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Perturbative expansion of N < 8 Supergravity
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We characterize the one-loop amplitudes for N' = 6 and N = 4 supergravity in four dimensions. For
N = 6 we find that the one-loop n-point amplitudes can be expanded in terms of scalar box and triangle
functions only. This simplification is consistent with a loop momentum power count of n — 3, which we
would interpret as being n + 4 for gravity with a further —7 from the N' = 6 superalgebra. For N = 4
we find that the amplitude is consistent with a loop momentum power count of n, which we would
interpret as being n + 4 for gravity with a further —4 from the N = 4 superalgebra. In contrast to
previous studies we find that the N° = 4 amplitudes contain noncut-constructible rational terms.
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L. INTRODUCTION

Superficially the perturbative expansion of gravity scat-
tering amplitudes [1] is extremely complicated and power
counting suggests the theory is plagued with ultraviolet
divergences. However, there is growing evidence that the
ultraviolet behavior of gravity theories is significantly
softer than expected. The bulk of this evidence has arisen
from studies of explicit on shell scattering amplitudes rather
than formal structures. The underlying drivers for this
behavior remain unclear. Even at tree level surprises have
recently been noted: the large momentum behavior of tree
scattering amplitudes has a softer behavior than expected
[2-5] and a rich structure of relationships between the tree
amplitudes has been uncovered [6—13], which go beyond
the well-known Kawai-Lewellen-Tye (KLT) relations [14].

At loop level, the softest theory is expected to be
maximally supersymmetric N = 8 supergravity [15].
Reexaminations of the perturbative expansion of N = 8
have uncovered evidence that this theory has a softer UV
structure than previously thought [16]. Explicit calcula-
tions of physical scattering amplitudes have shown that the
four-graviton amplitude is finite at two [17], three [18,19]
and four loops [20]. In particular, the results indicate
cancellations between diagrams beyond these explicit in
any known formalism. At one-loop N = 8 amplitudes for
arbitrary numbers of external gravitons have been shown to
have a very restricted form, to O(e):

A=Dcli

where I are scalar box functions and c; are rational
coefficients [21-23]. This ‘“‘no-triangle hypothesis™ [24]
must result from a much stronger cancellation within su-
pergravity theories than previously thought and has been
checked by explicit computations up to seven points
[21-24] and proven within a string-based rules formalism

(1.1)
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[25]. Both of these calculations indicate that in the UV
limit the behavior of N' = 8 supergravity tracks that of
N = 4 super-Yang-Mills. This opens the possibility that
N = 8 supergravity is a finite quantum field theory of
gravity. Although potential counterterms may exist at high
loop order [26], there is no evidence contrary to finiteness
at this point.

In [27] and implicitly in [24] the source of these can-
cellations was examined. When calculating a one-loop
amplitude in a general gravity theory we sum over dia-
grams. Let m be the number of legs attached to the loop,
m = n. We expect loop momentum integrals of the form

L,[P"[¢]] (1.2)

where P?"[{] is a polynomial of degree 2m in the loop
momentum €. Cancellations between diagrams can reduce
the effective degree of the loop momentum polynomial.
We denote this effective degree by d . The traditional
expectation within supergravity theories is that cancella-
tion between particle types within a supermultiplet reduces
the degree of the loop momentum polynomial from 2m to
de = 2m — r, where r depends upon the degree of super-
symmetry. For maximal supergravity r = 8 [28,29] is
manifest within the ‘string-based rules” method.
However the no-triangle hypothesis indicates that further
cancellations arise, resulting in d.; = m — 4. This sug-
gests a degree of m + 4 (rather than 2m) for pure gravity,
reduced by 8 by the N = 8 supersymmetry. In this article
we explore the perturbative expansion of N = 6 and
N = 4 supergravity theories to examine their UV behav-
ior. A starting hypothesis for the reduction in the degree of
the loop momentum polynomial is

der = (m+4) —r (1.3)

where r =4 for N =4 supergravity and r =6 for
N = 6 supergravity. To understand the implications of
this for the structure of these amplitudes, we recall that a
general one-loop amplitude in a theory of massless parti-
cles can be expressed, after a Passarino-Veltman reduction
[30], in the form
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(1.4)

where the I are f-point scalar integral functions and the a;
etc. are rational coefficients. R, is a purely rational term.
For d.; = n we expect this full generic form, while for
desp < n the rational term is absent, for d.y = n — 3 the
bubbles I, are also absent and for d.;y = n — 4 only the
box functions appear.

For N = 6 our explicit calculations indicate d.; =
n — 3, i.e. r = 7. Compared with (1.3) there is an extra
reduction in the power count by one for N = 6 ampli-
tudes, giving them a simplified expansion:

M;Jlne-loop,.']\f=6 _ Zailéit + z bj]g (1.5)

iec €D

This is consistent with the expectations of [25,27]. For
N = 4 we find amplitudes consistent with d.; = n, im-
plying that » =4, and R, # 0 in Eq. (1.4). The latter
observation contradicts previous expectations [25,27].
The evidence for this, together with a discussion of the
implications, will form the remainder of this article.

II. IR CONSISTENCY AND CHOICE OF INTEGRAL
FUNCTION BASIS

For one-loop amplitudes IR consistency imposes a sys-
tem of constraints on the rational coefficients of the inte-
gral functions. For the matter multiplets [31] there are in
fact no IR singular terms in the amplitude, so the singular
terms in the individual integral functions cancel. This gives
enough information to fix the coefficients of the one- and
two-mass triangles in terms of the box coefficients. The
three-mass triangle is IR finite, so its coefficient is not
determined by these constraints. It is convenient to com-
bine the boxes and triangles in such a way that these
infinities are manifestly absent. There are several ways to
do this [32-35], here we choose to work with truncated box
functions

e =1, - Yo - 2.1)
i

where the «; and s; are chosen to make /"™ IR finite.

This effectively incorporates the one- and two-mass tri-

angles together with the box integral functions. Using these
|

[12] [3IKala)4]K sla) - -
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truncated boxes, the coefficients of the one and two-mass
triangles vanish and the amplitudes can be written as

Sar™™ + > b T > ek +R,

iec JED kEE

one-loop __
M n -

2.2)

with the single additional constraint Y ¢; = 0.

III. N = 6 ONE-LOOP AMPLITUDES

At one-loop our N = 6 supergravity theory is specified
by its particle content and tree amplitudes. There are two
possible multiplets: the vector multiplet and the matter
multiplet, with particle contents as follows:

Helicity 2 3/2 1 1/2 0 -1/2 -1 =3/2 -2
vector 1 6 16 26 30 26 16 6 1
matter O 1 6 15 20 15 6 1 0

The contributions to the one-loop n-graviton scattering
amplitude from the two JN° = 6 multiplets satisfy

N =6,vector — N=8 _ N =6,matter
M M 2M .

(3.1)

As MN=8 is known, it is sufficient to compute the con-
tribution from the matter multiplet alone.

A. MHYV amplitudes

The one-loop n-point MHV amplitude in N = 8 super-
gravity is [22]

one-loop,N:S(lf 2- 3+ I’l+)

_(= 1)”<12>8

X Y h(a,M,b)h(b,N,a)r*[aMbN]IMN + O(e),

1=a<b=n
M,N

(3.2)

where h(a, M, b) are the “half-soft” functions of Ref. [22]
and I¢MPN are the ‘“‘two-mass-easy’” scalar box functions
with massless legs a and b and massive clusters M and N.
For clarity we suppress a factor of ix" 2 in each tree
amplitude and ix"/(47?) in each one-loop amplitude.
The summation includes the degenerate cases where M
or N reduce to a single massless leg. The half-soft func-
tions have the explicit form

[nlKy. 1 la)

Ma il 2o b) = s aaay -

where we are using the usual spinor products
GO =G 1" = a-(kpu(k) and [jl]=(I7) =
iy (kj)u_(k;), and where [i| K pelj) denotes (it K pelj™)
with K" = ki + kii + ki and 5., = (k, + k;,)%, etc.

abc

“{n — 1, n)¥alXa2Xa3) - -

+ P(2,3,...,n), (3.3)

~{an)1b)nb)

The JN' = 6 matter multiplet’s contribution to one-loop
n-point MHV amplitudes has vanishing three-mass triangle
coefficients. The bubble coefficients also vanish as explic-
itly shown in Appendix A. Considering the rational terms,
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could be recursively generated from R, _;, this would be
sufficient to ensure R, = 0 for all n.

Consequently these contributions can be expressed
purely as sums of truncated boxes with a single negative
helicity leg in each massive corner, as shown in Fig. 1. The
box coefficients may be determined using unitarity meth-
ods [32] including quadruple cuts [36]. To use quadruple
cuts we require the MHV tree amplitudes for n — 2 grav-
itons and a pair of particles of helicity *A:

M(17,277 3% 4% ... pt)
FIG. 1. The box functions appearing in the 2N" = 6 MHV one-

loop amplitude. = (%)2}141”(1_’ 27,3547 0"y (3.4)

R, the existence of an overall d.; that ensures that the ~ where the MHV amplitudes from n gravitons are given in
bubble coefficients vanish would also ensure the vanishing [37]. We find the box coefficients are related to the maxi-
of R,. Additionally, power counting in the string-based  mally supersymmetric case by simple factors, as in QCD
rules [28,29] gives R, = Rs; = 0, and if we assume R, [33],

|

=6,matter (1 — ~A— ~+ + _(_l)n <1a><2a><1b><2b> a ,trunc
M ZOmater(1= 27 3%, n )= (12" 3> (W)h(a,M,b)h(b,N,a)trZ[aMbN]14MbN )

2<a<b=n
1EM2EN

This gives an all-n expression for the amplitude consistent with a loop momentum power count of n — 3 in agreement with

previous results.
B. Six-point NMHV

The six-point next-to-MHV (NMHV) amplitude contains several features that are not present in the MHV amplitudes: in
addition to the one-mass truncated boxes the amplitude also contains two-mass-hard truncated boxes and three-mass
triangles as shown in Fig. 2.

In terms of these integral functions the amplitude is

Mg\f:amatter(l—, 2—’ 3—’ 4+, 5+’ 6+) _ Z Ca(bc)(de)flz(hc)(de)f,trunc
(abd)EP5(123);(cef)EP5(456)
(abc)def y(abc)def,t
+ C_;fi;flf c)def,trunc
(adf)EP4(456);(bed)EP;(123)
~(abc)def y(abc)def,t
+ C:;l\fiﬁe 14{,1 cl)de runc
(adf)EP;5(123);(bed)EP5(456)
+ Z C(lj\?):'(gd)'(SK)Iglb)(Zd)Ge). (3.6)
(bde)EP5(456)
The sums run over the permutations of indices 1, . . ., 6, modulo symmetries of the integral functions I‘(fbc)def and IZ(bC) (de)f
The two-mass-hard box coefficients are
ca*(lchr)(dfeJr)f+ :i Sbcsdes%;f(Kgbc)[a|Kabc|d>[c|Kabc|f>[C|Kabc|d>6 (37)
N=6 2 [ab][bc]2<d6>2<ef>[a|Kubc|d>[aIKahc|e>[b|Kubc|e>[c|Kabc|f>[a|Kabc|f>2
the one-mass box coefficients are
v _ I deepldelefTelK o) Gablbel 1K, lo)da) + [ablpoled MK pel)
N=6 2 (abXbeXac)df PLAIK gy DU IK ape | DAIK g | OLF I K gpe | €YK 2, ’
and
_(a*b c)dTe fF a btet)d et f
gl b e T = la b ey (3.9)
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b= ¢ dr bt ¢t a-
at a”
Iiabc)def Iiabc)def
fr e” I~ et
ct - c” dr
b= et
IZ(bC)(dC)f [Agab)(cd)(Cf)
: b+ o
a” fr a~ ft

FIG. 2. The box functions appearing in the NMHV six-point
one-loop amplitude.

The three-mass triangle coefficients can be evaluated
using analytic techniques [38—40] and are

Ao b d e ) !
N=o sabscdsef<6d>2
% ic <BG|[Kab’ ch]lAi>
i=1 A <Ai|Kachd|Ai> '

(3.10)

where

{|A1>} = {|b>, |f>’ Keflc]’ Kahld]’ Kuchd|f>J KefKLd|b>}r

(3.11)
with
|B)) = |By) = |a)d|fle) + |e)d|bla),
|B3) = |By) = |o)f|bla) + |a)[fldlc), (3.12)
|Bs) = |Bg) = le)[bld|c) + |c)[blfle),
and
co_ >_(BlA) G13)
A TLe4A 1A '

This explicit six-point amplitude has all the correct cuts
and is, again, consistent with a loop momentum power
count of n — 3. The absence of cut-constructible bubble
terms can be seen from the N° = 6 version of the analysis
in Sec. (3.3) of Ref. [24]. We have presented results for
external gravitons: the box coefficients for other external
states may be obtained using supersymmetric Ward iden-
tities [41].

PHYSICAL REVIEW D 83, 065015 (2011)
IV. N = 4 ONE-LOOP AMPLITUDES

The particle content multiplicities of N = 4 graviton
and matter multiplets are as follows:

Helicity 2 3/2 1 1/2 0 -—-1/2 -1 -=3/2 =2
graviton 1 4 6 4 2 4 6 4 1
matter 0 0 1 4 6 4 1 0 0

For convenience, we will calculate the one-loop amplitude
using the N = 4 matter multiplet, which is related to the
amplitude containing the graviton by

MN:4,gravit0n — MN:S _ 4M_7\f:6,matter + 2MN:4,rnatter.
“4.1)

To order €°, the four-point one-loop N' = 4 amplitude is
given by [29]

Ml—loop,.’]\f:4(1f’ 27, 3+’ 4+)
F
- F((r —Wshn(—1/ — u)

— tu(ln®(—t/ — u) + 72) + sz) 4.2)

where

st{12)* )2

1 Stu tree(1— 7— 23+ g+
= o) 0T

4
4.3)

and s=s§p,, t=s54, and u = s3, are the usual
Mandelstam variables. In terms of integral functions this
result can be expressed as

Ml-loop,.’)\f=4(17 2— 3+ 4+)

= 2—1:“4((2‘ - M)S(Iz(l’) — Iz(u)) — (tu)ZI}‘runc(t’ I/t) + S2>,

(4.4)

As we can see, this N = 4 amplitude contains a rational
term

ko L
02

4
t<12>)2‘ 4.5)
(12)(23)(34)(41)

The presence of a rational term indicates that the power
count is at least 4 in this case. Since higher-point ampli-
tudes must reduce to the four-point amplitude in soft and
factorization limits, it appears inevitable that rational terms
also appear in all n-point amplitudes, indicating that the
power count for N = 4 supergravity and one loop is at
least n.

The n-point MHV amplitude is
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MN=*(17,27,3%,....n

2<a<b=n
1EM2EN

+ Y (1, A:2, B)L(P}) + R,

1EA2EB

where the sets A and B, contain at least one positive
helicity leg. The bubble coefficients ¢,(1, A;2, B) are de-
rived and given explicitly in the Appendix. Previously it
has been suggested [25,27] that R, = 0 for N = 4 am-
plitudes. Our analysis suggests otherwise: we have explic-
itly seen that R, # 0. As a further check we have evaluated
R5 at a specific kinematic point (given in the Appendix)
using string-based rules for gravity [28,29,42]. At this
kinematic point we find

Rs = —589.27 — 1180.37i 4.7

In the calculation the rational term receives contributions
from the pentagon and box diagrams only.

V. BEYOND ONE-LOOP

All supergravity theories in D = 4 are one- and two-
loop finite since there is no R supersymmetric counter-
term, but at three-loops a potential R* counterterm exists
[43]. Until recently is was widely believed that all super-
gravity theories would generate this counterterm at three-
loops [16]. (In higher dimensions multiple possible R*
terms exist: for D = 8, 10 the dimensional lifts”” of
N =8, N =6 and N = 4 have different counterterm
structures [44], but for D = 4 there is a unique R* counter-
term consistent with supersymmetry.)

We can attempt to estimate the power counting of the
multiloop amplitudes by considering various cuts. In par-
ticular let us consider the ‘“‘three-particle cut” of the three-
loop four-point amplitude,

[dLIPS(li)MO"e_IOOP(L 2,8, €5, €3) X M™<(3,4, €y, €5, €3)

(5.1)

as shown in Fig. 3.

We can estimate the overall power counting by looking
at the power count of the uncut loop momenta. Note that
we are looking at the amplitude rather than individual
diagrams. For N' = 8 supergravity, examining individual
diagrams suggests the three-loop power count is [17]

FIG. 3. The three-particle cut of a three-loop amplitude.

S (10)QaX15)2)Y:
=502 3 (S

) h(a, M, b)h(b, N, a) t’[aMbN]T¢MPN-trunc

(4.6)

P2(€l’ k; )

0D, (6,, ) (5.2)

[tz
for a diagram with propagators D; and where P, is
a polynomial in the loop momenta of degree 2. However
the “no-triangle” property suggests the power count in
the indicated cut is only P,. This gives a degree of diver-
gence of

3D—-20+1 (5.3)
making the amplitude divergent for
D =6. (5.4)

This is consistent with the explicit three-loop computation
[19].

For N = 6 and /N = 4 (assuming the degree of diver-
gence can be inferred from this cut) we obtain

N =6:3D—-20+2 N =4:3D—20+5.
(5.5)

Both degrees of divergence are less than —1 for D = 4 and
so we would predict that both theories remain finite at
three-loops. These estimates must be taken with some
caution: estimates of the power counting in supergravity
theories have proven wrong on many occasions.
Specifically, we cannot exclude further cancellations
within integrands and we are not sensitive to all possible
terms. Experience suggests that explicit calculations are
required.

VI. CONCLUSIONS

Explicit calculations of scattering amplitudes in N = 6
and N = 4 supergravity theories indicate loop momen-
tum power counts of n—3(=n+4-7) and
n(=n + 4 — 4) respectively in agreement with previous
expectations. However for the N° = 4 amplitudes we find
rational terms in contradiction to previous expectations.
We expect both these theories to remain finite up to three-
loops.
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APPENDIX A: BUBBLES IN SUPERGRAVITY
MHV AMPLITUDES

Here we present the bubble contributions to MHV am-
plitudes. Consider a cut in the momenta P = k, + - - - k,,.
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The coefficient of the bubble integral function I,(P?) can
be obtained from the cut

Co.p= chrups[jvl“ee( O aa+1,...,b 6"
X Muee(—¢h b+ 1,b+2,...,a— 1, (?;h)],
(A1)

where [ dLIPS denotes integration over the on shell phase
space of the ¢;. We must sum over the states in the N = 4
matter multiplet. This cut vanishes unless we have a single
negative helicity leg and at least one positive helicity leg on
each side.

There are a variety of techniques available to determine
the bubble coefficient from the cut: we will use the method
of canonical forms [40]. We decompose the product of tree
amplitudes appearing in a two-particle cut in terms of
canonical forms F;:

ZMtree(_el’ e
= Zci:]:i(gj)r

€2) X Mtree(_eb ) €l)

(A2)

where the c; are coefficients independent of €;. We then
use substitution rules to replace the F;(€;) by the evaluated
forms F;(P) and obtain a bubble coefficient:

D ciFy(P). (A3)
For example, the simplest canonical form we use is
€B>
H (A;B; () = (B) A4

which, for € = €, or {,, evaluates to a contribution to the
bubble coefficient of

[A|P|B)
LA B L= Ty
It is convenient to define extensions:
n_(BA)
H A B b)) = Lj=1\"j%/ — H.[A:B:
n( 1 ] ) :1:1<Ai€> [ 1 ] ]
"_2(B;A;) (B,|P|A;
=an 2< J >< 1| | ,]’ <AiAj>¢O.
= [1,+1(A;A;) (A;|P|A;]
(A6)

We will also need the special cases where A; = A, = A:
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HE(A, A; By, By €))

_ (B €1XByt5) o ) )
= Aeyagy A A By By Pl
_ [A|P|B)[A|P|B,)
—[AlPlAyY A7
and
v _ (Bt XBy o)X Bsly)  ((B3A) . , )
R s el (e LGl

(B3A3)
(AA3)

+ %M&%ﬁﬂﬂ (A8)

We now return to the cut C,...,. To be nonzero the set
a - - - b must contain exactly one negative helicity graviton
and at least one positive helicity graviton, i.e. must be of
the form {a{, a3y, -, anL, my } and the legs on the other
side must be {b{", by, -, b, ,m;}. The product of tree
amplitudes is then just a product of the two MHV trees.

When summing over the states in the multiplet, each tree
amplitude is proportional to the tree amplitude with two

scalars up to a simple factor. Summing over the tree
amplitudes then yields

¢ hoo+ o+ v = p—h
Z[.?Vlree(—{’ cal,ay,ccay,mp,€5")
7

X Mbee(—¢8 bl by, - - by, my, o)
= MUee(—¢€3,af, a3, -
X MU (03, by, b, - -

. - S
a,,L, my, €5)

b,J,“R, my, €3)] X p. (A9)

Where the p factor is

(mymp)X(1,1,)? )A (A10)

P ((ml11><m112><m211><m212>
where A = 2for N =4and A = 3for N =6 (A = 1 for
a N = 1 matter multiplet).

Next, we rewrite the standard form of the MHV tree

amplitude [37] so that the permutation is on the positive
helicity gravitons:

Mtree(ls 2+ 3+ Ce

= —i(ln = DX — 1]

(n=2)" (n—1)7,n)
[12][n — 2n — 1]
{In — DN(n)

«(T1 11 <u>)1'[< [PIK 1)

i=1 j=it2
n-2)]

where N(n) = [, ,(ij). Labelling the negative helicity leg
n— lasmandlegs2ton — 2asa, - - - a, and identifying
legs 1 and n with €, and €, gives

+ P23, -, (A11)
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M}{ee(l“', a1+’ a;-’ e a:” m-, l%) - —i(llm)4<12m>4|: [llal][a /m:|<l|m> (l_[<lla >)<nl_—[1<ajm>)

(LmyLm)N ([T ailaam)XIy 1) 0
/ n'—1

n'—1 n
(1‘[ 1‘[<a,a,>)1'[< [a, 1R, |L) + Play, as, - )}

i=1 j=i+2
Ly )T T ot T Ly R o 11
Nn’<an’m><ll12><llal>(n?=1<12ai>)

_i<l1m>3<lzm>3

+ Play, ay, -+, a,) (A12)

whereK =k, + -k, +k,and N,y = [« {a;a)).

Countlng each factor of the form (Al;) or [Al; ] as havmg a loop momentum weight of + 1, the power count on the cut
momenta of a tree amplitude is of order +2. For the /N* = 6 multiplet, the p factor contrlbutes —6 so the cut s of order €; 2
and thus [40] gives a bubble coefficient of zero.

For the N' = 4 matter multiplet, the cut is

Y Muee(—h, L ) X M (=, ) = (mymp)* > Y Tipp, (A13)
h P(a;) P.(b;)
where
Tippy = CoCp. (WL a1 by Kmy L)Y my L)Xma LY ma L) T, A, 179] | B, 1)
(Fp) hi (Liay X1y b >nxe{a»b.}<Xlz>
—C.C (my L Xmaly)lay|PlL) b, |P|lz><mllz><m212>nnl 1<A L) l'["’* 1<B 1)
Pt <l1611><11‘12>nxe{a,,b‘,.}<Xlz>
(my Ly mpl ) TTE (A TTR ((Bjla)
= CpC : = Al4
Pt <l1al><llb1>nxe{a,-,bj}<XIz> (A1)
and
V_[Kila] i=n,—1 , ={1%’>|b;] J=ng—1
147 {|m1> i=ny lB]> |n;2>] J=ng (A1)
T T laiay) 1
C e ! : Al6
TN ) () T ) o
We can rearrange the €, dependant part,
<m1l1><m211>n?i1<Ailz>n7il<Bj12> (my 1 Xmaly Xmy 1)
: _ D Al7
Gabd et () ooy P iyl A
with
D, = (mox) [T, [al|K1+1|x>nn 7l[bk|K +1|X> [T 71[az|K1+1|X>l_[ [bk|[€§€+1|x>' (A18)

l-ly#:x<xy> [banZ] ny¢x<xy>
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Now for x # ay, b, the term in Eq. (A17) just gives H3 canonical forms. For x = a; or b; we get H3 | terms, Putting the
pieces together, we have a bubble coefficient of

clmi {afsms, (b)) = (mim)* 3 Co, Co

46 + i
/\(1)= 2 , )\(2)=
© T H <l4+18i) .

P;,Pg x#ay,b,

Dy H 1 (by, by, aysmy, my, m1§P)>.

Z DxH3(X, ay, byymy, my, ml;P) + DalH)zil(al) ay, byymy, my, m1§P)

(A19)

APPENDIX B: KINEMATIC POINT

We use a kinematic point defined in terms of the following spinors:

L[ 54+ 39i
IL‘L >
39 + 53i

/\(ozS) — M2

AD) = 02 9 + 46i ’ AG — 2 ’ 42331 (540 + 4801 ’
16 + 13i 4181993\ 200 + 170i

14499838743
4181993

(5099005787 + 22004438161) 2

and the conjugate spinors A are given by

0 {(AE?)*

for

20212741374784933

i=123,

AN for i=4,5.

The numerical complexity of this point comes from the requirements that it is real in Minkowski space and free from any
coplanarities. Momenta 4 and 5 have negative energy. Additionally, we set the renormalization scale u?> = 1072,
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