutes withQa, and
so, classifies them, respectively, as bosonic and fermionic
operators. Using the displayed relations for the operators
D, A, and P as well as those obtained from them by
Hermitian conjugation and by the change � ! ��,
Eq. (3.18) is extended by the anticommutation relations
of the integrals Sa with Qa, and the commutation relations
of Sa andQa with La. We arrive as a result at the following
superalgebra for the self-isospectral system (3.8) with the
Z2 grading operator � ¼ �3:

fSa; Sag ¼ 2
abðH þ "ð�ÞÞ;
fQa;Qbg ¼ 2
abH ðH þ %ð�ÞÞ;

(5.21)

fSa;Qbg ¼ 2ð�
abCð�ÞH þ �abL1Þ; (5.22)

½L1; Sa� ¼ ½L1; Qa� ¼ ½L1; L2� ¼ 0;

½L2; Sa� ¼ 2iðSaCð�ÞH þQaðH þ "ð�ÞÞÞ; (5.23)

½L2;Qa�¼�2iðSaH ðH þ%ð�ÞÞþQaCð�ÞH Þ; (5.24)

½�3;Sa�¼�2i�abSb; ½�3;Qa�¼�2i�abQb; ½�3;La�¼0;

(5.25)

½H ; �3� ¼ ½H ; Sa� ¼ ½H ; Qa� ¼ ½H ; La� ¼ 0: (5.26)

We have here a nonlinear superalgebra, in which L1 (that is
a Lax operator forH ) plays the role of the bosonic central
charge, and �3 is treated as one of its even generators in
correspondence with Z2 grading relations ½�3; �3� ¼
½�3;H � ¼ ½�3; La� ¼ 0 and f�3; Sag ¼ f�3; Qag ¼ 0.
Since L1 commutes with Sa and Qa, the eigenstates

(3.19) and (5.13) of S1 and Q1 are simultaneously the
eigenstates of L1,

L1�
�
�;�;� ¼ ��

ffiffiffiffiffiffiffiffiffiffiffi
Pð�Þp

��
�;�;�; (5.27)

where � ¼ S1 or Q1, � is the same as in (2.11) and (5.20),
and Pð�Þ ¼ PðEð�ÞÞ. Note that unlike S1 and Q1, L1

distinguishes the index �.
In correspondencewith the discussion related to (5.9), the

Qa, a ¼ 1, 2, annihilate the two ground states of zero
energy, dnðxþ �Þ and dnðx� �Þ, while other two states
from their kernel are nonphysical. These supercharges are
not defined, however, for � ¼ ð12 þ nÞK, which are the only

values of the shift parameter when theN ¼ 2 supersymme-
try associated with the first-order supercharges Sa is not
broken. Therefore, when the first- and second-order super-
charges are simultaneously defined (for� � ð12 þ nÞK,nK),

8Applying the first relation from (5.14) to a physical
Bloch state ��þðxþÞ and using an equality EðEþ %ð�ÞÞ�
ðEþ "ð�ÞÞ ¼ PðEÞ þ C2ð�ÞE2, we obtain the Pythagorean rela-

tion for a rectangular triangle with legs Cð�ÞEð�Þ and ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðEð�ÞÞp

,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðEð�ÞÞ þ C2ð�ÞE2ð�Þp

eið’Dð�;�þðK=2ÞÞ�’Dð�;�Þ�’Dð�;K=2ÞÞ ¼
i�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðEð�ÞÞp þ Cð�ÞEð�Þ.

9This corresponds to Burchnall-Chaundy theorem [45] that
underlies the theory of nonlinear integrable systems [35]. It
asserts that if two ordinary differentials in x operators A and B
of mutually prime orders l and m do commute, they obey the
relation PðA; BÞ ¼ 0, where P is a polynomial of order m in A,
and of order l in B.
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the supersymmetry generated together by Sa and Qa is
partially broken.

One could construct, instead, the second-order super-

charges, QY
a , on the basis of the intertwining operators

Yðx; �Þ and Yyðx; �Þ. According to (5.6), they are related
to Qa as

QY
a ¼ �Qa � Cð�ÞSa: (5.28)

The corresponding superalgebra with Qa substituted for

QY
a will then have a form similar to that which we have

discussed, with a change in some of the corresponding
(anti)-commutators for

fQY
a ; Q

Y
b g ¼ 2
abðH ðH þ %ð�Þ � C2ð�ÞÞ þ "ð�ÞC2ð�ÞÞ;

(5.29)

fSa;QY
b g ¼ �2ð
ab�3Cð�Þ"ð�Þ þ �abL1Þ; (5.30)

½L2; Sa� ¼ �2iðSaCð�Þ"ð�Þ þQY
a ðH þ "ð�ÞÞÞ; (5.31)

½L2; Q
Y
a � ¼ 2iðSaH ðH þ %ð�Þ þ "ð�ÞCð�Þ � C2ð�ÞÞ

þQY
a "ð�ÞCð�ÞÞ: (5.32)

The second-order supercharges QY
a , like Sa, are well de-

fined at � ¼ ð12 þ nÞK but not defined for � ¼ nK.

Analyzing the roots of the polynomial in the right-hand

side of (5.29), one finds that the kernels of QY
a , a ¼ 1, 2,

for � � ð12 þ nÞK are formed by nonphysical states. In the

exceptional case � ¼ ð12 þ nÞK, for which the supercharges

Qa are not defined, the polynomial in (5.29) reduces to the
second-order polynomial

PQY ðH Þ ¼ ðH � k02ÞðH � 1Þ: (5.33)

In correspondence with this, the zero modes of the opera-
tors Yðx; 12KÞ and Yyðx; 12KÞ ¼ Yðx;� 1

2KÞ are, respec-
tively, the physical edge states cnðxþ 1

2KÞ, snðxþ 1
2KÞ

and cnðx� 1
2KÞ, snðx� 1

2KÞ. This property reflects a pe-

culiarity of the case � ¼ ð12 þ nÞK in another aspect. In

accordance with footnote 5, the function gð�; �Þ in (5.4)
turns into zero at � ¼ 1

2 ðKþ iK0Þ. The second-order op-

erator Yðx; 12KÞ factorizes then either as Yðx; 12 KÞ ¼
�Dðx þ 1

2 ðK þ iK0Þ; K þ 1
2 iK

0ÞDyðx þ K þ 1
2 iK

0;
1
2 ðK þ iK0ÞÞ, or in an alternative form obtained by the

change of i for �i. These two factorizations can be pre-
sented equivalently as

Y
�
x;
1

2
K

�
¼
�
ns

�
x� 1

2
K

�
d

dx
sn

�
x� 1

2
K

��

�
�
cn

�
xþ 1

2
K

�
d

dx
nc

�
xþ 1

2
K

��
; (5.34)

Y
�
x;
1

2
K

�
¼
�
nc

�
x� 1

2
K

�
d

dx
cn

�
x� 1

2
K

��

�
�
sn

�
xþ 1

2
K

�
d

dx
ns

�
xþ 1

2
K

��
: (5.35)

From here we see that the particular case of the half-
period shift of the superpartner systems is indeed excep-
tional. In this case not only the N ¼ 2 supersymmetry
associated with the first-order supercharges Sa is unbroken
(when zero modes of Sa are the ground states that
form a zero energy doublet), but all the other edge
states of the energy doublets with E ¼ k02 and E ¼ 1
correspond to zero modes of the second-order supercharges

QY
a . Then the third-order spectral polynomial PðH Þ ¼

H ðH � k02ÞðH � 1Þ is just a product of the first- and
the second-order polynomials, which correspond to the

squares of the first, Sa, and the second, QY
a , order super-

charges. In this special case the (anti-)commutation rela-
tions (5.30), (5.31), and (5.32) also simplify their form,

fSa;QY
b g ¼ �2�abL1, ½L2; Sa� ¼ �2iQY

a H , ½L2; Q
Y
a � ¼

2iSaPQY ðH Þ. We also have

SaQ
Y
a ¼�QY

a Sa¼�iL2; SaQ
Y
b ¼QY

b Sa¼�L1; (5.36)

where there is no summation in index a, and b � a. This is
in conformity with the above-mentioned factorization of

the spectral polynomial. However, since QY
a does not

annihilate the ground states dnðxþ 1
2KÞ and dnðx� 1

2KÞ
[which are transformed mutually by the intertwining op-
erators Yðx; 12KÞ and Yyðx; 12KÞ], we conclude that non-

linear supersymmetry of the self-isospectral system also is
partially broken at � ¼ ð12 þ nÞK.10

In the next section we will see that another peculiarity of
our self-isospectral system is that the choice � ¼ �3 is not
unique for identification of the Z2 grading operator: it also
admits other choices for �, which lead to different identi-
fications of the integrals �3, Sa, Qa, and La as bosonic and
fermionic operators. This results in alternative forms for
the superalgebra. Each of such alternative forms of the
superalgebra makes, particularly, a nontrivial relation
(5.19) ‘‘visible’’ explicitly just in its structure, unlike the
case with � ¼ �3, which we have discussed. We also will
identify the integrals of motion that detect the phases in the
structure of the eigenstates of the operators Sa and Qa.

VI. NONLOCAL Z2 GRADING OPERATORS

Let us introduce the operators of reflection
in x and �, RxR ¼ �x, R�R ¼ �, R2 ¼ 1,
T �T ¼ ��, T xT ¼ x, T 2 ¼ 1. They intertwine
the superpartner Hamiltonians, RHðxþÞ ¼ Hðx�ÞR,

10cf. this picture as well as that for � � ð12 þ nÞK, which we
discussed above with the picture of supersymmetry breaking in
the systems with topologically nontrivial Bogomolny-Prasad-
Sommerfield states [46].

PLYUSHCHAY, ARANCIBIA, AND NIETO PHYSICAL REVIEW D 83, 065025 (2011)

065025-10



THðxþÞ ¼ Hðx�ÞT , and we find that the self-isospectral
supersymmetric system (3.8) possesses the Hermitian
integrals of motion

R�1; T�1; R�2; T�2; RT�3; RT : (6.1)

Like for �3, the square of each of them equals 1. From
relations

RDðx; �Þ ¼ Dyðx; �ÞR;

RAðx; �Þ ¼ Ayðx; �ÞR;

RP ðxþÞ ¼ �P ðx�ÞR;

(6.2)

TDðx; �Þ ¼ �Dyðx; �ÞT ;

TAðx; �Þ ¼ Ayðx; �ÞT ;

TP ðxþÞ ¼ P ðx�ÞT ;

(6.3)

it follows thatR andT also intertwine the operators of the
same order within the pairs (Dðx; �Þ, Dyðx; �Þ), (Aðx; �Þ,
Ayðx; �Þ), and (P ðxþÞ, P ðx�Þ). As a result, each of non-
local in x or �, or in both of them, integrals of motion (6.1)
either commutes or anticommutes with each of the non-
trivial local integrals Sa, Qa, and La. Then each integral
from (6.1) also may be chosen as the Z2 grading operator
for the self-isospectral system (3.8). The corresponding Z2

parities, together with those prescribed by a local integral
�3, are shown in Table I. The Z2 parities of the second-

order integrals QY
a , defined in (5.28), are also displayed;

the equality Cð��Þ ¼ �Cð�Þ has to be employed in their

computation. Notice thatQY
a , a ¼ 1, 2 always has the same

Z2 parity as the Qa with the same value of the index a.
A positive Z2 parity is assigned for the Hamiltonian H

by any of the integrals (6.1). Then for any choice of the
grading operator presented in Table I, four of the eight

local integrals �3,H , Sa, La, and Qa or Q
Y
a are identified

as bosonic generators, and four are identified as fermionic
generators of the corresponding nonlinear superalgebra.
The superalgebra may be found for each choice of �
from the set of integrals (6.1) by employing the quadratic
products of the operators D, A, and P , which have been
discussed in the previous section. Alternatively, some of
the (anti)-commutators may be obtained with the help of

the already known (anti)-commutation relations and rela-
tions between the generators that involve �3. For instance,
½S1; Q1� ¼ i�3fS1; Q2g. As an example, we display the
explicit form of the superalgebraic relations for the choice
� ¼ RT ,

fSa; Sbg ¼ 2
abðH þ "ð�ÞÞ;
fSa; L1g ¼ 2�abðQbðH þ "ð�ÞÞ þ Cð�ÞSbH Þ;
fSa; L2g ¼ 0;

(6.4)

fL1; L1g ¼ fL2; L2g ¼ 2PðH Þ;
fL1; L2g ¼ 2�3PðH Þ; (6.5)

½Qa; Sb� ¼ 2ið�
abL2 þ �abCð�Þ�3H Þ;
½Q1; Q2� ¼ �2i�3H ðH þ %ð�ÞÞ; (6.6)

½Qa; L1� ¼ 0;

½Qa; L2� ¼ 2iðCð�ÞQaH þ SaH ðH þ %ð�ÞÞÞ;
(6.7)

which should be supplied by the commutation relations
(5.25) and (5.26). PðH Þ in (6.5) is the spectral polynomial,
see (5.19).
A fundamental polynomial relation (5.19) between the

Lax operator and the Hamiltonian, that underlies a very
special, finite-gap nature of the Lamé system,11 does not
show up in the superalgebraic structure for the usual choice
of the diagonal matrix �3 as the grading operator �, but is
involved explicitly in the superalgebra in the form of the
anticommutator of one or both generators La, a ¼ 1, 2,
when any of six nonlocal integrals (6.1) are identified as �.
Note that for � ¼ RT as well as for any other choice of

the grading operator that involves the operator T , the
constant Cð�Þ anticommutes with the grading operator
and should be treated as an odd generator of the super-
algebra. As a result, the right-hand side in the second
anticommutator in (6.4) is an even operator, while the
right-hand side in the first (second) commutator in (6.6) [in
(6.7)] is an odd operator, as it should be.
By employing Eq. (5.28), one can rewrite the superalge-

braic relations (6.4), (6.6), and (6.7) in terms of the integrals

QY
a , which, unlikeQa, are defined for � ¼ ð12 þ nÞK. We do

not display them here, but write down only a commutation
relation

½Sa;QY
b � ¼ 2ið
abL2 þ �3�abCð�Þ"ð�ÞÞ; (6.8)

which we will need below. The form of such a superalgebra
simplifies significantly at � ¼ ð12 þ nÞK in correspondence

with the special nature that the integrals Sa and Q
Y
a acquire

in that case. Particularly, one finds

TABLE I. Z2 parities of the local integrals.

� �3 S1 S2 Q1, Q
Y
1 Q2, Q

Y
2 L1 L2

�3 þ � � � � þ þ
R�1 � þ � þ � � þ
T�1 � � þ þ � þ �
R�2 � � þ � þ � þ
T�2 � þ � � þ þ �
RT�3 þ þ þ � � � �
RT þ � � þ þ � � 11In a generic situation the spectrum of a one-dimensional

periodic system has infinitely many gaps [35].
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fSa; Sbg ¼ 2
abH ; fSa; L1g ¼ �2�abQ
Y
b H ; (6.9)

½QY
a ; Sb� ¼ 2i
abL2; ½QY

1 ; Q
Y
2 � ¼ �2i�3PQY ðH Þ;

½L2; Q
Y
a � ¼ 2iSaPQY ðH Þ: (6.10)

All the integrals (6.1), including �3 but excluding RT ,
may be related between themselves by unitary transforma-
tions, whose generators are constructed in terms of the
grading operators themselves. For instance, U�3U

y ¼
R�1 ¼ ~�3, U ¼ Uy ¼ U�1 ¼ 1ffiffi

2
p ð�3 þR�1Þ. Being

constructed from the integrals of motion, such a trans-
formation does not change the supersymmetric
Hamiltonian H . On the other hand, if we apply it to any
nontrivial integral, the transformed operator will still be an
integral. Particularly, its application to the integrals S1 and
Q1 gives

~S ¼ iR�2S1 ¼ diagðRDðx; �Þ;�RDyðx; �ÞÞ;
~Q ¼ iR�2Q1 ¼ diagðRAðx; �Þ;�RAyðx; �ÞÞ:

(6.11)

These are nontrivial Hermitian nonlocal integrals of mo-
tion for the self-isospectral system (3.8).12 Equation (6.11)
has a sense of Foldy-Wouthuysen transformation that di-
agonalizes the supercharges S1 and Q1. The price we pay
for this is the nonlocality of the transformed operators.

Multiplication of (6.11) by the grading operators gives

further nonlocal integrals, particularly, �3
~S and �3

~Q.
Since both operators (6.11) are diagonal, the Lamé sub-
system HðxþÞ may be characterized, in addition to the Lax
integral P ðxþÞ, by two nontrivial nonlocal integrals:

Ŝ ¼ RDðx; �Þ; Q̂ ¼ RAðx; �Þ: (6.12)

In correspondence with relations Dyðx; �Þ ¼ �Dðx;��Þ
and Ayðx; �Þ ¼ Aðx;��Þ, another subsystem Hðx�Þ is
then characterized by integrals of the same form but with �

changed to ��. The operator �̂ ¼ RT is an integral for
the subsystem HðxþÞ [as well as for subsystem Hðx�Þ]. It
can be identified as a Z2 grading operator that assigns
definite Z2 parities for the nontrivial integrals of the sub-
system HðxþÞ. Namely, in correspondence with (6.2) and

(6.3), the integrals �iP ðxþÞ and Ŝ are fermionic operators

with respect to such a grading, while Q̂ should be treated as
a bosonic operator. Multiplying the fermionic integrals by

i�̂ and the bosonic integral by �̂, we obtain three more
integrals for HðxþÞ. It is not difficult to calculate the
corresponding superalgebra generated by these integrals.
Let us note only that since the described supersymmetry
may be revealed in the subsystem HðxþÞ [or, in Hðx�Þ], it
may be treated as a bosonized supersymmetry, see
[37,38,47].

Let us return to the question of degeneration in our self-
isospectral system. This will allow us to observe some
other interesting properties related to the nonlocal
integrals (6.1). Let us take a pair of mutually commuting
integrals S1 and L1. They can be simultaneously
diagonalized, and for their common eigenstates

we have S1�
��;S1;�

¼ �MDð�; �Þ���;S1;�
and L1�

��;S1;�
¼

��ð�Þ ffiffiffiffiffiffiffiffiffiffiffi
Pð�Þp

��
�;S1;�

, see Eqs. (3.19) and (5.27). We can

distinguish all four states by these relations for any value of
the energy within the valence and conduction bands, and
each two doublet states for the edges E ¼ 0, k02, 1 of the
allowed bands when � � ð12 þ nÞK. However, in the case

of � ¼ ð12 þ nÞK, the two ground states of zero energy are

annihilated by both operators S1 and L1, and cannot be
distinguished by them. In this special case the operator �3

commutes with S1 and L1 on the subspace E ¼ 0, and may
be used to distinguish the two ground states. It is necessary
to remember, however, that �3 does not commute with S1
on the subspaces of nonzero energy.
There is yet another possibility. According to Table I, the

local integrals S1 and L1 commute with the nonlocal
integral T�2. We then find

T �2�
��;S1;�

¼ i�e�i’Dð�;�Þ���;S1;�
; (6.13)

where we used relation (3.14). The operator T�2 therefore
detects the phase in the structure of the eigenstates of S1. By
comparing the two supersymmetric systems with the shift
parameters � and �þK, and by taking into account
the 2K periodicity of the � function in (3.12) and
the 2K antiperiodicity of snu, we get from (3.14) that

eið’Dð�;�þKÞ�’Dð�;�ÞÞ ¼ eði=KÞ�ð�Þ�. Hence, the integral
T�2 does the same job as the translation for the period
operator (which is also a nonlocal integral for the system): it
allows us to determine an energy-dependent quasimomen-
tum. Finally, in the case of zero energy (� ¼ Kþ iK0),
treating � ¼ ð12 þ nÞK as a limiting case, one can also

distinguish two ground states in the supersymmetric dou-
blet by means of (6.13).
Instead of S1, L1, and T�2, we could choose the triplet

S2, L1, and T�1 of mutually commuting integrals, see
Table I. The states within the supermultiplets can also be
distinguished by choosing the triplets of mutually commut-
ing integrals ðQ1; L1;T�1Þ, or ðQ2; L1;T�2Þ. For the two
latter cases, the doublet of the ground states is annihilated
by Qa and L1 for any value of the shift parameter �
(excluding the case � ¼ ð12 þ nÞK when Qa are not de-

fined), but the corresponding integralsT�1 orT�2 do the
necessary job of distinguishing the states as well.
The integrals R�1 and RT�3 act on the eigen-

states of S1, with which they also commute,

as R�1�
��;S1;�

ðx; �Þ ¼ ��e�i’Dð�;�Þ���;S1;�
ðx; �Þ,

RT�3�
�
�;S1;�

ðx; �Þ ¼ ���
�;S1;�

ðx; �Þ. These operators

interchange the states with the þ and � indexes, and
anticommute with the integral L1. The edge states,

12Notice that the (1þ 1)-dimensional GN model has a system
of infinitely many (nonlocal) conservation laws.
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which do not carry such an index, are annihilated by L1,
so that there is no contradiction with the information
presented in Table I.

In concluding this section, we note that the Witten index
computed with the grading operator identified with any of
the six nonlocal integrals (6.1) is the same as for a choice
� ¼ �3, i.e., �W ¼ 0.

VII. SUPERSYMMETRY OF THE ASSOCIATED
PERIODIC BDG SYSTEM

Until now, we have discussed the self-isospectrality of
the one-gap Lamé system with the second-order
Hamiltonian. Though we have shown that its supersym-
metric structure is much richer than the usual one, from the
viewpoint of the physics of the GN model, it is more
natural to look at the revealed picture from another
perspective.

Let us take one of the first-order integrals Sa of the self-
isospectral Lamé system, say S1, and consider it as a first-
order Dirac Hamiltonian. In such a way we obtain an
intimately related, but different physical system. Unlike
the second-order operator H , the spectrum (3.19) of S1
depends on �. We get a periodic Bogoliubov-de Gennes
system with the Hamiltonian HBdG ¼ S1. The interpreta-
tion of the function �ðx; �Þ changes in this case: this is the
Dirac scalar potential in correspondence with the discus-
sion from Sec. I. With a dependence on a physical context,
it takes a sense of an order parameter, a condensate, or a
gap function.

The �-dependent spectrum of such a BdG system con-
sists of four or three allowed bands located symmetrically
with respect to the level E ¼ 0, see Fig. 3. The interpreta-
tion of the bands also changes and depends on the physical

context. For � � ð12 þ nÞK, the positive and negative

‘‘internal’’ bands are separated by a nonzero gap

�Eð�Þ ¼ 2
ffiffiffiffiffiffiffiffiffi
"ð�Þp ¼ 2jcn2�ns2�j, which disappears at � ¼

ð12 þ nÞK. The total number of gaps in the spectrum is three

in the case � � ð12 þ nÞK, E 2 ð�1; E3;�� [ ½E2;�; E1;�� [
½E1;þ; E2;þ� [ ½E3;þ;1Þ, while for � ¼ ð12 þ nÞK there are

only two gaps, E 2 ð�1; E3;�� [ ½E2;�; E2;þ� [ ½E3;þ;1Þ.
According to (3.15), (3.16), and (3.19), the edges Ei;� of the

internal (i ¼ 1, 2) and external (i ¼ 3) allowed bands are

E1;�ð�Þ ¼ �
ffiffiffiffiffiffiffiffiffi
"ð�Þ

p
; E2;�ð�Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02 þ "ð�Þ

q
;

E3;�ð�Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ "ð�Þ

p
;

(7.1)

where � ¼ �, and the eigenstates have the form

�i;�ðx; �Þ ¼ ðc iðxþÞ; �ei’D
i ð�Þc iðx�ÞÞT , S1�i;�ðx; �Þ ¼

Ei;��i;�ðx; �Þ.
In the context of the physics of conducting polymers, for

example, the internal bands are referred to as the lower,
½E2;�; E1;��, and upper, ½E1;þ; E2;þ�, polaron bands; the

upper external band, ½E3;þ;1Þ, is called the conduction

band; the lower external band, ð�1; E3;��, is referred to as
the valence band [31]. In the general case for eigenstates
(3.19), we have

S1�
�
�;S1;�

ðx; �Þ ¼ E�ð�; �Þ��
�;S1;�

ðx; �Þ;
E�ð�; �Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð�Þ þ "ð�Þp

;
(7.2)

where Eð�Þ for internal and external bands is given by
Eqs. (2.5) and (2.6).
SinceHBdG ¼ S1 does not distinguish the index� of the

wave functions within the allowed bands, each correspond-
ing energy level is doubly degenerate. Six edge states for
� � ð12 þ nÞK are singlets. In the case of � ¼ ð12 þ nÞK,

four edge states with energies E ¼ �k0 and �1 are sin-
glets. Zero energy states�1;� form a doublet in this case, as

happens for any other energy level inside any allowed
band.
The described degeneration in the spectrum of S1

indicates that the BdG system might possess its own non-
linear supersymmetric structure. This is indeed the case.
First, from Table I we see that there are three operators,
R�1, T�2, andRT�3, which commute with S1, and the
square of each equals one. Hence, each of them may be
chosen as a Z2 grading operator for the BdG system. There
are three more, nontrivial local integrals of motion for
HBdG. One is the second-order operatorH . This, however,
is not interesting from the viewpoint of a supersymmetric
structure since it is just a shifted square of HBdG ¼ S1,
H ¼ S21 � "ð�Þ. Then we have a third-order integral
L1 
 L1, which has been identified before as the Lax
operator for the self-isospectral Lamé system H .
Finally, the fourth-order operator G1 ¼ S1L1 is also iden-
tified as a local integral of motion. Note that both integrals
L1 and G1 distinguish the states inside the allowed bands,

FIG. 3 (color online). The spectrum of HBdG ¼ S1 possesses
symmetries E�ð�; �Þ ¼ E�ð�;��Þ ¼ E�ð�; �þKÞ, E�ð�; 12Kþ
�Þ ¼ E�ð�; 12K� �Þ, and E�ð�; �Þ ¼ �Eþð�; �Þ. The horizontal
line shows a spectrum for some value of �, 1

2K< �<K. The

allowed (forbidden) bands on it are presented by thick green
(thin red) intervals, whose points are distinguished by the
parameter �, see Eq. (7.2). Curves indicate the edges of the
allowed bands (7.1). The point E�ðKþ iK0; 12KÞ ¼ 0 corre-

sponds to a doubly degenerate energy level in the allowed
band (� k0, k0), that is formed by the two merging at the
� ¼ 1

2K internal allowed bands.
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which differ in the index �. On distinguishing the states
with E ¼ 0 to be present in the spectrum if � ¼ ð12 þ nÞK,

see the discussion at the end of the previous section.
Further nontrivial but nonlocal integrals may be obtained
if we multiply the local integrals by the operators R�1,
T�2, and RT�3. Then, as in the case of the self-
isospectral Lamé system, different choices for the grading
operator lead to distinct identifications of the Z2 parities of
the integrals.

For the sake of definiteness, let us choose � ¼ R�1, and
assume first that � � ð12 þ nÞK. The other two possibilities

for the choice of �may be considered in an analogous way.
If, additionally, we restrict our analysis by the integrals that
do not include in their structure nonlocal in � operator T ,
we get two Z2-even (commuting with �) integrals in
addition to HBdG ¼ S1, namely, R�1 and R�1S1. The
four Z2-odd (anticommuting with �) integrals are L1, G1,
L2 ¼ iR�1L1, and G2 ¼ iR�1G1. All of these integrals
are Hermitian operators. It is interesting to note that a
nonlocal integral R�1S1 is related to one of the diagonal

nonlocal operators from (6.11),R�1S1 ¼ �3
~S. A nonlocal

diagonal operator G2 may also be related to (6.11),

G2 ¼ ~QS21 þ Cð�Þ~SðS21 � "ð�ÞÞ. Since, however, integrals
R�1S1 and Ga are just the integrals R�1 and La multi-
plied by the BdG Hamiltonian S1, we can omit them as
well as H . We then obtain the nontrivial (anti)commuta-
tion relations of the nonlinear BdG superalgebra,

½R�1;La�¼�2i�abLb; fLa;Lbg¼2
abP̂ðS1;�Þ: (7.3)

Here, in correspondence with Eqs. (5.19), (5.21), and (6.5),

P̂ðS1; �Þ is the sixth-order spectral polynomial of the BdG
system,

P̂ðS1;�Þ¼ðS21�"ð�ÞÞðS21�"ð�Þ�k02ÞðS21�"ð�Þ�1Þ; (7.4)
whose six roots correspond to the energy levels (7.1).

Superalgebra (7.3) has a structure similar to that of a
hidden, bosonized supersymmetry [47] of the unextended
Lamé system (2.1), which was revealed in [38]. There, the
role of the grading operator is played by a reflection
operator R, the matrix integrals La are substituted by
the Lax operator �iP ðxÞ, see Eq. (5.15), and by RP ðxÞ.
The sixth-order polynomial P̂ðS1; �Þ of the BdG
Hamiltonian S1 is changed there for a third-order spectral
polynomial PðHÞ, see Eq. (5.19).

We have seen that the structure of the BdG spectrum
changes significantly at � ¼ ð12 þ nÞK. Essential changes

also happen in the superalgebraic structure. Indeed, from

(6.8) it follows that ½S1; QY
2 � ¼ 2i�3�abCð�Þ"ð�Þ, i.e., in a

generic case QY
2 does not commute with HBdG. Contrarily,

for � ¼ ð12 þ nÞK this is an additional nontrivial, second-

order integral of motion of the BdG system. This integral,
like the third-order integral L1, also distinguishes the states
marked by the index � inside the allowed bands,

QY
2 �

��;S1;�
¼ ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PQY ðEð�ÞÞ

q
���;S1;�

, where � is the

same as in (2.11) and (5.20), i.e., � ¼ �1 for 0 � E � k02
and � ¼ þ1 for E � 1, while PQY ðEÞ is a polynomial that

appeared earlier in (5.33), i.e.,PQY ðEÞ ¼ ðE� k02ÞðE� 1Þ.
In this case, L1 is no longer an independent integral for the

BdG system, since here L1 ¼ �S1Q
Y
2 in correspondence

with (5.36). The integral QY
2 anticommutes with R�1 and

RT�3. Let us choose, again, � ¼ R�1, and denoteQ1 ¼
QY

2 and Q2 ¼ i�Q1. Instead of (7.3), we get a nonlinear
superalgebra of the order four,

½R�1;Qa�¼�2i�abQb; fQa;Qbg¼2
abP̂QðS1Þ; (7.5)

where P̂QðS1Þ ¼ ðS21 � k02ÞðS21 � 1Þ.
It is interesting to see what happens with the Witten

index in the described unusual supersymmetry of the BdG
system with the first-order Hamiltonian. One can construct
the eigenstates of the grading operator � ¼ R�1,

��ð�Þðx;�;�Þ¼���ð�Þðx;�;�Þ;
�ð�Þðx;�;�Þ
��

þ;S1;�
ðx;�Þþei’

Dð�;�Þ��
�;S1;�

ðx;�Þ:
(7.6)

For any energy value inside any allowed band [including
E ¼ 0 in the case of � ¼ ð12 þ nÞK], we have two states

with opposite eigenvalues of �, and these contribute zero
into the Witten index �W ¼ Tr�, where the trace is taken
over all the eigenstates of the grading operator �. On the
other hand, the edge states �i;�ðx; �Þ are singlets. They are
also the eigenstates of �. The eigenstates of opposite
energy signs have opposite eigenvalues, þ1 and �1, of
the grading operator. As a result, we conclude that the
Witten index �W in such a supersymmetric system equals
zero for any value of � [i.e., for � � ð12 þ nÞK when there

are no zero energy states in the spectrum, and for � ¼
ð12 þ nÞK when the spectrum contains a doublet of zero

energy states], like this happens in the self-isospectral
Lamé system with the second-order supersymmetric
Hamiltonian. The same result �W ¼ 0 is obtained for the
choices � ¼ T�2 and � ¼ RT�3.
Finally, it is worth noting that in accordance with the

structure of superalgebra (7.3), the third-order matrix BdG
supercharges La annihilate all the six edge eigenstates of
HBdG ¼ S1 in the case of � � ð12 þ nÞK. In the special

cases � ¼ ð12 þ nÞK a central gap disappears in the spec-

trum, and, consistently with (7.5), all the remaining four
edge states are the zero modes of the second-order matrix
BdG supercharges Qa. In other words, the spectral
changes that happen in the BdG system at special values
of the parameter � ¼ ð12 þ nÞK, which correspond to a zero

value of the bare mass m0 in the GN model (1.2), are
reflected coherently by the changes in its superalgebraic
structure.
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VIII. INFINITE PERIOD LIMIT

Let us now discuss the infinite period limit of our self-
isospectral Lamé and the associated BdG systems, i.e., the
case when the period 2K tends to infinity.

K ! 1 assumes 13 k ! 1, k0 ! 0, K0 ! 1
2	, and rela-

tions (A5) and (B8) have to be employed. According to
(B8) and (B9), a limit for the quotient of� functions is also
well defined,

lim
k!1

�ðuÞ
�ðvÞ ¼

coshðuÞ
coshðvÞ ; u; v 2 C: (8.1)

The periodic Lamé Hamiltonian (2.1) transforms in this
limit into a reflectionless one-gap Pöschl-Teller Hamiltonian

HPTðxÞ ¼ � d2

dx2
� 2

cosh2x
þ 1: (8.2)

When the limit K ! 1 is applied to the self-isospectral
system (3.8), we assume that a shift parameter � remains to
be finite. As a result, we get a self-isospectral nonperiodic PT
system,

H PTðxÞ ¼ diagðH�ðxÞ; H��ðxÞÞ; (8.3)

where H�ðxÞ ¼ HPTðxþ �Þ and H��ðxÞ ¼ HPTðx� �Þ. In
what followswe trace out how the peculiar supersymmetry of
the self-isospectral Lamé system transforms in the infinite
period limit into the supersymmetric structure of the system
(8.3), which was studied recently in [40].

Since the superpartners in (8.3) are the two mutually
shifted copies of the same PT system, it is clear that the
limit does not change the Witten index: it remains to be
equal to zero as in the periodic case. In general, however,
the index may or may not change depending on the con-
crete form of the self-isospectral Lamé system to which the
limit is applied. For instance, in the case of the system with
superpartners HðxÞ and HðxþKÞ [see the remark just
below Eq. (3.7)], the infinite period limit gives, instead of
(8.3), a supersymmetric system with one superpartner
to be the PT system (8.2), while another one [which is a

limit of HðxþKÞ] to be a free particle H0 ¼ � d2

dx2
þ 1.

Superpartner potentials in such a supersymmetric (but not
self-isospectral) system are distinct. The only difference in
the spectrum for the system (8.2) from that of H0 consists
in the presence of a unique bound state, see below.
Consequently, the Witten index changes in the infinite
period limit, by taking a value of the modulus one. If in
the system (3.8) one takes � ¼ �ðKÞ such that � ! 1 for
K ! 1, the limit then produces a trivial self-isospectral
system composed from the two copies of the free particle
Hamiltonian H0. In such a case, the Witten index does not
change in agreement with (8.3) and (8.2).

The listed examples also mean that the shifts for the
period, in a sense, ‘‘interfere’’ with the infinite period limit.
The self-isospectral Lamé system composed from HðxþÞ
and Hðx�Þ is equivalent, for instance, to a system with
superpartner Hamiltonians HðxþÞ and Hðx� þ 2KÞ.14 If
before taking a limit we do not ‘‘eliminate’’ the period 2K
shift in the second subsystem, we will obtain a (not self-
isospectral) system with superpartners H� and H0 instead
of (8.3).
Let us return to the symmetric case of the self-

isospectral Lamé system (3.8), whose infinite period limit
corresponds to the self-isospectral PT system (8.3). All the
energy values (2.5) of the valence band transform into zero
in the infinite period limit because of k0 ! 0, i.e., this
entire band shrinks into one energy level E ¼ 0 for the
system (8.2). In conformity with this, all of the Bloch states
(2.3) of this band, including the edge states dnx and cnx,
turn into the unique bound state 1

coshx of E ¼ 0 for the PT

system.15 Then the states 1= coshðx� �Þ form a super-
symmetric doublet of the ground states for the self-
isospectral system (8.3). The doublet of the edge states
snðx� �Þ of the system (3.8) transforms into a doublet of
the lowest states tanhðx� �Þ of the energy E ¼ 1 in the
scattering sector of the spectrum for (8.3). It is interesting
to see how the eigenstates with E> 1 in the scattering
sector of the PT system originate from the Bloch states
(2.3). The energy (2.6) as a function of the parameter �,
which in the infinite period limit takes values in the
interval 0 � �< 	

2 , reduces to Eði�Þ ¼ 1
cos2�

� 1. The

states (2.3) transform into �i�
� ðxÞ ¼ cos�ðtanhx�

i tan�Þ expð�ix tan�Þ. Denoting tan� ¼ k � 0, we obtain

E ¼ 1þ k2, and the states �i�
� ðxÞ take the form of

the scattering eigenstates of the PT system, �i�
� ðxÞ !

��kðxÞ ¼ � 1ffiffiffi
E

p ð�ik� tanhxÞe�ikx.

We have

Fðx; �Þ !k!1 coshx�
coshxþ

ex coth2� (8.4)

for function (3.2), cf. Eq. (5.17) in [40]. In correspondence
with (3.4), this is a nonphysical eigenstate of H� of eigen-
value�1=sinh22�. Function�ðx; �Þ in the form (4.1) trans-
forms into

�ðx; �Þ !k!1
��ðxÞ ¼ coth2�þ tanhx� � tanhxþ; (8.5)

while Eq. (4.2) gives, equivalently,

�ðx;�Þ !k!1
��ðxÞ ¼ 2

sinh4�
þ tanh2� tanhx� tanhxþ: (8.6)

13Any of these four limits assumes three others.

14The second system, however, is characterized by another
phase (3.14) with � changed for ��K.
15The states (2.3) for the valence band should be ‘‘renormal-
ized’’ (divided) by a constant �ðKÞ=�ð0Þ to cancel the multi-
plicative factor that diverges in the limit K ! 1 in
correspondence with (8.1).
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The nonperiodic superpotential (gap function) (8.5) corre-
sponds to the Dashen-Hasslacher-Neveu kink-antikink
baryons [2]. For the first-order intertwining operator, we
have

D ðx; �Þ !k!1 d

dx
���ðxÞ 
 X�; (8.7)

cf. (2.26) in [40]. It is the operator that appears in the limit
structure of the supercharges Sa,

S1 !k!1 0 Xy
�

X� 0

 !

SPT;1; S2 !k!1

SPT;2¼ i�3SPT;1: (8.8)

For the second-order intertwining operator (5.6),

A ðx; �Þ !k!1
A��A

y
� 
 Y�; (8.9)

where limK!1Dðxþ �þ 1
2K; 12KÞ ¼ limK!1Dðxþ

1
2K;��þ 1

2KÞ ¼ d
dx � tanhxþ 
 A�ðxÞ, and A�� is ob-

tained via the change � ! ��. A limit of the second-order
integrals (5.7) is

Q1 !k!1 0 Yy
�

Y� 0

 !

QPT;1; Q2 !k!1

QPT;2¼ i�3QPT;1; (8.10)

cf. Eq. (2.18) in [40]. The first-order operators A� and A��

also factorize the self-isospectral pair of the PT

Hamiltonians, H� ¼ A�A
y
� , H�� ¼ A��A

y��, as well as

the free particle Hamiltonian, H0 ¼ Ay
�A� ¼ Ay��A��.

The phases that appear in the action of the intertwining
operatorsDðx; �Þ andAðx; �Þ on the superpartner’s eigen-
states, see Eqs. (3.11) and (5.10), transform into

ei’
Dð�;�Þ !k!1

e�2ik� � �ik� coth2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ coth22�

p ;

ei’
Að�;�Þ !k!1

e�2ik�:

(8.11)

They are associated with the action of the intertwining
operators X� and Y� on the eigenstates of superpartner
systems H� and H��, and appear in the structure of the
eigenstates of the first, (8.8), and the second, (8.10), order
integrals of the self-isospectral PT system [40].

By employing the relation 2P ðxþÞ ¼
Dyðx; �ÞAðx; �Þ �Ayðx; �ÞDðx; �Þ that follows from
Eq. (5.14), we find that

P ðxþÞ!k!1
A�

d

dx
Ay
� 
 Z�; (8.12)

cf. (2.24) in [40]. For the limit of the Lax integrals we then
get

L1 !k!1 � i
Z� 0

0 Z��

 !

 LPT;1;

L2 !k!1
LPT;2 ¼ �3LPT;1:

(8.13)

Finally, for a constant Cð�Þ ¼ ns2�nc2�dn2� that appears
in the superalgebraic (anti)commutation relations of our
system, we obtain

C ð�Þ !k!1
coth2� 
 C2�; (8.14)

cf. the first term in Eq. (8.5).
With the described infinite period limit relations, we find

a correspondence between the supersymmetric structures
in the self-isospectral one-gap Lamé and PT systems.
Particularly, applying the infinite period limit to the super-
algebraic relations of the self-isospectral Lamé system and
making use of the described correspondence, one may
immediately reproduce the superalgebraic relations for
the self-isospectral PT system (8.3).
The same �-dependent constant C2� ¼ coth2� shows up

in representation of the superpotential (8.5) and in the
superalgebraic structure for the self-isospectral nonperi-
odic PT system (8.3) due to relation (8.14). Notice, how-
ever, that the corresponding functions of the shift
parameter, zð�Þ and Cð�Þ, which appear in the periodic
system, are different. In the next section we will return to
this observation.
The infinite period limit of the second-order intertwin-

ing operator Yðx; �Þ may be found by employing relation
(5.6),

lim
K!1Yðx; �Þ ¼ �Y� � C2�X�: (8.15)

It plays no special role in the supersymmetric structure
of the self-isospectral PT system (8.3). Let us, however,
shift x ! x� � in (8.15) and then take the limit � ! 1.
Such a double limit procedure applied to the self-
isospectral Lamé system H produces a nonperiodic

supersymmetric system Ĥ ¼ diagðHPTðxÞ; H0ðxÞÞ that
is composed from the PT system (8.2) and the free

particle H0 ¼ � d2

dx2
þ 1. Operator Yðx; �Þ in such a limit

transforms into the second-order operator ŷðxÞ ¼ d
dx ð ddx þ

tanhxÞ, which intertwines HPT with H0, ŷðxÞHPTðxÞ ¼
H0ðxÞŷðxÞ. The kernel of ŷ is formed by the singlet
eigenstates 1= coshx (E ¼ 0) and tanhx (E ¼ 1) of the
PT system HPTðxÞ, cf. the discussion of the kernel of
Yðx; 12KÞ in Sec. V. The Hermitian conjugate operator

ŷyðxÞ intertwines as ŷyðxÞH0ðxÞ ¼ HPTðxÞŷyðxÞ, and an-
nihilates the eigenstate 1 of the lowest energy E ¼ 1 and
a nonphysical state sinhx of zero energy in the spectrum

of H0. Integrals Sa, QY
a , and La transform in such a

double limit into the integrals of the supersymmetric

system Ĥ ,

S1 ! � 0 A0

Ay
0 0

 !

 ŝ1; QY

1 ! 0 ŷy

ŷ 0

 !

 q̂y1;

L1 ! �i
A0

d
dx A

y
0 0

0 H0
d
dx

0
@

1
A 
 l̂1;

(8.16)
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and S2 ! ŝ2 ¼ i�3ŝ1, Q
Y
2 ! q̂y2 ¼ i�3q̂

y
1, L2! l̂2¼�3l̂1,

where A0 ¼ lim�!1A�ðx� �Þ ¼ d
dx � tanhx ¼ A0ðxÞ, and

we have used the relations lim�!1A��ðxÞ ¼ d
dx þ 1, and

Ay
0A0 ¼ H0, and ŷ ¼ � d

dx A
y
0 .

The nonperiodic superpotential (gap function) �ðxÞ ¼
tanhx that appears in the structure of the first- and second-
order intertwining operators as well as in that of the
integrals (8.16) corresponds to the famous Callan-
Coleman-Gross-Zee kink solution [2,18,30] of the GN
model.

From the total number of seven integrals of motion (6.1)
and�3, each of which can be used as a grading operator for
the self-isospectral Lamé and PT systems, only three in-
tegrals survive in the described double limit: in addition to
the obvious operator �3, nonlocal operators R and R�3

are also the integrals for supersymmetric system Ĥ . The
last two operators originate in the double limit from the
integralsRT andRT�3. Having in mind this correspon-
dence, Table I may still be used for the identification of the

Z2 parities of the integrals ŝa, q̂
y
a, and l̂a, and it is not

difficult to obtain corresponding forms for superalgebra for
each of the three possible choices of the grading operator in
this case, see [39,48].

Let us look what happens here with the Witten index. As
we discussed at the beginning of this section, the only
asymmetry between the spectra of the superpartner
Hamiltonians HPT and H0 is the presence of the zero
energy bound state in the first superpartner system, which
is described by the eigenstate ð1= coshx; 0ÞT of the super-

symmetric system Ĥ . The doublet with E ¼ 1 is formed
by the eigenstates ðtanhx; 0ÞT and ð0; 1ÞT . The first state is
an eigenstate of all the three operators �3, R, and R�3

with the same eigenvalue þ1, while for the second and
third states the eigenvalues are, respectively, þ1, �1, �1,
and �1, þ1, �1. All of the fourth-fold degenerate energy
levels in the scattering part of the spectrum with E> 1
contribute zero into the Witten index �W ¼ Tr�. As a
result, for all three choices of the grading operator for the

nonperiodic supersymmetric system Ĥ , we have consis-
tently j�W j ¼ 1.16

On the other hand, the first-order matrix operator ŝ1 is
identified here as a limit of the BdG Hamiltonian HBdG ¼
S1. As may be checked directly, operator R�3 commutes
with ŝ1 in accordance with Table I if to take into account
the correspondence between nonlocal integrals discussed
above. Therefore, it can be identified as a grading operator
for a peculiar supersymmetry of the BdG system with the

Hamiltonian ĥBdG ¼ ŝ1, in which the second-order integral
q̂y2, and the nonlocal operator iR�3q̂

y
2 are identified as the

odd supercharges, and l̂1 ¼ �ŝ1q̂
y
2, cf. (5.36). The corre-

sponding superalgebra has the form (7.5) with obvious
substitutions. The state ð1= coshx; 0ÞT , is a unique zero
mode of the first-order matrix Hamiltonian ŝ1, while the
two states ðtanhx;�1ÞT are the singlet eigenstates of ŝ1 of
the eigenvalues �1, which are also the eigenstates of the
grading operator R�3 of the eigenvalue �1.
Thus, the modulus of the Witten index changes from

zero to one for the supersymmetries of both the second Ĥ
and first hBdG ¼ ŝ1 order systems. This reflects effectively
the changes in the spectrum that happen in the described
infinite period limit of the self-isospectral second-order
Lamé and the associated first-order BdG systems.

IX. EXTENDED SUPERSYMMETRIC PICTURE
AND DARBOUX DRESSING

Let us now discuss another interesting aspect of our
self-isospectral periodic supersymmetric system from the
viewpoint of the infinite period limit. As it was shown in
[40], the supersymmetric structure of the nonperiodic self-
isospectral system (8.3) has a peculiar property: all of its
integrals can be treated as a Darboux-dressed form of the
integrals of a free particle system H0ðxÞ. We clarify now
what corresponds here, in the periodic case, to the
Darboux-dressing structure of the self-isospectral PT sys-
tem (8.3). For that, we extend a picture related to the
intertwining operators and the Darboux displacements as-
sociated with them.
Consider along with our self-isospectral supersymmetric

Lamé system (3.8),H ðxÞ ¼ diagðHðxþ �Þ; Hðx� �ÞÞ, its
copy shifted for the half period,H ðxþKÞ ¼ diagðHðxþ
Kþ �Þ, HðxþK� �Þ. Any two of the four (single-
component) Hamiltonians may be connected by the
intertwining relation of the form Dð;�ÞHðþ�Þ ¼
Hð��ÞDð;�Þ. Putting  ¼ xþ 1

2 ð�1 þ �2Þ and � ¼
1
2 ð�1 � �2Þ, �1 � �2 þ 2Kn, we present this relation in a

more appropriate form,

D ðxþ 1
2ð�1 þ �2Þ; 12ð�1 � �2ÞÞHðxþ �1Þ

¼ Hðxþ �2ÞDðxþ 1
2ð�1 þ �2Þ; 12ð�1 � �2ÞÞ: (9.1)

Here �1 and �2 take the values in the set f��; �;��þ
K; �þKg, and the supersymmetric Hamiltonians H ðxÞ
and H ðxþKÞ may be related by ~DH ðxþKÞ ¼
H ðxÞ ~D, ~DyH ðxÞ ¼ H ðxþKÞ ~Dy, where

~D¼diagðDðxþ�þ 1
2K;12KÞ;Dðx��þ 1

2K;12KÞÞ: (9.2)

In the general case, if any two Hamiltonians h and ~h are

related by intertwining operators D and Dy, Dh ¼ ~hD,

hDy ¼ Dy ~h, and if J is an integral for h, ½h; J� ¼ 0, then

the operator ~J ¼ DJDy is an integral for ~h. The system
H ðxÞ is characterized by the set of local integrals of
motion JðxÞ ¼ f�3; SaðxÞ; QaðxÞ; LaðxÞg, while the system
H ðxþKÞ, is described by the same but shifted set,

16�W takes values þ1 for � ¼ �3 and R, and �1 for R�3. A
difference in sign is not important, however, since it can be
removed by changing a sign in definition of the grading operator
in the last case.
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JðxþKÞ. IdentifyingH ðxþKÞ,H ðxÞ, and ~Dwith h, ~h,

and D, respectively, we find that ~J ¼ ~DJðxþKÞ ~Dy ¼
JðxÞH ðxÞ. In other words, the Darboux-dressed integral of
one system is just the corresponding integral of another,
displaced self-isospectral periodic system, multiplied by its
Hamiltonian. Nonlocal operators (6.1), which are the inte-
grals for H ðxÞ, are also the integrals of motion for the
displaced system H ðxþKÞ. Then one finds that a similar
relation is valid also for these nonlocal integrals as well as
for nontrivial diagonal nonlocal integrals (6.11). The only
difference is that for all the integrals that contain a factorR,

including (6.11), there appears a minus sign, like in ~D ~Sðxþ
KÞ ~Dy ¼ �~SðxÞH ðxÞ. Notice also that the Darboux-
dressed form of the trivial integral 1 (that is a unit two-by-
two matrix) for the displaced system H ðxþKÞ coincides
with the Hamiltonian H ðxÞ, ~D1 ~Dy ¼ H ðxÞ.

Since both of the self-isospectral supersymmetric sys-
tems are just two copies of the same periodic system
shifted mutually in the half period, the described picture
is not so unexpected. Let us look, however, at this result
from another viewpoint. In the infinite period limit, super-
symmetric systems H ðxÞ and H ðxþKÞ transform,
respectively, into (8.3) and

H 0 ¼ diagðH0; H0Þ; (9.3)

where H0 ¼ � d2

dx2
þ 1 is a (shifted for a constant additive

term) free particle Hamiltonian. In other words, the infinite
period limit of the system H ðxþKÞ is given by the two
copies of the free nonrelativistic particle. As we have seen,
the infinite period limit applied to the integrals of the self-
isospectral systemH ðxÞ produces corresponding integrals
of the self-isospectral PT system (8.3). The infinite period
limit of the integrals of the system H ðxþKÞ may easily
be obtained just by taking the limit x ! 1 of the integrals
of the self-isospectral PT system (8.3). For nontrivial local
integrals, we find

S1ðxþKÞ ! �i
d

dx
�2 � C2��1 
 s1;

S2ðxþKÞ ! s2 ¼ i�3s1;
(9.4)

QaðxþKÞ ! ð�1Þaþ1�a �H 0;

L1ðxþKÞ ! �i
d

dx
�H 0 
 ‘1;

L2ðxþKÞ ! ‘2 ¼ �3‘1:

(9.5)

The obtained operators are the integrals of motion for the
trivial free particle supersymmetric system (9.3). They
correspond to the obvious integrals �a, and to the products
of them with �i d

dx and H 0. System (9.3) is intertwined

with the self-isospectral PT system (8.3) by the infinite

period limit of the operator (9.2), D̂ ! diagðA�; A��Þ 

D1, D1H 0 ¼ H PTD1, H 0D

y1 ¼ Dy1H PT. If J0 is

some integral for H 0, then D1J0H 0D
y1 ¼

D1J0D
y1H PT. Taking into account (9.4) and (9.5), the

nontrivial local integrals SPT;a, QPT;a, and LPT;a of the

self-isospectral PT system (8.3) may be treated as a
Darboux-dressed form of the integrals for the free particle
systemH 0, namely, of sa,�a, and�iIa

d
dx , where I1 ¼ 1

and I2 ¼ �3.
It is interesting to note that the first-order integral of

H 0, for instance, s1, may also be treated as a Hamiltonian
of a free relativistic Dirac particle of mass C2�. Then its
Darboux-dressed form is a nonperiodic BdG Hamiltonian

SPT;1 ¼ �i
d

dx
�2 � ��ðxÞ�1; (9.6)

see Eqs. (8.8) and (8.5). Comparing (9.6) with the structure
of s1 in (9.4), we see that the gap function ��ðxÞ is effec-
tively a Darboux-dressed form of the free Dirac particle’s
mass C2�. The periodic BdG Hamiltonian HBdG ¼ S1 may
be treated then as a periodized form of (9.6), like the Lamé
Hamiltonian may be considered as a periodized form of the
PT Hamiltonian, see [31]. It is worth stressing, however,
that a reconstruction of a crystal structure on the basis of a
nonperiodic kink-antikink system is not direct and free of
ambiguities: in the previous section we already noted that
two different basic functions of the shift parameter in the
self-isospectral Lamé and associated BdG systems corre-
spond to the same function in the nonperiodic case.
Another interesting observation can be made on the

genesis of the nonlocal integrals (6.11). For the self-
isospectral Lamé and PT systems, the reflection operator
R and �a, a ¼ 1, 2, are not integrals of motion, but the
product of any two of these three operators is an integral of
motion. For the supersymmetric free particle system (9.3),
however, each of these three operators is an integral of
motion. One finds then that the infinite period limit of the

integral �3
~Q, �3

~Q ! diagðRY�;RY��Þ 
 �3
~QPT is ex-

actly a Darboux-dressed form of the reflection operatorR,

D1RDy1 ¼ �3
~QPT. Or, alternatively, an integral ~QPT for

the self-isospectral PT system is a dressed form of the
nonlocal diagonal integral R�3. An analogous relation
exists also for the infinite period limit of another nonlocal

diagonal integral from (6.11), D1ð�iR�2s1ÞDy1 ¼ ~SPT �
H PT, where ~SPT ¼ diagðRX�;RX��Þ.
We conclude that the described Darboux-dressing struc-

ture of the self-isospectral PT system, observed earlier in
[40], originates from, and is explained by the properties of
the self-isospectral periodic one-gap Lamé system.

X. DISCUSSION AND OUTLOOK

To conclude, let us discuss the obtained results from
the physics perspective and potential applications and
generalizations.
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The usual supersymmetric structure of the kink-antikink
as well as of the kink crystalline phases of the GN model
has been known for about 20 years. However, such a
structure with the first-order supercharges and Z2 grading
provided by the diagonal Pauli matrix does not explain or
reflect the peculiar, finite-gap nature of the corresponding
solutions. It also does not reflect the restoration of the
discrete chiral symmetry at the zero value of the bare
mass in the GN model, when the kink-antikink crystalline
condensate transforms into the kink crystal. Both aspects
are explained by the exotic nonlinear supersymmetric
structure we revealed here. The finite-gap nature is re-
flected by the Lax integral incorporated into a nonlinear
supersymmetric structure alongside the first- and second-
order supercharges. A restoration of the discrete chiral
symmetry, on the other hand, is reflected by structural
changes that happen in nonlinear supersymmetry at the
half period shift of the Lamé superpartner systems, when
a central gap in the spectrum of the associated BdG system
disappears. We showed that the first-order BdG system 17

has its own supersymmetry, which can be revealed only
with the help of the nonlocal grading operators investigated
in Sec. VI. The disappearance of the middle gap in the BdG
spectrum is accompanied by emergence of the new, non-
trivial second-order integral of motion in the first-order
system (while the BdG Hamiltonian has no such integral in
the kink-antikink crystalline phase).

The aspects related to the infinite period limit we inves-
tigated in Secs. VIII and IX may be useful for understand-
ing of some puzzles related to a computation of the Witten
index in some supersymmetric field theories when a system
is put in a periodized box [49].

Recently, perfect Klein tunneling in carbon nanostruc-
tures was explained in [50] by an unusual supersymmetric
structure with the first-order matrix Hamiltonian. We be-
lieve that the supersymmetry we investigated here, particu-
larly in Sec. VII, may also be useful in the study of other
phenomena in graphene, where the dynamics of charges is
governed by the effective first-order Dirac Hamiltonian.

It would be interesting to clarify whether the twisted
kink crystal of the GN model with continuous chiral sym-
metry, that was found in [7,8], could be obtained by super-
symmetric constructions similar to those in Sec. III.

We treated�, which appears in the structure of the second-
order intertwining operatorBðx; �; �Þ of a general form (5.3)
, as a kind of a virtual shift parameter. One could extend the
picture by reinterpreting Eqs. (5.1) and (5.2) as intertwining
relations for the three Lamé systems,Hðxþ �1Þ,Hðxþ �2Þ,
andHðxþ �3Þ, where �1 ¼ �, �2 ¼ �þ 2�, and �3 ¼ ��.
Then we would get an extended self-isospectral system
of three superpartner Lamé Hamiltonians. Employing a

relation of the form (9.1), one could further extend the
picture to obtain a self-isospectral system with n > 3 super-
partnersHðxþ �1Þ; . . . ; Hðxþ �nÞ. When the shift parame-
ters are such that �n ¼ �1, the corresponding intertwining
operator of ordernwould reduce to an integral for the system
Hðxþ �1Þ. It is in such a way that we identified, in fact, the
third-order Lax operatorP ðxþ �Þ for the systemHðxþ �Þ.
The interesting questions that arise are, what is a complete
set of integrals and what kind of supersymmetry do we get
for such an n-component self-isospectral system?
Particularly, what is the nature of the above-mentioned
integral of motion of the order n for n > 3? What is the
relation of such extended supersymmetric systems with the
GNmodel and what physics could be associated with them?
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APPENDIX A: JACOBI ELLIPTIC FUNCTIONS

We summarize here some properties and relations for
Jacobi elliptic and related functions. For details, see, e.g.,
[29,51].
In notations for these functions we suppress a depen-

dence on a modular parameter 0< k< 1, snx ¼ snðxjkÞ,
etc., when this does not lead to ambiguities. On the other
hand, a dependence on a complementary modulus parame-

ter 0< k0 < 1, k0 ¼ ð1� k2Þ1=2, is indicated explicitly. We
use Glaisher’s notation for inverse quantities and quotients
of Jacobi elliptic functions, ndx ¼ 1=dnx, nsx ¼ 1=snx,
ncx ¼ 1=cnx, scx ¼ snx=cnx, etc.
The basic Jacobi elliptic functions are the doubly peri-

odic meromorphic functions snu, cnu, and dnu, whose
periods are ð4K; 2iK0Þ, (4K, 2Kþ 2iK0) and ð2K; 4iK0Þ,
respectively. snu is an odd function, while cnu and dnu are
even functions, which are related by the identities sn2uþ
cn2u ¼ 1, dn2uþ k2sn2u ¼ 1, k2cn2uþ k02 ¼ dn2u,
k02sn2uþ cn2u ¼ dn2u, and whose derivatives are
d
du snu ¼ cnudnu, d

du cnu ¼ �snudnu, d
du dnu ¼

�k2snucnu. They have simple zeros and poles at

snu: 0;2K; cnu:K;�K; dnu:Kþ iK0;K� iK0; (A1)

snu; cnu: iK0; 2Kþ 2iK0; dnu: iK0;�iK0; (A2)

respectively, modulo periods. Here

17It is this first-order system that really describes the corre-
sponding crystalline phases in the GN model, while the second-
order Lamé system is related to it as the Klein-Gordon equation
is related to the Dirac equation.
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K ¼ KðkÞ ¼
Z 1

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� x2Þð1� k2x2Þp (A3)

is a complete elliptic integral of the first kind, and K0 ¼
Kðk0Þ is a complementary integral, which are monotonic
functions of k in the interval 0< k< 1: dK=dk > 0,
dK0=dk < 0. In the limit cases k ¼ 0 and k ¼ 1, elliptic
functions transform into simply-periodic functions in a
complex plane,

k ¼ 0; k0 ¼ 1: K ¼ 1
2	;K

0 ¼ 1;

snu ¼ sinu; cnu ¼ cosu; dnu ¼ 1;
(A4)

k ¼ 1; k0 ¼ 0: K ¼ 1;K0 ¼ 1

2
	;

snu ¼ tanhu; cnu ¼ dnu ¼ 1

coshu
:

(A5)

The addition formulae are

sþ ¼ 1

�
ðsucvdv þ svcuduÞ;

cþ ¼ 1

�
ðcucv � susvduduÞ;

dþ ¼ 1

�
ðdudv � k2susvcucuÞ;

(A6)

where sþ ¼ snðuþ vÞ, su ¼ snu, sv ¼ snv, cþ ¼ cnðuþ
vÞ, dþ ¼ dnðuþ vÞ, etc., and � ¼ 1� k2sn2usn2v.
Jacobi’s imaginary transformation is

snðiujkÞ¼ isnðujk0Þncðujk0Þ; cnðiujkÞ¼ncðujk0Þ;
dnðiujkÞ¼dnðujk0Þncðujk0Þ: (A7)

From the addition formulae and (A7), one finds some
displacement properties of Jacobi elliptic functions, which
are shown in Table II.

APPENDIX B: JACOBI ZETA, THETA,
AND ETA FUNCTIONS

The complete elliptic integral of the second kind is
defined by

E ¼ EðkÞ ¼
Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2x2

1� x2

s
dx: (B1)

It is a monotonically decreasing function, dE=dk < 0. The
complete elliptic integralsK ¼ KðkÞ andE ¼ EðkÞ satisfy

the first-order differential equations dK
dk ¼ E�k02K

kk02 , dE
dk ¼

E�K
k , from which an inequality k02 < E=K< 1 and the

Legendre’s relation EK0 þ E0K�KK0 ¼ 1
2	may be de-

duced, where E0 ¼ Eðk0Þ is a complementary integral of
the second kind.
The incomplete elliptic integral of the second kind is

defined as

E ðuÞ ¼
Z u

0
dn2udu; (B2)

in terms of which E ¼ EðKÞ. This is an odd analytic
function of u, regular save for simple poles of residue
þ1 at the points 2nKþ ð2mþ 1ÞiK0. Function EðuÞ is
not an elliptic function. It possesses the properties of
pseudoperiodicity, Eðuþ 2KÞ � EðuÞ ¼ Eð2KÞ ¼ 2E,
Eðuþ 2iK0Þ � EðuÞ ¼ Eð2iK0Þ, where in the first relation
the second equality is obtained by putting u ¼ �K.
In terms of EðuÞ, a simply periodic Jacobi Zeta function

is defined,

Z ðuÞ ¼ EðuÞ � E

K
u; (B3)

which satisfies relations dZðuÞ
du ¼ dn2u� E

K , and

Zðuþ2KÞ¼ZðuÞ; Zðuþ2iK0Þ¼ZðuÞ� i
	

K
;

Zð�uÞ¼�ZðuÞ; ZðK�uÞ¼�ZðKþuÞ;
(B4)

Z ð0Þ ¼ ZðKÞ ¼ 0; ZðKþ iK0Þ ¼ �i
	

2K
: (B5)

Zeta function satisfies an addition formula

Z ðuþ vÞ ¼ ZðuÞ þ ZðvÞ � k2snusnvsnðuþ vÞ; (B6)

and obeys Jacobi’s imaginary transformation

iZðiujkÞ ¼ Zðujk0Þ þ 	u

2KK0 � dnðujk0Þscðujk0Þ; (B7)

from which one finds Zðuþ iK0Þ ¼ ZðuÞ þ nsucnudnu�
i 	
2K . For the limit values of the modular parameter, k ¼ 0

and k ¼ 1, we have

Z ðuj0Þ ¼ 0; Zðuj1Þ ¼ tanhu: (B8)

In terms of ZðuÞ ¼ ZðujkÞ, the Jacobi Theta function
�ðujkÞ is defined as

�ðuÞ ¼ �ð0Þ exp
�Z u

0
ZðuÞdu

�
: (B9)

TABLE II. Displacement properties of Jacobi elliptic functions.

u uþK uþ iK0 uþKþ iK0 uþ 2K uþ 2iK0 uþ 2ðKþ iK0Þ
snu cnundu 1

k nsu
1
k dnuncu �snu snu �snu

cnu �k0snundu �i 1k dnunsu �i k
0
k ncu �cnu �cnu cnu

dnu k0ndu �icnunsu ik0snuncu dnu �dnu �dnu
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This is an even,�ð�uÞ ¼ �ðuÞ, integral periodic function
of period 2K, whose only zeros are simple ones at the
points of the set 2nKþ ð2mþ 1ÞiK0. It satisfies the rela-
tion �ðuþ 2iK0Þ ¼ � 1

q expð�i 	K uÞ�ðuÞ, where q ¼
expð�	K0=KÞ: Notice that sometimes Jacobi’s Theta
function is defined by the Fourier series,

�ðujkÞ ¼ #4ðvÞ; #4ðzÞ ¼ 1þ 2
X1
n¼1

ð�1Þnqn2 cosð2nzÞ;

v¼ 	u

2K
: (B10)

Then the Z function can be defined by the logarithmic
derivative,

Z ðuÞ ¼ d

du
ln�ðuÞ: (B11)

In correspondence with definition (B10), a constant in (B9)

is fixed as �ð0Þ ¼
ffiffiffiffiffiffiffiffi
2Kk0
	

q
.

The Jacobi Eta function HðuÞ is defined in terms of the
Theta function,

H ðuÞ ¼ �iq1=4 exp

�
i
	u

2K

�
�ðuþ iK0Þ: (B12)

This is an odd,Hð�uÞ ¼ �HðuÞ, integral periodic function
of period 4K, which possesses simple zeros at the points
of the set 2nKþ 2miK0. Some of the properties of the
Eta and Theta functions are summarized in Table III,

where MðuÞ ¼ expð�i 	u2KÞq�1=4, NðuÞ ¼ expð�i 	uK Þq�1.

For particular values of the argument, we also have

H0ð0Þ ¼ 	
2KHðKÞ�ð0Þ�ðKÞ, �ðKÞ ¼

ffiffiffiffiffi
2K
	

q
, HðKÞ ¼ffiffiffiffiffiffiffi

2kK
	

q
. The Jacobi Theta function satisfies a kind of addition

theorem,

�ðuþvÞ�ðu�vÞ�2ð0Þ¼�2ðuÞ�2ðvÞ�H2ðuÞH2ðvÞ:
(B13)

The basic Jacobi elliptic functions may be represented in
terms of � and H functions,

snu ¼ HðuÞ
�ðuÞ �

�ð0Þ
H0ð0Þ ;

cnu ¼ HðuþKÞ
�ðuÞ � �ð0Þ

HðKÞ ;

dnu ¼ �ðuþKÞ
�ðuÞ � �ð0Þ

�ðKÞ :

(B14)

Under complex conjugation, all the Jacobi elliptic
functions as well as H, �, and Z satisfy the relation
ðfðzÞÞ	 ¼ fðz	Þ.
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A. E. Jacobs, and L. Tewordt, Phys. Rev. 187, 556

(1969).

TABLE III. Parity and some displacement properties of Jacobi � and H functions.

u �u uþ 2K uþ iK0 uþ 2iK0 uþKþ iK0 uþ 2Kþ 2iK0

�ðuÞ �ðuÞ �ðuÞ iMðuÞHðuÞ �NðuÞ�ðuÞ MðuÞHðuþKÞ �NðuÞ�ðuÞ
HðuÞ �HðuÞ �HðuÞ iMðuÞ�ðuÞ �NðuÞHðuÞ MðuÞ�ðuþKÞ NðuÞHðuÞ

EXOTIC SUPERSYMMETRY OF THE KINK-ANTIKINK . . . PHYSICAL REVIEW D 83, 065025 (2011)

065025-21

http://dx.doi.org/10.1103/PhysRevD.10.3235
http://dx.doi.org/10.1103/PhysRevD.12.2443
http://dx.doi.org/10.1103/PhysRevD.12.2443
http://dx.doi.org/10.1007/BF01624787
http://dx.doi.org/10.1007/BF01624787
http://dx.doi.org/10.1103/PhysRevD.67.125015
http://dx.doi.org/10.1103/PhysRevD.69.067703
http://dx.doi.org/10.1103/PhysRevD.72.105008
http://dx.doi.org/10.1016/j.aop.2005.12.007
http://dx.doi.org/10.1016/j.aop.2005.12.007
http://dx.doi.org/10.1103/PhysRevLett.100.200404
http://dx.doi.org/10.1103/PhysRevLett.100.200404
http://dx.doi.org/10.1103/PhysRevD.78.065022
http://dx.doi.org/10.1103/PhysRevD.79.105012
http://dx.doi.org/10.1103/PhysRevD.79.105012
http://dx.doi.org/10.1088/1751-8113/43/37/375401
http://dx.doi.org/10.1088/1751-8113/43/37/375401
http://dx.doi.org/10.1007/JHEP01(2011)127
http://dx.doi.org/10.1007/JHEP01(2011)127
http://dx.doi.org/10.1103/PhysRevD.13.3398
http://dx.doi.org/10.1016/0550-3213(81)90557-5
http://dx.doi.org/10.1016/0550-3213(81)90557-5
http://dx.doi.org/10.1016/0550-3213(82)90089-X
http://dx.doi.org/10.1016/0550-3213(82)90089-X
http://dx.doi.org/10.1088/0305-4470/39/41/S04
http://dx.doi.org/10.1103/PhysRev.187.556
http://dx.doi.org/10.1103/PhysRev.187.556


[16] J. Bar-Sagi and C.G. Kuper, Phys. Rev. Lett. 28,
1556 (1972); J. Low, J. Low Temp. Phys. 16, 73
(1974).

[17] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345
(1961); 124, 246 (1961).

[18] R. Pausch, M. Thies, and V. L. Dolman, Z. Phys. A 338,
441 (1991).

[19] J. Feinberg and A. Zee, Phys. Rev. D 56, 5050 (1997); J.
Feinberg, Ann. Phys. (N.Y.) 309, 166 (2004).

[20] G. V. Dunne, Int. J. Mod. Phys. A 25, 616 (2010).
[21] F. Correa, G. V. Dunne, and M. S. Plyushchay, Ann. Phys.

(N.Y.) 324, 2522 (2009).
[22] M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur,

Phys. Rev. Lett. 30, 1262 (1973).
[23] D. V. Chen and Ch.-R. Hu, J. Low Temp. Phys. 25, 43

(1976).
[24] E. Witten, Nucl. Phys. B188, 513 (1981); B202, 253

(1982).
[25] V. B. Matveev and M.A. Salle, Darboux Transformations

and Solitons (Springer, New York, 1991).
[26] G. Junker, Supersymmetric Methods in Quantum and

Statistical Physics (Springer, New York, 1996); F.
Cooper, A. Khare, and U. Sukhatme, Supersymmetry in
Quantum Mechanics (World Scientific, Singapore, 2001);
B. K. Bagchi, Supersymmetry in Quantum and Classical
Mechanics (CRC, Boca Raton, FL, 2001).

[27] H.W. Braden and A. J. Macfarlane, J. Phys. A 18, 3151
(1985).

[28] G. V. Dunne and J. Feinberg, Phys. Rev. D 57, 1271
(1998).

[29] E. T. Whittaker and G.N. Watson, A Course of Modern
Analysis (Cambridge University Press, Cambridge,
England, 1980).

[30] D. J. Gross, in Methods in Field Theory, Les-Houches
Session XXVIII 1975 edited by R. Balian and J. Zinn-
Justin (North-Holland, Amsterdam, 1976); A. Klein, Phys.
Rev. D 14, 558 (1976); J. Feinberg, Phys. Rev. D 51, 4503
(1995).

[31] A. Saxena and A. R. Bishop, Phys. Rev. A 44, R2251
(1991).

[32] S. A. Brazovkii, S. A. Gordynin, and K.N. Kirova, Pis’ma
Zh. Eksp. Teor. Fiz. 31, 486 (1980) [JETP Lett. 31, 456
(1980)].

[33] B. Horovitz, Phys. Rev. Lett. 46, 742 (1981).

[34] K. Machida and H. Nakanishi, Phys. Rev. B 30, 122 (1984);
K. Machida and M. Fujita, Phys. Rev. B 30, 5284
(1984).

[35] B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, Russ.
Math. Surv. 31, 59 (1976); S. P. Novikov, S. V. Manakov,
L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons
(Plenum, New York, 1984); E. D. Belokolos, A. I.
Bobenko, V. Z. Enolskii, A. R. Its, and V. B. Matveev,
Algebro-Geometric Approach to Nonlinear Integrable
Equations (Springer, Berlin, 1994).

[36] B. Sutherland, Phys. Rev. A 8, 2514 (1973).
[37] F. Correa and M. S. Plyushchay, Ann. Phys. (N.Y.) 322,

2493 (2007).
[38] F. Correa, L.M. Nieto, and M. S. Plyushchay, Phys. Lett.

B 644, 94 (2007).
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