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Functional conjugation methods are used to analyze the global structure of various renormalization

group trajectories and to gain insight into the interplay between continuous and discrete rescaling. With

minimal assumptions, the methods produce continuous flows from step-scaling � functions and lead to

exact functional relations for the local flow � functions, whose solutions may have novel, exotic features,

including multiple branches. As a result, fixed points of � are sometimes not true fixed points under

continuous changes in scale and zeroes of � do not necessarily signal fixed points of the flow but instead

may only indicate turning points of the trajectories.
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I. INTRODUCTION

The renormalization group (RG) of Gell-Mann and Low
[1], and of Stueckelberg and Petermann [2], has an elegant
mathematical expression in terms of the functional con-
jugation (FC) methods of Ernst Schröder [3]. This expres-
sion provides a powerful tool to describe the behavior of
physical systems under either infinitesimal or finite, per-
haps large, changes in scale. While this fact is often over-
looked, and not usually invoked in the solution of various
problems posed in the RG framework, it is readily apparent
upon reading [1] (see especially Appendix B; also see [4])
and surveying the literature on functional equations [5].
Moreover, it may be profitable to bear in mind the logical
connections between these two subjects when considering
the step-scaling approach in lattice gauge theory [6,7],
where the power and utility of the methods are manifest.

In previous work [8–10], we have discussed how dynami-
cal systems, defined on a discrete lattice of time points, may
be smoothly interpolated in time through the use of solutions
to Schröder’s celebrated functional equation. Here we dis-
cuss the same methods in the context of the renormalization
group. We examine in detail the connections between differ-
ential (local) rescaling and finite (global) changes in scale.
We interpolate various step-scaling functions to obtain tra-
jectories under continuous change of scale, with emphasis on
the consistency imposed by the analytic properties of cou-
plings in the presence of UV and IR fixed points. From this
point of view, it is possible to obtain novel features for RG
behavior. In particular, multivalued Callan-Symanzik �
functions [1,2,11,12] are commonly encountered in the local
RG flow equations, even when interpolating elementary,
polynomial step-scaling functions, with interesting conse-
quences involving fixed points, cycles, and even chaotic
evolution under changes in scale.

In Sec. II, we describe functional conjugation methods
relevant to RG analysis and apply them to the study of
selected trajectories. In Sec. III, we consider a physical

illustration of fixed point behavior drawn from numerical
studies of lattice gauge theory [13]. In Sec. IV, we illustrate
elementary limit cycle behavior in a model obtained by an
extension of the standard BCS Hamiltonian [14]. In Sec. V,
we briefly explain how further novel, exotic features can
arise from basic step-scaling behavior, in general. Finally,
in Sec. VI, we exhibit such features, including multivalued
� functions, limit cycles, and chaotic trajectories, using toy
models based on the logistic map. Two appendices provide
some connections to our earlier work on dynamical sys-
tems and a few algebraic details for the lattice example.

II. METHODOLOGY

A. The renormalization group: Step by step

Let us suppose the change in the coupling u is given for a
discrete change in length scale by

u � �ðuÞ; (1)

where �ðuÞ is the ‘‘step-scaling’’ function [6,7]. Typically,
u ¼ g2=4�, where g is the gauge coupling, although it
may be convenient to incorporate other numerical factors
into u, or even to take other functions of g2, depending on
the problem at hand. The standard interpretation is to
regard �ðuÞ as a discrete �t sampling of a renormalization
trajectory, uðtÞ, whose continuous evolution under changes
in the log of the length scale, t, has proceeded from an
initial u � uðtÞjt¼0. This notation for the initial u (rather
than u0, say) is not only more convenient to express the
step-scaling function, e.g. as the mapping (1), but also to
write many relations that hold both for the initial u as well
as more generally for all uðtÞ. We will point out several
such relations in the following.
The trajectory is assumed to describe an Abelian t flow

with group composition given by simple addition of t
arguments. So, for example, �ðuÞ ¼ uðtÞjt¼1, �ð�ðuÞÞ ¼
uðtÞjt¼2, �

�1ðuÞ ¼ uðtÞjt¼�1, etc. The local flow equation
in terms of t has both familiar and more recondite forms,
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du

dt
¼ �ðuÞ � ðln�Þ�ðuÞ=�0ðuÞ; (2)

where � is the so-called Callan-Symanzik function [11,12]
[which appeared earlier in [2], Eq. (4.25), under the alias
hi�] and � is the so-called Schröder function [3] (both of

which appeared in [1], under the aliases c and G, respec-
tively) and where 1= ln� (usually taken to be �1) sets the
scale of t. It is also implicitly understood that the system is
underlain by a t-translation covariance so that (2) holds not
just for u � uðtÞjt¼0 but also for uðtÞ, provided of course
that the right-hand side (rhs) is also modified by �ðuÞ !
�ðuðtÞÞ and �ðuÞ ! �ðuðtÞÞ.

While the Schröder function is less well-known in re-
normalization theory, it is immediately expressed in terms
of � from the definition in (2), rewritten as

d ln�ðuÞ=du ¼ ðln�Þ=�ðuÞ: (3)

Thus a definite integral gives the total change in� brought
about by a finite change in the coupling,

�ðu2Þ ¼ �

R
u2
u1
ððduÞ=ð�ðuÞÞÞ

�ðu1Þ: (4)

On the other hand, the exponent here is just t2 � t1, the
total change in t as u1 ! u2, as follows from the first
equality in (2). Therefore, another way to express (4) is
in terms of the evolution of the Schröder function under the
flow of the coupling, u ! uðtÞ,

�ðuðtÞÞ ¼ �t�ðuÞ: (5)

This last relation reveals the fundamental role played by�,
and its inverse function ��1, in the construction of trajec-
tories for arbitrary changes in t. It follows from (5) that
such global flow is given by [1]

uðtÞ ¼ ��1ð�t�ðuÞÞ; (6)

where 1= ln� sets the scale of t. The rhs of (6) is immedi-
ately recognized as just a change of variable, effected
through a functional conjugation [3]. For us, in fact, the
expression ‘‘Schröder functional method’’ is just a meton-
ymy for functional conjugation.

Indeed, the expression (6) is perhaps the most succinct
way to appreciate that renormalization relates self-similar
structures at different scales, inasmuch as the rhs is just a
functional similarity transformation: ��1 � �t ��.

Moreover, (6) shows that fixed points or limit cycles can
arise in a model for real � if and only if ��1 either
becomes constant or else exhibits periodic behavior,
respectively.

The structure of (6) also makes the Abelian t flow of the
renormalization group manifest, and it gives a formula for
the step-scaling function, or any of its functional compo-
sitions, in terms of �. For example, for �ðuÞ � uðtÞjt¼1,
we have from (5)

��ðuÞ ¼ �ð�ðuÞÞ; (7)

a form known as ‘‘Schröder’s functional equation with
eigenvalue �.’’ Presented in this form, for a given �ðuÞ,
the problem is often to determine all allowed � and to find
all solutions of the functional equation [15].
Alternatively, we may write (7) as

�ðuÞ ¼ ��1ð��ðuÞÞ: (8)

In this form, the equation determines the step-scaling
function in terms of �. In fact, it is useful to think of
uðtÞ in (6) as �tðuÞ, that is, as a tth continuous functional
composition of �. For example, �2ðuÞ ¼ �ð�ðuÞÞ as
before but now generalized to �ðuÞ ¼ �1=2ð�1=2ðuÞÞ, etc.
More generally, �t1þt2ðuÞ ¼ �t1ð�t2ðuÞÞ—just the ex-

pected RG Abelian composition rule.
At this point it is natural to ask, what is a simple physical

model whereby �ðtÞ ¼ �t�0? Well, d ln�ðtÞ=dt ¼ ln�,
so clearly ln� is the variable of choice. Then the question
becomes, for what model is the change in the coupling with
scale a constant? An obvious answer is, the one-loop
approximation for evolution of an inverted coupling,
1=g2. That is to say, if

d

dt
gðtÞ ¼ �g1-loop ¼ 1

2
cg3ðtÞ; (9)

then

d

dt

�
1

g2ðtÞ
�
¼ �c: (10)

So, the physical interpretation of the Schröder function is
clear: The log of� is just the change of variable needed to
convert the renormalization group flow for u into a one-
loop flow for a redefined coupling constant 1=g2. Thus,

d

dt
ln�ðuðtÞÞ ¼ ln� () d

dt

�
1

g2ðtÞ
�
¼ �c: (11)

The role of ln� is put into deeper perspective through
the following formal sequence of steps that evoke the
method of characteristics for the RG. Making explicit the
dependence of the trajectory on the initial u ¼ uðtÞjt¼0 as
well as on t, and making use of

@

@t
¼ �ðuÞ @

@u
¼ ðln�Þ @

@ ln�ðuÞ (12)

along the trajectory, we have

uðt; uÞ ¼ etð@=@�Þuð�; uÞj�¼0 ¼ et�ðuÞð@=@uÞu

¼ etðln�Þðð@Þ=ð@ ln�ðuÞÞÞu: (13)

But now, u ¼ ��1ð�ðuÞÞ ¼ ��1ðexpðln�ðuÞÞÞ, so the last
expression reduces to a mere translation of the variable
lnð�ðuÞÞ,
etðln�Þðð@Þ=ð@ ln�ðuÞÞÞ��1ðexpðln�ðuÞÞÞ
¼ ��1ðexpðt ln�þ ln�ðuÞÞÞ ¼ ��1ð�t�ðuÞÞ: (14)
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Thus (6) is recovered. These formal steps can be made
precise by examination of T, the radius of convergence of
the t series, in particular, by a determination of the depen-
dence of T on the initial u. How this goes will be illustrated
in the examples to follow.

There is some additional, subtle mathematical structure
to take into account here, especially if we have in hand a
series expansion for �:

�ðuÞ ¼ �uþOðu2Þ: (15)

For example, if d
dt uðtÞ ¼ cu2ðtÞ, as is true for lowest order

perturbation theory with u / g2, then the exact solution for
the trajectory is

uðtÞ ¼ u

1� cut
; (16)

where again on the rhs u ¼ uðtÞjt¼0. In this case, we have
� ¼ 1 in (15).

But naively this leads to � ¼ 1, the well-known singular
situation for the eigenvalue in Schröder’s functional equa-
tion. By singular we mean that an attempt to solve (7) by
Taylor series expansion about u ¼ 0 will fail, in general,
when � ¼ 1. Indeed, it is immediately verified that, for
� ¼ 1 in (15), a nontrivial solution of (7) can not be found
with �ðuÞ given by a series about u ¼ 0.

This is easily circumvented, however. Instead of Taylor
series about u ¼ 0, all the relevant solutions have an
essential singularity at u ¼ 0 and in fact have Taylor series
about u ¼ 1. Explicitly, with � � expð�cÞ in (3), we see
that ��ðuÞ ¼ expð� �

uÞ is a family of Schröder functions

for one-loop evolution, with arbitrary �: ��ðuðtÞÞ ¼
e�ct��ðuÞ. So, for t ¼ 1 and �ðuÞ � uðtÞjt¼1, the eigen-
value for each �� solution is indeed � and not just the
naive value 1 (excluding the trivial and uninteresting case
where ��¼0 ¼ 1). Defining a discrete step for another
value of t simply rescales �.

We will say more about the general structure of the
functional approach to the RG, and the novel features
that it has the power to reveal, in Secs. IV and V of the
paper. But first, we consider:

B. The � functional equation, with one- and
two-loop examples

What is the functional equation obeyed by the local �
function? It follows simply enough from (2) or else from
the definition in (2) combined with (7). Thus,

�ðuÞ
d
du�ðuÞ ¼ �ð�ðuÞÞ

d
du�ð�ðuÞÞ ¼

1
d
du �ðuÞ

�ð�ðuÞÞ
�0ð�ðuÞÞ : (17)

That is to say [cf. Eq. (6) in [10]],

�ð�ðuÞÞ ¼ d�ðuÞ
du

�ðuÞ: (18)

This is just the flow of �ðuÞ along the characteristics
defined by (12). Note that all explicit reference to the

eigenvalue � has dropped out of this equation, although
it is still possible for � dependence to be induced through
implicit � dependence in�ðuÞ, and therefore � dependence
is implicitly understood for � as well. Also note that (18)
alone does not determine the overall normalization of �.
This normalization is determined by (2) and (7), and it also
introduces � dependence.
As an example, again take �ðuÞ ¼ cu2, the one-loop

result. For t ¼ 1, we have �ðuÞ ¼ u
1�cu ; hence,

d�ðuÞ
du

¼ 1

ð1� cuÞ2 : (19)

But we also have

�ð�ðuÞÞ¼c�2ðuÞ¼ cu2

ð1�cuÞ2¼
1

ð1�cuÞ2�ðuÞ: (20)

So, (18) holds—themost important point to take away from
this example being that a Taylor series solution about u ¼ 0
can work for the functional equation obeyed by �ðuÞ, even
though it does notwork for�ðuÞ. It is of course redundant to
do so, butwe check this, for�ðuÞ � auþ 	u2 þ bu3. Then

�ðuÞ ¼ u
1�cu gives �ð�ðuÞÞ � ðd�ðuÞdu Þ�ðuÞ ¼ cu2

ðcu�1Þ3 �
ð�bu2 � acuþ aÞ. For this to vanish, it is necessary and
sufficient that both a ¼ 0 and b ¼ 0, while 	 is
undetermined.

1. Two-loop infrared fixed point

For another, more interesting, example, consider the
two-loop perturbative approximation to � for a model
with trivial UV and nontrivial IR fixed points. This ex-
ample nicely illustrates how the normalization of � is
determined in the functional approach. We may sweep
various model dependent factors into the definition of the
coupling, g, and the scale of t to write

dg

dt
¼ 1

2
g3ð1� g2Þ: (21)

Changing variable to

y ¼ 1

g2
� 1; (22)

(21) becomes

dy

dt
¼ �y

1þ y
; (23)

with solution [16]

yðtÞ ¼ LambertWðy0ey0�tÞ; (24)

where LambertW is the inverse function for x expx. This is
manifestly in FC form (6), with � ¼ 1=e and �ðyÞ ¼
y expy, where � satisfies the functional equation

1

e
�ðyÞ ¼ �

�
LambertW

�
1

e
y expðyÞ

��
: (25)
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From this, we immediately read off the step-scaling func-
tion in terms of y. Switching back to the original coupling
g, the solution (24) gives

g2ðtÞ ¼ 1

1þ LambertWðð 1
g2
0

� 1Þe�t�1þ1=g20Þ : (26)

A typical trajectory is shown in Fig. 1.
In this example, � can be obtained by Taylor series

solution of the functional equation, (25), only it is a Taylor
series about the nontrivial fixed point at g ¼ 1, i.e. y ¼ 0.
Nonetheless, for this two-loop example, one may forego
the series solution of (25) and just solve it by inspection,
upon noting that LambertW�1ðzÞ ¼ zez.

For this same example, the � function can be obtained
from the step-scaling function by series solution about
either fixed point, g ¼ 0 or g ¼ 1. In terms of the variable
y with �ðyÞ ¼ yðtÞjt¼1, we have

�ðyÞ ¼ LambertW

�
1

e
y expðyÞ

�
;

d�ðyÞ
dy

¼ 1þ y

y

LambertWðye�1þyÞ
ð1þ LambertWðye�1þyÞÞ :

(27)

This leads to a typical plot of � near the fixed point as seen
in Fig. 2

Of course, with all the additional information about the
actual trajectory implicitly built into this closed-form ex-
pression for�, we may also forego an actual series solution
of (18) and solve it too by inspection. Explicitly writing out
the functional equation as

�ðLambertWðye�1þyÞÞ ¼ LambertWðye�1þyÞ
ð1þ LambertWðye�1þyÞÞ
� 1þ y

y
�ðyÞ; (28)

a solution is obvious, namely, �ðyÞ / y
1þy . The constant of

proportionality is then given by ln� ¼ lnð1=eÞ ¼ �1, as in
(2), and thus (23) is recovered.

2. Möbius transformation form

This is a simple Padé approximant [17], sometimes
known as an ‘‘exact’’ � function [18], and is but a minor
variation on the previous two-loop example. For constants
�, �, 	, and 
, consider

dg

dt
¼ 1

2
g3

�þ �g2

	þ 
g2
: (29)

Upon changing variables to

y ¼ 	ð�þ �=g2Þ
�
� �	

; (30)

the equation becomes just like (23) with only a change of
scale for t:

dy

dt
¼ ��2

�
� �	

y

1þ y
: (31)

Thus the solution is

yðtÞ ¼ LambertWðy0ey0�ðð�2Þ=ð�
��	ÞÞtÞ:

This is again of FC form with eigenvalue � ¼
eðð��2Þ=ð�
��	ÞÞ. In terms of the original variable, the RG
trajectory is finally given by

-10 0 10

0.5

1.0

t

g(t)

FIG. 1 (color online). A 2-loop trajectory with gð0Þ ¼ 1=2.

0.5 1.0

0.5

1.0

y

FIG. 2 (color online). Two-loop IR fixed point exhibited by
�ðyÞ (solid red) and ��1ðyÞ (dashed red) versus y. Light gray
curves are the functional square roots of � and ��1.
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g2ðtÞ ¼ ��=�

1� ð�
��	
�	 ÞLambertWð 	

�
��	 ð�þ �
g2
Þ expð 	

�
��	 ð�þ �
g2
Þ � 1

�
��	�
2tÞÞ : (32)

3. One-loop geometromorphosis

This describes the renormalization flow of geometry
from a flat manifold in the UV towards a fixed, nontrivial
manifold in the IR. The trajectories describe evolution of
matrices,

dgabðtÞ
dt

¼ �abðtÞ; gabðtÞ ¼ gabð0Þ þ
Z t

0
d��abð�Þ:

(33)

For RG flow of this type, we would expect a tensor version
of the Schröder equation to be operative,

�abðgð1ÞÞ ¼ �ac�cbðgð0ÞÞ; (34)

where gab could include the torsion potential as well as the
metric (in which case gab � gba) and where the step-
scaling function is now a RG transported gab,

gabð1Þ ¼ �acgcbð0Þ;
�ac ¼ 
ac þ

�Z 1

0
d��adð�Þ

�
g�1
db ð0Þ:

(35)

To simplify the discussion, and to be explicit, consider
the three-sphere �-model with torsion [19], with S pro-
portional to the square of the radius of S3. In this case, the

one-loop renormalization of the metric boils down to just a
change of S with length scale:

dS

dt
¼ 1

2

�
1

S2
� 1

�
: (36)

The solution of this one-loop evolution equation is given
implicitly by

SðtÞ þ 1

SðtÞ � 1
e�2SðtÞ ¼ et

Sþ 1

S� 1
e�2S: (37)

That is to say, (5) and (7) have eigenvalue � ¼ e, with
explicit Schröder function

�ðSÞ ¼ Sþ 1

S� 1
e�2S; (38)

while ��1 is only implicit. Note that �ðSÞ> 0 when
S> 1. The three-sphere squared-radius RG evolution is
then given in FC form by

S ðtÞ ¼ ��1ðet�ðSÞÞ: (39)

This defines implicitly the step-scaling function �ðSÞ,
as Sð1Þ, say, shown in Fig. 3. The fixed point �ðS�Þ ¼
S� ¼ 1 is centered in the small black circle.
The implicit function��1 has no name, as far as we can

tell, although it might be classified as a generalization of
the Lambert function. In any case, we may construct the
inverse function ��1ðzÞ through the usual graphical meth-
ods, to find two branches, shown in Fig. 4. The UV fixed
point—a three-sphere of infinite radius—corresponds to
the vertical asymptote of the upper branch of ��1, while

0 1 2
0

1

2

FIG. 3 (color online). One-loop ‘‘geometrostatic’’ IR fixed
point exhibited by �ðSÞ (solid red) and ��1ðSÞ (dashed red)
versusS, and a few other fixed t slices of the �tðSÞ surface (thin
gray curves).

-3 -2 -1 1 2 3

-1

1

2

3

z

FIG. 4 (color online). Two branches of ��1ðzÞ, in green, and
various approximations (orange dashes).

RENORMALIZATION GROUP FUNCTIONAL EQUATIONS PHYSICAL REVIEW D 83, 065019 (2011)

065019-5



the IR fixed point—a three-sphere of unit radius—
corresponds to the horizontal asymptote (thin light gray
line in Fig. 4) of that upper branch. Also as shown in Fig. 4,
it is straightforward to construct series approximations
around the point ðz;��1ðzÞÞ ¼ ð0;�1Þ, for the lower
branch,

��1
lowerbranchðzÞ ¼ �1� 2e�2zþ 6e�4z2 � 26e�6z3

þ 2

3
197e�8z4 � 722e�10z5 þOðz6Þ;

(40)

as well as around the point(s) ðz;��1ðzÞÞ ¼ ð�1;þ1Þ, for
either the upper or the lower branches,

��1ðzÞ ¼ 1þ 2e�2

�
1

z

�
� 6e�4

�
1

z

�
2 þ 26e�6

�
1

z

�
3

� 2

3
197e�8

�
1

z

�
4 þ 722e�10

�
1

z

�
5 þO

��
1

z

�
6
�
:

(41)

The second of these series follows from the first through
the transformation ð�;SÞ ! ð 1� ;�SÞ applied to the equa-
tion for �. These series results for ��1 are representative
of situations where simple, closed-form expressions are not
readily available. A similar situation often arises when we
have a lattice gauge theory model, Sec. III.

III. A LATTICE GAUGE THEORY MODEL

In this section, we consider a physical illustration of
fixed point behavior drawn from numerical studies of
lattice gauge theory [13]. The � and � functions in ques-
tion are those for a non-Abelian gauge theory with 12
flavors of suð3Þ color triplets.

A. Parameterizations

It is convenient in lattice gauge theory to approximate
the physical coupling at length scale ‘, u ¼ 1=g2ð‘Þ, para-
metrically in terms of the bare lattice coupling, s ¼ 1=g20,
as a series [13],

u ¼ 1

g2ð‘Þ ¼ s

�
1�Xn

j¼1

cjð‘Þ 1sj
�
: (42)

The step-scaling procedure [6,7] then gives the coupling at
length L as a function of u. Of course, this is also a function
of the bare lattice coupling parameter, s, but with a differ-
ent series expansion, in general, perhaps even with a differ-
ent order for the series (depending on the choices made in
the numerical computations).

�ðuÞ ¼ 1

g2ðLÞ ¼ s

�
1�XN

j¼1

cjðLÞ 1
sj

�
: (43)

Note that these series are arranged to have a common
zero-coupling limit, as s ! 1, with both (42) and (43)

becoming the identity map in that limit. For this parame-
terization, the functional Eq. (18) for �ðuÞ may be written
as

�ð�ðuðsÞÞÞ duðsÞ
ds

¼ �ðuðsÞÞ d�ðuðsÞÞ
ds

; (44)

where

duðsÞ
ds

¼ 1þXn
j¼1

ðj� 1Þcjð‘Þ 1sj and

d�ðuðsÞÞ
ds

¼ 1þXN
j¼1

ðj� 1ÞcjðLÞ 1sj :
(45)

It is sensible from the standpoint of perturbation theory to
consider a similar expansion for �. Thus we write

�ðuÞ ¼ X
n�0

bn
un

: (46)

Using this series along with (42), (43), and (45), and
expanding both sides of (44) in powers of 1=s, we obtain
recursion relations for the coefficient ratios bn=b0. The
Oð1Þ and Oð1=sÞ terms on left-hand side (lhs) and rhs of
(44) match identically, but the Oð1=snÞ terms for n � 2
give expressions for bn�1=b0 in terms of the ck�n. For
example, we find

b1
b0

¼ c2ðLÞ � c2ð‘Þ
c1ðLÞ � c1ð‘Þ ;

b2
b0

¼ 2c3ðLÞ � 2c3ð‘Þ � ðc1ðLÞ þ c1ð‘ÞÞðc2ðLÞ � c2ð‘ÞÞ
c1ðLÞ � c1ð‘Þ ;

(47)

etc. The overall normalization of � is not determined by
(44), of course, and in fact there is no information in the
expansions (42), (43), and (45), that allows determination
of b0 by Taylor expanding about s ¼ 1. (This is related to
the essential singularity in the Schröder function solutions
at zero coupling, as mentioned earlier, (15) et seq.) Rather,
we must fix b0 by other considerations, the obvious choice
being to use perturbation theory. Another possibility is to
use lattice data and expand, not about zero coupling, but
about a nontrivial fixed point, if available. The expansions
are similar to those we have just given, and are collected
together in Appendix B.

B. Numerics

Considerable effort is needed to properly take the con-
tinuum limit where the lattice spacing a goes to zero.
However, for purposes of illustration of the various
functional methods described here, we will not concern
ourselves with those complications. Rather, we will simply
take some of the raw numerical data in [13] for the expan-
sion coefficients appearing in (42) and (43), and note with
amusement that such a naive ab initio computation of the�
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function matches very well with two-loop perturbation
theory, upon overlapping the two results.

We choose to consider the L ¼ 8a and L ¼ 16a data
from [13] for 12 flavors of suð3Þ color triplets, a model
widely believed to have a nontrivial IR fixed point near
g2 ¼ 5. We take the data at face value, without regard for
any statistical or systematic errors, and we use this data for
the parametric definitions of u and �ðuÞ.

uðsÞ ¼ s

�
1� 0:4092

�
1

s

�
þ 0:192

�
1

s

�
2 � 0:73

�
1

s

�
3

þ 0:837

�
1

s

�
4 � 0:342

�
1

s

�
5
�
;

�ðuðsÞÞ ¼ s

�
1� 0:467

�
1

s

�
þ 0:154

�
1

s

�
2 � 0:164

�
1

s

�
3
�
:

(48)

For illustration purposes, this will suffice; but, we hope, the
procedures we follow will be useful in future, realistic
lattice studies.

In any case, we plot �ðuÞ, parametrically, versus u to
display the �ðu�Þ ¼ u� ¼ 1=g2� fixed point encoded in the
data, as given numerically by

g2� ¼ 1

0:180
¼ 5:56 at

s ¼ 0:739; i:e: g20� ¼
1

0:739
¼ 1:35:

(49)

The two series (48) were constructed to become parallel
curves in the zero-coupling limit, as s or u ! 1. However,
the curves have significantly different approaches to the
nontrivial fixed point, hence, its existence, as is evident in
Fig. 5. The fixed point u� ¼ 0:180 is centered in the small
black circle.

Now, if we use the s-parameterization formalism dis-
cussed above, we obtain for example

b1
b0

¼ 0:657;
b2
b0

¼ �20:2: (50)

This certainly looks useless (i.e. like a divergent series for
g2 * 0:03) and is very much in disagreement with pertur-
bation theory, as given to 2 loops for the 12 flavor suð3Þ
model by

d

dt
u ¼ �2

�
3

ð4�Þ2 �
50

ð4�Þ4
1

u

�
; (51)

such that b1=b0 ¼ � 50
3ð4�Þ2 ¼ �0:106. But if nothing else,

(50) confirms that the data in (48) certainly did not come
just from transcribing perturbation theory.

On the other hand, if we reparameterize the data around
the IR fixed point, defining

1

s
¼ ð1þ rÞg20�; (52)

and expand various quantities to and including Oðr4Þ, as
described in detail in Appendix B, we find

uðrÞ ¼ 0:180� 1:52r� 1:258r2 � 3:25r3 � 0:408r4

� 0:739r5 þOðr6Þ;
�ðuðrÞÞ ¼ 0:180� 1:13rþ 0:439r2 � 0:739r3

þ 0:739r4 þOðr5Þ: (53)

Admittedly, the second of these r series is less firm, since
we only have �ðuðsÞÞ to Oðð1sÞ3Þ, although the difference

will turn out to be slight over the region where the series is
reliable. We describe below the changes encountered from
truncating the �ðuðrÞÞ series at Oðr3Þ versus Oðr4Þ.
Using again the functional formalism to determine the �

function from �, only now as implemented in terms of the
expansion about the nontrivial fixed point (for details, see
Appendix B), we find the more sensible expression

�ðuÞ ¼ �ðu� þ wÞ
¼ b1 � ðw� 3:14w2 þ 1:86w3 þ 4:02w4Þ;

where b1 ¼ lnð0:745Þ ¼ �0:294: (54)

This is the best one can do given only the data in (48). So,
small, positive initial w will decrease as t increases. That is
to say, u > u� will decrease down to u� as t increases. Or,
since u ¼ 1=g2, g2 < g2� will increase up to g2� as t in-
creases. Increasing t corresponds to increasing length
scale, so the fixed point is indeed an IR one. This is clear
from computing the trajectories that follow from (54).

0.1 0.2 0.3 0.4 0.5
0.1

0.2

0.3

0.4

0.5

u

FIG. 5 (color online). �ðuÞ (solid red) and ��1ðuÞ (dashed red)
versus u, and a few other fixed t slices of the �tðuÞ surface (thin
gray curves).
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Figure 6 shows an example of g2ðtÞ, with g2ð0Þ ¼ 3. In
terms of both slope and curvature (cf. cubic splines), the
trajectory joins very smoothly with that obtained from two-
loop perturbation theory for 12 flavors of quark color
triplets.

Further comparison can be made to trajectories deter-
mined by other approximations. It is more direct, however,
to just compare� functions, now that we have in hand (54).
In addition to the two-loop approximation, which is un-
changed by analytic redefinitions of the coupling, in Fig. 7
we also compare to three-loop (minimally subtracted, as
well as that based on the Schrödinger—not Schröder—
functional) and to four-loop results from perturbation
theory (see [13] for the literature dealing with these ap-
proximations). Note how well the two-loop result joins
smoothly to our naı̈ve but ab initio determination of �
using the lattice data and functional methods, at g2 ¼ 3.
We stress that there have been no adjustments in the
normalizations to facilitate this match-up. The other,
higher-loop approximations do not fare nearly as well in

terms of matching up with the lattice �, although they do
give estimates of g2� more or less in line with (49).
Finally, we contrast the differences resulting from trun-

cating the �ðuðrÞÞ series at Oðr3Þ versus Oðr4Þ. The result-
ing changes in �ðg2Þ, as obtained from the step-scaling
function, are shown in Fig. 8. The difference is slight near
g2 ¼ 3 but becomes a sizeable disagreement for g2 & 2:5,
at which point the disparity is comparable to that between
(54) and the higher-loop approximations at g2 ¼ 3. In fact,
theOðr3Þ truncation even gives another, spurious nontrivial
fixed point at g2 	 1:7. Simply put, for g2 & 2:5 theOðw4Þ
series in (54) is woefully inadequate. A better approxima-
tion to the solution of the � functional equation must be
used for smaller g2.
While some of these numerical coincidences may very

well be little more than artefacts of the data selected, it is of
interest to see if this match up between perturbative results,
and those obtained for � by functional methods, persists
given more accurate lattice data and a thorough analysis of
numerical errors. The above discussion is an illustrative
application of the functional methods introduced here,
rather than an endorsement of specific results.

IV. A MODELWITH A LIMIT CYCLE

In this section, we illustrate elementary limit cycle
behavior in an exactly solvable lattice model, albeit one
dimensional, as obtained in [14] by an extension of the
standard BCS Hamiltonian to include a term that breaks
time-reversal invariance. A model with similar RG struc-
ture was studied in [20]. As before, we emphasize the
connections between discrete and continuous scaling and
the underlying functional relationships.
The physics of the model is explained in the extensive

work of LeClair et al. [14,30] and only the key mathemati-
cal features will be summarized here. The Hamiltonian for
the model is

-20 -10 0 10 20 30
0

2

4

6

t

FIG. 6 (color online). Lattice (solid blue) and 2-loop (dashed
blue) g2ðtÞ trajectories, with g2ð0Þ ¼ 3.
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0.4

0.5

g^2

beta

FIG. 7 (color online). Various �ðg2Þ functions: 2-loop (black),
3-loop MS (green), 3-loop SFR (orange), 4-loop MS (blue),
lattice (red).
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FIG. 8 (color online). Two-loop (black) and lattice (red) �’s,
the latter to both cubic (dashed) and quartic order.
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H ¼X
j

"jb
y
j bj þ

X
j;k

Vjkb
y
j bk;

Vjk ¼
8><
>:
ðgþ ihÞ� if "j > "k

g� if "j ¼ "k

ðg� ihÞ� if "j < "k

;

(55)

where bj and b
y
j denote the usual Cooper-pair annihilation

and creation operators, and where � ¼ 1
2 ð"jþ1 � "jÞ is the

single-particle level spacing.
For a large number of system sites, the renormalization

of the dimensionless couplings g and h under a change in
system size L is given by

dg

d lnL
¼ g2 þ h2; h ¼ constant; (56)

with h the time-reversal breaking parameter. Assuming
h � 0, we change variables to u ¼ g=h and t ¼ h lnL.
Then

du

dt
¼ 1þ u2; (57)

and direct integration gives

uðtÞ ¼ tanðtþ arctanu0Þ: (58)

Thus the physics of the model repeats itself cyclically as
the logarithm of the system size is changed.

On the other hand, the functional conjugacy formalism
gives

�ðuÞ ¼ exp

�Z u dw

1þ w2

�
¼ expðarctanuÞ;

��1ðuÞ ¼ tanðlnuÞ
(59)

uðtÞ ¼ ��1ð�t�ðu0ÞÞ ¼ tanðt ln�þ arctanu0Þ: (60)

Comparing the last expression to (58), we see that the
Schröder eigenvalue for a unit step in t is � ¼ e.

In general, the step-scaling function corresponding to t
step size � is

�ðuÞ � uðtÞjt¼� ¼ tanð�þ arctanuÞ ¼ uþ tan�

1� u tan�
:

(61)

Choosing� ¼ �=4 for convenience, a quick check on (18)
gives

�ðuÞ ¼ 1þ u2; �ðuÞ ¼ 1þ u

1� u
;

d�ðuÞ
du

¼ 2

ð1� uÞ2 ; (62)

so �ð�ðuÞÞ ¼ d�ðuÞ
du �ðuÞ indeed holds. In fact, the func-

tional equation obeyed by �, namely,

e��ðuÞ ¼ �

�
uþ tan�

1� u tan�

�
; (63)

actually belongs to the first class of examples discussed in
Section 2 of the original paper by Schröder [3]. (As an
aside, we also note that (57) is a complexified form of the
Beverton-Holt–Skellam model from population dynamics
[21].)
The trajectory (60) describes a limit cycle because it is

periodic in t, as observed by LeClair et al. [14] (also see
[20]). This is clearly a consequence of��1 being periodic,
as we remarked earlier in a general context, in Sec. II.
However, the discontinuity in the trajectory is somewhat
peculiar to the model. This discontinuity is also displayed
by the step-scaling function, as shown in Fig. 9. Note the
discontinuity at u ¼ 1 and the lack of a real fixed point.
Since � does not intercept the identity map there is no real
fixed point in this case, although � can be constructed by
series solution about the purely imaginary fixed points at
u ¼ �i.
We defer to the detailed discussions in [14] for a more

complete picture of the physics described by this example.
We return to a model-independent viewpoint, to explore
other ways that limit cycles might be encountered.

V. MORE ON THE � FUNCTIONAL EQUATION

For emphasis, we state again the functional Eq. (18)
relating the renormalization ‘‘velocity’’ � to the step-
scaling function �:

-5 -4 -3 -2 -1 1 2 3 4 5

-5

-4

-3

-2

-1

1

2

3

4

5

u

FIG. 9 (color online). Step-scaling function �ðuÞ ¼
tanð�4 þ arctanuÞ, in blue, compared to the identity map.
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�ð�ðuÞÞ ¼ d�ðuÞ
du

�ðuÞ:

Generally speaking, if � is known, this (nonlinear) func-
tional equation determines �ðuÞ, up to a constant of inte-
gration, while if �ðuÞ is known, the equation determines �,
again up to a (normalization) constant. However, the equa-
tion may hold in store some surprises.

A fixed point u� in the step-scaling scheme must obey
�ðu�Þ ¼ u�. Thus at a fixed point, it is trivially true that
�ð�ðu�ÞÞ ¼ �ðu�Þ. Butwhat has this to dowith the standard
fixed point condition that �ðu�Þ ¼ 0? If d�=duju� � 1,

then it would seem to follow from the functional equation
that �ðu�Þ ¼ 0 when �ðu�Þ ¼ u�, while if d�=duju� ¼ 1,

the functional equation itself would not lead to any con-
clusion about the value of �ðu�Þ.

But there is a subtle assumption here: All this is true if
there is only one branch of the analytic function giving rise
to�. Related to this, a zero in d�=dumay induce, coincide
with, or even supplant a zero of �. This is at odds with the
usual renormalization group point of view, but in general
this too can occur, and when it does, it may foreshadow a
much richer renormalization structure.

If we have a zero in d�=du, say at u0, and�ðu0Þ is finite,
then the functional equation implies �ð�ðu0ÞÞ ¼ 0. Now,
in the usual renormalization group situation, which we may
describe as a purely first-order framework, uðtÞ is com-
pletely determined by uðt0Þ and a single function �ðuÞ ¼
du=dt. So, if �ð�ðu0ÞÞ ¼ 0 and �ðuÞ is just the initial u
after having been t evolved for some discrete step in t, this
means that �ðu0Þ ¼ u0 and therefore �ðu0Þ ¼ 0 must also
hold. The fact that d�=duju0 vanishes does not make much

difference in this purely first-order point of view [22].
However, in the quasi-Hamiltonian framework defined

and discussed in [9], it may be that �ðu0Þ is not just a zero
of �, but rather it is a branch point of an analytic function
whose various branches constitute a family of �’s. In this
situation, to completely determine the t evolution of u it is
necessary to specify a transition function. That is to say, it
is necessary to give a prescription describing how the
trajectory switches from one branch of � to another
when the branch point �ðu0Þ is encountered.

In this approach, �ðu0Þ is a ‘‘turning point’’ in the
evolution and not necessarily a fixed point. Hence, it is
not necessary for �ðu0Þ to be the same as u0. Nor is it
necessary for �ðu0Þ to vanish.

The quasi-Hamiltonian approach brings to mind a
Hamiltonian system whose underlying dynamics are ac-
tually a second-order differential equation but which has
been reduced to a first-order system between turning points
through the use of energy conservation (see Appendix A).
Thus one would expect, at the very least, that the corre-
sponding � function could flip sign at the turning point
�ðu0Þ.

In fact, the situation can be more complicated. There
may be more than the two branch choices �j�j at the

turning point. In general, there may be an infinite number
of branches from which to choose �.
A local, differential way to think about the various

alternatives is to consider the RG acceleration, jerk, etc.,
along the trajectory as computed through use of the chain
rule:

dn�ðuÞ
dtn

¼ �ðuÞ d

du

�
dn�1�ðuÞ
dtn�1

�
: (64)

So, for instance, if

�ðuÞ 

u!�ðu0Þ

ð�ðu0Þ � uÞp; (65)

then

dn�ðuÞ
dtn



u!�ðu0Þ

ð�ðu0Þ � uÞðnþ1Þp�n: (66)

Thus, even though �ð�ðu0ÞÞ ¼ 0, the RG acceleration
d�=dt can be nonzero at u ¼ �ðu0Þ if 0<p � 1=2, in-
dicating that �ðu0Þ is a turning point and not a fixed point
for the continuous flow under these circumstances.
All these things are best understood through considera-

tion of some toy models.

VI. TOY MODELS AND NOVEL BEHAVIOR

Consider a toy example that is unphysical (so far as we
are aware) but can be solved in closed form [3],

�ðuÞ ¼ 2uð1� uÞ: (67)

There are fixed points of �ðuÞ at 0 and u� ¼ 1=2, as
indicated by red dots in Figure 10. The functional equation
for the � function in this case is

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

u

FIG. 10 (color online). Toy model �ðuÞ ¼ 2uð1� uÞ (solid
red) and ��1ðuÞ (dashed red) versus u.
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�ð2uð1� uÞÞ ¼ 2ð1� 2uÞ�ðuÞ; (68)

with the normalization determined to be ln2 from the
eigenvalue of Schröder’s equation at u ¼ 0, namely,
2�ðuÞ ¼ �ð2uð1� uÞÞ. Series solution of the functional
equation for � about u ¼ 0 immediately gives

�ðuÞ= ln2 ¼ u� u2 � 2

3
u3 � 2

3
u4 � 4

5
u5

� 16

15
u6 � 32

21
u7 þ � � �

¼ 1

2
ð2u� 1Þ lnð1� 2uÞ; (69)

where the latter closed form is not difficult to guess from
the first 20 or so terms in the explicit series and is easily
checked to solve the functional equation exactly. This �
has zeroes precisely at the fixed points of �, again as
indicated by red dots in Fig. 11.

For this special case, d�=du ¼ 2ð1� 2uÞ vanishes at
u� ¼ 1=2, the nontrivial fixed point of �, and in addition
�ð1=2Þ ¼ 0, but these coincidences are not true in general,
as we shall see. In fact, in spite of the divergence in
d�ðuÞ=duju¼u� , both the RG acceleration and the RG

jerk vanish at the nontrivial fixed point, d
dt �ðu�Þ ¼ 0 ¼

d2

dt2
�ðu�Þ, as do all higher t derivatives of �, since

limu!1=2ð2u� 1Þlnnð1� 2uÞ ¼ 0 for any n. Thus, in this

case, the RG flow into the nontrivial fixed point takes place
with a very ‘‘soft landing.’’

Integration of du=dt ¼ �ðuÞ gives

uðtÞ ¼ 1

2
ð1� ð1� 2uð0ÞÞ2tÞ: (70)

This is precisely of the FC form considered by Schröder,
namely, uðtÞ ¼ ��1ð2t�ðuð0ÞÞÞ, with �ðxÞ ¼ lnð1� 2xÞ
and ��1ðxÞ ¼ 1

2 ð1� exÞ. A representative trajectory is

shown in Fig. 12.

More generally, consider toy models for step-scaling
functions based on the logistic map [23,24]. For parameter
s, with 0 � s � 4, let

�ðu; sÞ ¼ suð1� uÞ: (71)

This � has fixed points at 0 and u� ¼ 1� 1
s . Except for the

special case s ¼ 2, u� does not coincide with the location
of the maximum of the map where d�=du ¼ 0, as given by
�ð1=2Þ ¼ s=4.
The functional equation for the � function in this case is

�ðsuð1� uÞ; sÞ ¼ sð1� 2uÞ�ðu; sÞ; (72)

where the normalization of the solution is given by lnðsÞ.
That is to say, � ¼ ðlnsÞ�=ðd�=duÞ, where � is the
corresponding solution of Schröder’s equation with eigen-
value s.

s�ðu; sÞ ¼ �ðsuð1� uÞ; sÞ: (73)

While these functional equations do not admit closed-form
solutions, for generic s, they can be solved numerically
with sufficient accuracy for our purposes here through a
combination of series and functional methods.
One striking result of this numerical analysis is that

�ðu�Þ � 0, for 2< s � 4, so the fixed point of the step-
scaling function is actually not a true fixed point under
continuous changes in scale!
Explicit series solution of the functional equation for �

about u ¼ 0 gives

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.05

0.10

u

beta(u)

FIG. 11 (color online). The toy � function, �ðuÞ ¼ 1
2 ðln2Þ�ð2u� 1Þ lnð1� 2uÞ.
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FIG. 12 (color online). A trajectory for the �ðuÞ ¼ 2uð1� uÞ
model, with uð0Þ ¼ 1=4.
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�ðu; sÞ=ðlnsÞ ¼ u� 1

s� 1
u2 � 2

s2 � 1
u3 � 4þ 5s

ðs2 � 1Þðs2 þ sþ 1Þu
4 � 2

4þ 5sþ 7s2

ðs2 � 1Þðs2 þ sþ 1Þðs2 þ 1Þu
5

� 2
8þ 18sþ 31s2 þ 42s3 þ 35s4 þ 21s5

ðs2 � 1Þðs2 þ 1Þðs4 þ s3 þ s2 þ sþ 1Þðs2 þ sþ 1Þu
6

� 4
8þ 10sþ 21s2 þ 25s3 þ 39s4 þ 21s5 þ 33s6

ðs2 � 1Þðs2 þ 1Þðs4 þ s3 þ s2 þ sþ 1Þðs2 þ sþ 1Þðs2 � sþ 1Þu
7 þOðu8Þ: (74)

More generally we write

�ðu; sÞ=ðlnsÞ ¼ u

�
1þ X1

n¼1

cnðsÞun
�
;

c1 ¼ 1

1� s
;

c2 ¼ 2

1� s2
;

(75)

with higher coefficients in the series given by the recursion
relation (here b� � �c is the integer-valued floor function)

cnþ2ðsÞ ¼ 1

1� snþ2

�
2cnþ1ðsÞ þ

Xnþ1

j¼bnþ1
2 c

jþ 1

2j� 1� n

 !

� ð�1Þn�jsjcjðsÞ
�

for n � 1: (76)

Numerical study [10] of cnðsÞ, for various values of s and
n � 200, provides compelling evidence that (75) con-
verges for juj< RðsÞ, where

RðsÞ ¼ 1

lim
n!1 supðjcnðsÞj1=nÞ

¼
8><
>:

1
2 if 0< s � 2

3 ;j1� 1
s j if 2

3 � s � 2;
s
4 if 2 � s � 4:

(77)

A closed form is not known for (75), except for s ¼ 0,�2,
and 4. Nonetheless, as already mentioned, the model is
amenable to numerical analysis for generic s.

In particular, the functional equation can be exploited to
continue the series and exhibit the various branches, �n,
of the multivalued � function that is encountered for 2<
s � 4 [10]. For example,

�0ðu; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 4su

p
�

�
1

2s
ðs�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 4su

p
Þ; s
�
; (78a)

�1ðu; sÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 4su

p
�0

�
1

2s
ðsþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 4su

p
Þ; s
�
; (78b)

where � is the explicit series (75),�0 is the continuation of
this series through use of the functional equation to give the
principal branch on the interval, 0 � u � s=4, and �1 is
the first alternative branch which is real-valued on the
subinterval 1

4 s
2ð1� 1

4 sÞ � u � s
4 , etc. For s � 2, only

one branch is needed, namely, �0, but additional branches,
such as �1, are required to develop completely the trajec-
tories for s > 2. In the latter situation, an infinite sequence

of real-valued branch functions is given by iterating the
definition of �1. Thus,

�nþ1ðu; sÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 4su

p
�n

�
1

2s
ðsþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 4su

p
Þ; s
�
:

(79)

These are all the additional branches of � that are needed
for 2< s � 3 and for s ¼ 4, but for 3< s < 4 there are
other branch function sequences that must be taken into
account to describe fully the continuous trajectory uðtÞ.
By construction, stemming from the fact that � is qua-

dratic, for s > 2 the branches of � given by (79) have
square-root zeroes at points obtained by iterating the action
of the step-scaling function, starting from u0 ¼ 1=2. That
is, zeroes are given by the sequence f�ðu0Þ; �ð�ðu0ÞÞ; � � �g.
Thus the �n branches arrive at those zeroes with infinite
slope, exactly as described by (65) and its u derivative,
with p ¼ 1=2. On the other hand, the product �d�=du ¼
d�=dt is finite and nonvanishing in the limit as u goes to
one of these zeroes. Consequently, the RG acceleration
does not vanish for points in the sequence of � zeroes:
They are turning points, not fixed points.
Further general discussion of this class of toy models

would take us too far afield. Suffice it to consider here three
other explicit examples, two based on numerical analysis
(s ¼ 11=4 and s ¼ 10=3) and one based on elementary
closed-form expressions (s ¼ 4). For convenience, we first
take s ¼ 11=4. This gives a step-scaling model �ðuÞ ¼
11
4 uð1� uÞ, with fixed points at 0 and u� ¼ 7=11.

Constructing graphs like those for the previous toy
model, we find that there are several interesting differences
between the Figures for the two models. The slope of the
step-scaling function is now negative at the nontrivial fixed
point (see Fig. 13), as opposed to the vanishing slope of the
previous toy model. This negative slope is a crucial ingre-
dient that gives rise to the multivaluedness of the � func-
tion, as shown in Fig. 14.
To avoid confusion, we emphasize that this last ‘‘phase-

space’’ Figure shows the real-valued branches of �ðuÞ, i.e.
Fig. 14 does not show a trajectory in a two-dimensional
coupling space. The trajectory uðtÞ is one dimensional, just
as it was in the previous toy model, as illustrated in the
following graph. Although u� ¼ 7=11 is a fixed point of �,
it is not a zero of � on any of its real-valued branches.
Moreover, at the nontrivial zeroes of� the RG acceleration
does not vanish because the relevant branch of � has a
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compensating infinite slope, as discussed more generally
following (79) and as is evident in the plot of the toy
trajectory in Fig. 15, so these zeroes are indeed turning
points. Nevertheless, the net effect of the multiple branches
of � on the trajectory uðtÞ is to produce an oscillatory
convergence to u� ¼ 7=11 as t ! 1. This is distinctly
different from the monotonic approach to u� ¼ 1=2 of
the previous toy model whose � function had only one
real branch.

Next, consider s ¼ 10=3, another case which yields to
numerical analysis but cannot be described with closed-
form results. The step-scaling function in this case is
�ðuÞ ¼ 10

3 uð1� uÞ, with fixed points at 0 and u� ¼
7=10. The graph of � is similar to the previous s ¼ 11=4
example and is left to the reader to plot. This toy example is
especially interesting in that it provides an explicit RG
realization of a limit cycle, a possibility conjectured by

Wilson in his early, classic study [25] but not thought to be
possible for a model with only one coupling until relatively
recently [26]. Here, the exact cycle is only realized asymp-
totically in the limit of very large t.
The basic mechanism whereby this is achieved for the

s ¼ 10=3 case is the same as in the previous toy model:
There are an infinite number of branches of the underlying
analytic � function, and the evolving RG trajectory
switches from one branch to another when turning points
are encountered. The branch structure is more complicated
for s ¼ 10=3 than for s ¼ 11=4, however, with the branch

points accumulating around ulow ¼ 13
20 � 1

20

ffiffiffiffiffiffi
13

p ¼ 0:4697

and uhigh ¼ 1
20

ffiffiffiffiffiffi
13

p þ 13
20 ¼ 0:8303 in such a way that, as

t ! 1, the trajectory approaches a rectangular sequence of
steps between these two values, hence giving rise to a two-
cycle asymptotically in t. The initial stages of this large t
behavior are evident in the sample trajectory in Fig. 16.
While the methods used in the previous example are also

applicable to this case (see (78a), (78b), and (79), and
generalizations), we will not construct here the actual
branches of � for s ¼ 10=3, nor will we enumerate the
sequencing of the various branches as the trajectory
evolves. This information can be found, in a different
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FIG. 13 (color online). Toy model �ðuÞ ¼ 11
4 uð1� uÞ (solid

red) and ��1ðuÞ (dashed red) versus u.
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FIG. 14 (color online). Six branches of the multivalued �
function for the model with �ðuÞ ¼ 11

4 uð1� uÞ.
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FIG. 15 (color online). A trajectory with uð0Þ ¼ 1=4 for the
s ¼ 11=4 multivalued � function.
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FIG. 16 (color online). A trajectory with uð0Þ ¼ 1=4 for the
s ¼ 10=3 multivalued � function with a 2-cycle limit.
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context, in [10]. Suffice it to say that although u� ¼ 7=10 is
a fixed point of �, once again it is not a zero of � on any of
its real-valued branches.

For a final, chaotic example, which nevertheless admits
an exact, closed-form solution [3], consider

�ðuÞ ¼ 4uð1� uÞ; (80)

for 0 � u � 1. In this case, the real-valued branches of the
analytic � function are given by

�nðuÞ ¼ ðln4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uð1� uÞ

p �
ð�1Þn

�
1þ n

2

�
�þ arcsin

ffiffiffi
u

p �
;

(81)

for all integer n � 0. The functional equation is indeed
obeyed, in the following sense:

�nð�ðuÞÞ ¼ �nðuÞd�ðuÞ=du for 0 � u � 1=2; (82a)

�nþ1ð�ðuÞÞ ¼ �nðuÞd�ðuÞ=du for 1=2 � u � 1: (82b)

Note that �ðuÞ approaches the branch point at � ¼ 1 as u
goes to 1=2. Beyond this, for 1=2 � u � 1, the �ð�ðuÞÞ
term in (18) switches from the nth branch to the (nþ 1)st.
Correspondingly, at the nontrivial fixed point u� ¼ 3=4 of
the step-scaling function, we see that�ðu�Þ does not vanish
for any of the branches of�. A typical RG trajectory in this
chaotic case is shown in Fig. 17. There is one highly unusual
feature for the trajectory shown, as well as for all other
trajectories for this example: The coupling actually goes to
zero with increasing frequency but always ‘‘bounces back’’
to positive values. For a thorough discussion of this model
using functional methods, in the context of classical me-
chanics for a chaotic dynamical system, see [9].

VII. DISCUSSION

In this paper, we have elucidated, explored, and applied
the underlying functional conjugacy structure of the renor-
malization group implicit in Gell-Mann and Low’s finite

renormalization group equation [1], structure which is
normally overshadowed by local differential (Lie alge-
braic) features. We introduced methods to extract the links
among fixed points of exemplary RG trajectories in Sec. II.
We applied some of these functional methods to obtain
continuous flows from step-scaling functions utilized in
lattice gauge theory, in Sec. III. We explored a limited
cycle in Sec. IVand explained in Sec. V how novel features
could arise in general. We illustrated such features—
including multivalued � functions, limit cycles, and cha-
otic trajectories—using toy models based on the logistic
equation in Sec. VI.
The functional conjugacy core of the RG, (6), amounts

to a solution by the method of characteristics, (12) et seq.,
so that scale changes are equivalent to variations of the
initial coupling data. This controlling characteristic struc-
ture implies nonlocal associations in renormalization
flows. In the large, the resulting functionally conjugate
RG trajectories possess an elegant global mathematical
consistency which sheds light on the flow of couplings in
the presence of both UV and IR fixed points, and which
also shows that trajectories may admit turning points, i.e.
zeros of � functions where not all t derivatives of � vanish
as a consequence of intricate branch structure. This latter
possibility may lead to limit-cycle or even chaotic behav-
ior, as we have illustrated in some detail.
In this paper, models with only a single RG coupling

flow have been considered. Extensions of the functional
methods to models with more than one flowing coupling
have yet to be carried out in complete detail. This is an area
that warrants further exploration.
While we have not yet fully explored realistic quantum

field theoretical models evincing all of the possibilities that
we have discussed, we are confident that they do exist, at
least for many of the features we have described.
Presumably, the more exotic, oscillatory RG flows would
only emerge in systems where the c theorem [27,28] (or its
equivalent in higher dimensions [29]) does not hold [26,30].
Wewould bemost pleased to find in actual physical systems
the full range of behavior illustrated by the toy models.
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APPENDIX A: NEWTONIAN TRAJECTORYAS A
TRANSPORT OF DATA

Here we discuss analogies between RG flow and one-
dimensional motion of a classical particle, thereby making
contact with our previous work [8–10].

For fixed energy, E, the trajectory xðt; x0Þ of a particle
moving in a one-dimensional potential, between turning
points, depends only on time t and initial position x0 ¼
xjt¼0, since the initial momentum is fixed by E up to a

choice of branch for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� VðxÞp

(usually just an overall �
sign if V itself has only one branch). ThusZ xðt;x0Þ

x0

dx

vðxÞ ¼ t; (A1)

where vðxÞ is the velocity profile along the trajectory. In
this context it is clear that v ¼ 0 is not necessarily a fixed
point. Rather more often it is a turning point of the motion.

Now, here’s a simple technique that appears in Gell-
Mann and Low (see Eq. (B20), [1]): Differentiate (A1)
with respect to the initial position, regarding t and x0 as
independent variables. This gives

1

vðxðt; x0ÞÞ
@xðt; x0Þ
@x0

� 1

vðx0Þ ¼ 0: (A2)

On the other hand, vðxðt; x0ÞÞ ¼ @xðt; x0Þ=@t, so this last
result is just

@xðt; x0Þ
@t

¼ vðx0Þ@xðt; x0Þ@x0
: (A3)

That is to say, for want of a better name, this is a one-
dimensional ‘‘Gell-Mann–Low transport equation’’ for
xðt; x0Þ. It is not quite ‘‘advection’’ [31], since that would
have the form of a conservation law, namely, @@t f ¼ @

@x ðvfÞ.
The two types of transport are exactly the same only for
constant v.

In fact, (A3) is simpler than advection, with solutions of
the FC form

xðt; x0Þ ¼ ��1ðet�ðx0ÞÞ; (A4)

for an appropriately defined Schröder function� (although
this terminology is not used in [1]) with inverse function
��1. By ‘‘appropriately defined’’ we mean

vðx0Þ ¼ �ðx0Þ=�0ðx0Þ ¼ 1

ð@ ln�ðx0Þ=@x0Þ ; (A5)

hence � is essentially just the exponentiated time to reach
x from some reference point,

�ðxÞ ¼ �ðxrefÞ exp
�Z x

xref

dy

vðyÞ
�
: (A6)

Another way to express the result (A4) is as a formal Taylor
series in t, rewritten in terms of vðx0Þ and its derivatives
through the use of (A3). Thus

xðt; x0Þ ¼
X1
n¼0

1

n!
tn

@n

@�n
xð�; x0Þ

���������¼0

¼ X1
n¼0

1

n!
tn
�
vðx0Þ @

@x0

�
n
x0

¼ x0 þ tvðx0Þ þ
X1
n¼2

1

n!
tn
�
vðx0Þ @

@x0

�
n�1

vðx0Þ:

(A7)

(See Eq. (B21) in [1].) If it is not already evident why this
solution is formally the same as (A4), then repeat some
steps from the text and write the series in (A7) as expo-
nentiated operators.

xðt; x0Þ ¼ etð@=@�Þxð�; x0Þj�¼0 ¼ etvðx0Þð@=@x0Þx0

¼ etð@=@ ln�ðx0ÞÞx0; (A8)

where in the last step we have used (A5). But now, x0 ¼
��1ð�ðx0ÞÞ ¼ ��1ðexpðln�ðx0ÞÞÞ, so the last expression
in (A8) reduces to a translation of the variable lnð�ðx0ÞÞ.

etðð@Þ=ð@ ln�ðx0ÞÞÞ��1ðexpðln�ðx0ÞÞÞ
¼ ��1ðexpðtþ ln�ðx0ÞÞÞ ¼ ��1ðet�ðx0ÞÞ: (A9)

Thus, we recover (A4) as an element of an Abelian Lie
group, given as usual by exponentiating an element of the
underlying algebra—a symplectomorphism in the present
context of classical mechanics.

APPENDIX B: AVARIABLE CHANGE AT A
LATTICE FIXED POINT

For a supposed nontrivial fixed point, u� ¼ 1=g2�, deter-
mined by

�ðu�Þ ¼ u�; (B1)

with �ðu�Þ ¼ 0, we change variables in the lattice data
formulas (42) and (43) of the text, by writing

1

s
¼ ð1þ rÞg20�; (B2)

so that r > 0 for bare couplings g20 above the fixed point

value g20�. Under this change of parameterization, we have

u ¼ 1

ð1þ rÞg20�

�
1�Xn

j¼1

cjð‘Þð1þ rÞjg2j0�
�

¼ u� þ
X
j�1

ajð‘Þrj; (B3)

u� ¼ 1

g2�
¼ 1

g20�

�
1�X

j�1

cjð‘Þg2j0�
�
: (B4)
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duðsÞ
ds

¼ X
j�0

a0jð‘Þrj;

a0j ¼ ðjþ 1Þajþ1

dr

ds
;

dr

ds
¼ � 1

g20�s
2
:

(B5)

a1 ¼ 1

g20�

�
�1�X

j�2

ðj� 1Þcjð‘Þg2j0�
�
;

a2 ¼ 1

g20�

�
1� 1

2

X
j�3

ðj� 1Þðj� 2Þcjð‘Þg2j0�
�
;

(B6)

ak<maxðnÞ ¼ 1

g20�

�
ð�1Þk � 1

k!

� X
j�kþ1

ðj� 1Þðj� 2Þ � � � ðj� kÞcjð‘Þg2j0�
�
;

ak ¼
k�maxðnÞ

ð�1Þk
g20�

; (B7)

and therefore 1
g20�

P1
j¼nþ1ð�1Þjrj ¼ rnþ1

ð1þrÞg20�
, as it should.

Similarly,

�ðuÞ ¼ u� þ
X
j�1

ajðLÞrj; d�ðuðsÞÞ
ds

¼ X
j�0

a0jðLÞrj:

(B8)

Discarding an overall drds , the functional equation for the �

function (44) is then

�X
j�0

ðjþ 1Þajþ1ð‘Þrj
�
�

�
u� þ

X
k�1

akðLÞrk
�

¼
�X
j�0

ðjþ 1Þajþ1ðLÞrj
�
�

�
u� þ

X
k�1

akð‘Þrk
�
: (B9)

Now it is straightforward albeit tedious to construct, up to
an overall normalization, a series solution in r of this
functional equation to obtain an expression for � near
the fixed point. We shall assume u� is a first-order zero
of �.

� ¼ Xminðn;NÞ

i¼1

bir
i: (B10)

It would be nothing more than wishful thinking to carry the
series approximation for� beyond that for either u or�ðuÞ.
For numerical work described in the text, we build the

series solution to fourth order in r. Define ajð‘Þ ¼ aj,

ajðLÞ ¼ Aj, and

�ðu� þ wÞ ¼ b1wþ b2w
2 þ b3w

3 þ b4w
4: (B11)

Then (B9) gives

ða1 þ 2a2rþ 3a3r
2 þ 4a4r

3 þ 5a5r
4Þ�ðu� þA1r

þA2r
2 þA3r

3 þA4r
4Þ

¼ ðA1 þ 2A2rþ 3A3r
2 þ 4A4r

3 þ 5A5r
4Þ�ðu� þ a1r

þ a2r
2 þ a3r

3 þ a4r
4Þ:

(B12)

Now, we obviously cannot determine the overall normal-
ization of � from the functional Eq. (B9). This fact is why
we find the same coefficient of r1 on the lhs and rhs of this
last equation for any b1. But higher powers of r give
nontrivial information. For example, r2 gives

b2
b1

¼ A1a2 �A2a1
A1a1ða1 �A1Þ ; (B13)

while, r3 gives

b3
b1

¼ 2
A2

2a
2
1 �A2

1a
2
2 þA1a1ðA1a3 �A3a1Þ

A2
1a

2
1ða21 �A2

1Þ
; (B14)

and finally, r4 gives the unwieldy expression

b4
b1

¼

0
BBB@

2A3
1A2a1a

2
2 þ 2A2

1A3a
3
1a2 � 2A3

1A2a
2
1a3 � 2A1A

2
2a

3
1a2 � 8A3

1a
2
1a2a3 þ 8A2

1A2A3a
3
1

�7A4
1a1a2a3 þ 7A1A2A3a

4
1 þ 3A4

1a
2
1a4 þ 3A3

1a
3
1a4 � 3A3

1A4a
3
1 � 3A2

1A4a
4
1

þ5A3
1a1a

3
2 � 5A1A

3
2a

3
1 þ 4A4

1a
3
2 � 4A3

2a
4
1 þA3

1A3a
2
1a2 �A2

1A2a
3
1a3 �A2

1A
2
2a

2
1a2 þA2

1A2a
2
1a

2
2

1
CCCA

A3
1a

3
1ða21 �A2

1Þða21 þ a1A1 þA2
1Þ

: (B15)

And so it goes. We obtain bj=b1 as functions of the a’s and A’s. But again, it is overly ambitious to carry the series
approximation for � beyond that for either u or �ðuÞ.
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There remains only one coefficient to be determined,
namely, b1. This is given by

b 1 ¼ ln� ¼ ln

�
a1ðLÞ
a1ð‘Þ

�
: (B16)

Although repetitious, a complete derivation of this result
goes as follows. Setting the scale of t so that uðt ¼ 1Þ ¼
�ðuÞ, Schröder’s equation is, once again,

�ð�ðuÞÞ ¼ ��ðuÞ; (B17)

and from uðtÞ ¼ ��1ð�t�ðuÞÞ with duðtÞ
dt ¼ �ðuðtÞÞ, we

obtain �ðuðtÞÞ ¼ ðln�Þ�ðuðtÞÞ=�0ðuðtÞÞ. Now, at a fixed
point u� ¼ �ðu�Þ, with �ðu�Þ ¼ 0, a series solution of

(B17) in powers of (u� u�) requires

� ¼ d�ðuÞ
du

��������u¼u�
¼ d�=dr

du=dr

��������r¼0
¼ a1ðLÞ

a1ð‘Þ (B18)

and also that �ðuÞ ¼ ðln�Þðu� u�Þ þOððu� u�Þ2Þ.
Hence, (B16) is obtained. Alternatively, in terms of the
original series involving the bare lattice coupling, we have

� ¼
1þ P

j�2

ðj� 1ÞcjðLÞg2j0�
1þ P

j�2

ðj� 1Þcjð‘Þg2j0�
¼

u� þ
P
j�1

jcjðLÞg2j�1
0�

u� þ P
j�1

jcjð‘Þg2j�1
0�

:

(B19)
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[7] M. Lüscher, P. Weisz, and U. Wolff, Nucl. Phys. B359,
221 (1991).

[8] T. Curtright and C. Zachos, J. Phys. A 42, 485208 (2009).
[9] T. Curtright and C. Zachos, J. Phys. A 43, 445101 (2010).
[10] T. Curtright and A. Veitia, Phys. Lett. A 375, 276 (2011).
[11] C. G. Callan, Phys. Rev. D 2, 1541 (1970).
[12] K. Symanzik, Commun. Math. Phys. 18, 227 (1970); 23,

49 (1971).
[13] T. Appelquist, G. T. Fleming, and E. T. Neil, Phys. Rev. D

79, 076010 (2009).
[14] A. LeClair, J.M. Román, and G. Sierra, Phys. Rev. B 69,

20505 (2004); Nucl. Phys. B675, 584 (2003); B700, 407
(2004).

[15] Given any solution �ðuÞ of Schröder’s functional equa-
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