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We present an integral representation for the parity-even part of the two-loop six-point planar next-to-

maximally helicity-violating amplitude in terms of Feynman integrals which have simple transformation

properties under the dual conformal symmetry. We probe the dual conformal properties of the amplitude

numerically, subtracting the known infrared divergences. We find that the subtracted amplitude is invariant

under dual conformal transformations, confirming existing conjectures through two-loop order. We also

discuss the all-loop structure of the six-point next-to-maximally helicity-violating amplitude and give a

parametrization whose dual conformal invariant building blocks have a simple physical interpretation.
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I. INTRODUCTION

What is the scattering matrix of a matter-coupled gauge
theory? In general, this is a hard question involving both
conceptual and technical subtleties. Nevertheless, scatter-
ing amplitudes enjoy a much simpler structure than im-
plied by their expansion in terms of Feynman diagrams.
For some theories, additional off-shell and on-shell sym-
metries simplify the amplitudes enormously. The further
simplification exhibited in the planar (or infinite-color)
limit may even allow a complete answer to the question.

The N ¼ 4 or maximally supersymmetric Yang-Mills
(MSYM) theory may be such a theory. The simplifications
inherent in the larger symmetry have already allowed
explicit calculations of scattering amplitudes well beyond
those for other theories. At weak coupling, advances in
multiloop and multileg calculations [1–7] have opened the
possibility of probing the structure of the scattering matrix
to high order in perturbation theory. The Bern, Dixon,
Smirnov (BDS) conjecture [8] for the all-loop resumma-
tion of maximally helicity-violating (MHV) amplitudes
(based on an earlier relation [9] linking one- and two-
loop amplitudes) provides an example of possible struc-
tures that can emerge. At strong coupling, the leading
expansion of scattering amplitudes has been computed
using the AdS/CFT correspondence [10] by Alday,
Gaiotto, Maldacena, Sever, and Vieira [11–14]. This two-
sided approach, together with the recent developments in
the evaluation of scattering amplitudes at strong coupling

for any number of external legs and the realization that the
relation between certain scattering amplitudes and null
polygonal Wilson loops carries over from strong coupling
[15] to the weak-coupling regime [16–20], offer circum-
stantial evidence that theN ¼ 4 super-Yang-Mills theory
may ultimately be solvable in the planar limit.
Gluon MHVamplitudes, with two external legs of nega-

tive helicity and the rest of positive helicity, are the sim-
plest amplitudes in a gauge theory. They are particularly
simple in the planar limit of MSYM, where they are
determined by a single helicity structure, accompanied
by a function of scalar and pseudoscalar momentum in-
variants, to all orders in perturbation theory. This simplic-
ity is of course shared by their parity conjugates, theMHV
amplitudes. The structure of the remaining non-MHV
amplitudes is more complicated. At one loop, explicit
expressions are known [21,22] at arbitrary multiplicity
for next-to-MHV (NMHV) gluon amplitudes, with three
gluons of negative helicity from the rest. These are already
more intricate, with the number of independent helicity
structures growing cubicly with the number of external
legs, each multiplied by an independent function of scalar
and pseudoscalar invariants. How does this structure gen-
eralize to higher loops? No explicit expressions are known
to date for higher-loop non-MHVamplitudes. In this paper,
we take a first step towards filling this gap, computing the
parity-even part of the two-loop six-gluon NMHV ampli-
tude. These results were first reported in Ref. [23]. This
amplitude, which comes with three inequivalent helicity
configurations, is the simplest non-MHV amplitude.
General results on the structure of infrared divergences

in massless gauge theories suggest on one hand, that the
divergent terms have a simple iterative structure, and on the

*David.Kosower@cea.fr
†radu@phys.psu.edu
‡Cristian_Vergu@brown.edu

PHYSICAL REVIEW D 83, 065018 (2011)

1550-7998=2011=83(6)=065018(28) 065018-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.83.065018


other, that all planar amplitudes with fixed number of
external legs share the same structure of infrared-divergent
terms. Together with the structure of the splitting ampli-
tudes, this implies that a natural way to extract infrared-
finite quantities from non-MHV amplitudes is to divide
them by the MHV amplitudes with the same number of
external legs. Drummond, Henn, Korchemsky, and
Sokatchev (DHKS) showed to one-loop order that this ratio
is not only finite but also dual conformal invariant for
NMHV amplitudes [5,24] and conjectured that the same
holds to all orders for all non-MHVamplitudes [24]. Here
we clarify and test this conjecture to two-loop order for the
six-point amplitude. This test requires the use of Dixon and
Schabinger’s result [25] for theOð�Þ terms in the one-loop
NMHV six-point amplitude.

As an intriguing consequence of the semiclassical ap-
proach of Alday and Maldacena [11], anticipated by the
structure of flat space string-theory scattering amplitudes at
high energy and fixed angles [26], to leading order in the
strong-coupling expansion, all scattering amplitudes are
(in a certain sense) insensitive to the flavor and polarization
of external legs. While quantum corrections are likely to
alter this conclusion, this structure is surprising from the
standpoint of the intricate analytic structure of the weak-
coupling scattering matrix.

The arguments of Alday and Maldacena led to the
identification [16,17] of a surprising relation between
one-loop MHV amplitudes and the one-loop expectation
value of special null polygonal Wilson loops. This relation
was shown to hold at two loops as well for four-, five- [18],
and six-particle scattering amplitudes [19,27]. Integral
representations of higher-point two-loop MHVamplitudes
are also known [28]; comparison with Wilson-loop expec-
tation values [29] is hindered, however, by the complexity
of evaluating the required higher-point two-loop Feynman
integrals. Dual conformal symmetry [17,18,24,30,31]
plays an important role in the relation between MHV
scattering amplitudes and Wilson loops. This symmetry
is manifest for the integrands of both MHV scattering
amplitudes and Wilson loops, but it is broken by the
dimensional regulator. Dual conformal invariants can be
constructed by using the general structure of divergent
terms. A particular pattern of spontaneous breaking of
the gauge group provides an alternative regularization in
which this symmetry is restored through natural transfor-
mations of the regulator [32].

It would be interesting to understand whether non-MHV
amplitudes also exhibit a similar presentation in terms of
Wilson loops. A necessary condition is that they exhibit
dual conformal invariance upon extraction of infrared di-
vergences. It is possible to argue that, to all orders in the
loop expansion, four-dimensional cuts of any planar scat-
tering amplitude inN ¼ 4 SYM, in particular, non-MHV
amplitudes, have this symmetry. Hints in this direction also
come from the Grassmannian interpretation of leading

singularities; in that framework it was shown [33,34] that
leading singularities are dual conformally invariant.
Whether this symmetry survives in the complete ampli-
tude, in the presence of the terms not constructible from
four-dimensional cuts, is an open question. Here we will
see that the parity-even part of the six-point NMHV am-
plitudes can be expressed in terms of pseudoconformal
integrals, i.e. dimensionally regulated integrals that are
invariant under dual conformal transformations when con-
tinued off shell.
While the structure of collinear limits of non-MHV

amplitudes is somewhat more intricate than those of
MHV amplitudes, the former are governed by the same
splitting amplitudes as the latter. The iteration relation for
MHVamplitudes [9] suggests that one can capture both the
infrared-divergent parts of non-MHV amplitudes, as well
as the amplitudes’ behavior under collinear limits, via an
exponentiation ansatz for all the scalar functions that char-
acterize them. This is similar in spirit to the BDS [8]
exponentiation ansatz for MHVamplitudes. Such an ansatz
is not expected to hold to all orders. Departures from it are
characterized by dual conformal invariant functions which
have properties analogous to the MHV remainder function
[19,27].
We perform the calculation using the generalized

unitarity-based method, employing a variety of four-
dimensional and D-dimensional cuts to express the ampli-
tude in terms of six-point two-loop Feynman integrals. The
four-dimensional cuts are evaluated in on-shell superspace
[35]. This approach automatically takes into account su-
persymmetry relations between different components of
cuts and also offers guidance in organizing the calculation.
We find that the (appropriately defined) parity-even part of
the six-point amplitude may be expressed as a sum of
pseudoconformal integrals [30], in close analogy with the
four-point amplitude through five loops [8,36–39] and the
parity-even part of the five-point amplitude through two
loops [40–43]. There are some additional integrals in the
one- and two-loop six-point amplitudes, whose pseudocon-
formal nature is less clear. Their integrands vanish as
D ! 4, yet their integrals can be nonvanishing in this limit.
We evaluate the integrals using the AMBRE [44] and MB

[45] packages and compute the amplitude numerically at
several kinematic points, related in pairs by dual conformal
transformations. The infrared singularities of our expres-
sion have the structure expected from general considera-
tions [46,47]. We have tested numerically the dual
conformal properties of the various finite functions that
can be constructed from the six-point NMHV amplitude.
The paper is organized as follows. We review the tree-

level and one-loop six-point amplitudes in Sec. II, along
with their superspace presentation and their conjectured
properties. Most importantly, we identify a canonical sepa-
ration of the six-point NMHV amplitude into parity-even
and parity-odd components. We expect this separation to
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extend to all orders in perturbation theory. In Sec. III, we
discuss the expected structure of the six-point NMHV
amplitude to all-loop orders, based on our calculation using
generalized unitarity. We introduce certain finite functions
that characterize the amplitude and are expected to be
invariant under dual conformal transformations. In
Sec. IV, we describe some of the details of our calculation.
We use a superspace version of the generalized-unitarity
method. We discuss some of the subtle points, and give
details on the calculation of two important cuts. In Sec. V,
we present an integral representation of the even part of the
two-loop six-point NMHV amplitude. For completeness,
we also list the even part of the two-loop six-point MHV
amplitude in our notation. We proceed in Sec. VI to
analyze our analytic and numerical results for the ampli-
tude, and to test the dual conformal-symmetry properties of
the various functions that have been conjectured to be
invariant under dual conformal transformations. We give
our conclusions and a selection of open problems in
Sec. VII.

II. REVIEW

The n-point L-loop planar (leading-color) contributions
to scattering amplitudes of an SUðNcÞ gauge theory with
fields in the adjoint representation may be written as1

AðLÞ
n ¼ aL

X
�2Sn=Zn

Tr½Ta�ð1Þ � � �Ta�ðnÞ �

� AðLÞ
n ðk�ð1Þ; "�ð1Þ; . . . ; k�ðnÞ; "�ðnÞÞ; (2.1)

where we follow the normalization conventions2 of
Ref. [19] (which differ from those used in Refs. [2,24]).
The loop expansion parameter a is

a ¼ ð4�e��Þ�� �

8�2
¼ ð4�e��Þ�� g

2
YMNc

8�2
: (2.2)

Here � is the ’t Hooft coupling constant and � is the Euler
constant, � ¼ ��0ð1Þ. The sum runs over all the noncyclic
permutations of the external legs, each of which carries
momentum ki and a polarization vector "i.

Choosing a specific helicity and flavor configuration for

the external legs reduces AðLÞ
n ðk�ð1Þ; "�ð1Þ; . . . ; k�ðnÞ; "�ðnÞÞ

to a color-ordered partial amplitude. Every partial ampli-
tude can be decomposed into a sum of terms, each of which
is a product of a function ensuring the correct transforma-
tion properties of the amplitude under Lorentz transforma-
tions (henceforth called ‘‘spin factor’’) and a (pseudo-)
scalar function which may be written as a sum of L-loop

Feynman integrals (the ‘‘loop factor’’). The spin factor is a

rational function of the momentum spinors �i and ~�i

associated to the external legs; the parity-even parts of
the loop factor are functions of external Lorentz invariants
alone, while the parity-odd parts also depend on Levi-
Civita contractions of the external momenta. One could
of course choose to reexpress the Levi-Civita contractions
in terms of spinor variables.
MHV amplitudes have two negative helicity, and any

number of positive-helicity, external legs. These ampli-
tudes in MSYM have the simplest structure of all ampli-
tudes: they have a single spin factor, which is equal to the
tree-level scattering amplitude. Computing the L-loop
MHV amplitude thus amounts to finding the ratio

MðLÞ
n � AðLÞ;MHV

n

Að0Þ;MHV
n

: (2.3)

CPT implies similar properties for the MHV amplitudes;
they also contain a single spin factor which is the tree-level
amplitude and their scalar and pseudoscalar factors are
obtained from corresponding MHV amplitude by a parity
transformation. (For alternative presentations of the parity-
odd terms in Mn in terms of spinor variables, see
Refs. [50,51].)
All-gluon NMHVamplitudes have three external legs of

negative helicity, and any number of positive helicity. They
are the next-simplest amplitudes after the MHVones. The
five-point NMHV amplitudes are MHV; the simplest dis-
tinct ones appear for six external legs. These have three
independent helicity configurations. In contrast to the
MHV amplitudes, NMHV amplitudes contain several dis-
tinct spin factors; their forms depend on the helicity con-
figuration of the external legs. As a consequence of
relations between spin factors, there are many possible
presentations of the tree-level amplitudes. We can single
out a canonical form by constructing the corresponding
one-loop amplitude and taking the form that appears as the
coefficient of the double pole in the dimensional-
regularization parameter �. This relation [52–55] is guar-
anteed by the general theorems governing the factorization
of soft and collinear divergences. We will focus here on the
the six-point amplitude.

A. The six-point gluon scattering amplitude
at one loop

All six-gluon NMHV amplitudes may be obtained by
applying cyclic permutations and reflections to the three
independent helicity configurations (þþþ���),
(þþ�þ��), and (þ�þ�þ�). The one-loop
amplitudes for these configurations were first obtained
in Ref. [2] through Oð�0Þ (see also Ref. [22]). They can
be expressed in terms of three different spin factors.
The spin factors for the ‘‘split-helicity’’ configuration
(þþþ���) are

1We normalize the classical action so that the only coupling
constant dependence is an overall factor of g�2

YM.
2This definition of the loop expansion parameter extracts the

complete dependence on the Euler constant from the momentum
integrals.
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B1 ¼ i
s3123

h12ih23ih1ð2þ 3Þ4�h3ð1þ 2Þ6�½45�½56� ; (2.4)

B2 ¼ i
h4ð2þ 3Þ1�3

h23ih34ih2ð3þ 4Þ5�½56�½61�s234
þ i

h56i3½23�3
h61ih1ð2þ 3Þ4�h5ð3þ 4Þ2�½34�s234 ; (2.5)

B3 ¼ i
h6ð1þ 2Þ3�3

h61ih12ih2ð1þ 6Þ5�½34�½45�s345
þ i

h45i3½12�3
h34ih3ð1þ 2Þ6�h5ð1þ 6Þ2�½61�s345 ; (2.6)

we refer the reader to the original paper [2] for the spin
factors of the other independent helicity configurations. In
all cases, the spin factors are uniquely determined by cuts
in three-particle invariants.

The six-point one-loop NMHV amplitude for the
(þþþ���) helicity configuration is given by

Að1Þ;NMHV
6 ðþþþ���Þ ¼ 1

2ðB1W
ð1Þ
1 þB2W

ð1Þ
2 þB3W

ð1Þ
3 Þ

þOð�Þ; (2.7)

where

Wð1Þ
1 ¼ � 1

2

X
�2S1

�
1

2
s45s56I

1mð�Þ þ 1

2
s61s123I

2mhð�Þ
�

þOð�Þ; (2.8)

and the sum runs over the permutations,

S1 ¼ fð123456Þ; ð321654Þ; ð456123Þ; ð654321Þg: (2.9)

All permutations in S1 leave the spin factor B1 invariant.
The integrals in Eq. (2.8) are shown in Fig. 1. The factors of
1
2 in the summand in Eq. (2.8) are symmetry factors needed

to compensate for double counting in the summation over
S1. The expressions (2.7) and (2.8) hold only through order
Oð�0Þ. At Oð�Þ Eq. (2.8) receives contributions from addi-
tional integrals while Eq. (2.7) receives contributions from

additional spin factors. The terms of higher order in � have
been computed only recently [25].

The other two scalar functions, Wð1Þ
2 and Wð1Þ

3 , may be

obtained from Eq. (2.8) by replacing the set of permuta-
tions S1 by the sets S2 and S3, respectively, where

S2 ¼ fð234561Þ; ð432165Þ; ð561234Þ; ð165432Þg; (2.10)

S3 ¼ fð345612Þ; ð543216Þ; ð612345Þ; ð216543Þg: (2.11)

The elements of each of the permutations sets S1, S2, and
S3 leave invariant the spin factors B1, B2, and B3, respec-
tively. The union of these three permutations sets, S0 ¼
S1 [ S2 [ S3, is the set of all cyclic permutations and their
reflections; the MHVamplitude can be expressed as a sum
over this larger set.
The one-loop scattering amplitudes for the other two

independent helicity configurations have a structure simi-

lar to Eq. (2.7); the scalar functions Wð1Þ
i are unchanged

while the spin factors B1, B2, and B3 are replaced [2] by
new spin factors D1, D2, and D3 for the (þþ�þ��)
helicity configuration, and by G1, G2 and G3 for the
(þ�þ�þ�) configuration3:

Að1Þ;NMHV
6 ðþþ�þ��Þ¼ 1

2ðD1W
ð1Þ
1 þD2W

ð1Þ
2 þD3W

ð1Þ
3 Þ;

(2.12)

Að1Þ;NMHV
6 ðþ�þ�þ�Þ¼ 1

2ðG1W
ð1Þ
1 þG2W

ð1Þ
2 þG3W

ð1Þ
3 Þ:

(2.13)

Infrared consistency then implies that the tree-level ampli-
tudes for the corresponding helicity configurations are [2]

FIG. 1. The integrals contributing to the six-point one-loop MHVand NMHVamplitudes. An arrow marks the leg with momentum
k1; the remaining momenta follow clockwise. The one-mass box I1m and two-mass easy I2me integrals contribute to the MHV
amplitude and the one-mass box I1m and two-mass hard I2mh integrals contribute to the NMHV amplitude. The one-mass pentagon
I1m;penta and the hexagon Ihex have numerator factors of �2 [the square of the ð�2�Þ-dimensional components of the loop momentum],
and hence are finite. They contribute to both the MHV and NMHV amplitudes only at Oð�Þ and higher (Ihex contributes to the even
parts while I1m;penta contributes to the odd parts).

3The notable difference between Bi and the nonsplit helicity
spin factors Di, Gi is that, while the former are rational functions
of products of adjacent spinors, the latter also contain products
of nonadjacent spinors. This obscures their transformation prop-
erties under the dual conformal symmetry [56], which become
manifest only when the amplitudes are combined into a super-
amplitude [24].
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Að0Þ;NMHV
6 ðþ þþ���Þ ¼ 1

2ðB1 þ B2 þ B3Þ; (2.14)

Að0Þ;NMHV
6 ðþ þ�þ��Þ ¼ 1

2ðD1 þD2 þD3Þ; (2.15)

Að0Þ;NMHV
6 ðþ �þ�þ�Þ ¼ 1

2ðG1 þG2 þG3Þ: (2.16)

The classic expression for these amplitudes was derived in
Ref. [57]. In later sections we will see that the structure
present in Eqs. (2.7), (2.12), and (2.13)—in which only the
spin factors change between various helicity configurations
of the external lines—persists at higher loops as well.

B. Superspace and superamplitudes

On-shell superspace provides a very convenient way of
organizing amplitudes inN ¼ 4 SYM theory and making
manifest supersymmetry relations between them. The bo-
sonic part of this superspace is parametrized by the usual

bosonic spinor variables �i, ~�i, related to the external

momenta ki by ki� _� ¼ �i�
~�i _�. The fermionic part is pa-

rametrized by Grassmann coordinates 	A
i , where

A ¼ 1; . . . ; 4 is an R-symmetry index. The on-shell fields
of the N ¼ 4 theory are assembled into a superfield,

�ð	Þ ¼ g� þ 	Ac A þ 1

2!
	A	B
AB

þ 1

3!
	A	B	C�ABCDc

D

þ 1

4!
	A	B	C	D�ABCDgþ: (2.17)

A superamplitude is a generating function for the scat-
tering amplitudes of component fields, which may be
identified as the coefficients of the appropriate combina-
tions of 	i variables.

The component amplitudes may be extracted by multi-
plying the superamplitude with the appropriate superfield
and integrating over all Grassmann parameters:

Anðk1; h1; . . . ; kn; hnÞ ¼
Z Yn

i¼1

d4	i

Y
�hið	Þ

�Anðk1; 	1; . . . ; kn; 	nÞ: (2.18)

The superfields �hið	Þ have a single nonvanishing term

corresponding to the field with helicity hi.
As an example, the n-point NMHV gluon scattering

amplitudes appear inside the superamplitude as follows:

Anðk1; 	1; . . . ; kn; 	nÞ
¼ � � � þ 	4

1	
4
2	

4
3Anð�;�;�;þ;þ; . . . ;þÞ

þ 	4
1	

4
2	

4
4Anð�;�;þ;�;þ; . . . ;þÞ þ � � � ; (2.19)

where 	4 is the SUð4Þ-invariant expression 1
4! �ABCD	

A�
	B	C	D. In extracting these component amplitudes, the 	

variables corresponding to the positive-helicity gluons are
supplied by the superfields (2.17) while those for the
negative-helicity ones appear explicitly in the superampli-
tude. Because the half of the supersymmetries manifest in
this on-shell superspace can be preserved at all stages of
scattering amplitude calculations, Eq. (2.19) holds to all
orders in perturbation theory.
The dual superspace in which the superfield is given by

~�ð~	Þ ¼ gþ þ ~	Ac
A þ 1

2!
~	A ~	B


AB

þ 1

3!
~	A ~	B ~	C�

ABCDc D

þ 1

4!
~	A ~	B ~	C ~	D�

ABCDg� (2.20)

has also been used; see, for example, Refs. [5,6,24,58].
While the expression for the superamplitude is unchanged,
component amplitudes are extracted by differentiating
with respect to selected superspace coordinates, eight for
MHV amplitudes, twelve for NMHVones, etc.:

Anðk1;h1;. . . ;kn;hnÞ¼
Y

~�hi

�
@

@	

�
Anðk1;	1; . . . ;kn;	nÞ:

(2.21)

For pure-gluon amplitudes, the differentiation is solely
with respect to the Grassmann coordinates of the
negative-helicity gluons. The structure of superfields is,
however, unimportant for the computation of
superamplitudes.
In general, n-point tree-level scattering amplitudes can

be written as follows [24]:

Að0Þ
n ¼ i�ð4ÞðPn

i¼1 �i
~�iÞ�ð8ÞðPn

i¼1 �i	
A
i Þ

h12ih23i � � � hn1i
Xn�4

k¼0

P k
n; (2.22)

where P k
n are polynomials in the Grassmann variables 	i

of degree 4k. Invariance under R-symmetry implies that
P k

n are invariant under SUð4Þ rotations of the Grassmann
variables 	A. The lowest-order term in the 	 expansion has
Grassmann weight 8, while the highest-order term has
Grassmann weight 4n� 8. CPT conjugation exchanges
weight 4kþ 8 with weight 4n� 4k� 8. The k ¼ 0 term
in Eq. (2.22) has P 0

n ¼ 1 and contains all the MHVampli-
tudes. The NMHV amplitudes are contained in the k ¼ 1
term. Similarly to Eq. (2.19) and for the same reason,
Eq. (2.22) is expected to hold to all orders in perturbation
theory. Higher-order corrections can alter only the coeffi-
cients of the polynomials P k

n, i.e. the component ampli-
tudes. Throughout the paper, four-fold bosonic
momentum-conserving delta functions will appear, prod-
ucts of delta functions over the four components whose
indices [a vector index � or a pair (�; _�) of spinorial
indices] we suppress. A variety of four-fold Grassmann
delta functions, products of delta functions taken over the
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SUð4Þ index A, and eight-fold Grassmann delta functions,
products of delta functions taken over a pair of a spinor
index � and an SUð4Þ index A, will also appear. In these
delta functions, we will suppress the (bosonic) spinor in-
dex, but display the (Grassmann) SUð4Þ index explicitly.

The tree-level MHV superamplitude was written down
long ago by Nair [35],

Að0Þ;MHV
n ¼ i�ð4ÞðPn

i¼1 �i
~�iÞ�ð8ÞðPn

i¼1 �i	
A
i Þ

h12i � � � hn1i : (2.23)

The MHV amplitude has an equally simple form in the
conjugate superspace, whose coordinates are the conjugate

spinors ~�i and the Fourier-conjugate ~	 of the Grassmann
variables 	. Fourier-transforming to the same superspace
as the MHV amplitude implies [5] that the MHV super-
amplitude is

Að0Þ;MHV
n ¼ i

�ð4ÞðPn
i¼1�i

~�iÞ
½12� � � � ½n1�

Z
d8!

Yn
i¼1

�ð4Þð	A
i � ~� _�

i !
A
_�Þ:

(2.24)

Manifestly supersymmetric expressions for non-MHV
amplitudes could be obtained [59] through a supersymmet-
ric generalization of the MHV vertex expansion [60–62].
The expressions obtained this way do not a priori exhibit
any special properties. DHKS presented [24] a special
form for P 1

6, and showed that it enjoys an extended sym-

metry, so-called dual superconformal symmetry. Explicit
expressions for all the P k

n polynomials were given by
Drummond and Henn [56], using a supersymmetric form
[63,64] of the Britto, Cachazo, Feng, and Witten on-shell
recursion relations [7].

On-shell superspace encodes the relations between am-
plitudes that are implied by supersymmetry, but does not
identify the basic, irreducible components from which all
others can be obtained. Identifying such basic amplitudes,
from which all others can be obtained via supersymmetry
transformations (along with the required sequence of trans-
formations) is in general a difficult problem. Not all
corrections to the coefficients in the polynomials P k

n

are independent; as these coefficients are nothing but
component amplitudes, they are related by supersymmetry

Ward identities. Elvang, Freedman, and Kiermaier have
provided a solution [65] to this class of questions.
Apart from clarifying the structure of tree-level ampli-

tudes, knowledge of tree-level superamplitudes allows us
to perform manifestly-supercovariant higher-loop calcula-
tions using generalized unitarity. The one-loop calculation
of Ref. [24] generalizes the result of Ref. [2] for the
NMHV six-gluon amplitudes to a manifestly supersym-
metric expression encompassing all possible external
states. In Refs. [6,66] superamplitudes were used to evalu-
ate the sum over all the particles crossing generalized
unitarity cuts for n-point MHV amplitudes at any loop
order. In Sec. IV we will describe in detail the steps needed
for evaluating two- and higher-loop superamplitudes for
any number of external legs and Grassmann weight, and
elucidate the subtleties that arise in such evaluations.

C. The six-point NMHV superamplitude

As our focus in later sections will be on the two- and
higher-loop six-point NMHV (super)amplitude, we first
review and extend the supersymmetric results of
Ref. [24] for the tree-level and one-loop expressions for
this amplitude.
As is true for the component amplitudes, relations be-

tween rational functions of bosonic spinor products and
Grassmann variables allow the tree-level superamplitude to
be expressed in several equivalent forms. We may identify
a canonical form, which will also be useful for higher-loop
calculations, by starting from the �-pole terms in the one-
loop superamplitude. This superamplitude is given by the
supersymmetrization [24] of Eqs. (2.7), (2.12), and (2.13),

Að1Þ;NMHV
6 ¼ a

2
Að0Þ;MHV

6 ððR413 þ R146ÞWð1Þ
1

þ ðR524 þ R251ÞWð1Þ
2

þ ðR635 þ R362ÞWð1Þ
3 þOð�ÞÞ; (2.25)

where Að0Þ;MHV
6 is the tree-level MHV superamplitude, the

loop expansion parameter a is defined in Eq. (2.2) and the

products Að0Þ;MHVRj;jþ3;jþ5 with j ¼ 1; . . . ; 6 (all indices

understood mod 6) are

Að0Þ;MHVRj;jþ3;jþ5 ¼ �ð8ÞðP �i	
A
i Þ

hjðjþ 1Þihðjþ 1Þðjþ 2Þi½ðjþ 3Þðjþ 4Þ�½ðjþ 4Þðjþ 5Þ�

� �ð4Þð	A
jþ3½ðjþ 4Þðjþ 5Þ� þ 	A

jþ4½ðjþ 5Þðjþ 3Þ� þ 	A
jþ5½ðjþ 3Þðjþ 4Þ�Þ

hjjKjþ1;jþ2jðjþ 3Þ�hðjþ 2ÞjKjþ3;jþ4jðjþ 5Þ�sj;jþ1;jþ2

: (2.26)

This product is covariant under dual inversion, with the
same weight as the tree-level MHV superamplitude. For
generic momentum configurations (that is, away from soft
or collinear configurations), the superfunctions Rj;jþ3;jþ5

are thus invariant under dual superconformal
transformations.

The functions Wð1Þ
i have identical poles in the

dimensional-regularization parameter �; this reflects the
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universality of infrared divergences. A canonical expres-
sion for the tree-level six-point NMHV superamplitude is
then simply

Að0Þ;NMHV
6 ¼ 1

2A
ð0Þ;MHV
6 ðR146 þ R251 þ R362

þ R413 þ R524 þ R635Þ: (2.27)

The R invariants are not all independent; in the presence of
the supermomentum conservation constraint they obey the
linear six-term relation,

Að0Þ;MHV
6 ðR146 �R251 þR362 �R413 þR524 �R635Þ ¼ 0:

(2.28)

This relation, akin to relations derived from the
Grassmannian formulation of tree-level amplitudes [67],
leads to two apparently different presentations of the six-
point NMHV superamplitude:

Að0Þ;NMHV
6 ¼ Að0Þ;MHV

6 ðR146 þ R362 þ R524Þ
¼ Að0Þ;MHV

6 ðR251 þ R413 þ R635Þ: (2.29)

A proof of Eq. (2.28) amounts to showing that the first
expression in Eq. (2.29) can be derived from the Britto,
Cachazo, Feng, and Witten recursion relation [7] with a
supersymmetric shift [64] while the second expression
follows from the cyclic symmetry of the superamplitude.
At higher loops the identity (2.28) is crucial for ensuring
the consistency of unitarity cuts. It should also play a role
in reconstructing scattering amplitudes from their leading
singularities [67].

The six-point NMHV amplitude is special among
NMHV amplitudes as it exhibits a discrete invariance
related to parity transformations. We will discuss this
symmetry and its consequences in the following. A similar
discussion generalizes to the 2n-point Nn�2MHV ampli-
tudes. As mentioned previously, the (CPT) conjugation of
superamplitudes amounts to Fourier-transforming the
Grassmann coordinates (reversing the helicities of all com-
ponent fields) and exchanging spinors and conjugate spin-

ors, �i $ ~�i. It is easy to check that this sequence of

transformations maps the products Að0Þ;MHV
6 Rijk into

themselves up to a cyclic permutation by three units:

Að0Þ;MHV
6 R146 ! Að0Þ;MHV

6 R413; etc: (2.30)

This is the supersymmetric generalization of an obvious
invariance of the six-gluon NMHV scattering amplitudes.
Invariance of the six-point superamplitude under this trans-

formation in turn requires that the functions Wð1Þ
i in

Eq. (2.25) be invariant under conjugation.
Apart from terms proportional to the sum of R invari-

ants, the Oð�Þ part of the one-loop amplitude also contain
terms which are proportional to differences of R invariants.
They have been computed directly in a one-loop calcula-
tion [25], and their existence may also be inferred from the

two-loop calculation we will describe in later sections. As
such differences are odd under conjugation, they must be

accompanied by parity-odd (pseudoscalar) functions eWð1Þ
i .

D. Dual conformal invariance and the six-point
superamplitude

As mentioned above, DHKS showed [24] that tree-level
amplitudes are covariant, with weight ð�1Þ, under dual
superconformal symmetry. This property extends to the

rational functions Að0Þ;MHV
6 Rijk. To what extent does the

symmetry extend to the full one-loop amplitude?
The dual conformal and dual superconformal symme-

tries are only defined in four dimensions. One possible
extension is the notion of pseudoconformality: were we

to regulate the integral functionsWð1Þ
i by off-shell continu-

ation, they would become dual conformal invariant, as they
are sums of box integrals with the appropriate prefactors.
Additional evidence towards a kind of dual conformal
invariance comes from the observation [33,34] that leading
singularities are dual conformal invariant.
We can do better than this. DHKS noticed [24] that the

ratio4 of the six-point NMHV to MHV superamplitudes,
each taken through one-loop order, is invariant under dual
conformal transformations. That is, the ratio is invariant
under transformations that preserve the cross ratios

u1 ¼ s12s45
s123s345

; u2 ¼ s23s56
s234s123

; u3 ¼ s34s61
s345s234

:

(2.31)

The ratio of superamplitudes is a natural quantity, as it is
infrared finite.
In gauge theories, the structure of infrared divergences

in dimensional regularization is independent of the helicity
configuration [46,47]. At one loop, for example, the pole
terms are proportional to the tree amplitudes. This makes
the ratio of any helicity amplitude to the MHV amplitude
infrared finite.
The finiteness of such ratios makes it possible to take the

four-dimensional limit, and to inquire about their proper-
ties under dual (super)conformal transformations. Of
course, finiteness does not guarantee dual conformal in-
variance. Indeed, the relation between these two properties
has been investigated in Ref. [5] with the conclusion that,
in dimensional regularization, there exist infrared-finite
combinations of pseudoconformal integrals which are not
dual conformal invariant.
Explicit calculations show that such subtleties do not

arise here and, through one-loop order, the six-point
NMHV superamplitude has the factorized form [24]

4This ratio is sensible because in chiral on-shell superspace
any superamplitude is proportional to the supermomentum con-

servation constraint �ð8ÞðPn
i¼1 �i	

A
i Þ, which contains the entire

Grassmann-dependent factor in the MHV amplitude.
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ANMHV
6 ¼ 1

2A
MHV
6 ½R146ð1þ aCð1Þ

146Þ þ cyclicþOða2Þ�;
(2.32)

with the functions Ci;iþ3;iþ5 manifestly expressed in terms

of the dual conformal ratios (2.31):

Cð1Þ
146 ¼ � lnu1 lnu2 þ 1

2

X3
k¼1

ðlnuk lnukþ1 þ Li2ð1� ukÞÞ

� �2

6
þOð�Þ; etc: (2.33)

This function differs from Vð1Þ as defined in Ref. [24] by
��2=6, due to differences in normalization of amplitudes
and finite differences between the Wilson-loop expression
and the one-loop amplitude. It also differs in including
Oð�Þ terms; its �-independent part agrees with the function

Vð1Þ defined in Ref. [5].
For completeness, we record [1] the integral representa-

tion of the one-loop six-point MHV amplitude through
Oð�0Þ:

Að1Þ;MHV
6 ¼ Að0Þ;MHV

6 Mð1Þ
6 ;

Mð1Þ
6 ¼ � 1

8

X
�2S1[S2[S3

�
s12s23I

1mð�Þ

þ 1

2
ðs234s345 � s61s34ÞI2með�Þ

�
: (2.34)

In writing Eq. (2.33) we used the convention that
uiþ3 ¼ ui. The ratio function is thus manifestly dual con-
formal invariant through one loop. It does not have the full
dual superconformal invariance, dual supersymmetry
being broken by a holomorphic anomaly [68].

DHKS conjectured [24] that the main features of
Eq. (2.32) survive higher-loop corrections: that the six-
point NMHV superamplitude may be factorized as

ANMHV
6 ¼ 1

2A
MHV
6 ½RNMHV

6 þOð�Þ� (2.35)

and that the functions RNMHV
6 have no further � depen-

dence, are well-defined in four dimensions and, to all-loop
orders, are dual conformal invariant. The conjecture does
not specify the structure of the Oð�Þ terms or of the spin
factors that enter the functions RNMHV

6 beyond one-loop

level. At one loop, the Oð�Þ terms are irrelevant to any
‘‘physical’’ quantity. However, these terms will contribute
nontrivially to both the divergent and finite parts of the
Oða2Þ terms in the product on the right-hand side of
Eq. (2.35). Our calculation will clarify the meaning of
these one-loop terms for that part of the amplitude depen-
dent on parity-even combinations of R invariants. We will
show that they are determined by the Oð�Þ terms in the
one-loop NMHV amplitude, which have been calculated
recently by Dixon and Schabinger [25].

Before proceeding to describe our calculation, we will
discuss in the next section the structure of our result as well

as the expected properties of the resummed six-point
NMHV amplitude.

III. STRUCTURE OF THE SIX-POINT
NMHVAMPLITUDE

In order to obtain the six-point NMHV amplitude to a
given loop order, we must determine all spin factors that
appear, and construct the functions of external momenta
and coupling multiplying each one of them. In the next
section we will show explicitly that, through two-loop
order and through Oð�0Þ, the R invariants are the only
spin factors that appear in the superamplitude. The trans-
formation of the R invariants under conjugation (2.30) then
implies that, through two-loop order, the superamplitude
can be written as follows:

ANMHV
6 ¼ 1

2A
ð0Þ;MHV
6 ½ðR413 þ R146ÞW1ðaÞ

þ ðR524 þ R251ÞW2ðaÞ þ ðR635 þ R362ÞW3ðaÞ
þ ðR413 � R146Þ eW1ðaÞ þ ðR524 � R251Þ eW2ðaÞ
þ ðR635 � R362Þ eW3ðaÞ þOð�Þ�; (3.1)

where the WiðaÞ are scalar functions and the eWiðaÞ are
pseudoscalar functions. We present the calculation of the
two-loop six-point NMHV superamplitude, computing ex-
plicitly the terms depending on parity-even combinations
of R invariants. We will find that the four-dimensional cut-

constructible part of the parity-even functions Wð2Þ
i can be

expressed as a sum of pseudoconformal integrals. We will
also confirm that, unlike their one-loop counterparts, the

pseudoscalar functions eWð2Þ
i have nonvanishing divergent

and finite parts in the � expansion. We will not compute
these functions explicitly, but the general infrared structure
of gauge theories divergences requires that they have at
most simple (1=�) poles, as both the tree and one-loop
amplitudes [through Oð�0Þ] are free of such terms. In this
section, we describe the expected general structure of the
NMHVamplitude, and the structure of its collinear limits.

A. Beyond two loops

We expect the pseudoconformality of the coefficient
functions to continue to all-loop orders. To see this, con-
sider a four-dimensional generalized unitarity cut that
decomposes an L-loop superamplitude into a product of
k tree-level superamplitudes

AðLÞ
n jcut ¼

Y
A1 � � �Ak: (3.2)

As mentioned earlier and as shown in [24], each super-
amplitude has weight ð�1Þ under dual inversion. Because a
cut propagator simply identifies the Grassmann variables
and momenta of the legs that are sewn, it has weight ðþ2Þ
under this transformation. Thus, the product above to-
gether with the cut propagators has vanishing weight for
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the cut legs and weight ð�1Þ for the external legs. This
implies that these cuts can all be saturated by cuts of
pseudoconformal integrals.

Unlike the scalar functions Wð2Þ
i , the pseudoscalar func-

tions eWð2Þ
i are not uniquely defined. Indeed, the identity

(2.28) implies that it is possible to uniformly add an arbi-

trary pseudoscalar function to the eWð2Þ
i without affecting the

value of the amplitude. In particular, we could set any one of
these functions to zero. This ambiguity can be partly elim-
inated by requiring that the superamplitude be manifestly
invariant under cyclic permutations of external legs:

eWð2Þ
i ¼ P eWð2Þ

i�1; (3.3)

where P is the operation of permutation to the right by one
unit:

P f½k1; k2; k3; k4; k5; k6� ¼ f½k2; k3; k4; k5; k6; k1�: (3.4)

The corresponding equation for the Wð2Þ
i functions,

Wð2Þ
i ¼ PWð2Þ

i�1; (3.5)

follows from the symmetry of the superamplitude.
Requiring cyclic symmetry does not completely fix the

ambiguity in the pseudoscalar functions eWð2Þ
i , as parity-odd

cyclicly symmetric functions do exist. An example of such
a function is

f ¼ �1234f1 þ �2345f2 þ �3456f3 þ �4561f4 þ �5612f5

þ �6123f6; (3.6)

where fi are parity-even functions of external momenta kj
related by the action of the shift operator fi ¼ Pfi�1 and
�ijmn ¼ �����k

�
i k

�
j k

�
mk�n .

The generalized-unitarity argument above does not re-
veal the complete set of spin factors that appear at higher
loops in the six-point NMHV amplitude. The structure of
leading singularities suggests [33] that new structures be-
yond theR invariants of one and two loopswill be generated
at three loops for amplitudes with ten or more external legs,
but that no new structures will appear beyond that order. It
also suggests that no new invariants should appear beyond
two loops for amplitudes with seven ormore, but fewer than
ten, external legs, and that no new invariants will appear
beyond one loop for the six-point amplitude.

We can, however, argue that the spin factors present at
one and two loops will appear to all-loop orders. As wewill
see in the next section, all tree-level R invariants appear in
double two-particle cuts in a channel carrying a three-
particle invariant. Such a double cut, shown in Fig. 2(a),
isolates a tree-level four-point amplitude with no external
legs attached to it. An all-loop generalization of this cut is
shown in Fig. 3. The well-known property of the four-point
amplitude at any loop order, that its spin factor is the same
as at tree level, implies that this cut will generate exactly
the same spin factors as at two loops. This argument
extends trivially to all higher-loop contributions to the

six-point amplitude that have double two-particle cuts
and isolate four- and five-point amplitudes inside them. It
can be thought of as a direct superspace generalization of
the box substitution rule [39]. At three loops and beyond,
however, it is easy to construct cuts that are outside this
class. Such cut-based arguments thus cannot rule out spin
factors beyond the R invariants seen to date.
Apart from terms containing such new spin factors

which may start at three loops, the organization of the
six-point NMHV amplitude in (3.1) holds to all orders in
perturbation theory. It is therefore interesting to discuss the
properties of the parity-even and parity-odd functions,

WiðaÞ ¼ 1þ aWð1Þ
i þ a2Wð2Þ

i þ � � � and

eWiðaÞ ¼ a eWð1Þ
i þ a2 eWð2Þ

i þ � � � (3.7)

in Eq. (3.1) and of the finite functions

Ci;iþ3;iþ5ðaÞ ¼ 1þaCð1Þ
i;iþ3;iþ5 þa2Cð2Þ

i;iþ3;iþ5 þ�� � (3.8)

(a) (b)

(c) (d)

(e)

FIG. 2. Generalized cuts required to determine the two-loop
NMHVamplitude: (a) the double-pentagon cut, (b) the turtle cut,
(c) the ‘‘hexabox’’ cut, (d) the flying-squirrel cut, and (e) the
‘‘rabbit-ears’’ cut. Unlike the MHV calculation, all cyclic per-
mutations of the external legs must be considered.

FIG. 3. A cut of an L-loop six-point amplitude isolating an
ðL� 2Þ-loop four-point amplitude with no external legs. The cut
is proportional to a lone R invariant.
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that appear in the ratio ANMHV
6 =AMHV

6 . The functions

Ci;iþ3;iþ5ðaÞ will not have definite parity. This is due to

their relation to linear combinations of functions with

differing parity properties, to wit ðWiðaÞ � eWiðaÞÞ, as
well as to division by the MHV amplitude which does
not have definite parity properties. For later convenience,

let us introduce the combinations CiðaÞ and ~CiðaÞ,
1

2
ðCiþ3;i;iþ2 þ Ci;iþ3;iþ5Þ � CiðaÞ ¼ WiðaÞ

M6ðaÞ ; (3.9)

1

2
ðCiþ3;i;iþ2 � Ci;iþ3;iþ5Þ � ~CiðaÞ ¼

eWiðaÞ
M6ðaÞ : (3.10)

The properties of M6ðaÞ together with the universality of
infrared divergences implies, that through two loops, these
functions have definite parity up to corrections that vanish
in the � ! 0 limit.5

B. Collinear limits

The scalar and pseudoscalar functions WiðaÞ and eWiðaÞ
have specific properties dictated by the behavior of the
amplitude in collinear limits [69]:

AðLÞ
6 ð. . . ; i�i ; ðiþ 1Þ�iþ1 ; . . .Þ

! X
�¼�

XL
s¼0

SplitðsÞ��ðz; i�i ; ðiþ 1Þ�iþ1ÞAðL�sÞ
5 ð. . . ; k�; . . .Þ;

(3.11)

where k ¼ ki þ kiþ1 and z is the collinear momentum
fraction, ki ’ zk. We can rewrite this equation for the all-
orders amplitude,

A6ð. . . ; i�i ; ðiþ 1Þ�iþ1 ; . . .Þ
! X

�¼�
Split��ðz; i�i ; ðiþ 1Þ�iþ1ÞA5ð. . . ; k�; . . .Þ: (3.12)

The properties of CiðaÞ and ~CiðaÞ are more intricate as they
involve additional contributions from M6ðaÞ.
We will find it easiest to discuss the collinear limits in

components. Because Wi and eWi do not depend on the
precise helicity assignment to the external legs, it suffices
to discuss the split-helicity configuration. In the three
independent collinear limits, the spin factors Bi in
Eqs. (2.4), (2.5), and (2.6) behave as follows:

1k2: B1;3 ! Splittree� ð1þ; 2þ; k�ÞAð0Þ
5 ðkþ; 3þ; 4�; 5�; 6�Þ; B2 ! 0;

5k6: B1;2 ! Splittreeþ ð5�; 6�; kþÞAð0Þ
5 ð1þ; 2þ; 3þ; 4�; k�Þ; B3 ! 0;

3k4: B2;3 ! Splittreeþ ð3þ; 4�; kþÞAð0Þ
5 ð1þ; 2þ; k�; 5�; 6�Þ

þ Splittree� ð3þ; 4�; k�ÞAð0Þ
5 ð1þ; 2þ; kþ; 5�; 6�Þ; B1 ! 0:

(3.13)

The collinear limits of the parity-odd coefficients ~Bi, which are contained in the parity-odd combinations of R invariants,
are similar except that the relative sign between the two terms in the 3k4 limit is reversed. Combining these limits with the
overall behavior of the amplitude (3.12), we find

1k2: W1 þW3 ! r�ðz; 1þ; 2þÞEðMMHV
5 ðk; 3; 4; 5; 6ÞÞ ~W1 þ ~W3 ! r�ðz; 1þ; 2þÞOðMMHV

5 ðk; 3; 4; 5; 6ÞÞ;
5k6: W1 þW2 ! rþðz; 1�; 2�ÞEðMMHV

5 ð1; 2; 3; 4; kÞÞ eW1 þ eW2 ! rþðz; 5�; 6�ÞOðMMHV
5 ð1; 2; 3; 4; kÞÞ;

3k4: W2 þW3 ! rþðz; 3þ; 4�ÞEðMMHV
5 ð1; 2; k; 5; 6ÞÞ þ r�ðz; 3þ; 4�ÞEðMMHV

5 ð1; 2; k; 5; 6ÞÞ
~W2 þ ~W3 ! rþðz; 3þ; 4�ÞOðMMHV

5 ð1; 2; k; 5; 6ÞÞ � r�ðz; 3þ; 4�ÞOðMMHV
5 ð1; 2; k; 5; 6ÞÞ (3.14)

in which,

r��ðz; i�i ; ðiþ 1Þ�iþ1Þ ¼ Split��ðz; i�i ; ðiþ 1Þ�iþ1Þ
Splittree� ðz; i�i ; ðiþ 1Þ�iþ1Þ ; (3.15)

MMHV
5 andMMHV

5 are the ratios of the resummed five-point

MHVandMHV amplitudes to their tree-level counterparts;
E and O denote projection operators onto the parity-even

and parity-odd components. Functions not explicitly men-
tioned are unconstrained.
The collinear properties of the functions Ci;iþ3;iþ5 and

Ciþ3;i;iþ2 can be easily found by combining Eqs. (3.9) and

(3.14) and the collinear properties of the MHV ratio M6 ¼
AMHV
6 =Að0Þ;MHV

6 . In particular, they contain the Levi-Civita

tensors necessary to transform, for example, in the 1k2
limit, the MHV five-point amplitude factor into an MHV
five-point amplitude.
The iteration relation for the rescaled splitting amplitude

(3.15) [9] suggests another natural organization of the

5To guarantee that the functions CiðaÞ and ~CiðaÞ have definite
parity to all orders in perturbation theory, it is necessary to divide
only by the parity-even part of M6ðaÞ.
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functions Wi, which is similar in spirit to the BDS
ansatz [8]:

lnWi ¼
X1
l¼1

al½flð�ÞWð1Þ
i ðl�ÞþCl þRðlÞ

6;i þOð�Þ�: (3.16)

The structure of infrared singularities and the collinear
behavior require that Oð�0Þ and Oð�1Þ terms in the func-
tions flð�Þ be the same as for the six-point MHVamplitude.

The functions RðlÞ
6;i, are similar in spirit to the remainder

function RðlÞ
6 of the six-point MHV amplitude. They are

closely related to the functions CiðaÞ introduced in
Eq. (3.9):

CiðaÞ ¼ exp½�KðaÞðWð1Þ
i �Mð1Þ

6 Þ� exp½R6;iðaÞ � R6ðaÞ�
þOð�Þ; (3.17)

where �KðaÞ is the cusp anomalous dimension and

R6;iðaÞ ¼ P1
l¼2 a

lRðlÞ
6;i, etc. A natural consequence of the

conjecture that CiðaÞ are invariant under dual conformal
transformations is that the remainder-like functions R6;iðaÞ
are also invariant. We will see that this is indeed so.

The expectation [11,70] that to leading order in the
strong-coupling limit, all amplitudes with the same number
of external legs are identical (or, equivalently, that
lima!1 lnCiðaÞ ¼ Oða0Þ rather than Oð ffiffiffi

a
p Þ) predicts a

simple relation between the remainder functions R6;i and

the MHV remainder function R6 to this order. Indeed,
using the one-loop relation

Wð1Þ
i �Mð1Þ ¼ Cð1Þ

i (3.18)

and the known value of the strong-coupling expansion of
the cusp anomaly [71–74], it follows that

R6 � R6;i

Cð1Þ
i

¼
ffiffiffiffi
�

p
�

; (3.19)

with Cð1Þ
i given in Eq. (2.33). Using the numerical results

presented in later sections one may check that the weak-
coupling expansion of the ratio appearing on the left-hand
side depends on the spin factor labeled by i; it seems
therefore that a relation of this type may hold only in the
strong-coupling limit.

C. Triple-collinear limits

Multicollinear limits provide a richer set of constraints
on amplitudes with at least six external legs. Unlike the
collinear limits discussed in the previous section, they
probe the detailed structure of the dual conformal invariant
functions unrelated to the infrared structure of the ampli-
tude. In the case of the six-point MHV amplitude, they
provided a physical interpretation of the remainder func-
tion [19]. The most detailed limit we can consider with six
external legs involves three adjacent external momenta
becoming collinear,

ka ¼ z1P; kb ¼ z2P; kc ¼ z3P;

z1 þ z2 þ z3 ¼ 1; 0 � zi � 1; P2 ! 0:
(3.20)

Let us understand what such limits imply about the six-
point NMHV amplitude and, in particular, about the
remainder-like functions R6;iðaÞ.
An L-loop n-point amplitude factorizes as follows [69]:

AðLÞ
n ðk1; . . . ; kn�2; kn�1; knÞ

�
X
�¼�

XL
s¼0

AðL�sÞ
n ðk1; . . . ; P�ÞSplitðsÞ��ðkn�2kn�1kn;PÞ:

(3.21)

Taking into account parity and reflection symmetries,
there are six independent triple-collinear splitting ampli-
tudes [19]:

Splitþðkþa kþb kþc ;PÞ; (3.22)

Split��P
ðk�a

a k�b

b k�c
c ;PÞ; �aþ�bþ�c��P¼2; (3.23)

Split��P
ðk�a

a k�b

b k�c
c ;PÞ; �aþ�bþ�c��P¼0: (3.24)

The first one (3.22) vanishes in any supersymmetric theory.
The three triple-collinear splitting amplitudes of the sec-
ond type (3.23), an example of which is �a ¼ �b ¼ �c ¼
�P ¼ 1, appear in limits of MHVamplitudes. TheN ¼ 4
supersymmetry Ward identities for MHVamplitudes imply
that their rescaled forms6 are all equal,

SplitðlÞ� ðk�a kþb kþc ;PÞ
Splitð0Þ� ðk�a kþb kþc ;P�Þ ¼

SplitðlÞ� ðkþa k�b kþc ;PÞ
Splitð0Þ� ðkþa k�b kþc ;PÞ

¼ rðlÞS
�
sab
sabc

;
sbc
sabc

; z1; z3

�
: (3.25)

These splitting amplitudes are relevant only for NMHV
amplitudes with at least seven external legs. They do not
arise in the factorization of six-point amplitudes, because
the four-point amplitude entering the factorization (3.21)
vanishes identically.
The two splitting amplitudes of the third kind (3.24)

arise only in limits of NMHV amplitudes and do not have
a simple factorized form similar to (3.25).7 They are how-
ever the only splitting amplitudes that can appear in the
triple-collinear limit of the six-point NMHV amplitude.

6We omit a trivial dimensional dependence on sabc from the
argument list of rðlÞS .

7The spin-averaged absolute values squared of tree-level
triple-collinear splitting amplitudes were computed in
Ref. [75], and without spin-averaging, in Ref. [76]. The tree-
level triple (and higher) collinear splitting amplitudes themselves
were computed in Ref. [77] using the MHV rules [78]. The one-
loop correction to the q ! q �QQ triple-collinear splitting ampli-
tude in QCD was computed in Ref. [79].
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As is true for the tree-level NMHV amplitudes, the
splitting amplitudes (3.24) have several different presenta-
tions related by potentially nontrivial spinor identities. A
canonical one, that is useful for our purpose, is obtained
from the triple-collinear limit of the six-point tree-level
amplitude in Eqs. (2.14), (2.15), and (2.16).

As the functions Wi are independent of the helicity
assignment of the external legs, we again discuss only
the split-helicity configuration. Up to conjugation and
relabeling the only nontrivial limit is 2k3k4. With the
momentum fractions k2 ¼ z1P, k3 ¼ z2P, k4 ¼ z3P, the
spin factors Bi become

b1 ¼ B1

Að0Þ
4 ð1þPþ5�6�Þ �

ð1� z3Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffi
z1z2z3

p h23ið ffiffiffiffiffi
z1

p ½24� þ ffiffiffiffiffi
z2

p ½34�Þ ;

b2 ¼ B2

Að0Þ
4 ð1þPþ5�6�Þ � � ð ffiffiffiffiffi

z1
p h24i þ ffiffiffiffiffi

z2
p h34iÞ3

s234h23ih34ið ffiffiffiffiffi
z2

p h23i þ ffiffiffiffiffi
z3

p h24iÞ þ
½23�3

s234½34�ð ffiffiffiffiffi
z1

p ½24� þ ffiffiffiffiffi
z2

p ½34�Þð ffiffiffiffiffi
z2

p ½23� þ ffiffiffiffiffi
z3

p ½24�Þ ;

b3 ¼ B3

Að0Þ
4 ð1þPþ5�6�Þ �

z3=22ffiffiffiffiffiffiffiffiffi
z1z3

p ð1� z1Þ½34�ð ffiffiffiffiffi
z2

p h23i þ ffiffiffiffiffi
z3

p h24iÞ þ
ðz1z3Þ3=2ffiffiffiffiffi

z2
p h34ið ffiffiffiffiffi

z2
p ½23� þ ffiffiffiffiffi

z3
p ½24�Þ : (3.26)

The tree-level splitting amplitude is simply

Split ð0Þ� ðkþ2 kþ3 k�4 ;PÞ ¼ 1
2ðb1 þ b2 þ b3Þ: (3.27)

Thus, while these splitting amplitudes do not have a simple
factorized form similar to that for splitting amplitudes of
the second type (3.25), we see that the structure of the six-
point amplitude (3.1) implies that to this order each com-
ponent bi is dressed at higher loops by scalar functions of
momenta,

Split�ðkþ2 kþ3 k�4 ;PÞ ¼ 1
2ðb1w1ðaÞ þ b2w2ðaÞ þ b3w3ðaÞÞ:

(3.28)

The parity-odd spin factors ~Bi also have nontrivial triple-
collinear limits. Their coefficients eWi, though, must con-
tain Levi-Civita tensors and thus naively vanish in this
limit. The triple-collinear limits of additional spin factors
that may appear beyond two-loop order must be considered
separately.

As was true for the limit discussed in Ref. [19], none of
the conformal cross ratios (2.31) vanish as 2k3k4; they
become

�u1 ¼ z1z3
ð1� z1Þð1� z3Þ ; �u2 ¼ s23

s234

1

1� z3
;

�u3 ¼ s34
s234

1

1� z1
:

(3.29)

Thanks to their expected dual conformal invariance (which
we will confirm in later sections), the remainder-like func-
tions R6;iðaÞ retain their complete kinematic content, and

may be read off the two-loop triple-collinear splitting
amplitude (3.24) by subtracting the triple-collinear limit

of the two-loop iteration of the one-loop functions Wð1Þ
i .

IV. CONSTRUCTING THE EVEN PART OF THE
TWO-LOOP AMPLITUDE

Wewill construct the even part of the two-loop six-point
NMHV amplitude using a superspace form [5,6] of the
generalized-unitarity method [1–4,21,22,80]. On general
grounds, the result will be expressed as a sum of planar
two-loop Feynman integrals with coefficients that are ra-
tional functions of the spinor variables. At this order, one-
loop calculations suggest that it is possible to exclude
integrals with triangle or bubble subintegrals.
Similarly to the two-loop MHV amplitude, we will find

that neitherWð2Þ
i nor eWð2Þ

i can be completely determined by
four-dimensional cuts. Rather, they receive both divergent
and finite nontrivial contributions from integrals whose
integrand is proportional to the ð�2�Þ components of the
loop momenta. It is quite nontrivial that these latter con-
tributions can be organized in terms of the same R invar-
iants as the four-dimensional cut-constructible terms.
The generalized cuts that determine the amplitude are

then the ones shown in Fig. 2, which are the same ones that
determine the MHVamplitude [19]. Unlike the calculation
of the MHV amplitude, however, here it is necessary to
evaluate cuts with all external helicity configurations, as
each yields information about different spin factors.
In any supersymmetric theory the improved power-

counting ensures that at one-loop order and through
Oð�0Þ all terms can be detected in four-dimensional cuts.
Beyond one-loop this is no longer true generically; for
example, the six-point MHV amplitude at two loops re-
ceives nontrivial contributions from integrals whose inte-
grand vanishes identically when evaluated in four
dimensions. Four-point amplitudes in the N ¼ 4 SYM
theory are an exception: through five loops, they appear
to be determined solely by four-dimensional cuts. We

therefore decompose the functions Wð2Þ
i in Eqs. (3.1) and

(3.7) into a four-dimensional cut-constructible part and a
part that requires D-dimensional calculations,
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Wð2Þ
i ¼ Wð2Þ;D¼4

i þWð2Þ;�
i : (4.1)

For the former, powerful helicity and supersymmetry
methods can be employed. The latter part of the amplitude
is determined by comparing the result of D-dimensional
and four-dimensional calculations and is expressed in
terms of ‘‘�-integrals’’—nontrivial integrals whose inte-
grand vanishes identically in four dimensions.

While all cuts may be evaluated easily, separating their

contributions to each one of the functions Wð2Þ;D¼4
i is not

always straightforward. As mentioned previously, (mul-
tiple) cuts in channels carrying three-particle invariants
capture a single even and odd spin factor at a time and

thus determine terms in a single Wð2Þ;D¼4
i and eWð2Þ;D¼4

i ,
with the index i determined by the helicity configuration of
external legs. This is the case for cuts (a) and (b) in Fig. 2.
In contrast, (multiple) cuts in channels carrying only two-
particle invariants contribute simultaneously to several

spin structures and thus to several Wð2Þ;D¼4
i and eWð2Þ;D¼4

i

functions. This feature is already present in the cut con-
struction of the one-loop amplitude; in that case however,
cuts in channels carrying three-particle invariants suffice to
completely determine the amplitude [2]. The similarity
between the expression for cut (c) of Fig. 2 and a cut of
the one-loop amplitude makes it possible to disentangle it.
The cuts of Figs. 2(d) and 2(e) however seem intractable in
a component approach.

The component approach also fails to incorporate in a
transparent way the constraints imposed by supersymme-
try. On-shell superspace provides the additional structure
necessary for identifying the contributions of the remain-

ing cuts to each of the Wð2Þ;D¼4
i . We shall therefore for-

mulate the entire calculation of the four-dimensional cut-
constructible part of the amplitude in on-shell superspace.
After a brief overview of the structure of supercuts and of
the techniques necessary to disentangle them, we will
discuss cut (a), and then proceed to a more detailed analy-
sis of the challenging cuts (c), (d), and (e). For the latter
cuts, we shall use a superspace generalization of the maxi-
mal cut method [39,81].

A. Unitarity in superspace: general features
and techniques

Generalized cuts may be classified following the number
of cut conditions they impose. The same is true for gener-
alized supercuts. At L loops in four dimensions it is
possible to impose at most 4L cut conditions; based on
one- and two-loop information, it is likely that their solu-
tions generically form a discrete set. This type of cut has
been considered in the maximal-unitarity approach as well
as in the leading-singularity approach. Maximal cuts, i.e.
cuts with the maximal number of cut propagators, are
typically insufficient to completely determine an ampli-
tude. For example, at two loops, one frequently encounters
double box integrals, which cannot be detected by cutting

eight propagators. Near-maximal cuts, obtained by succes-
sively relaxing cut condition in maximal cuts, provide
an algorithmic way of identifying these contributions.
Near-maximal cuts exhibit additional propagatorlike sin-
gularities which are exploited in the leading-singularity
approach to reduce the one-parameter family of solutions
to the cut conditions to a discrete set.
The two-loop six-point NMHVamplitude can in princi-

ple be determined entirely from the iterated two-particle
cuts shown in Fig. 2. The Feynman integrals that contribute
only to cuts (c), (d), and (e) are also detected by certain
near-maximal cuts. We have used them instead to check
that the resulting amplitude correctly reproduces cuts (c),
(d), and (e), supplemented by an additional cut condition
isolating terms in one of the tree amplitudes.
General supercuts are constructed [5,6,58] by multiply-

ing together superamplitudes, identifying the 	 parameters
of the lines that are sewn together and integrating over the
common values of the internal 	 variables. The structure
and properties of general supercuts have been analyzed in
detail in Ref. [6] where it was shown that, upon use of a
supersymmetric generalization of the MHV vertex rules
[78], their building blocks are generalized supercuts con-
structed only out of MHVandMHV tree-level amplitudes.
When evaluating a supercut one encounters the situation

that on one side of the cut a momentum is outgoing and on
the other side it is incoming. In order to write the tree-level
amplitude and, in particular, the argument of their delta
functions, it is necessary to define the spinors j � pi and
j � p� corresponding to the incoming momentum ð�pÞ.
We use the analytic continuation rule [58] that the change
in sign of the momentum is realized by a change of sign of
the holomorphic spinor

p��p$ �p ���p; ~�p �þ~�p;

$ j�pi��jpi; j�p�� jp�: (4.2)

Let us discuss in detail the building blocks we require,
supercuts constructed only out of MHV and MHV tree-
level amplitudes. Their evaluation requires the evaluation
of integrals of products of delta functions with arguments
linear in Grassmann parameters, see Eqs. (2.23) and (2.24).
For a p-particle cut of an NkMHV amplitude, this product
contains [8þ 4ðkþ pÞ] delta function factors of which
(8þ 4k) remain upon integration. As discussed in
Refs. [5,6,58], the integration over the internal 	 parame-
ters realizes the sum over the states crossing the (general-
ized) supercut. For any supercut, eight of these delta
functions can always be singled out: they enforce the
supermomentum conservation of the amplitude,

�ð8Þ
0
@X

i2E

�i	
A
i

1
A; (4.3)

where E denotes the set of external lines. These delta
functions may be thought of as the supersymmetric
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generalization of the usual momentum conservation con-
straint. They may be extracted without carrying out any
Grassmann integrations, by taking suitable linear combi-
nations of the arguments of all delta functions. If the
supercut contains at least one MHV superamplitude factor,
the Jacobian of this transformation is unity. Their extrac-
tion also makes manifest the invariance of the amplitude
under half of the maximal supersymmetry. Invariance
under the other half of the supersymmetry, generated by

�q _�
A ¼ Xn

i¼1

~� _�
i

@

@	A
i

; (4.4)

is not manifest, but can in principle be checked at the level
of the Grassmann integrand.

The delta functions (4.3) represent the complete
Grassmann parameter dependence of a supercut of an
MHV amplitude. The Grassmann integrals simply yield
the determinant of the system of linear equations which
are the arguments of the other 4p delta functions, where p
is the number of cut lines [6].

For cuts of an NkMHV amplitude, there is a certain
amount of freedom in evaluating the internal Grassmann
integrals. In general, however, the resulting 4k delta func-
tions have many undesirable features. The essential ones
are that (1) their arguments may depend on loop momenta
(if the cut conditions do not completely freeze the momen-
tum integrals) and (2) they may not make the symmetries

of the amplitude manifest. We wish to express these
Grassmann delta functions in terms of structures that ap-
peared at lower-loop order; in the case of the six-point
NMHV amplitude; these are the dual superconformal R
invariants. This is a nontrivial operation, and we have but a
limited set of tools available.
Given a set of 4k delta functions

Yk
i¼1

�ð4Þðeið	; �ÞÞ; (4.5)

it may be possible to construct linear combinations of their
arguments Mijð�Þejð	; �Þ which factorize into products of

the desired combinations of spinors and Grassmann varia-
bles upon use of momentum and supermomentum conser-
vation, cut conditions, and the fact that a Grassmann delta
function equals its argument. For k ¼ 1, which is the case
of interest to us, no linear combinations can be constructed.
A possible strategy for eliminating the dependence of

the delta functions on loop momenta is to make use of the
fact that a Grassmann delta function equals its argument.
This observation replaces a cut carrying a Grassmann delta
function with a sum of cuts of tensor integrals with
Grassmann-valued coefficients. Albeit nontrivial due to
their high rank, the tensor integrals may then be reduced
following the standard strategy of integral reduction.While
indeed successful in eliminating the loop-momentum de-
pendence from the Grassmann delta functions, this strategy

FIG. 4. Two-loop topologies entering the two-loop six-point amplitudes. The arrow on the external line indicates leg number 1.
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is likely to lead to rather unwieldy expressions. We will not
pursue this direction.

An alternate approach to reorganizing Grassmann delta
functions is to use the Lagrange interpolation formula,
which is most efficient when applied to next-to-maximal
cuts, which impose ð4L� 1Þ on-shell conditions. Let y be
the variable that parametrizes the solution to these cut
conditions. The product of the 4k Grassmann delta func-
tions is then just a polynomial PdðyÞ of degree d ¼ 4kwith
Grassmann-valued coefficients. Any such polynomial may
be written as

PdðyÞ ¼
Xdþ1

i¼1

Ydþ1

j¼1
j�i

y� yj
yi � yj

PdðyiÞ; (4.6)

where the values yi are arbitrary. This equation simply
encodes the fact that a polynomial of degree d is deter-
mined by its values at dþ 1 points.

Choosing the points yi can be regarded as freezing the
momentum component unfixed by the cut condition; from
this perspective it is akin to the leading-singularity method
which uses additional cutlike conditions for the same
purpose. The Lagrange interpolation formula (4.6) pro-
vides a different strategy, as the points yi need not be
chosen following the leading-singularity prescription. If
the two approaches are to agree, the residue of the leading
singularity must be proportional to the Grassmann delta
functions appearing in dual superconformal invariants.
Evidence that this is indeed true has been presented in
Ref. [33]. In general, however, in order to use the inter-
polation formula (4.6), there must exist more yi such that
PdðyiÞ is (proportional to) a dual superconformal invariant
than are given by the leading-singularity approach.

In the next subsection we will use this strategy to ana-
lyze certain seven-particle cuts of the six-point two-loop
NMHV superamplitude. As we will see, with judiciously
chosen points yi it is possible to have P4ðyiÞ be propor-
tional to the delta functions appearing in the R dual super-
conformal invariants.

Because of the arbitrariness in the choice of the yi, the
decomposition of PdðyÞ in a linear combination of ‘‘good’’

Grassmann delta functions, such as the delta functions
appearing in the dual superconformal invariants, is not
unique. This signals the existence of linear relations be-
tween the dual superconformal invariants. For six-point
amplitudes, an identity arising this way is Eq. (2.28), which
was already required for the consistency of the various
possible presentations of the tree-level amplitude. It is
conceivable that at higher points and/or higher loops,
new relations arise, beyond those that can be obtained
from tree-level considerations.

B. Supercut example: the double-pentagon cut

Let us illustrate the general strategy outlined in the
previous section, by examining in some detail two cuts
that are essential for the construction of the six-point
NMHV superamplitude. We begin with the ‘‘double-
pentagon’’ cut, shown in Fig. 2(a), which isolates the

double-pentagon integrals Ið12Þ and Ið13Þ (shown in Fig. 4)
from a wide class of other integrals (hence its name).
This cut provides two distinct contributions to the co-

efficients of the NMHVamplitude, depending on which of
the two five-point tree-level factors is an MHVor anMHV
superamplitude. Each of the contributions is closed under
supersymmetry transformations, so we will call them
supersectors. (They were called ‘‘holomorphicity configu-
rations’’ in Ref. [6].) These two supersectors are shown in
Fig. 5; their values are

C dp
5ðaÞ ¼

Z
d4	l1d

4	l2d
4	l4d

4	l3d
8!

�ð8ÞðqA123 þ �l1	
A
l1
þ �l2	

A
l2
Þ

h12ih23ih3l1ihl1l2ihl21i
�ð8Þð�l1	

A
l1
þ �l2	

A
l2
þ �l4	

A
l4
þ �l3	

A
l3
Þ

hl2l1ihl1l4ihl4l3ihl3l2i

� �ð4Þð	A
l4
� ~� _�

l4
!A

_�Þ�ð4Þð	A
l3
� ~� _�

l3
!A

_�Þ
½45�½56�½6l3�½l3l4�½l44�

Y6
i¼4

�ð4Þð	A
i � ~� _�

i !
A
_�Þ; (4.7)

and

C dp
5ðbÞ ¼

Z
d4	l1d

4	l2d
4	l4d

4	l3d
8!

�ð8ÞðqA456 þ �l4	
A
l4
þ �l3	

A
l3
Þ

h45ih56ih6l3ihl3l4ihl44i
�ð8Þð�l1	

A
l1
þ �l2	

A
l2
þ �l4	

A
l4
þ �l3	

A
l3
Þ

hl2l1ihl1l4ihl4l3ihl3l2i

� �ð4Þð	A
l1
� ~� _�

l1
!A

_�Þ�ð4Þð	A
l2
� ~� _�

l2
!A

_�Þ
½12�½23�½3l1�½l1l2�½l21�

Y3
i¼1

�ð4Þð	A
i � ~� _�

i !
A
_�Þ; (4.8)

FIG. 5. The two contributions to the double-pentagon supercut
(Fig. 2(a)). The circled þ and � denote MHV and MHV super-
amplitudes, respectively. The middle amplitude may be chosen
to be either of MHVor of MHV type. Here we choose to present
it as an MHV superamplitude.
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where

q�A123 ¼
X3
i¼1

��
i 	

A
i and q�A456 ¼

X6
i¼4

��
i 	

A
i : (4.9)

By taking appropriate linear combinations of the arguments of the delta functions in these equations, it is easy to extract the
overall supermomentum conservation delta function, �ð8ÞðqA123 þ qA456Þ. Carrying out the Grassmann integrals, we then find

Cdp5ðaÞ ¼ Að0Þ;MHVR146

s123h1j2þ 3j4�h3j4þ 5j6�hl1l2i4
ðh3l1ihl1l2ihl21iÞðhl2l1ihl1l4ihl4l3ihl3l2iÞð½6l3�½l3l4�½l44�Þ ; (4.10)

Cdp5ðbÞ ¼ Að0Þ;MHVR413

s123h4j2þ 3j1�h6j4þ 5j3�hl4l3i4
ðh6l3ihl3l4ihl44iÞðhl2l1ihl1l4ihl4l3ihl3l2iÞð½3l1�½l1l2�½l21�Þ : (4.11)

We can reorganize the contributions into even and odd components,

Cdp ¼ Cdp5ðaÞ þ Cdp5ðbÞ ¼ Að0Þ;MHVCdpþ ðR413 þ R146Þ þAð0Þ;MHVCdp� ðR413 � R146Þ: (4.12)

The two functions of vanishing weight in Eqs. (4.10) and (4.11) may be identified as the contribution of gluon
intermediate states in a component approach. They can be decomposed by standard means, by reconstructing propagators
and organizing the numerator into a single trace.8 For example,

Cdpþ ¼ s123
ðhl2l1ihl1l4ihl4l3ihl3l2iÞ

0
@ h1j2þ 3j4�h3j4þ 5j6�hl1l2i4
ðh3l1ihl1l2ihl21iÞð½6l3�½l3l4�½l44�Þþ

h4j2þ 3j1�h6j4þ 5j3�hl4l3i4
ðh6l3ihl3l4ihl44iÞð½3l1�½l1l2�½l21�Þ

1
A

¼ 1

4

�
s123ðs123s345 � s12s45Þ

ðl1 þ k3Þ2ðl2 þ l3Þ2ðl3 þ k6Þ2
þ s61s

2
123

ðl2 þ k1Þ2ðl2 þ l3Þ2ðl3 þ k6Þ2
þ s34s

2
123

ðl1 þ k3Þ2ðl2 þ l3Þ2ðl4 þ k4Þ2

þ s123ðs123s234 � s23s56Þ
ðl2 þ k1Þ2ðl2 þ l3Þ2ðl4 þ k4Þ2

þ s12s23s123ðk6 � l2Þ2
ðl2 þ k1Þ2ðl1 þ k3Þ2ðl2 þ l3Þ2ðl3 þ k6Þ2

þ s12s23s123ðk4 � l1Þ2
ðl2 þ k1Þ2ðl1 þ k3Þ2ðl2 þ l3Þ2ðl4 þ k4Þ2

þ s45s56s123ðk3 � l4Þ2
ðl1 þ k3Þ2ðl2 þ l3Þ2ðl4 þ k4Þ2ðl3 þ k6Þ2

þ s45s56s123ðk1 � l3Þ2
ðl2 þ k1Þ2ðl2 þ l3Þ2ðl4 þ k4Þ2ðl3 þ k6Þ2

þ 1

ðl2 þ k1Þ2ðl1 þ k3Þ2ðl2 þ l3Þ2ðl4 þ k4Þ2ðl3 þ k6Þ2
s123ððs12s45� s123s345Þðk1 � l3Þ2ðk4 � l1Þ2

þ s34s123ðk1 � l3Þ2ðk6 � l2Þ2 þ s61s123ðk3 � l4Þ2ðk4 � l1Þ2 þðs23s56 � s123s234Þðk3 � l4Þ2ðk6 � l2Þ2Þ
þ 1

ðl2 þ k1Þ2ðl1 þ k3Þ2ðl4 þ k4Þ2ðl3 þ k6Þ2
ð2s12s23s45s56 � s123ðs61s34s123 þ s12s45s234 þ s23s56s345 � s123s234s345ÞÞ

�
:

(4.13)

From this expression, we can easily read off the coeffi-
cients of all integrals in Fig. 4 that have a double cut in the
s123 channel. Some integrals appear multiple times, corre-
sponding to different cyclic permutations of external legs
that have such a cut. The numerator factors in the expres-
sion above are precisely those required to render the in-
tegrals invariant under dual inversion. As we did not need
to specify the helicity labels of the external legs, all cuts
with this topology can be obtained by simple cyclic
relabeling.

The ‘‘turtle’’ cut shown in Fig. 2(b) can be computed in a
similar way, and also contributes a lone R invariant. These

two cuts determine the coefficients of all integral topolo-

gies in Fig. 4 except Ið7Þ, Ið14Þ, and Ið15Þ. Other cuts are
necessary to determine these contributions. An efficient
strategy, which makes use of the results obtained from
the double-pentagon cut of Fig. 2(a) and the turtle cut of
Fig. 2(b), is to analyze the relevant next-to-maximal cuts
and find the remaining integrals one at a time.

C. Supercut example: A contribution to the
flying-squirrel cut

Following this strategy, we present one contribution to
the next-to-maximal cut, shown in Fig. 6(b), that imposes
additional cut constraints beyond the ‘‘flying-squirrel’’ cut
of Fig. 2(d). It serves to isolate one of our target integrals,

8This last step is important to avoid the appearance of parity-
even terms which are a product of two parity-odd factors.
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Ið7Þ, and allows us to determine its coefficient. As ex-
plained above, we impose the additional cut conditions
because of difficulties in organizing the results for cuts
like the flying-squirrel cut in terms of dual superconformal
R invariants. A superspace calculation, combined with the
reduced set of Feynman integrals isolated by the next-to-
maximal cut conditions, reduces the ambiguity in such a
reorganization by enforcing supersymmetry relations be-
tween the reduced number of contributions to these cuts.

The next-to-maximal flying-squirrel cut of Fig. 6(b) has
four supersectors, corresponding to three-point amplitudes
at the corners being of MHV or MHV type. The super-
sectors are shown in Fig. 7. We discuss in detail the
configuration in Fig. 7(b), quote the result for the configu-
ration in Fig. 7(a), and explain how to construct the other
two components by relabeling.
The product of the tree superamplitudes entering the

supersector shown in Fig. 7(b) is

C7ðbÞ ¼
Z

d4	l1d
4	l2d

4	l3d
4	l4d

4	q1d
4	q2d

4	q3

�ð4Þð½1q1�	A
l2
þ ½q1l2�	A

1 þ ½l21�	A
q1Þ

½1q1�½q1l2�½l21�
�ð8Þð��q1	

A
q1 þ �2	

A
2 þ �l1	

A
l1
Þ

hq12ih2l1ihl1q1i

� �ð8Þð��l1	
A
l1
þ �3	

A
3 � �l4	

A
l4
� �q2	

A
q2Þ

hl13ih3l4ihl4q2ihq2l1i
�ð4Þð½l44�	A

q3 þ ½4q3�	A
l4
þ ½q3l4�	A

4 Þ
½l44�½4q3�½q3l4�

� �ð8Þð�q3	
A
q3 þ �5	

A
5 þ �l3	

A
l3
Þ

hq35ih5l3ihl3q3i
�ð8Þð�6	

A
6 � �l2	

A
l2
þ �q2	

A
q2 � �l3	

A
l3
Þ

h6l2ihl2q2ihq2l3ihl36i : (4.14)

The expected overall supermomentum conservation con-
straint may be extracted by adding the arguments of all the
eight-fold delta functions �ð8Þ to the last such function, and
then using momentum conservation to eliminate �q1	

A
q1

and �l4	
A
l4
. These transformations have unit Jacobian.

The remaining Grassmann integrals can be computed
easily; we obtain

N ¼ ½1q1�4�ð4Þðhq12ihq2l1ihq3l3i½4q3�	A
2 þ hq1l1ihq23i

� hq3l3i½4q3�	A
3 þ hq1l1ihq2l4ihq3l3i½q3l4�	A

4

þ hq1l1ihq2l4ihl35i½l44�	A
5 Þ: (4.15)

The contribution from the supersector in Fig. 7(b) is ob-
tained by dividing N by the explicit denominators in
Eq. (4.14). This expression can be simplified in several
different ways; we proceed by solving the cut conditions.
The internal spinors (except for those associated to q2)
may be expressed conveniently in terms of two variables
y and z:

�l1 ¼y�1��2; ~�l1 ¼ ~�2; �q1 ¼y�1;

�l2 ¼��1; ~�l2 ¼ ~�1þy~�2; ~�q1 ¼ ~�2;

�l3 ¼�z�4��5; ~�l3 ¼ ~�5; �q3 ¼ z�4;

�l4 ¼�4; ~�l4 ¼�~�4þz~�5; ~�q3 ¼ ~�5:

(4.16)

The momentum q2 can be determined through momentum
conservation; the condition that it be on shell relates the
two parameters y and z. These relations imply that all
spinor products in Eq. (4.15) that do not contain the hol-
omorphic spinor jq2i are monomials in y, z and spinor
products of external momenta. The remaining holomorphic
spinor products, which do contain jq2i, can be converted
into functions of y and external spinor products by multi-
plying and dividing by ½q25�4 and using the identities,

hl1q2i½q25� ¼ �h2ð3þ 4Þ5� þ yh1ð3þ 4Þ5�;
hl2q2i½q25� ¼ h16i½65�;
hl3q2i½q25� ¼ h16ið½16� þ y½26�Þ;
hl4q2i½q25� ¼ h4ð2þ 3Þ5� þ yh14i½25�:

(4.17)

The numerator factor N in Eq. (4.15) is then

N ¼ s412s
4
45y

4z4

½q25�4
�ð4Þð	A

2 ðh2ð1þ 6Þ5� � yh1ð2þ 6Þ5�Þ

þ 	A
3 ðh3ð1þ 6Þ5� � yh13i½25�Þ þ 	A

4 ðh4ð1þ 6Þ5�
� yh14i½25�Þ þ 	A

5 ðs234 � yh1ð3þ 4Þ2�ÞÞ: (4.18)

This expression is invariant, though not manifestly, under

the action of the supersymmetry generators �q ¼ P ~�@	.

Overall supermomentum conservation provides
the means to further simplify N . By subtractingP

i	
A
i hið1þ 6Þ5� ¼ 0, and adding

P
iy	

A
i h1ii½25� ¼ 0 to

the argument of the delta function, we find

FIG. 6. Next-to-maximal cuts that detect the integrals not
easily isolated by the iterated two-particle cuts: from left to
right, next-to-maximal cuts for the hexabox, flying-squirrel, and
rabbit-ears cuts of Figs. 2(c)–2(e), respectively.
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�ð8Þ
�X

i

�i	i

�
N ¼ s412s

4
45y

4z4
h16i4
½q25�4

�ð4Þð	A
1 ½56�þ	A

5 ½61�

þ	A
6 ½15�þ yð	A

2 ½56�þ	A
5 ½62�

þ	A
6 ½25�ÞÞ: (4.19)

This superspace expression has the two unwanted fea-
tures already mentioned in Sec. IVA: on the one hand, the
argument of the delta function depends on the internal
momenta through the variable y; on the other, it is not
manifestly a function only of the same superspace struc-
tures as the tree-level amplitude (3.1). We wish to reorgan-
ize it in terms of R invariants, and at the same time remove
the dependence on internal momenta from the arguments

of the delta function by using the Lagrange interpolation
formula (4.6) on the degree four polynomial,

P4ðyÞ ¼ �ð4Þð	A
1 ½56� þ 	A

5 ½61� þ 	A
6 ½15�

þ yð	A
2 ½56� þ 	A

5 ½62� þ 	A
6 ½25�ÞÞ

¼ X5
i¼1

Y5
j¼1
j�i

y� yj
yi � yj

P4ðyiÞ: (4.20)

For this to be possible, as explained earlier it is necessary
that there exist at least five values yi such that P4ðyiÞ is
proportional to an R invariant. It turns out that there are at
least six such values:

P4

�h2ð3þ 4Þ5�
h1ð3þ 4Þ5�

�
¼

� h34i½56�
h1ð3þ 4Þ5�

�
4
�ð4Þð	A

3 ½45� þ 	A
4 ½53� þ 	A

5 ½34�Þ / R635; (4.21a)

P4

�
�½16�
½26�

�
¼

�½56�
½26�

�
4
�ð4Þð	A

6 ½12� þ 	A
1 ½26� þ 	A

2 ½61�Þ / R362; (4.21b)

P4

�
�h4ð5þ 6Þ1�

h4ð5þ 6Þ2�
�
¼

� h34i½56�
h4ð5þ 6Þ2�

�
4
�ð4Þð	A

1 ½23� þ 	A
2 ½31� þ 	A

3 ½12�Þ / R413; (4.21c)

P4

�h23i
h13i

�
¼

�h34i
h13i

�
4
�ð4Þð	A

4 ½56� þ 	A
5 ½64� þ 	A

6 ½45�Þ / R146; (4.21d)

P4

�
s234

h1ð3þ 4Þ2�
�
¼

� h34i½56�
h1ð3þ 4Þ2�

�
4
�ð4Þð	A

2 ½34� þ 	A
3 ½42� þ 	A

4 ½23�Þ / R524; (4.21e)

P4ð0Þ ¼ �ð4Þð	A
5 ½61� þ 	A

6 ½15� þ 	A
1 ½56�Þ / R251: (4.21f)

For some of these cases, we have used overall supermo-
mentum conservation constraint as well as nontrivial
spinor identities to transform the argument of �ð4Þ. As we
will see shortly, only the first four values of y correspond to
leading singularities.

We can use the Lagrange interpolation formula for any
five of the six special values

fy1; y2; y3; y4; y5; y6g ¼
�h2ð3þ 4Þ5�
h1ð3þ 4Þ5� ;�

½16�
½26� ;�

h4ð5þ 6Þ1�
h4ð5þ 6Þ2� ;

h23i
h13i ;

s234
h1ð3þ 4Þ2� ;0

�
: (4.22)

Clearly, the decomposition obtained this way is not unique
as there are six different possibilities. Let us denote them

by Li, where i is the index of the missing root. In general,
we can construct a five-parameter decomposition

P4ðyÞ ¼
X6
i¼1

�iLiðyÞ; (4.23)

with
P

�i ¼ 1. The remaining parameters �i may be con-
strained by requiring that the superamplitude have addi-
tional manifest symmetries; for example, one may require
that the parity of the superamplitude be manifest. We
impose such a requirement in the following.
All the presentations of the cut obtained for different

possible choices of five values yi are physically equivalent.
However, they contain different R invariants; the existence
of more than five values yi is equivalent to the existence of

FIG. 7. The four possible assignments of internal helicities for the next-to-maximal flying-squirrel cut of Fig. 6(b). The ‘‘	’’ vertices
denote three-point MHV amplitudes while the ‘‘
’’ vertices denote three-point MHV amplitudes.
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nontrivial relations between R invariants. These relations
hold only in the presence of the overall supermomentum
conservation constraint.

We are now in position to assemble the result C for the
supersector of Fig. 7(b). Further use of the identities (4.17)
implies that it is given by

�Að0Þ;MHV
6 s12s45P4ðyÞ

h34i½56�ðyh13i � h23iÞðyh1ð3þ 4Þ5� � h2ð3þ 4Þ5�Þðh4ð5þ 6Þ1� þ yh4ð5þ 6Þ2�Þð½16� þ y½26�Þ : (4.24)

Inspecting the denominator of this expression, we see that
the first four points yi in Eq. (4.22) correspond to poles.
They are in fact positions of leading singularities, as all of
them arise from the ½q25��4 factor in Eq. (4.19) which is
the Jacobian arising from solving the cut conditions.

Choosing the five points yi to be {y1; y2; y3; y4; y5g, we
obtain

C 7ðbÞ ¼ s12s45s234A
ð0Þ;MHV
6

�
y4ðy� y5Þ
y5ðy� y4ÞR146

þ y2ðy� y5Þ
y5ðy� y2ÞR362 � y3ðy� y5Þ

y5ðy� y3ÞR413

� y1ðy� y5Þ
y5ðy� y1ÞR635 þ R524

�
: (4.25)

Each of the denominators appearing in this expression may
be identified with a propagator evaluated on the kinematic
configuration (4.16).

Thus, the contribution of this supersector depends only
on R invariants. We can decompose it in even and odd
invariants ðRi;iþ3;iþ5 � Riþ3;i;iþ2Þ, following the form (3.1)

of the superamplitude. To identify the part of C7ðbÞ that

receives contributions from the missing integral Ið7Þ, we
need to subtract from it the contribution of all the other
integrals in Fig. 4, determined from the cuts of Figs. 2(a)
and 2(b). These cuts can contribute only terms proportional
to the invariants R146, R362, R413, or R635. Thus, we can
conclude immediately that R524 arises solely as a coeffi-

cient of Ið7Þ, whose coefficient must therefore be

1
2A

ð0Þ;MHV
6 s12s45s234ðR251 þ R524Þ: (4.26)

Indeed, it is intuitively clear that because of its topology,

Ið7Þ can appear in the coefficient (4.25) only in terms that
have no additional propagators.

Carefully repeating this analysis for the other even in-
variants implies that the complete contribution of this

supersector to the even part of Ið7Þ ’s coefficient is

� 1

4
Að0Þ;MHV

6 ðR146 þ R413Þs123ðs234s345 � s61s34Þ;

� 1

4
Að0Þ;MHV

6 ðR362 þ R635Þs345ðs123s234 � s23s56Þ;

þ 1

2
Að0Þ;MHV

6 ðR251 þ R524Þs12s45s234: (4.27)

This conclusion must be checked against the other con-
figurations in Fig. 7. Figure 7(d) is the parity conjugate of

Fig. 7(b) and should therefore yield the same result for the
even R invariants (and its negative for the odd-parity ones).
The configurations in Figs. 7(a) and 7(c) and are parity

conjugates of each other. Evaluating them following the
same steps yields

C7ðaÞ ¼ Að0Þ;MHV
6

s12s45�
ð4Þð½61�	A

5 þ ½15�	A
6 þ ½56�	A

1 Þ
h23ih34i½56�½61�h4ð2þ 3Þ1�h2ð1þ 6Þ5�

¼ Að0Þ;MHV
6 R251s12s45s234; (4.28)

C7ðcÞ ¼ Að0Þ;MHV
6

s12s45�
ð4Þð½34�	A

2 þ ½42�	A
3 þ ½23�	A

4 Þ
h16ih65i½23�½34�h5ð1þ 6Þ2�h1ð2þ 3Þ4�

¼ Að0Þ;MHV
6 R524s12s45s234: (4.29)

Unlike the configuration in Fig. 7(b), the loop-momentum
dependence here cancels completely after integration over
the internal Grassmann variables. One may verify that
evaluating (4.27) on the relevant internal kinematic con-
figuration reproduces Eqs. (4.28) and (4.29).
The component of the flying-squirrel cut of Fig. 2(d) that

we evaluated shows that this cut contributes to all two-loop

scalar functions Wð2Þ
i . The same is true for the other cuts

with this topology but with cyclicly-permuted external
legs. The sum over cyclic permutations may be reorganized
in terms of permutations of a single ‘‘even’’ spin coefficient
R146 þ R413 which multiplies three different integrals of

the type Ið7Þ with different assignments of external legs. We
will use this presentation in the following section.

V. THE TWO-LOOP SIX-POINT
SUPERAMPLITUDE

We determined the four-dimensional cut-constructible

even parts Wð2Þ;D¼4
i of the two-loop six-point NMHV

superamplitude,

Wð2Þ;NMHV
i ¼ Wð2Þ;D¼4

i þW
ð2Þ;�
i ; (5.1)

as explained in the previous section, by analyzing the cuts
shown in Fig. 2 or next-to-maximal versions of them. We
obtained an explicit expression for the remaining part,

W
ð2Þ;�
i , cut-constructible only in D-dimensions, by com-

paring the results of D-dimensional and four-dimensional
cut calculations. We have carried out the calculation with-
out assuming a specific (possibly overcomplete) basis of
two-loop integrals and found that the integrals listed in
Figs. 4 and 8 are necessary and sufficient to saturate the
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cuts of the even part of the amplitude through Oð�0Þ. For
comparison, and because of changes in the labeling of
these integrals with respect to the original calculations of
the two-loop six-point MHV amplitude [19], we also
present it in our labeling.

A. The NMHV amplitude

The four-dimensional cut-constructible even part of all
six-point two-loop amplitudes is built out of a sum of the
16 integrals shown in Fig. 4

Sð2Þ;D¼4ð1Þ ¼ 1

4
c1I

ð1Þð�Þ þ c2I
ð2Þð�Þ þ 1

2
c3I

ð3Þð�Þ þ 1

2
c4I

ð4Þð�Þ þ c5I
ð5Þð�Þ þ c6I

ð6Þð�Þ

þ 1

4
ðc7aP�2Ið7Þð�Þ þ c7bP

�1Ið7Þð�Þ þ c7cI
ð7Þð�ÞÞ þ 1

2
c8I

ð8Þð�Þ þ c9I
ð9Þð�Þ þ c10I

ð10Þð�Þ þ c11I
ð11Þð�Þ

þ 1

2
c12I

ð12Þð�Þ þ 1

2
c13I

ð13Þð�Þ þ 1

2
c14I

ð14Þð�Þ þ 1

2
c15I

ð15Þð�Þ þ c16I
16ð�Þ: (5.2)

The coefficients ci, which differ between the MHVand the
NMHVamplitudes, are functions of external momenta and
the numerical coefficients are symmetry factors reflecting
the symmetries of each integral under cyclic permutations
of external legs.

The functions Wð2Þ;D¼4
i are constructed by summing

Sð2Þ;D¼4 over the sets of permutations Si in Eqs. (2.9),
(2.10), and (2.11) that map each superinvariant
ðRiþ3;i;iþ2 þ Ri;iþi;iþ5Þ into itself:

Wð2Þ;D¼4
i ¼ 1

8

X
�2Si

Sð2Þ;D¼4ð�Þ þOð�Þ: (5.3)

Of the overall factor of 1=8, a factor of 1=4 emerges from
the calculation of the unitarity cuts and a factor of 1=2 is
due to our choice of normalization.
The coefficients cj in the identity permutation entering

Sð2Þ;D¼4 in Eq. (5.2) are

c1 ¼ �s2123s34s61 þ s2123s234s345 c2 ¼ 2s212s23
�s123s234s12s45 � s123s345s23s56 þ 2s12s23s45s56

c3 ¼ s123ðs123s345 � s12s45Þ c4 ¼ s2123s34
c5 ¼ �s12s123s234 c6 ¼ s61s12s123
c7a ¼ �s123ðs345s234 � s61s34Þ c7b ¼ 2s123s34s61
c7c ¼ �s123ðs234s345 � s61s34Þ c8 ¼ 0
c9 ¼ s123s45s56 c10 ¼ s56s123s345
c11 ¼ �s56s61s123 c12 ¼ �s123ðs123s345 � s12s45Þ
c13 ¼ s2123s61 c14 ¼ 2s234s123
c15 ¼ 0 c16 ¼ 2s12s34s123
c17 ¼ not necessary c18 ¼ 1

6 s123ð2s34s61 � s234s345Þ:

(5.4)

In dimensional regularization, the six-point two-loop
(and quite likely all higher-point higher-loop) amplitudes
receive contributions from integrals—collectively referred
to as �-integrals—whose integrand vanishes identically
when evaluated in four dimensions. The integrals shown
in Fig. 8 are of this type, where �p and �q denote the
ð�2�Þ components of the loop momenta. As noted in

Ref. [19], the integral Ið17Þ vanishes identically as � ! 0;
we will therefore ignore it in the following. To determine
the contributions of such integrals, we compare the result
of the four-dimensional cut calculation with that of the
D-dimensional cuts and find that the even part of the
amplitude also contains the terms

Wð2Þ;�
i ¼

0
@ X

�2Si

1

4
c18

1
A X

�2S1[S2[S3

1

2
s12I

ð18Þð�Þ: (5.5)

The coefficients cj bear certain similarities to the corre-
sponding coefficients in the MHV amplitude.

B. The MHV amplitude

For completeness, and because of differences of notation
from Ref. [19], we also present the integrand of the even
part of the MHV amplitude. The four-dimensional cut-
constructible part is given by

FIG. 8. �-integrals entering the two-loop six-point amplitudes.
The arrow on the external line indicates leg number 1.
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Mð2Þ;D¼4 ¼ 1

16

X
�2S1[S2[S3

Sð2Þ;D¼4ð�Þ þOð�Þ; (5.6)

where the coefficients cj in the identity permutation are given by

c1 ¼ s123ðs12s45s234 þ s23s56s345 c2 ¼ 2s23s
2
12

þs123ðs34s61 � s234s345ÞÞ
c3 ¼ s123ðs345s123 � s45s12Þ c4 ¼ s34s

2
123

c5 ¼ s12ðs234s123 � 2s23s56Þ c6 ¼ �s61s12s123
c7a ¼ s123ðs234s345 � s34s61Þ c7b ¼ �4s34s61s123
c7c ¼ s123ðs234s345 � s34s61Þ c8 ¼ 2s12ðs345s123 � s12s45Þ
c9 ¼ s45s56s123 c10 ¼ s56ð2s12s45 � s123s345Þ
c11 ¼ s61s56s123 c12 ¼ s123ðs345s123 � s12s45Þ
c13 ¼ �s2123s61 c14 ¼ 0
c15 ¼ 0 c16 ¼ 0
c17 ¼ �2s123s345ðs234s345 � s61s34Þ c18 ¼ 2s12ðs123s234s345 � s12s45s234Þ

þ 2s345ðs12s45s234 þ s23s56s345Þ � 2s12ðs23s56s345 þ s34s61s123Þ:

(5.7)

The �-integral contribution is

M
ð2Þ;�
6 ¼ 1

16

X
�2S1[S2[S3

�
1

4
c17I

ð17Þð�Þ þ 1

2
c18I

ð18Þð�Þ
�
:

(5.8)

As mentioned previously, Ið17Þ starts at Oð�Þ [19] and thus
does not contribute through Oð�0Þ.

C. A comparison of the MHV and NMHV amplitudes

A direct inspection of the integrals in Fig. 4 and of their
coefficients in Eq. (5.4) reveals that the even part of the
two-loop six-point NMHV amplitude is a sum of pseudo-
conformal integrals. This is similar to the MHVamplitude,
for which the four-dimensional cut-constructible part has a
similar property [19], as may also be seen by directly
inspecting the coefficients listed in Eq. (5.7).

This is perhaps not completely surprising in light of the
argument presented in Sec. III that all four-dimensional
cuts can be reproduced by cuts of pseudoconformal inte-
grals. This structure does not guarantee, however, that the
even part of the amplitude is dual conformal invariant, even
after infrared divergences are removed appropriately. We
return to this point in the next section.

The structure of the NMHVamplitude is quite similar to
that of the MHVamplitude, with only subtle differences in
the values of the coefficients. Two of the integrals that did

not contribute to the MHV amplitude — Ið14Þð�Þ and

Ið16Þð�Þ—enter in the NMHVamplitude with nonvanishing
coefficient; similarly, a topology that exists in both ampli-

tudes—Ið1Þð�Þ—appears in the NMHV amplitude with an
additional pseudoconformal numerator. Moreover, an in-

tegral that contributes to the MHV amplitude—Ið8Þð�Þ—
disappears from the NMHV one. We note also that a

perfectly valid integral—Ið15Þð�Þ—appears in neither the

MHV nor NMHV amplitudes. It would be interesting to
understand the significance of this observation.
The properties of the MHVand NMHVamplitudes differ

from those observed in the four-point amplitudes through
five loops:
(i) All pseudoconformal integrals appear with relative

weights of �1 or 0 [9,37–39].
(ii) An integral appears with coefficient zero if and only

if the integral is unregulated after taking its external
legs off shell and taking � ! 0 [16].

(iii) It has been proposed that the signs �1 of the
contributing integrals can be understood by the
requirement of cancelling unphysical singularities
[82].

It would undoubtedly be interesting to understand the
generalization of these features to higher-multiplicity
amplitudes.
Although the amplitudes have very similar structures,

the ratio of the NMHV six-point superamplitude to the
MHVone does not appear to exhibit a transparent organi-
zation. This is due to the different structures of the permu-
tation sums that contribute to the independent factors in the

amplitudes. Indeed, each function Wð1Þ;D¼4
i and Wð2Þ;D¼4

i

contains only a sum over the permutations in the set Si

while the functions Mð1Þ;D¼4 and Mð2Þ;D¼4 contain sums
over all 12 permutations S1 [ S2 [ S3.

VI. DUAL CONFORMAL INVARIANCE

The explicit calculation in Sec. IV of the two-loop
NMHV six-point superamplitude shows that it indeed has
the structure anticipated in Sec. III. We obtained explicit

integral representations for the scalar functions Wð2Þ
i , sum-

marized in the previous section.
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As it is the case with all massless theories in four
dimensions, the amplitude is infrared divergent; to exam-
ine the dual conformal properties of the amplitude it is
necessary to isolate these divergences. Based on the uni-
versality of infrared singularities and their exponentiation
DHKS proposed [24] that these divergences be removed
by simply dividing by the MHV amplitude. This ratio
(2.35) was conjectured to be dual conformally invariant.
An alternative method was described in Sec. III, see
Eq. (3.16).

Since the functions WðlÞ
i have a natural decomposition

into four-dimensional andD-dimensional cut-constructible

contributions, the functions CðlÞ
i introduced in Eq. (3.9)

inherit a similar decomposition

WðlÞ
i ¼ WðlÞ;D¼4

i þW
ðlÞ;�
i ! CðlÞ

i ¼ CðlÞ;D¼4
i þ C

ðlÞ;�
i ;

l ¼ 1; 2: (6.1)

At one loop, the �-integral contribution Cð1Þ;�
i vanishes in

the limit � ! 0. Because of infrared divergences, they
nevertheless give rise to nontrivial contributions at two
loops in the ratio with the MHV amplitude. The functions

CðlÞ
i contain terms that vanish as � ! 0:

Cð1Þ
i ð�Þ ¼ Wð1Þ

i ð�Þ �Mð1Þð�Þ
Cð2Þ
i ð�Þ ¼ Wð2Þ

i ð�Þ �Mð2Þð�Þ
�Mð1Þð�ÞðWð1Þ

i ð�Þ �Mð1Þð�ÞÞ:
(6.2)

As explained in Sec. II C, in the limit � ! 0, Cð1Þ
i ð�Þ

reduces to dual conformal invariant functions very closely

related to the VðiÞ defined in Ref. [24]. The higher-order
terms in � were not considered in Ref. [24]; we take them
as determined by the amplitude through the relation (3.9)

between WðlÞ
i and CðlÞ

i .

The infrared-divergent terms in bothWð1Þ
i ð�Þ andMð1Þð�Þ

have the usual form

Divð1Þ6 ¼ � 1

2�2
X6
j¼1

ð�sj;jþ1Þ��: (6.3)

Thus, Cð1Þ
i ð�Þ is manifestly finite; moreover, the only di-

vergent contribution arising from the last term in Cð2Þ
i ð�Þ is

due to the overall factor of Mð1Þð�Þ.

A. Terms requiring D-dimensional cuts

At one loop, the �-integrals, requiring consideration of
D-dimensional cuts, yield only terms of Oð�Þ in both

Wð1Þ
i ð�Þ and Mð1Þð�Þ. This allows us to isolate the

�-integral contribution in Eq. (6.2):

Cð2Þ;�
i ¼ Wð2Þ;�

i �Wð1Þ;�
i Divð1Þ6 �Mð2Þ;�

þMð1Þ;�Divð1Þ6 þOð�Þ; (6.4)

where we used the universality of the one-loop infrared
divergences (6.3) and kept only the terms that have non-
trivial divergent and finite parts. For example, we dropped
the terms in Eq. (6.2) coming from the finite part of the

overall factor Mð1Þð�Þ in the last term.
The last two terms in the equation above contain infor-

mation already available in the MHV amplitude. Indeed,
this exact combination appears in the iteration of the
�-integrals for this amplitude [19]:

Mð2Þ;� ¼ Mð1Þ;�Divð1Þ6 : (6.5)

Thus, C
ð2Þ;�
i is given by

Cð2Þ;�
i ¼ Wð2Þ;�

i �Wð1Þ;�
i Divð1Þ6 ; (6.6)

with Wð2Þ;�
i given by Eq. (5.5).

This expression for Wð2Þ;�
i may be further simplified by

making use of the special properties of the hexabox inte-
gral discussed in Sec. IV.A of Ref. [19], in particular,
Eq. (4.6):

Ið18Þ½�2� ¼ � 1

�2
ð�s12Þ�1��Ihex½�2�: (6.7)

Thus,Wð2Þ;�
i can be expressed exactly in terms of one-loop

integrals, albeit in six dimensions. Moreover, using the fact
that the one-loop hexagon integral is invariant under cyclic

permutations of external legs, Wð2Þ;�
i can be expressed in

terms of the massless six-dimensional hexagon integral
with a coefficient given by the universal divergent part of
one-loop amplitudes:

Wð2Þ;�
i ¼ � 1

12
Divð1Þ6 Ihex½�2� X

�2Si

s123ð2s34s61 � s234s345Þ

þOð�Þ: (6.8)

The four terms in each sum are in fact equal.
The �-integral contribution to the one-loop six-point

NMHV amplitude is not yet available in the literature.
Information on its structure may be obtained by analyzing
a two-particle cut of the�-integral contribution to the two-
loop NMHV superamplitude. Dixon and Schabinger [25]
have evaluated such a cut directly; quite surprisingly, they
find that it can be organized in terms of the same R
invariants as the four-dimensional cut-constructible terms.
The �-integrals’ contribution to the even part of the one-
loop six-point NMHV amplitude is

W
ð1Þ;�
i ¼ � 1

12
Ihex½�2� X

�2Si

s123ð2s34s61 � s234s345Þ: (6.9)

Combining this with Eqs. (6.8) and (6.6) immediately
shows that

lim
�!0

C
ð2Þ;�
i ¼ 0: (6.10)
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In other words, the complete �-integral contribution to the
six-point two-loop NMHV amplitude is completely ac-
counted for by extracting an overall factor of the MHV
superamplitude.

Through similar manipulations it is possible to show that

the remainder-like functions Rð2Þ
6;i introduced in Eq. (3.16)

do not receive any �-integral contributions. Indeed, di-
rectly expanding Eq. (3.16) to Oða2Þ, we find that

Rð2Þ
6;i ¼ Wð2Þ

i ð�Þ �
�
1

2
ðWð1Þ

i ð�ÞÞ2 þ f2ð�ÞWð1Þ
i ð2�Þ

�
: (6.11)

Identifying the �-integral contributions to each of the
terms on the right-hand side and using the universality of
infrared divergences implies that

Rð2Þ;�
6;i ¼Wð2Þ;�

i ð�Þ�Divð1Þ6 Wð1Þ
i ð�Þ¼Cð2Þ;�

i þOð�Þ: (6.12)

It therefore follows from Eqs. (6.10) that Rð2Þ;�
6;i does not

receive any finite �-integral contributions.
The same, however, cannot be said about the �-integral

contribution to the odd part of the amplitude. Indeed,
repeating the steps that lead to Eq. (6.2), we find that the
coefficients of the parity-odd quantities ðRiþ3;i;iþ2 �
Ri;iþ3;iþ5Þ are

~Cð2Þ
i ¼ eWð2Þ

i � Divð1Þ6
eWð1Þ
i : (6.13)

While the�-integral contributions to eWð2Þ
i are given in terms

of the hexabox integral or, equivalently in terms of the six-

dimensional hexagon integral, their contributions to eWð1Þ
i are

given in terms of a restricted set of the one-mass pentagon
integrals [25]. This suggests that, for the odd part of the
superamplitude, the � integrals cannot be cleanly separated
from the four-dimensional cut-constructible terms.

B. Numerical evaluation of the amplitude

In order to further analyze the properties of the two-loop
six-point NMHVamplitude, we turn to a numerical evalu-
ation of the two-loop integrals. Thanks to the results
described in the previous section, we may focus on the
four-dimensional cut-constructible part of the amplitude.
The task of evaluating the integrals is simplified substan-
tially by the fact that all of them have already been eval-
uated at several distinct kinematic points in [19]. We have
evaluated additional kinematic points using the package
MB [45] and the same Mellin-Barnes parametrization of

integrals that was used in the calculation of the MHV
amplitude. Apart from testing the symmetry properties of
the amplitude, this calculation also verifies the expected
universality of two-loop infrared divergences. Viewed dif-
ferently, a successful test of the universality of the infrared
divergences is a strong indication of the completeness of
the cut construction described in previous sections.

We choose Euclidean kinematics for all configurations
of external momenta. As in the calculation of the

MHV amplitude, the symmetries of the momentum
configuration,

Kð0Þ: si;iþ1 ¼ �1; si;iþ1;iþ2 ¼ �2; (6.14)

make it particularly useful, as all cyclic permutations or
external legs yield the same value for all integrals.

This implies that all functions Wð2Þ;D¼4
i are equal for all

i ¼ 1, 2, 3. Using the values of the integrals collected in the
Appendix B of [19], we find

WD¼4
i ðKð0ÞÞ ¼ 1þ a

�
� 3

�2
þ 5:27682þ 8:73314�

þ 8:11147�2
�
þ a2

�
9

2�4
� 14:5967

�2

þ 25:3014� 0:0043

�
� 21:064� 0:002

�
þOða3Þ: (6.15)

Where they are not explicitly included, the errors do not
affect the last quoted digit. We have used the error esti-
mated reported by CUBA [83]. In general, we found the
errors to be reliable, giving an accurate measure of the
number of trustworthy digits. In some contributions, how-
ever, we found them to be underestimated, invariably in the
presence of small integrals with a fast-varying integrand. In
such cases, when CUBA reports a large 2, we take the
average value of the integrals to be the central value and
quote the variation of the integral under changes of sam-
pling points as the error estimate. The issue presumably
involves integration regions missed because of special
properties of the integrand.
As discussed previously, the construction of the func-

tions Cð2Þ
i requires keeping higher orders in the small-�

expansion of the one-loop amplitude. For the MHVampli-
tude, we use the expression in terms of the iterated

one-loop amplitude and the remainder function Rð2Þ
6 . For

the point Kð0Þ, we find

Ciða; �; Kð0ÞÞ ¼ 1þ að0:783676þ 1:10087�

þ 0:07507�2Þ þ a2
�
� 0:0036� 0:0043

�

� ð2:412� 0:002Þ � Rð2Þ
6 ðKð0ÞÞ

�
þOða3Þ:

(6.16)

We note that the residue of the simple pole in � vanishes
within errors, as it should. We have confirmed this property
for all the other kinematic points.9

9We have also verified analytically the cancellation of
infrared-singular terms through Oð��2Þ. The complete cancella-
tion of infrared-singular terms was shown analytically by G.
Korchemsky (private communication).
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From Eq. (6.15), we can also find the value of the

remainder-like functions Rð2Þ
6;i introduced in Eq. (3.16) at

the point Kð0Þ:

Rð2Þ
6;i ¼ �1:430� 0:002: (6.17)

Similarly to the error quoted for Ciða; �; Kð0ÞÞ, the error of
Rð2Þ
6;i is completely inherited from that of Wð2Þ

i .

We have evaluated the amplitude at another kinematic

point (denoted by Kð1Þ in [19]) related to Kð0Þ by dual
conformal transformations as well as two other points

related to each other but unrelated to Kð0Þ:

Kð1Þ: s12 ¼�0:7236200; s23 ¼�0:9213500; s34 ¼�0:2723200; s45 ¼�0:3582300; s56 ¼�0:4235500;

s61 ¼�0:3218573; s123 ¼�2:1486192; s234 ¼�0:7264904; s345 ¼�0:4825841;

Kð3Þ: si;iþ1 ¼�1; s123 ¼�1=2; s234 ¼�5=8; s345 ¼�17=14;

Kð6Þ: s12 ¼�2; s23 ¼�4; s34 ¼�2; s45 ¼�14=17; s56 ¼�4=5; s61 ¼�56=85; si;iþ1;iþ2 ¼�1:

(6.18)

In listing the kinematic points we attempted to preserve the
notation for the points used in Ref. [19]. We have collected
our results for the values of Cð2Þ

i and Rð2Þ
6;i in Tables I and II.

The three dual conformal ratios

ðu1; u2; u3Þ ¼
�
s12s45
s123s345

;
s23s56
s234s456

;
s34s61
s345s561

�
(6.19)

for the kinematic points are listed in the second column of
these tables.

As mentioned previously, we left the MHV remainder

functionRð2Þ
6 unevaluated. Its dual conformal invariance [19]

Rð2Þ
6 ðKð0ÞÞ ¼ Rð2Þ

6 ðKð1ÞÞ Rð2Þ
6 ðKð3ÞÞ ¼ Rð2Þ

6 ðKð6ÞÞ (6.20)

implies that the equality within errors of the relevant entries

of Table I extends to an equality of the functions Cð2Þ
i .

Alternatively, we could have evaluated the remainder func-
tion from the analytic expression found in Ref. [84], the
integral representation in Ref. [85], or the simplified form

in Ref. [86]. The results we obtain thus suggest that Cð2Þ
i and

Rð2Þ
6;i are functions solely of the conformal cross ratios, that is,

that they are indeed invariant under dual conformal
transformations.

VII. SUMMARY, CONCLUSIONS, AND SOME
OPEN QUESTIONS

The maximally supersymmetric gauge theory in four
dimensions is an ideal testing ground for probing the
properties of gauge theories at both weak and strong cou-
pling. The large degree of symmetry makes perturbative
calculations tractable to relatively high orders while its
string-theory dual provides powerful tools for understand-
ing its strong-coupling behavior. Its hidden symmetries
yield additional constraints that go beyond their initial
connection to the integrability of the dilatation operator
of the theory.

TABLE I. Comparison of conformally-related kinematic points. Cð2Þ
i are the finite parts of the ratios Ci ¼ Wi=M6 at two loops. Rð2Þ

6

is the two-loop remainder function of the six-point MHV amplitude.

Kinematic point ðu1; u2; u3Þ Cð2Þ
1 þ Rð2Þ

6 Cð2Þ
2 þ Rð2Þ

6 Cð2Þ
3 þ Rð2Þ

6

Kð0Þ ð14 ; 14 ; 14Þ �2:413� 0:002 �2:413� 0:002 �2:413� 0:002

Kð1Þ ð14 ; 14 ; 14Þ �2:359� 0:048 �2:375� 0:025 �2:380� 0:033

Kð3Þ ð2817 ; 165 ; 11285 Þ 14:426� 0:003 12:614� 0:004 11:697� 0:009

Kð6Þ ð2817 ; 165 ; 11285 Þ 14:439� 0:078 12:614� 0:035 11:727� 0:145

TABLE II. Comparison of the remainder-like functions Rð2Þ
6;i at conformally-related kinematic points.

Kinematic point ðu1; u2; u3Þ Rð2Þ
6;1 Rð2Þ

6;2 Rð2Þ
6;3

Kð0Þ ð14 ; 14 ; 14Þ �1:431� 0:002 �1:431� 0:002 �1:431� 0:002

Kð1Þ ð14 ; 14 ; 14Þ �1:377� 0:048 �1:393� 0:025 �1:397� 0:033

Kð3Þ ð2817 ; 165 ; 11285 Þ 5:413� 0:003 4:749� 0:004 4:602� 0:009

Kð6Þ ð2817 ; 165 ; 11285 Þ 5:427� 0:078 4:749� 0:035 4:633� 0:145
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In this paper we have computed the parity-even part of
the two-loop six-point NMHVamplitude using generalized
unitarity in superspace. We showed that the result is
invariant under dual conformal transformations, after re-
moval of universal infrared divergences (including terms
arising from Oð�Þ contributions at one loop, computed by
Dixon and Schabinger [25]). The dual conformal invariant
content may be organized in several different ways. The
exponentiation of both the infrared divergences and of the
collinear splitting amplitudes suggest the introduction of
certain remainder-like functions which, similarly to the
remainder function for MHV amplitudes, are functions
only of the conformal cross ratios. We have shown that,
to all orders in perturbation theory, it should be possible to
reconstruct the remainder-like functions by evaluating cer-
tain triple-collinear splitting amplitudes.

Several interesting issues related to the calculation de-
scribed here, and to the structure of the perturbative ex-
pansion of the theory and its strong-coupling expansion
remain to be clarified.

Through the AdS/CFT correspondence, Alday and
Maldacena [11] argued that, to leading order in their
strong-coupling expansion, all planar scattering ampli-
tudes with fixed number of external legs are essentially
identical up to perhaps a rational function of momenta and
polarization vectors. Our calculation and arguments show
that the weak-coupling structure of the six-point amplitude
involves at least six different spin factors dressed with
scalar and pseudoscalar functions to all orders in the
weak-coupling expansion. Reconciling this structure with
the AdS/CFT considerations remains an important open
problem, which appears to require that, in the strong-
coupling limit, the remainder-like functions introduced in
Sec. III have a very simple relation to the MHV remainder
function.

Inspired by strong-coupling considerations, several
groups showed that MHVamplitudes have a close relation
to certain lightlike polygonal Wilson loops order-by-order
in weak-coupling perturbation theory, first in explicit cal-
culations [16–19], and very recently, cast in a more general
setting [20]. A similar relation for non-MHV amplitudes
remains an open question; our numerical results provide
check points for future calculations in this direction. The
Wilson-loop formulation of the six-point MHV amplitude
led to the analytic evaluation [84–86] of the remainder
function at two loops. It seems likely that a Wilson-loop
formulation of NMHV amplitudes will allow a similar
evaluation of the remainder-like functions characterizing
this amplitude.

A direct comparison of the integrands of the six-point
MHV and NMHV amplitudes at two loops reveals that
certain integrals appear in one but not the other, while
the contributing integrals enter with numerical coefficients
that do not conform with the effective rules inferred from
four-point amplitudes. Moreover, one perfectly valid

pseudoconformal integral does not appear in either one
of these amplitudes. It would be interesting to develop a
better understanding of this pattern of numerical coeffi-
cients. Evaluation of higher-point NMHV amplitudes at
two loops may help in this direction.
In our calculation dual conformal invariance is obscured

by the dimensional regulator; removal of infrared diver-
gences is a crucial step in studying the dual conformal
properties of scattering amplitudes. Using four and five-
point amplitudes as testing ground, it was shown [32,87]
that regulating the infrared divergences by a particular
symmetry breaking of the gauge group makes dual confor-
mal invariance more transparent. It would be interesting to
repeat the calculation described in this paper as well as that
of the two-loop six-point MHV amplitude in this frame-
work. Apart from a better understanding of dual conformal
invariance, such an endeavor would clarify the interpreta-
tion of �-integrals as well as that of the parity-odd com-
ponent of amplitudes. While we did not compute the
parity-odd part of the six-point NMHV amplitude explic-
itly, its �-integral contributions make it quite different
from the parity-odd terms in MHV amplitudes with up to
six external legs.
A very interesting question relates to symmetries of

scattering amplitudes. Drummond, Henn, and Plefka
showed that tree-level scattering amplitudes are invariant
under a Yangian which is the closure of conformal and dual
conformal transformations [88]. Up to anomalies intro-
duced by the regulator, it is expected that dual conformal
transformations leave scattering amplitudes invariant to all
orders in perturbation theory. Again apart from anomalies
due to the presence of a regulator, ordinary conformal
invariance exhibits additional anomalies of a holomorphic
type [89], related to singular momentum configurations,
already at tree level. An appropriate definition of a gen-
erating function for superamplitudes with variable number
of external legs [90] allows this anomaly to be circum-
vented, and to be realized on scattering amplitudes through
the one-loop level. Korchemsky and Sokatchev have re-
cently given [34] a general construction of conformal and
dual conformal invariants (and hence of Yangian invari-
ants). Other approaches to the construction of Yangian
invariants were discussed by Mason and Skinner [91] and
by Drummond and Ferro [92]. These invariants have ex-
pressions that were conjectured [67] by Arkani-Hamed
et al. to represent the leading singularities of scattering
amplitudes to all orders in perturbation theory. All-order
leading singularities have been derived directly by
Bullimore, Mason, and Skinner [33]. While the form of
subleading singularities is not yet clear, this structure
suggests that it may be possible to realize both symmetries
(and their closure) at higher loops. The extended algebra
does not uniquely determine the S-matrix of N ¼ 4
super-Yang-Mills theory, however [34]. Unraveling its
constraints on scattering amplitudes should prove fruitful.
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The study of non-MHV amplitudes at higher loops is
only in its early stages. Our explicit calculation provides an
example of such an amplitude. The structure of these
amplitudes is substantially richer than that of MHVampli-
tudes. It seems likely that new and exciting properties as
well as new calculational techniques are waiting to be
discovered.
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