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locality. The locality result crucially depends on a judicious choice of phases.
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I. INTRODUCTION

The particle nature of dark matter is still unsettled. What
we do know is that it is expected to be endowed with a self-
interaction [1–4]. The indicated self-interaction would
ordinarily suggest that dark matter must be some sort
of scalar field. However, as shown in [5,6], the Elko (for
Eigenspinoren des Ladungskonjugationsoperators, the
reason for this definition will become clear in Sec. I B)
quantum field is endowed with mass-dimension one,
a property that allows for unsuppressed Elko self-
interaction. Further consequences of the mass dimension-
ality of Elko are that its possible interactions with the
mass-dimension 3=2 Dirac and Majorana fields are
suppressed by one order of unification scale and that it
cannot enter the standard model (SM) doublets. This,
along with the fact that Elko does not carry the standard
U(1) gauge invariance, renders Elko a natural dark matter
candidate [5,6].

Here we report that Elko breaks Lorentz symmetry in
a rather subtle and unexpected way by containing a
‘‘hidden’’ preferred direction. All inertial frames that move
with a constant velocity along this direction are physically
equivalent. Along this direction, a quantum field based on
Elko enjoys locality.

Our discourse begins with a review of the SM matter
fields in Sec. I A. In Sec. I B we recapitulate the known
problems with the interpretation of Majorana spinors as
commuting numbers, and argue that these problems evapo-
rate under a more careful examination [5,6]. The pace is
deliberately slow. The discussion is designed to provide the
right setting for the taken departure. Sections II and III
form the core of this communication. The discussion on
the Elko dual presented in Sec. II B is a significant addition
to the previous work on Elko [5,6]. The dramatically
changed locality structure arises from certain phases
and identification introduced in the Elko spinors at rest

[see Eqs. (16a)–(16d)]. Section II C reminds the reader that
Elko satisfies the Klein-Gordon, but not the Dirac, equa-
tion. The Elko spin sums are given in Sec. II D. These spin
sums are needed for examining the locality structure of the
Elko quantum fields and had to be reevaluated due to the
mentioned changes in the Elko rest spinors [7]. These carry
the seeds of the mentioned preferred direction. Section III
formally introduces the Elko quantum fields. Section III A
makes an argument to identify Elko with self-interacting
dark matter that is endowed with an axis of locality. In the
form reported here, Elko offers a mass-dimension one
fermionic dark matter with self-interaction and a preferred
axis of locality. The locality result crucially depends on a
judicious choice of phases. The paper ends with summa-
rizing remarks and questions in Sec. IV. Appendix A
provides supplementary information.

A. The matter field underlying the SM

The matter field underlying the SM is a four-component
spinor field [8] with historical origin in Dirac’s celebrated
1928 paper [9]
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in the ‘‘polarization basis.’’ In the helicity basis, these are
eigenspinors of the helicity operator with a specific choice
of phases. These phases are determined, e.g., by the local-
ity condition [10].

Without any reference to the Dirac equation (see Ref. [8]
for a detailed argument), the coefficient functions are
determined from the condition that, under the homo-
geneous Lorentz transformations, the field components
superimpose with other field components via spacetime-
independent elements (of 4� 4 matrices). These matrices
must furnish a finite dimensional representation of the
homogeneous Lorentz group.

The coefficient functions for arbitrary momentum are
obtained by the action of the boost

uðp; �Þ ¼ �uð0; �Þ; (5)

where � � �r � �‘. The explicit expressions for �r and �‘

are given below.
The only nontrivial freedom that �ðxÞ still carries

is the specialization to the case where byðp; �Þ is identified
with ayðp; �Þ. Otherwise, the Poincaré spacetime symme-
tries along with the symmetries of charge-conjugation,
parity and time-reversal, and the demand of locality
uniquely determine the field �ðxÞ. Seen in this light,
the field coefficients uðp; �Þ and vðp; �Þ are eigenspinors
of the ��p� operator with eigenvalues þm and �m,

respectively.
The annihilation of the field �ðxÞ by the Dirac operator

ði��@� �mIÞ follows as a result of this structure. The

Dirac equation is not assumed. Rather, it emerges as a
direct consequence of the merger of quantum mechanics
and Poincaré spacetime symmetries for spin 1=2. The
apparent simplicity of the Dirac field can be somewhat
misleading to the uninitiated. For instance, a change in sign
in the right-hand side of the expression for vð0;�1=2Þ in
Eq. (3) yields a quantum field that is nonlocal when
byðp; �Þ is identified with ayðp; �Þ. Even though the men-
tioned change in phase does not destroy the locality in the
original field, it does violate spacetime symmetries in a
hidden way. A systematic study of such subtle loss of
symmetries and locality remains largely unexplored.

For historical reasons, the field �ðxÞ is known as the
Dirac field, while the identification of byðp; �Þ with
ayðp; �Þ yields what has come to be known as the
Majorana field [9,11]. The coefficient functions uðp; �Þ
and vðp; �Þ are the usual Dirac spinors. They can be
interpreted as being a direct sum of the right-handed and
left-handed Weyl spinors with specific helicities and
phases.

B. Majorana spinors: A critique

History clearly demarcates the introduction of the
Majorana field. It was introduced in 1937 by Ettore
Majorana [11]. As regards Majorana spinors, we (i.e., the
authors) do not know of their historical birth.

While in the operator formalism of quantum field theory
Dirac spinors are treated as commuting numbers, it is
curious that Majorana spinors are treated as Grassmann
variables. This is deemed necessary, due to what are con-
sidered otherwise unavoidable problems. (Consider for
instance Aitchison and Hey’s attempt to construct a
Hamiltonian density [12].) What further adds to the prob-
lem is that, taken by itself, a Majorana spinor is nothing but
a Weyl spinor in the four-component form. As shown by
Ahluwalia and Grumiller [5,6], both of these problems can
be circumvented. A hint toward a solution for the first
problem may be found by noting that, unlike Dirac spinors,
the Majorana spinors are not eigenspinors of the Dirac
operator. Instead, they are eigenspinors of the square of
the Dirac operator. This suggests that the problem lies
not with the Majorana spinors but instead with the
Lagrangian density assumed by Aitchison and Hey [12].
The latter of the two mentioned problems also has a similar
solution. The usual set of Majorana spinors consists of two
spinors, both of which have eigenvalue one under the
operation of the charge conjugation operator. This is the
self-conjugate set. However, as pointed out in Refs. [5,6],
there also exists the anti self-conjugate set. Once these
are added, the complete set of four spinors—the Elko
(for Eigenspinoren des Ladungskonjugations opera-
tors)—span the four-dimensional representation space of
spin 1=2 and come to par with the Dirac spinors.
Let us briefly review the canonical wisdom. In doing so

we shall explicitly show the cost at which the above
changes are implemented. Whether or not this ought to
be a cost we should be willing to pay is ultimately a matter
for experiment to decide. At the very least, we shall know
what it is that we would reject if we were to choose to
confine ourselves to the canonical wisdom.
According to the received wisdom, the Majorana spinors

airse as follows. If �‘ is a massive Weyl spinor of left-
handed nature, then �2�

�
‘ transforms as a right-handed

Weyl spinor. For this reason ([13], p. 20), we can con-
struct a special type of four-component spinor called a
Majorana spinor:

cM ¼ ��2�
�
‘

�‘

� �
: (6)

It is self-conjugate under charge conjugation. For �‘ there
are two choices: a positive helicity and a negative helicity.
As such, we have two rather than four four-component
spinors. Thus the folklore: the Majorana spinor is a Weyl
spinor in four-component form [13]. It is self-evident and
remains unquestioned in our discourse.
An immediate sign of trouble appears if one naı̈vely

introduces a Lagrangian density LM ¼ �cMði��@� �
mÞcM. The usual route at this stage is to treat the
components of the Weyl spinors as Grassmann numbers;
otherwise, one encounters the often-quoted problems ([12],
App. P). The Ahluwalia-Grumiller work [5,6] strongly
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indicates that this approach may be hiding certain funda-
mental properties of Majorana spinors. Or, to put it more
precisely, having taken the Grassmann route, we may have
overlooked a rich and fertile ground where Majorana spin-
ors are treated as commuting number spinors. To unearth
these aspects, we shall treat the massive Weyl spinors
as two-component eigenspinors of the helicity operator
([14], p. 111). The fermionic statistics are implemented
through the canonical field operator formalism [8,15] and
not by treating them as Grassmann fields [16]. The Elko
formalism was born in this spirit and attended to a wide-
spread, but rarely spoken, discontent with abandoning
Majorana spinors as commuting numbers.

A straightforward calculation now shows that, (i) under
the Dirac dual, the norm �cMcM identically vanishes
(so, no Dirac mass term); and (ii) in the momentum
space, cM is not an eigenspinor of the ��p

� operator

��p
�cM � �mcM (and so Majorana spinors do not

satisfy the Dirac equation ([12], App. P). This already
suggests that constructing a mass dimension 3=2 fermionic
field in terms of Majorana spinors may not be possible
[18]. The lesson to be learned is this: It is not sufficient that
one consider the ‘‘simplest candidates for a kinematic
spinor term’’ in the construction of a field equation, as
found in almost [19] every text book on quantum field
theory [21]. Rather, one must ensure that the associated
Green’s function be proportional to the vacuum expecta-
tion value of the time-ordered product of certain field
operators. This lesson, we think, has a much larger signifi-
cance in that Lagrangian densities must be derived and
not assumed. Neglecting this may induce all manner of
pathologies. How this task is to be accomplished—at least
for spin 1=2—is one of the wider contributions of this
communication.

The assertion about reduction in the degrees of freedom
for Majorana spinors also faces trouble if one notes that
the relevant charge conjugation operator has not one, but
two, real eigenvalues: þ1 (giving the usual self-conjugate
Majorana spinors) and �1. There is no physical or mathe-
matical reason to abandon, or ‘‘project out,’’ the latter. The
sense in which the folklore still survives is that, by an
appropriate similarity transformation, half of these (i.e.,
those corresponding to the positive eigenvalue) can be
mapped to real four-component spinors, while those cor-
responding to the negative eigenvalue can be transformed
into purely imaginary four-component spinors.

II. ELKO: DEPARTURE FROM GRASSMANN
INTERPRETATION OF MAJORANA SPINORS

The interpretation of the Majorana spinors in terms of
Grassmann variables is elegant. It is mathematically sound
and has found widespread applications in modern quantum
field theory. Yet it breaks with the tradition of field operator
formalism which would have required these spinors to be
commuting number coefficient functions in a field. In their

work [5,6], Ahluwalia and Grumiller formulated a
treatment of Majorana spinors in the operator formalism.
Towards this end, they included two additional spinors to
the canonical Majorana spinors, thus forming a com-
plete set of dual helicity eigenspinors of the charge
conjugation operator for spin 1=2. In order to avoid con-
fusion with the incomplete set, the Majorana spinors,
they introduced the name Elko, which, as already men-
tioned, was taken from the German Eigenspinoren des
Ladungskonjugationsoperators.
The quantum field expanded with Elko spinors is not a

quantum field in the sense of Weinberg [8]. Specifically,
the uniqueness of the Dirac field, modulo its specialization
to the Majorana field, implies that the program we embark
upon necessarily violates Lorentz symmetry. This feature,
which had remained hidden in our previous discourse, we
now unearth. In our opinion, this has the potential to open
up an entirely new perspective on dark matter—the deci-
sion being in the hands of experiments. To a pure theore-
tician, the interest might be in its mathematical structure.
In this communication we confine our primary attention

to spin 1=2, but we construct Elko in such a way that the
procedure immediately generalizes to all spins. This is
facilitated by the use of Wigner’s time-reversal operator
� ¼ �i�2, rather than the Pauli matrix �2 that appears in
Ramond’s primer in the context of Majorana spinors. We
shall use the phrase Elko for spinors as well as for the
quantum fields constructed from them. The context shall be
assumed to remove any ambiguity.

A. Construction of Elko

To construct Elko it is first necessary to introduce the
charge conjugation operator. This we do as follows. Under
parity, P, x ! �x; hence, the rapidity parameter ’ ¼ ’p̂
changes sign. Thus, to implement this transformation on
the boost operator, we require a matrix of the form

SðPÞ ¼ exp½i#� O I
I O

� �
|fflfflfflfflffl{zfflfflfflfflffl}

�0

R; # 2 R; (7)

with p � pðsinð�Þ cosð�Þ; sinð�Þ sinð�Þ; cosð�ÞÞ, and
R ¼ f� ! �� �;� ! �þ�;p ! pg. If care is taken
that the eigenvalues of the helicity operator change sign
under P, the arguments given in Ref. [6] fix the phase
exp½i#� to be i. The operator SðPÞ now has four doubly
degenerate eigenspinors, carrying opposite eigenvalues of
SðPÞ—call these u and v sectors. The operator

C ¼ O i�
�i� O

� �
K; (8)

where K is the complex conjugation operator, formally

interchanges the opposite parity sectors: u$C v. It is appar-
ent that C is the standard charge conjugation operator of
Dirac. In the context of Eq. (8), Wigner’s time-reversal
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operator � is defined as �J��1 ¼ �J�, where J are a set
of rotation generators for the representation space under
consideration. For spin 1=2, �½�=2���1 ¼ �½�=2��. We
use the realization

� ¼ 0 �1
1 0

� �
:

To construct Elko, let �‘ðpÞ be a left-handed Weyl
spinor of spin 1=2. Under a Lorentz boost, it transforms
as �‘ðpÞ ¼ �‘�‘ð�Þ, with

�‘ ¼ exp

�
��

2
�’

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm

2m

s �
I� � � p

Eþm

�
: (9)

The � is defined as pjp!0, and not as pjp¼0. In the usual

notation, the boost parameter ’ is defined as

cosh’¼ E

m
¼�¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1��2
p ; sinh’¼ p

m
¼��; ’̂¼ p̂:

(10)

By � ¼ ð�1; �2; �3Þ we denote the Pauli matrices. The
symbol I represents an identity matrix, while in what
followsO shall be used for a null matrix (their dimension-
ality shall be apparent from the context). For �‘ðpÞ, we
have two possibilities:

� � p̂��
‘ ðpÞ ¼ ���

‘ ðpÞ:
Following Ref. [6] we now note that, under a Lorentz
boost, #���

‘ðpÞ transforms as a right-handed Weyl spinor,

½#���
‘ðpÞ� ¼ �r½#���

‘ð�Þ�, with

�r ¼ exp

�
þ�

2
� ’

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm

2m

s �
Iþ � � p

Eþm

�
; (11)

where # is an unspecified phase to be determined below.
The helicity of #���

‘ðpÞ is opposite to that of �‘ðpÞ,
� � p̂½#�ð��

‘ ðpÞÞ�� ¼ 	½#�ð��
‘ ðpÞÞ��: (12)

The argument that led to two Majorana spinors, now
instead takes us to their cousins, the four four-component
spinors with the general form

	ðpÞ ¼ #���
‘ðpÞ

�‘ðpÞ
� �

: (13)

The 	ðpÞ become eigenspinors of the charge conjugation
operator, Elko, with real eigenvalues if the phase # is
restricted to �i:

C	ðpÞj#¼�i ¼ �	ðpÞj#¼�i: (14)

One can motivate the well-known Dirac spinors in a
parallel manner; as eigenspinors of the parity operator
SðPÞ. In that case, the right- and left-transforming com-
ponents are necessarily endowed with the same helicity.
For Elko, the right- and left-transforming components
carry opposite helicity. So, whereas Dirac spinors may
exist as eigenspinors of the helicity operator, the Elko

cannot. This eventually is reflected in many of the results
that we arrive at.
To give Elko a concrete form, we adopt the global phases

so that, ‘‘at rest,’’ the left-handed Weyl spinors take the
form [22]

�þ
‘ ð�Þ ¼

ffiffiffiffi
m

p cosð�=2Þe�i�=2

sinð�=2Þei�=2

 !
; (15a)

��
‘ ð�Þ ¼

ffiffiffiffi
m

p � sinð�=2Þe�i�=2

cosð�=2Þei�=2

 !
: (15b)

Eqs. (15a) and (15b), along with Eq. (13) and the demand
of locality allow us to explicitly write the self-conjugate
spinors (# ¼ þi) and anti–self-conjugate spinors
(# ¼ �i) at rest:


f�;þgð�Þ � þ	ð�Þj�‘ð�Þ!�þ
‘
ð�Þ;#¼þi (16a)


fþ;�gð�Þ � þ	ð�Þj�‘ð�Þ!��
‘
ð�Þ;#¼þi (16b)

�f�;þgð�Þ � þ	ð�Þj�‘ð�Þ!��
‘
ð�Þ;#¼�i (16c)

�fþ;�gð�Þ � �	ð�Þj�‘ð�Þ!�þ
‘
ð�Þ;#¼�i: (16d)

For comparison with Eqs. (2)–(4), the above in polarization
basis may be written as


f�;þgð�Þ ¼ i +
*

� �
; 
fþ;�gð�Þ ¼ �i *

+
� �

; (17)

�f�;þgð�Þ ¼ i *
+

� �
; �fþ;�gð�Þ ¼ � �i +

*
� �

: (18)

The * and + differ from " and # of Eq. (4) by the phases,

e�i�=2, which even in the polarization basis prove to be
essential if locality is to be preserved. In the context of
Weinberg’s work on the uniqueness of the Dirac field
(modulo the special case of the Majorana field in the sense
of Majorana’s original 1937 paper [11]), a comparison with
Eqs. (2) and (3) already tells us that a quantum field that
fully respects Lorentz symmetries cannot be built in terms
of 
 and � Elko spinors. The task then is to unearth this
violation, and see how strong, or how weak, the said
violation is.
The 
ðpÞ and �ðpÞ for an arbitrary momentum are now

readily obtained:


ðpÞ ¼ �
ð�Þ; �ðpÞ ¼ ��ð�Þ; � � �r � �‘:

(19)

B. A systematic construction of Elko dual,
orthonormality, and completeness

The norm of Elko under the Dirac dual �	ðpÞ �
½	ðpÞ�y�0 identically vanishes. However, it is more
appropriate to seek a ‘‘metric’’ � such that the product
½	iðpÞ�y�	jðpÞ—with 	iðpÞ as any one of the four Elko

spinors—remains invariant under an arbitrary Lorentz
transformation. This requirement can be readily shown to
translate into the following constraints on �:
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½Ji; �� ¼ 0; fKi; �g ¼ 0: (20)

Since the only property of the generators of rotations and
boosts that enters the derivation of the above constraints is
that Jy ¼ J and Ky ¼ �K, the result applies to all finite
dimensional representations of the Lorentz group. It need
not be restricted to Elko alone. Seen in this light, there is no
nontrivial solution for � for either the right-handed or the
left-handed Weyl spinors. For r � ‘ representation space,
the most general solution is found to carry the form

� ¼
0 0 a 0
0 0 0 a
b 0 0 0
0 b 0 0

2
6664

3
7775: (21)

It is now convenient to introduce the notation 	1ðpÞ �

f�;þgðpÞ, 	2ðpÞ � 
fþ;�gðpÞ, 	3ðpÞ � �f�;þgðpÞ, and

	4ðpÞ � �fþ;�gðpÞ. Then 16 values of ½	iðpÞ�y�	jðpÞ as i
and j vary from 1 to 4 are given in Table I.

To allow for the possibility of parity covariance, we set
b ¼ a. (This treats r and ‘ Weyl spaces on the same foot-
ing.) To make the invariant norms real, we give a and b the
common value of �i, resulting in � ¼ �i�0. In what
follows, the choice of the signs shall be dictated by the
convenience of bookkeeping.

Guided by these results, we now introduce the Elko dual

	
:

f	;�gðpÞ � 	i½	f�;	gðpÞ�y�0: (22)

Under the new dual, the orthonormality relations read



:

ðpÞ

0 ðpÞ ¼ þ2m�

0 ; (23a)

�
:

ðpÞ�
0 ðpÞ ¼ �2m�

0 ; (23b)

along with 

:

ðpÞ�
0 ðpÞ ¼ 0 and �

:

ðpÞ

0 ðpÞ ¼ 0. The

dual helicity index 
 ranges over the two possibilities:
fþ;�g and f�;þg, and�f�;	g � f	;�g. The complete-
ness relation

1

2m

X



½

ðpÞ

:

ðpÞ � �
ðpÞ�

:

ðpÞ� ¼ I (24)

establishes that we need to use both the self-conjugate as
well as the anti–self-conjugate spinors to fully capture the
relevant degrees of freedom.

C. Elko satisfies the Klein-Gordon, not Dirac, equation

Because we are going to encounter several unexpected
results, we pause to examine the behavior of 
ðpÞ and �ðpÞ
spinors under the action of the operator ��p�. This brute

force exercise serves the pedagogic purpose of countering
some prejudices some readers may inevitably carry from
their prior studies. Additionally, in the context of Aitchison
and Hey’s concern that one encounters a problem in con-
structing a Lagrangian density for Majorana spinors if they
are not treated as Grassmann variables ([12], App. P), we
provide the origin of that concern and offer a solution.
We already have explicit expressions for 
ðpÞ and �ðpÞ

spinors. On these we act ��p� and find the following

identities:

��p�
f�;þgðpÞ ¼ þim
fþ;�gðpÞ
, ��p�	1ðpÞ ¼ þim	2ðpÞ (25a)

��p�
fþ;�gðpÞ ¼ �im
f�;þgðpÞ
, ��p�	2ðpÞ ¼ �im	1ðpÞ (25b)

��p��f�;þgðpÞ ¼ �im�fþ;�gðpÞ
, ��p�	3ðpÞ ¼ �im	4ðpÞ (25c)

��p��fþ;�gðpÞ ¼ þim�f�;þgðpÞ
, ��p�	4ðpÞ ¼ þim	3ðpÞ: (25d)

Applying ��p� to Eq. (25a) from the left and then using
(25b) on the resulting right-hand side, and repeating the
same procedure for the remaining equations, we get

ð����p�p� �m2Þ
f	;�gðpÞ ¼ 0;

ð����p�p� �m2Þ�f	;�gðpÞ ¼ 0:
(26)

Now using f��; ��g ¼ 2��� yields the Klein-Gordon
equation (in momentum space) for the 
ðpÞ and �ðpÞ
spinors. Aitchison and Hey’s concern is thus overcome.
The problem resides in the approach of constructing the
‘‘simplest candidates for a kinematic spinor term.’’

D. Elko spin sums: A preferred axis

We now look at the spin sums in Eq. (24) separately.
These evaluate to

X





ðpÞ

:

ðpÞ ¼ m½GðpÞ þ I�; (27a)

X



�
ðpÞ�
:

ðpÞ ¼ m½GðpÞ � I�; (27b)

which together define GðpÞ. A direct evaluation of the left-
hand side of the above equations gives

G ðpÞ ¼ i

0 0 0 �e�i�

0 0 ei� 0
0 �e�i� 0 0
ei� 0 0 0

0
BBB@

1
CCCA: (28)

TABLE I. The values of ½	iðpÞ�y�	jðpÞ evaluated using �.
The i runs from 1 to 4 along the rows and j does the same across
the columns.

0 �imðaþ bÞ �imða� bÞ 0

imðaþ bÞ 0 0 �imða� bÞ
�imða� bÞ 0 0 imðaþ bÞ

0 �imða� bÞ �imðaþ bÞ 0
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For later reference, we note that GðpÞ is an odd function
of p:

G ðpÞ ¼ �Gð�pÞ: (29)

But since GðpÞ is independent of p and �, it is more
instructive to translate the above expression into

G ð�Þ ¼ �Gð�þ�Þ: (30)

This serves to define a preferred axis, ze [23]. Another
hint for a preferred axis arises when one notes that the
spinor structure of Elko does not enjoy covariance
under usual local Uð1Þ transformation with phase
expði
ðxÞÞ. However, UEð1Þ ¼ expði�0
ðxÞÞ—and not
UMð1Þ ¼ expði�5
ðxÞÞ as one would have thought ([24],
p. 72)—preserves various aspects of the Elko structure.
Similar comments apply to the non-Abelian gauge trans-
formations of the SM.

For a comparison with the Dirac counterpart (see App. A
1), we define g� � ð0;gÞ with g ¼ �½1= sinð�Þ�@p̂=@� ¼
ðsin�;� cos�; 0Þ. Note may be taken that g� is a
unit spacelike four-vector, g�g

� ¼ �1. Furthermore,

g�p
� ¼ 0. In terms of g�, GðpÞ may be written as

G ðpÞ ¼ �5ð�1 sin�� �2 cos�Þ ¼ �5��g
�: (31)

This gives Eqs. (27a) and (27b) the form

X





ðpÞ

:

ðpÞ ¼ m½�5��g

� þ I�; (32a)

X



�
ðpÞ�
:

ðpÞ ¼ m½�5��g

� � I�: (32b)

The ��, in the Weyl realization, are taken to be

�0 � O I
I O

� �
; �i � O ��i

�i O

� �
;

�5 � �i�0�1�2�3 ¼ I O
O �I

� �
:

(33)

III. ELKO FERMIONIC FIELDS
OF MASS-DIMENSION ONE:
LAGRANGIAN DENSITIES

Confining to the preferred frame, we now examine
the physical and mathematical content of two quantum
fields [25]:

�ðxÞ �
Z d3p

ð2�Þ3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mEðpÞp X



½a
ðpÞ

ðpÞe�ip�x
�

þ bz
ðpÞ�
ðpÞeþip�x
�� (34)

and

�ðxÞ � �ðxÞjbzðpÞ!azðpÞ: (35)

We assume that the annihilation and creation operators
satisfy the fermionic anticommutation relations [26]

fa
ðpÞ; az
0 ðp0Þg ¼ ð2�Þ3�3ðp� p0Þ�

0 ; (36a)

fa
ðpÞ; a
0 ðp0Þg ¼ 0; faz
ðpÞ; az
0 ðp0Þg ¼ 0: (36b)

Similar anticommutators are assumed for the b
ðpÞ and
bz
ðpÞ. The adjoint field �

:
ðxÞ is defined as

�
:
ðxÞ �

Z d3p

ð2�Þ3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mEðpÞp X



½az
ðpÞ

:

ðpÞeþip�x

�

þ b
ðpÞ�
:

ðpÞe�ip�x

��: (37)

The results contained in Eqs. (25a)–(25d) assure us that it
is the Klein-Gordon, and not the Dirac, operator that
annihilates the fields �ðxÞ and �ðxÞ. The associated
Lagrangian densities are

L �ðxÞ ¼ @��
:
ðxÞ@��ðxÞ �m2�

:
ðxÞ�ðxÞ;

L�ðxÞ ¼ L�ðxÞj�!�:
(38)

The mass dimensionality of these Elko fields is thus one,
and not 3=2.
The mass dimensionality of a field can also be deci-

phered from constructing the Feynman-Dyson propagator.
This matter is discussed in App. A 2.

A. Identification of Elko with dark matter

These results open up an entirely new and unexpected
possibility for the dark matter sector. The primary obser-
vations that suggest this are four-fold:
(1) Because of the mismatch in mass dimensionality of

D� ¼ 1 and D� ¼ 1 with the SM’s matter fields
D� ¼ 3=2, the new fermionic fields cannot enter
the SM doublets.

(2) The Lagrangian densities associated with Elko
fields do not carry the gauge symmetries of the
SM. [See our remarks above Eq. (31).]

(3) The dimension four interactions of the �ðxÞ and
�ðxÞ with the standard model fields are restricted
to those with the SM Higgs doublet �ðxÞ. These are

LintðxÞ ¼ �yðxÞ�ðxÞ½a1�
:
ðxÞ�ðxÞ þ a2�

:ðxÞ�ðxÞ
þ a3ð�

:
ðxÞ�ðxÞ þ �

:ðxÞ�ðxÞÞ�;
where the a’s are unknown coupling constants.

(4) By virtue of their mass dimensionality, the new dark
matter fields are endowed with dimension four self-
interactions,

LselfðxÞ ¼ b1ð�
:
ðxÞ�ðxÞÞ2 þ b2ð�

:ðxÞ�ðxÞÞ2

þ b3½ð�
:
ðxÞ�ðxÞÞ2 þ ð�:ðxÞ�ðxÞÞ2�; (39)

where the b’s are unknown coupling constants.
Observational evidence suggests that dark matter
needs to be self-interacting [1–4,27].
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Combined, the enumerated Elko properties not only
render Elko dark with respect to the SM matter fields,
but they also endow it with various observationally attrac-
tive properties. It is worth emphasizing that all of these
properties are intrinsic to Elko, and arise in a natural way.

B. The locality structure of Elko

The canonically conjugate momenta to the Elko
fields are

�ðxÞ ¼ @L�

@ _�
¼ @

@t
�
:
ðxÞ; (40)

and similarly �ðxÞ ¼ @
@t �

:ðxÞ. The calculational details for

the two fields now differ significantly. We begin with the
evaluation of the equal time anticommutator for the �ðxÞ
and its conjugate momentum, and find

f�ðx; tÞ;�ðx0; tÞg

¼ i
Z d3p

ð2�Þ3
1

2m
eip�ðx�x0Þ

�X



½

ðpÞ

:

ðpÞ � �
ð�pÞ�:
ð�pÞ�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼2m½IþGðpÞ�

(41)

or, equivalently,

f�ðx; tÞ;�ðx0; tÞg¼ i�3ðx�x0ÞIþ i
Z d3p

ð2�Þ3e
ip�ðx�x0ÞGðpÞ:

(42)

The anticommutators for the particle/antiparticle annihila-
tion and creation operators suffice to yield the remaining
locality conditions,

f�ðx; tÞ;�ðx0; tÞg ¼ O; f�ðx; tÞ;�ðx0; tÞg ¼ O:

(43)

Since the integral on the right-hand side of Eq. (42) van-
ishes only along the �ẑe axis, the preferred axis also
becomes the axis of locality.

For the equal time anticommutator of the �ðxÞ field with
its conjugate momentum, we find

f�ðx; tÞ; �ðx0; tÞg ¼ i
Z d3p

ð2�Þ3
1

2m

X



½eip�ðx�x0Þð

ðpÞ

:

ðpÞ

� �
ð�pÞ�:
ð�pÞÞ�; (44)

which, using the same argument as before, yields

f�ðx; tÞ;�ðx0; tÞg ¼ i�3ðx�x0ÞIþ i
Z d3p

ð2�Þ3 e
ip�ðx�x0ÞGðpÞ:

(45)

The difference arises in the evaluation of the remaining
anticommutators. The equal time �-� anticommutator
reduces to

f�ðx; tÞ; �ðx0; tÞg

¼
Z d3p

ð2�Þ3
1

2mEðpÞ e
ip�ðx�x0Þ

�X



½

ðpÞ�T
ðpÞ þ �
ð�pÞ
T

ð�pÞ�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
��ðpÞ

: (46)

Now using explicit expressions for 

ðpÞ and �
ðpÞ, we
find that �ðpÞ identically vanishes. Eq. (46) then implies

f�ðx; tÞ; �ðx0; tÞg ¼ O: (47)

Finally, the equal time �-� anticommutator simplifies to

f�ðx; tÞ; �ðx0; tÞg

¼
Z d3p

ð2�Þ3
EðpÞ
2m

e�ip�ðx�x0Þ

�X



½ð
:
ðpÞÞT�
:

ðpÞ þ ð�:
ð�pÞÞT
:
ð�pÞ�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼O; by a direct evaluation

;

yielding

f�ðx; tÞ; �ðx0; tÞg ¼ O: (48)

Eqs. (42), (43), and (45)–(48) establish that �ðxÞ and �ðxÞ
are local quantum fields along the preferred axis, ẑe. We
propose to call ẑe the axis of locality in the dark sector.

IV. CONCLUDING REMARKS

Modulo its specialization to the Majorana field,
Weinberg’s monographic work [8] establishes the unique-
ness of the Dirac quantum field for spin 1=2 particles. Seen
from that perspective the Ahluwalia-Grumiller work on
Elko in 2005 was unexpected. Elko found significant in-
terest among mathematical physicists and cosmologists
[28–41]. In these papers one dealt with Elko as spinors
and not as a quantum field. Hence, no contradiction with
Weinberg’s theoremlike work occurred. Gillard and Martin
showed that if Elko were to be taken as ‘‘good’’ quantum
fields, Poincaré symmetries would be violated in some
form or the other [42]. The results presented in this
communication explicitly confirm this and show that the
violation occurs in a rather subtle way. Despite this, Elko
stands as a natural dark matter candidate. Its darkness with
respect to the SM matter and gauge fields follows imme-
diately from its intrinsic mass dimensionality. It admits an
unsuppressed quartic self coupling. Additionally, it points
towards the existence of a preferred axis, along which the
Elko quantum fields enjoy locality. Although Elko is non-
local when the frame is not aligned to the preferred axis,
Fabbri [41] has shown that the fields do not violate cau-
sality in the sense of Velo and Zwanziger [43].
Recent results seem to suggest that the Elko quantum

fields satisfy the symmetry of very special relativity (VSR)

SELF-INTERACTING ELKO DARK MATTER WITH AN . . . PHYSICAL REVIEW D 83, 065017 (2011)

065017-7



proposed by Cohen and Glashow [44]. The HOM(2) and
SIM(2) VSR groups naturally incorporate a preferred axis
which may be identified with the axis of locality. This will
be published in a forthcoming paper.
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APPENDIX A

1. Dirac spin sums and a ‘‘misleading’’ derivation
of the Dirac equation

With a minor departure from the historical path, the
Dirac counterpart of Eqs. (32a) and (32b) may be con-
structed as follows. Instead of (6), we start with

c D � �r

�‘

� �
: (A1)

The helicities of �r and �‘ are identical and are deter-
mined by requiring that c D be eigenspinors of the parity
operator SðPÞ. Again, there are four independent rest spin-
ors. (These differ from those mentioned in Sec. I A only in
that we now work in the ‘‘helicity basis.’’)

uþ1=2ð�Þ ¼ �þ
r ð�Þ

�þ
‘ ð�Þ

� �
; u�1=2ð�Þ ¼ ��

r ð�Þ
��

‘ ð�Þ
� �

; (A2)

vþ1=2ð�Þ¼ ��
r ð�Þ

���
‘ ð�Þ

� �
; v�1=2ð�Þ¼ ��þ

r ð�Þ
�þ

‘ ð�Þ
� �

: (A3)

The uðpÞ and vðpÞ for an arbitrary momentum are obtained
via the action of the boost �:

uðpÞ ¼ �uð�Þ; vðpÞ ¼ �vð�Þ: (A4)

These lead to the spin sumsX
�

u�ðpÞ �u�ðpÞ ¼ m

�
��p

�

m
þ I

�
; (A5a)

X
�

v�ðpÞ �v�ðpÞ ¼ m

�
��p

�

m
� I

�
; (A5b)

where � takes two values:þ1=2 and�1=2. As before, the
right-hand sides in the above expression simply express the
result of a direct evaluation of the left-hand sides. These
are covariant.

We thus see that in the Dirac construct (whether it be at
the level of spinors or at the level of a quantum field), no
preferred frame is introduced. For Majorana spinors, and
Elko, the conclusion is both unexpected and inevitable.
This difference—as pertaining to the existence of a pre-
ferred frame—between the Dirac and Majorana spinors,
along with their cousins Elko, to our knowledge is com-
pletely unknown. This conclusion carries distinct echoes of

the unpublished notes [45] which eventually, in collabora-
tion with Grumiller, led to the discovery reported in
Refs. [5,6].
If we multiply Eq. (A5a) by u�0 ðpÞ from the right, and

use �u�ðpÞu�0 ðpÞ ¼ 2m���0 , and carry out a similar exer-

cise with Eq. (A5b), then after a minor rearranging we
obtain

ð��p
� �mIÞuðpÞ ¼ 0; (A6)

ð��p
� þmIÞvðpÞ ¼ 0: (A7)

These are indeed Dirac equations in momentum space.
With p� ! i@� and

c ðxÞ �
�
uðpÞ expð�ip�x

�Þ
vðpÞ expðþip�x

�Þ; (A8)

these yield the well-known Dirac equation in the configu-
ration space

ði��@
� �mIÞc ðxÞ ¼ 0: (A9)

To associate these with the dynamics of spin 1=2 spinors,
particularly in the context of quantum field theory [where
c ðxÞ is elevated to a spinor field �ðxÞ] requires that, in

addition, the vacuum expectation value, hjT ½�ðx0Þ ��ðxÞ�ji,
be proportional to the relevant Green’s function. That
is to say, it is not sufficient to find an operator, such as
(i��@

� �mI), or the Klein-Gordon operator, that annihi-

lates �ðxÞ for it to serve in the Lagrangian density of the
field �ðxÞ. It must also satisfy the said requirement. This
will become abundantly clear from what follows in the
context of Elko.
While we do consider the above ‘‘derivation’’ of the

Dirac equation misleading, it does serve to tell us that
the Dirac spinors are eigenspinors of ��p� with eigenval-

ues �m:

��p
�uðpÞ ¼þmuðpÞ; ��p

�vðpÞ ¼�mvðpÞ: (A10)

The Elko counterpart is

G ðpÞ
ðpÞ ¼ þ
ðpÞ; GðpÞ�ðpÞ ¼ ��ðpÞ: (A11)

It again emphasizes that identities such as these should not
be mistaken for dynamical equations. In particular, GðpÞ,
unlike its Dirac counterpart ��p

�, contains no time

derivative.

2. Elko time ordering and propagators

The mass dimensionality of a field can also be deci-
phered from constructing the Feynman-Dyson propagator.
This involves defining a time-ordering operator. The exis-
tence of a preferred direction, however, raises questions
with regard to the definition in the context of Elko. In what
follows, we first adopt the standard definition of the fermi-
onic time-ordering operator, and then we invoke a consis-
tency argument to formulate a redefinition for Elko.

D. V. AHLUWALIA, CHENG-YANG LEE, AND D. SCHRITT PHYSICAL REVIEW D 83, 065017 (2011)

065017-8



LetT be the standard fermionic time-ordering operator.
Then, a straightforward calculation yields

hjT ½�ðx0Þ�
:
ðxÞ�ji

¼
Z d3p

ð2�Þ3
1

2mEðpÞ
�X




½�ðt0 � tÞ

ðpÞ

:

ðpÞe�ip�ðx0��x�Þ

� �ðt� t0Þ�
ðpÞ�
:

ðpÞeþip�ðx0��x�Þ�; (A12)

where the step function �ðtÞ equals unity for t > 0 and
vanishes for t < 0.

Using the spin sums (27a) and (27b), setting q� ¼
ðq0;q ¼ pÞ, and using the standard integral representation
for the �ðtÞ, Eq. (A12) simplifies to

hjT ½�ðx0Þ�
:
ðxÞ�ji

¼ i
Z d4q

ð2�Þ4 e
�iq�ðx0��x�Þ

�
IþGðqÞ

q�q
� �m2 þ i�

�
; (A13)

where the limit � ! 0þ is understood [46]. If there were no
preferred axis, then the integral involving the GðqÞ term
would have identically vanished. Consistency with result
(38) suggests that, in Elko quantum field theory, one may
need to modify the definition of the time-ordered product
to T #, such that

hjT #½�ðx0Þ�
:
ðxÞ�ji

¼ i
Z d4q

ð2�Þ4 e
�iq�ðx0��x�Þ

�
I

q�q
� �m2 þ i�

�
: (A14)

To decipher the mass dimensionality, let D� be the mass
dimensionality of �ðxÞ. Then the left-hand side of the
above equation has mass dimension 2D�. As for the
right-hand side, the mass dimensionality is 2. This
gives D� ¼ 1. Similarly, a simple computation shows

that hjT #½�ðx0Þ�
:
ðxÞ�ji ¼ hjT #½�ðx0Þ�

:ðxÞ�ji. As such,
D� ¼ 1.
Applying the operator ½@0�@0� þm2� from the left on

both sides of Eq. (A14) gives

½@0�@0� þm2�hjT #½�ðx0Þ�
:
ðxÞ�ji ¼ �i�4ðx0� � x�Þ:

(A15)

In comparison, for the Dirac field,

hjT ½�ðx0Þ ��ðxÞ�ji

¼ i
Z d4q

ð2�Þ4 e
�iq�ðx0��x�Þ

�
mIþ ��q�

q�q
� �m2 þ i�

�
: (A16)

This well-known result gives D� ¼ 3
2 . The reader is re-

minded that the ��q� structure appears here through the

spin sums which, in the logical framework of this commu-
nication, do not invoke any wave equation or a Lagrangian
density. Applying the operator ½i��@0� �m� from the left

on both sides of Eq. (A16) yields

½i��@0� �m�hjT ½�ðx0Þ ��ðxÞ�ji ¼ i�4ðx0� � x�Þ: (A17)
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