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We investigate the effects of pseudoscalar-photon mixing on electromagnetic radiation in the presence

of correlated extragalactic magnetic fields. We model the Universe as a collection of magnetic domains

and study the propagation of radiation through them. This leads to correlations between Stokes parameters

over large scales and consistently explains the observed large-scale alignment of quasar polarizations at

different redshifts within the framework of the big bang model.
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I. INTRODUCTION

Light pseudoscalar particles, such as the axion, arise
naturally as pseudo-Goldstone bosons in spontaneously
broken global symmetries [1–9]. An axion has an effective
coupling to two photons; therefore in an external magnetic
field it can oscillate into a photon and vice versa [10–21].
This mixing between axions and photons can lead to ob-
servable changes in the intensity and polarization of pho-
tons, having interesting astrophysical and cosmological
implications [22–37]. Since the mixing depends on the
frequency of radiation, it also affects the electromagnetic
spectrum [38–42]. Various experimental searches of pseu-
doscalar particles have led to significant limits on their
masses and on the coupling parameters of the models
[24,34,43–61].

In the current paper we study pseudoscalar-photon
mixing in the presence of correlated background magnetic
fields in order to understand the results reported by
Hutsemekers et al. [62–64] pertaining to the coherent
alignment of quasar polarizations over Gpc scales. It
has been shown earlier that propagation of radiation
through the extragalactic medium, in the presence of a
background magnetic field, can affect all Stokes parame-
ters due to pseudoscalar-photon mixing. These changes
have been investigated for radio [31,65,66], optical
[31,62–64,67–69], and cosmic microwave background
(CMB) [33,34,53,70,71] photons. We explicitly show
that in our model it is possible to obtain nonzero corre-
lations between the optical polarization of quasars sepa-
rated by large distances in the sky. These nonzero
correlations lead to an effect similar to the observed
large-scale alignment of the polarizations.

We consider the extragalactic medium to be a large
collection of magnetic domains, the background magnetic
field in each domain being constant. This model was
recently used in [71] where the extragalactic medium
was considered as a large collection of uncorrelated
magnetic domains in order to study the effects of

pseudoscalar-photon mixing on CMB polarization. We
extend the model of [71] to include correlations between
magnetic fields in different domains, as motivated in
[72–74], and study the propagation of optical radiation
from quasars through these domains.
The paper is organized as follows. In Sec. II we outline

the main concepts and equations of pseudoscalar-photon
mixing and describe the domain propagation model. In
Sec. III we obtain magnetic field correlations between
different domains. In Sec. IV we bring together results
derived in the previous two sections and study alignments
among the angles of polarization using a full numerical
propagation model. We conclude with a brief discussion of
our results and offer perspectives in Sec. V. We also discuss
an approximate analytical treatment to explain correlations
in quasar polarizations in the Appendix.

II. PSEUDOSCALAR-PHOTON MIXING

In this section, we consider the coupling of a light
pseudoscalar to an electromagnetic field and discuss the
propagation of electromagnetic waves in the presence of a
background magnetic field. We first present a short review
of the field of pseudoscalar-photon mixing in II A and
subsequently describe our model of propagation in II B.

A. Basic concepts and equations

The interaction Lagrangian for the coupling of pseudo-
scalars with an electromagnetic field can be written as

Lint ¼
g�
4
�F��

~F��; (1)

where g� is the pseudoscalar-photon coupling constant, �

the pseudoscalar field, F�� the electromagnetic field ten-

sor, and ~F�� ¼ 1
2 �����F

�� its dual. A single pseudoscalar

is therefore effectively coupled to two photons. As shown
in [18,19], the longitudinal component of the background
magnetic field plays a negligible role in pseudoscalar-
photon mixing. Since only photons polarized parallel to
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the transverse component of the background magnetic field
(BT) decay, this effect can lead to a change in polarization
of the electromagnetic wave. Alternately, photons can mix
with off-shell axions or axions may decay into photons, in
either case leading to a change in polarization.
Pseudoscalars can thus mix with photons from distant
galaxies or the background CMB radiation, and lead to a
rotation of polarization.

In order to describe the propagation of electromagnetic
waves, we choose a coordinate system such that the z axis
lies along the direction of propagation, and the x axis is
parallel to the transverse component of the background
magnetic field BT . We define the gauge invariant quantity
A ¼ E=! (E being the usual electric field and ! the
frequency of radiation) and resolve it in components par-
allel (Ak) and perpendicular (A?) to the direction of BT .

This enables us to write the field equations solely in terms
of Ak and �, since A? does not mix with the field �,

ð!2 þ @2zÞ
AkðzÞ
�ðzÞ

 !
�M

AkðzÞ
�ðzÞ

 !
¼ 0: (2)

The ‘‘mass matrix’’ or ‘‘mixing matrix,’’ M, is given by

M ¼ !2
P �g�BT!

�g�BT! m2
�

 !
; (3)

where !P is the plasma frequency, m� the pseudoscalar

mass, and BT ¼ jBTj.
The solution of the field equations follows from diago-

nalizing the above matrix equation using the mixing angle
� defined by

tan2� ¼ lg�BT; (4)

where l denotes the oscillation length,

l ¼ 2!

!2
P �m2

�

: (5)

In this paper we will be working in the limit of very small
pseudoscalar mass, m� � !P, since for masses much

heavier than this, the mixing with photons produces a
negligible effect for intergalactic propagation, for the range
of allowed parameters.

B. Equations of polarization propagation

Polarization of radiation can be quantified in terms of
Stokes parameters, which can be written as linear combi-
nations of correlations between different components of
the field A. A convenient way to formulate the correlation
functions between initial components of A and � is to
arrange them as elements of a physical density matrix �ð0Þ,
given by

�ð0Þ ¼
hAkð0ÞA�

kð0Þi hAkð0ÞA�
?ð0Þi hAkð0Þ��ð0Þi

hA?ð0ÞA�
kð0Þi hA?ð0ÞA�

?ð0Þi hA?ð0Þ��ð0Þi
h�ð0ÞA�

kð0Þi h�ð0ÞA�
?ð0Þi h�ð0Þ��ð0Þi

0
BBB@

1
CCCA:
(6)

The correlation functions propagated through a distance z
can then be expressed as

�ðzÞ ¼ PðzÞ�ð0ÞPðzÞ�1; (7)

where the unitary matrix PðzÞ describes the solution to the
field equations, for a given mode ! [18,71]. In our coor-
dinate system, PðzÞ is given by

PðzÞ ¼ eið!þ�AÞz
1� �sin2� 0 � cos� sin�

0 e�i½!þ�A�ð!2�!2
PÞ1=2�z 0

� cos� sin� 0 1� �cos2�

0
BB@

1
CCA; (8)

where � ¼ ð1� ei�zÞ, � ¼ �� � �A, and �A, �� are
defined in terms of the frequency, !, and the eigenvalues,
�2�, of the matrix M,

�A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 ��2þ

q
�!; (9)

�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 ��2�

q
�!: (10)

For typical values of the electron density (ne �
10�8 cm�3), and for optical radiation of quasars,
with frequency � � 106 GHz (which corresponds to
l � 4 Mpc, here � ¼ !=2	), we have ! � !P, m�,

and g�BT . Also, for typical values of the coupling,

g� ¼ 6� 10�11 GeV�1, and magnetic field, BT ¼ 1 nG,

we can approximate � as

� ¼ �� ��A � 1

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan22�

p
¼ 1

l
sec2�: (11)

We now study the propagation of electromagnetic
radiation through the intergalactic medium in the presence
of pseudoscalar-photon mixing. Similar studies have
been carried out earlier by several authors, e.g., [28–
30,33,36,71]. It is reasonable to model the medium as a
large number of magnetic domains, with a uniform direc-
tion and strength of magnetic field in each domain.
Additionally, the medium is assumed to have a uniform
value of!P. In the ensuing analysis we will use this model
to explain correlations in the optical polarization of quasars
as reported by Hutsemekers et al. [62–64]. A crucial
component of our analysis will be the inclusion of corre-
lations between magnetic fields in successive domains
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which has hitherto not been considered in any such study to
the best of our knowledge. Details of these correlations will
be presented in the next section.

The transverse magnetic field BT in the ith domain is
taken to be oriented at an angle
i with respect to the x axis
(the ‘‘parallel axis’’) of the external coordinate system.
Starting with the density matrix �ð0Þ ¼ diagð1; 0; 0Þ, cor-
responding to an initially unpolarized electromagnetic
wave, the density matrix is propagated through each do-
main using (7). After propagation through each domain,
the electromagnetic wave vector is rotated back in order to
account for the change in direction of the transverse mag-
netic field from one domain to another. The propagation
through n domains of size z each (the nth one being closest
to the Earth) gives us an expression for �nðZ ¼ nzÞ [71],

�nðZ ¼ nzÞ ¼ R�1ð
nÞPðzÞRð
nÞR�1ð
n�1ÞPðzÞRð
n�1Þ
� R�1ð
n�2Þ 	 	 	R�1ð
1ÞPðzÞRð
1Þ�ð0Þ
� R�1ð
1ÞP�1ðzÞRð
1ÞR�1ð
2ÞP�1ðzÞ
� Rð
2Þ 	 	 	R�1ð
nÞP�1ðzÞRð
nÞ; (12)

where Rð
mÞ is the rotation matrix that acts only on the
two-dimensional space transverse to the propagation di-
rection; i.e., it represents a rotation by the angle 
m about
the z axis. Explicit expressions for the propagation are
given in the appendixes of [71].
We also give here expressions for the reduced Stokes

parameters in terms of different components of the density
matrix, for use later in the paper,

IðzÞ ¼ �11ðzÞ þ �22ðzÞ ¼ hAkðzÞA�
kðzÞi þ hA?ðzÞA�

?ðzÞi; (13a)

QðzÞ ¼ �11ðzÞ � �22ðzÞ ¼ hAkðzÞA�
kðzÞi � hA?ðzÞA�

?ðzÞi; (13b)

UðzÞ ¼ �12ðzÞ þ �21ðzÞ ¼ hAkðzÞA�
?ðzÞi þ hA?ðzÞA�

kðzÞi; (13c)

VðzÞ ¼ ið�12ðzÞ � �21ðzÞÞ ¼ iðhAkðzÞA�
?ðzÞi � hA?ðzÞA�

kðzÞiÞ: (13d)

Also, the linear polarization angle c and the degree of
polarization p are given in terms of Stokes parameters by

tan2c ¼ U=Q; (14)

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þU2 þ V2

q
=I: (15)

III. MAGNETIC FIELD CORRELATIONS

We now calculate the correlations between components
of the magnetic field in different domains. The analysis
derives from the magnetic field spectrumMðkÞ discussed in
[72–74], which can be defined using magnetic correlations
of the form

hbiðkÞb�j ðqÞi ¼ �k;qPijðkÞMðkÞ ¼ �k;q�
2
ijðkÞ; (16)

where �2
ijðkÞ ¼ PijðkÞMðkÞ and k ¼ jkj. Here bðkÞ is the

Fourier transform of the present day magnetic field BðrÞ
and PijðkÞ ¼ ð�ij � kikj

k2
Þ is the projection operator in-

cluded to be consistent with a divergenceless magnetic
field. Although this distribution was originally proposed
for primordial magnetic fields, it is justified to use it here
since on galactic and larger scales the magnetic field
simply redshifts away, as discussed in [73–76]. The mag-
netic field in real space is defined as

BjðrÞ ¼ 1

V

X
bjðkÞeik:r; (17)

where V is the volume in real space. In accordance with
[72], we consider a power-law dependence for MðkÞ,

MðkÞ ¼ AknB ; nB >�3; (18)

where nB is the power spectral index, and use a sharp
k-space filter (window function) of the form

Wð�Þ ¼
�
1 � < 1
0 � > 1:

(19)

Using the above relations and taking the continuum limit
by replacing

P
k by V

ð2	Þ3
R
d3k, we find that the spatial

correlation between magnetic field components at two
different points in space separated by a distance r0 is
given by

hBiðrþ r0ÞBjðrÞi ¼ 1

V

Z d3k

ð2	Þ3 e
ik:r0�2

ijðkÞW2ðkrGÞ; (20)

where rG is the ‘‘galactic’’ scale, taken to be 1 Mpc
here. The constant A in (18) is evaluated by assuming
a smooth variation of the field BðrÞ over the scale
kG ¼ r�1

G ¼ 1 Mpc�1. Further, we consider a completely

isotropic distribution of magnetic fields for simplicity, for
which PijðkÞ ¼ ð2=3Þ�ij. In view of the above assump-

tions, the spatial correlation calculated over a sphere of
radius rG ¼ 1 Mpc gives the constant A as

A ¼ V	2B2
0

ð3þ nBÞ
k3þnB
G

; (21)

where B0 is the fiducial constant magnetic field whose
value is assumed to be 1 nG [74,77]. It may be appropriate
to impose a large distance cutoff, rmax, on the correlation
for distances comparable to the size of the system (the
Universe). In such a case the lower limit of the integral
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in (20) will be kmin ¼ r�1
max; here we assume that this cutoff

is small enough and can be approximated as zero.
We now use (20) to obtain the correlations between

magnetic field values in different domains. Consider the
mth and nth domains along a given line of sight, separated
by the distance rmn. The transverse magnetic fields (of
strength BT) in these domains are aligned at angles 
m

and 
n with respect to the fixed external coordinate
system, respectively. Hence the correlation between their
components in the fixed coordinate system can be com-
puted as

B2
Thcos
m cos
ni ¼

Z kG

0

dk

k
�2

bðkÞ
�
sinkrmn

krmn

�
; (22)

using PijðkÞ ¼ �ij (since for transverse magnetic fields

ki ¼ kj ¼ 0). Here �2
bðkÞ ¼ 1

V
k3

2	2 MðkÞ ¼ B2
0

2 ð3þ nBÞ�
ð kkGÞ3þnB is the power per logarithmic interval in k space

residing in the magnetic field. Therefore,

B2
Thcos
m cos
ni

¼ 1

2
B2
0

�
rG
rmn

�
3þnB

�
ð3þ nBÞ

Z rmn=rG

0
x1þnB sinxdx

�
; (23)

where the term in square brackets is of order unity. For
example, for nB ¼ �2:37, which was reported as the best
fit value in the statistical and numerical analysis of the
matter and CMB power spectrum in [77], an explicit
numerical evaluation yields a value for this term between
0.96 and 1.33 for rmn=rG ¼ 1 and large rmn=rG, respec-
tively. Further, for nB ! �3:0 this term rapidly approaches
unity.

For the completely isotropic case considered in this
analysis we have PijðkÞ / �ij, leading to a cancellation

of any cross correlations between transverse components
of the magnetic field, i.e., hcos
m sin
ni ¼ 0. Also, the
invariance of correlations under rotation of the external
coordinate system immediately implies an equality be-
tween hcos
m cos
ni and hsin
m sin
ni. The final set of
correlations can therefore be summarized as

hcos
m cos
ni ¼ 1

2

B2
0

B2
T

�
rG
rmn

�
3þnB

; (24a)

hcos
m sin
ni ¼ 0; (24b)

hsin
m sin
ni ¼ 1

2

B2
0

B2
T

�
rG
rmn

�
3þnB

: (24c)

IV. CORRELATIONS IN THE OPTICAL
POLARIZATION OF QUASARS

In this section we use the domain propagation model
described in Sec. II, with magnetic fields correlated
according to the correlation functions discussed in
Sec. III, to understand the large-scale alignment of quasar

polarizations observed by Hutsemekers et al. [62–64].
We perform a detailed numerical analysis of the corre-
lations by direct integration of the propagation equations,
using a magnetic field distribution that follows from our
discussion in the previous section. We also refer interested
readers to the Appendix, where we have included an ana-
lytical approach to estimate such correlations in quasar
polarizations in the regime z=l � 1 and � � 1.
We first extract a one-dimensional (1D) magnetic field

distribution along a given line of sight from (20), by
integrating over the transverse components of k. This gives

hBiðzþ z0ÞBjðzÞi ¼ 1

V

Z kG

0

dkz
2	

eikzz
0
�2

ijðkzÞ; (25)

where �2
ijðkzÞ ¼ �ijM̂ðkzÞ. The 1D magnetic field spec-

trum M̂ðkzÞ is now given by

M̂ðkzÞ ¼ A

3	

�
k2þnB
G � k2þnB

z

2þ nB

�
: (26)

A distribution function compatible with the above correla-
tions can be written as

fðbiðkzÞ; bjðkzÞÞ

¼ NiðkzÞNjðkzÞ exp
�
�
�b2i ðkzÞ þ b2j ðkzÞ

2M̂ðkzÞ
��

; (27)

where NiðkzÞ, NjðkzÞ are the normalizations. This repre-

sents an uncorrelated Gaussian distribution for two
components of the magnetic field in Fourier space, corre-
sponding to the wave vector kz.
Using the above distribution, we generate the transverse

Fourier components bxðkzÞ and byðkzÞ of the magnetic field

for the discretized wave vector kz. This can be done for
each domain in Fourier space independently as the distri-
bution is uncorrelated for different kz. The magnetic field
components BxðzÞ and ByðzÞ in real space can then be

obtained by implementing the inverse Fourier transform in
(17). The transverse component of the magnetic field is

characterized by the magnitudeBT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
xðzÞ þ B2

yðzÞ
q

and

the angle 
 ¼ tan�1ðByðzÞ=BxðzÞÞ that it makes with the x

axis of the external coordinate system. We repeat this
exercise for every domain to obtain the complete magnetic
field landscape along a given line of sight.
We point out that the magnetic field changes relatively

slowly over small distances of order 10 Mpc. This can be
seen in Fig. 1 where we plot a random realization of one of
the components of the correlated magnetic field. Hence our
line of sight calculation applies approximately even if
quasars lie at slightly different angles. For larger angular
separations we require a full 3D simulation which is very
time-consuming and we postpone this for future research.
Next, using the above model, we study propagation

along a given line of sight through 212 domains of size
z ¼ 1 Mpc each, with 400 equally spaced quasars—the
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nearest one being 10 Mpc away and the farthest one being
4 Gpc away from the Earth. The initial electromagnetic
radiation of each quasar is assumed to be unpolarized and
the parameters g� and � are chosen to have typical values

6� 10�11 GeV�1 and 106 GHz, respectively. The sim-
plest statistic to test whether our model predicts an align-
ment of quasar polarization vectors is to calculate the
dispersion of the polarization vector of a quasar with
respect to its nearest neighbors [67]. For this exercise, we
group quasars into ns sets of nv quasars each, and calculate
the mean value of the vector ½cosð2c iÞ; sinð2c iÞ�, c i being
the polarization angle [calculated using (14)], for each set.
A measure of the dispersion dk of vectors in each set is
given by

dk ¼ 1

nv

Xnv
i¼1

cos½2ðc i � c kÞ�; (28)

where c k is the mean polarization angle in the kth set. The
statistic defined as

SPD ¼ 1

ns

Xns
k¼1

dk (29)

gives us a measure of the dispersion in the data. A large
value of SPD indicates a strong alignment between polariza-
tion vectors.

In Fig. 2 we show results of the SPD statistic with nv ¼
10, obtained using polarization angles from our propaga-
tion model, and compare it with data generated using a
random distribution of the polarization angles. Also, we
have checked that the distribution of polarization angles
obtained using random magnetic fields, when quasars
along a given line of sight are at slightly different angles
so that each experiences completely random magnetic
fields on propagation, mimics a random distribution of

polarization angles. Since the mean value SPD of the statistic
in (29) is clearly larger for data obtained using the propa-
gation model, this provides conclusive evidence of a
preferred alignment among quasar polarization vectors.

Further, we expect the mean value of this statistic for a
random sample to be proportional to 1=

ffiffiffiffiffiffi
nv

p
[67]. We in-

deed find that results for the random sample are well

described by the fit SPD � 0:90=
ffiffiffiffiffiffi
nv

p
(Fig. 3). Further, for

the propagation model, SPD � 1:26=n0:47v . This approxi-
mately 1=

ffiffiffiffiffiffi
nv

p
behavior in our model suggests that the

angles of polarization are preferentially aligned in each
neighborhood, yet span the whole range of possible angles
as in the case of a random distribution of angles.
A related effect of correlated magnetic fields in our

propagation model is that they lead to a larger axion
conversion probability, defined as

P�!� ¼ h�ðzÞ��ðzÞi; (30)

compared to that obtained using a model with random
magnetic fields. Therefore it is more likely for photons to
decay into axions, over a given distance, in the presence of a
correlated magnetic field distribution. This can be seen in
Fig. 4 where we show the development of the conversion
probabilitywith distance for an initially unpolarized quasar,
100 Mpc away from us, as optical radiation travels through
correlated and random magnetic field distributions.
We finally discuss how our results change with a differ-

ent choice of kG or equivalently rG. Here we assume that
the magnetic field is uniform in each domain, and the size
of each domain is equal to rG. In the results presented so far
we have chosen rG ¼ 1 Mpc. A larger value of rG will
induce correlations over larger distances; hence we would
naively expect a stronger signal for larger rG or equiva-
lently smaller kG. However, the phenomenon is nonlinear
and complicated. For example, the photon to pseudoscalar

FIG. 2 (color online). Histograms of the statistic SPD with the
number of nearest neighbors nv ¼ 10, for 104 random samples
(left, red) and 104 realizations of the magnetic field distribution
in the propagation model proposed in the paper (right, blue),
using parameter values ne ¼ 10�8 cm�3, nB ¼ �2:37,
� ¼ 106 GHz, and g� ¼ 6� 10�11 GeV�1. The larger value

of the mean SPD obtained for the propagation model, compared
to the random sample, indicates preferential alignment of quasar
polarization vectors, as reported by Hutsemekers et al. [62–64].
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FIG. 1. A random realization of one of the components of the
correlated magnetic field as a function of distance.
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conversion probability does not increase monotonically but
oscillates. This is because of the reverse process of pseu-
doscalar to photon conversion, once the population of
pseudoscalars becomes sufficiently large. Furthermore
the orientation of linear polarization does not evolve pro-
portionately to the conversion probability. Hence it is not
possible to anticipate how the results depend on kG.
In Fig. 4 we also show the conversion probability for
kG ¼ 2 Mpc�1 and kG ¼ 0:5 Mpc�1. We see that the con-
version probability slightly decreases in both cases.
On calculating the SPD statistic for these cases we find

that for nv ¼ 10 nearest neighbors, SPD � 0:43 for

kG ¼ 1 Mpc�1, 0.44 for kG ¼ 2 Mpc�1, and 0.48 for
kG ¼ 0:5 Mpc�1. Therefore for larger rG there are higher
correlations, although the conversion probability is smaller
due to the conversion of pseudoscalars into photons. For
smaller rG, on the other hand, the correlation is only feebly
affected, and the conversion probability decreases for most
values of the distance, as expected.

V. DISCUSSION

A very striking alignment in the optical polarization of
quasars has been observed over cosmologically large dis-
tances (
 1 Gpc) by Hutsemekers et al. [62–64] at both
low (z
 0:5) and high redshifts (z
 1:5). It is unlikely
that quasar polarizations are intrinsically aligned with one
another over such large distances since this appears to be in
conflict with the basic assumptions of isotropy and homo-
geneity of the Universe. It has been proposed in the past
that these observations may be explained in terms of a
propagation effect related to axion-photon mixing. In the
current paper we have explored this possibility in detail,
and studied the propagation of electromagnetic radiation
through a large number of magnetic domains.
We have shown that correlations between components of

the background magnetic field in various domains induce
correlations between the linear polarization of different
quasars. Our analysis explicitly shows that quasar polar-
izations are expected to be aligned in such a scenario due to
the presence of significant correlations between them, as
observed by Hutsemekers et al. [62–64]. A calculation of
the dispersion of polarization with respect to nearest neigh-
bors in a model of propagation along a given line of sight
shows significant alignments compared to a random sam-
ple. A direct comparison with observations and further
study of the effect clearly requires numerical simulations
of the complete 3D propagation model that we have
proposed. We leave such an analysis to future work.
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FIG. 3 (color online). The mean (left panel) and standard deviation (right panel) of the statistic SPD as a function of nearest neighbors
nv for 104 random samples (red circles) and 104 realizations of the magnetic field distribution in our model of propagation (blue

squares), using identical parameter values as Fig. 2. The variation of the mean SPD with nv has been plotted on a log-log scale. The lines
are fits generated using a power-law dependence of the form axb [where b � �0:50, a � 0:90 for the random sample (red);
b � �0:47, a � 1:26 for the propagation model using correlated magnetic fields (blue)].
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FIG. 4. Axion conversion probability as a function of distance
traveled, for optical radiation from a single initially unpolarized
quasar 100 Mpc away from us, as it encounters correlated (solid
thick black curve for kG ¼ 1 Mpc�1, small-dashed black curve
for kG ¼ 0:5 Mpc�1, large-dashed black curve for kG ¼
2 Mpc�1) or random (solid thin black curve) magnetic field
distributions on its journey. Each curve is generated with pa-
rameter values ne ¼ 10�8 cm�3, nB ¼ �2:37, � ¼ 106 GHz,
g� ¼ 6� 10�11 GeV�1, and is averaged over 104 realizations

of the respective magnetic field distribution.
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We further note that a calculation of correlations in the
circular polarization, Stokes V parameter, is also expected
to yield a significant result. A detailed calculation of this
parameter is postponed to future research. This may prove
to be an important signature of pseudoscalar-photon mix-
ing in the observed alignment of quasar polarizations, as
noted in [78].
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APPENDIX: ANALYTICAL TREATMENT
OF THE CORRELATIONS

In this appendix we discuss an analytical approach to
estimate the correlations in quasar polarizations for small
domain size (z=l � 1) and small mixing angle (� � 1). In
this limit, we expand the 22 element of (8) to leading order,

e�i½!þ�A�ð!2�!2
PÞ1=2�z � 1� i

z

2l
ð1� sec2�Þ; (A1)

where we have omitted the overall phase factor. We can
further write the propagation matrix as the sum of a qua-
siunit matrix and a matrix proportional to sin�,

PðzÞ ¼ IðzÞ þ sin�P ðz; �Þ: (A2)

Suppressing the irrelevant overall phase in (8), the matrices
IðzÞ and P ðz; �Þ are given by

IðzÞ ¼ diagð1; 1; ei�zÞ; (A3)

and

P ðz; �Þ ¼
�� sin� 0 � cos�

0 i zl sin� sec2� 0

� cos� 0 � sin�

0
BB@

1
CCA: (A4)

We can now express �nðZ ¼ nzÞ as a power series in sin�.
For an initially unpolarized electromagnetic wave corre-
sponding to a density matrix �ð0Þ ¼ diagð1; 1; 0Þ, the cal-
culation outlined above gives the following leading order
terms in different powers of sin�P ðz; �Þ:

�½0�
n ðZÞ ¼ �ð0Þ; (A5)

�½1�
n ðZÞ ¼ Xn

j¼1

�½1�
n ðZ; jÞ; (A6)

�½2�
n ðZÞ ¼ Xn

k¼2

Xk�1

j¼1

�½2�
n ðZ; j; kÞ; (A7)

where

�½1�
n ðZ; jÞ ¼

�2sin2�cos2
jð1� cos�zÞ �sin2� sin2
jð1� cos�zÞ ��e�i�zðn�jÞ cos
j sinð2�Þ=2
�sin2� sin2
jð1� cos�zÞ �2sin2�sin2
jð1� cos�zÞ ��e�i�zðn�jÞ sin
j sinð2�Þ=2
�ei�zðn�jÞ cos
j sinð2�Þ=2 �ei�zðn�jÞ sin
j sinð2�Þ=2 0

0
BBB@

1
CCCA; (A8)

and

�½2�
n;11ðZ; j; kÞ ¼ �4sin2�cos2�ð1� cos�zÞ cos½�zðk� jÞ� cos
k cos
j; (A9a)

�½2�
n;12ðZ; j; kÞ ¼ �2sin2�cos2�ð1� cos�zÞ cos½�zðk� jÞ�ðsinð
k þ 
jÞ � i sinð
k � 
jÞ tan½�zðk� jÞ�Þ; (A9b)

�½2�
n;21ðZ; j; kÞ ¼ �2sin2�cos2�ð1� cos�zÞ cos½�zðk� jÞ�ðsinð
k þ 
jÞ þ i sinð
k � 
jÞ tan½�zðk� jÞ�Þ; (A9c)

�½2�
n;22ðZ; j; kÞ ¼ �4sin2�cos2�ð1� cos�zÞ cos½�zðk� jÞ� sin
k sin
j: (A9d)

Here we only report elements of the 2� 2 submatrix
relevant to polarization for �½2�

n ðZ; j; kÞ. Further, we ignore
higher-order terms in writing (A9). This approximation is
valid as long as sin2� and ðz=lÞsin2� are much smaller than
unity.

For two quasars (along a given line of sight) at distances
Z1 ¼ nz and Z2 ¼ mz, where n and m are the number of
domains of size z that lie between us and the two quasars,
we wish to estimate the correlation hUðZ1 ¼ nzÞUðZ2 ¼
mzÞi. Using (13) we find that

hUðZ1ÞUðZ2Þi¼h�n;12ðZ1Þ�m;12ðZ2Þiþh�n;12ðZ1Þ�m;21ðZ2Þi
þh�n;21ðZ1Þ�m;12ðZ2Þiþh�n;21ðZ1Þ�m;21ðZ2Þi: (A10)

On removing the constant zeroth order part of the propa-
gated density matrix we can write

�nðZÞ � �½1�
n ðZÞ þ �½2�

n ðZÞ: (A11)

Using (A8) and (A9) in this expression to calculate
(A10), we end up with four-point correlation functions
in the sines and cosines of rotation angles. We assume
that the magnetic field fluctuations at any point are
Gaussian, so that we can express these four-point corre-
lations in terms of two-point correlations using the
following decomposition,
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hSðr1ÞSðr2ÞSðr3ÞSðr4Þi¼ hSðr1ÞSðr2ÞihSðr3ÞSðr4Þi
þhSðr1ÞSðr3ÞihSðr2ÞSðr4ÞiþhSðr1ÞSðr4ÞihSðr2ÞSðr3Þi;

(A12)

where SðrÞ is some function (such as a Gaussian) that
falls off sufficiently fast with r. Now we can further use
(24), and write the correlation in (A10) as

hUðZ1ÞUðZ2Þi ¼ 4

�
B0

BT

�
4
sin4�ð1� cos�zÞ2 �

�Xn
i¼1

Xm
p¼1

�
rG
rip

�
2ð3þnBÞ þ 2cos2�

�Xn
i¼1

Xm
q¼2

Xq�1

p¼1

�
r2G

rqirip

�
3þnB

cos½�zðq� pÞ�

þ Xm
p¼1

Xn
j¼2

Xj�1

i¼1

�
r2G

rjprpi

�
3þnB

cos½�zðj� iÞ�
�
þ cos4�

Xn
j¼2

Xj�1

i¼1

Xm
q¼2

Xq�1

p¼1

��
r2G

rqjrpi

�
3þnB þ

�
r2G

rqirpj

�
3þnB

�

� ðcos½�zðjþ q� i� pÞ� þ cos½�zðj� q� iþ pÞ�Þ
�
: (A13)

The above equation suggests that the linear polarization of
quasars at different redshifts along a given line of sight is
correlated, as observed by Hutsemekers et al. [62–64].
Here in using the correlations (24) we have set the term
in square brackets in (23) to unity. Further we choose a
constant value of 1 nG forBT . These approximations affect
the analytical result to within a factor of order unity.

The analytical calculation presented here makes several
approximations and hence only provides a rough estimate
of the correlations. Nonetheless, it is very important since
it establishes the presence of correlations among polar-
izations of electromagnetic radiation from quasars sepa-
rated by large distances. These correlations arise due to the
presence of correlations in the intergalactic magnetic field.
The analytical result also provides useful insight into how
the correlations among polarizations depend on the inter-
galactic magnetic field. In order to study correlations be-
yond the regime of validity of the analytical method
discussed here, a complete numerical treatment of propa-
gation, as done in Sec. IV of this paper, is necessary.

It is also interesting to use the numerical propagation
model in the regime where the analytical calculation holds,
and compare the result with that obtained using (A13). For
this, we study propagation along a given line of sight
through a total of 210 domains of size z ¼ 1 Mpc each,
with 100 equally spaced quasars—the nearest one
being 10 Mpc away and the farthest one being 1 Gpc
away from the Earth. The initial electromagnetic radiation
of each quasar is assumed to be unpolarized. We choose
the following parameter values: electron density ne ¼
10�8 cm�3, spectral index nB ¼ �2:37, frequency of ra-
diation � ¼ 106 GHz, coupling g� ¼ 6� 10�12 GeV�1,

and B0 ¼ 1 nG. This choice of parameters ensures that
z=l < 1 and � � 1. Further, in the analytical result we set
BT ¼ 1 nG and calculate rip as rip ¼ zji� pj, while

rii ¼ rG. In the numerical propagation, the value of BT

and the angle 
 in each domain are obtained from the
magnetic field distribution discussed in Sec. IV. For the
purpose of comparison with the analytical result, however,
we set the magnitude of the magnetic field at every point to

be equal to 1 nG in the numerical calculation as well.
Direct calculation shows that allowing the magnitude to
vary makes a significant difference in the final answer.
Hence it does not provide a fair comparison with the
analytical result where we have fixed the magnitude of
the field in order to make the calculation tractable.
Figure 5 shows a plot of analytical and numerical values
of the correlation between the Stokes U parameters of two
quasars separated by a relative distance � .
We find that the analytical and numerical results agree to

within about 20%. The discrepancy between the two re-
sults may be attributed to several other approximations
made in the analytical treatment, where (i) we have set
the term in square brackets in (23) to unity and (ii) we have
ignored higher-order corrections. As a rough estimate,
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FIG. 5 (color online). Comparison of analytical and numerical
results for parameter values ne ¼ 10�8 cm�3, nB ¼ �2:37,
� ¼ 106 GHz, and g� ¼ 6� 10�12 GeV�1. The plot shows

the correlation huðZ1 ¼ 100 MpcÞuðZ2 ¼ ð100þ �Þ MpcÞi for
different values of the relative distance � between two quasars,
where u is the normalized value of the Stokes parameter U with
respect to the initial intensity, Ið0Þ ¼ 2. Red circles show values
obtained using the analytical result (A13) and blue squares are
values obtained after the complete numerical propagation, aver-
aged over 104 realizations of the magnetic field distribution.
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including the term in square brackets in (23) increases the
analytical values of correlations by 60%–70%. In addition,
we also observe that the numerical propagation model has
a small dependence on the ‘‘system size’’ (i.e., the total
number of domains chosen), unlike the analytical result in
(A13). This can be ascribed to dependence on the number
of domains, of the discrete values of the wave vector kz
used in the inverse Fourier transform. As the magnetic field
values depend on kz, this introduces a small system size

dependence in the results. Hence we should expect the two
results to agree only within a factor of about 2. We also
point out that we expect best agreement for small distances
of propagation. This is because for larger distances the
higher-order terms, dropped in the analytical calculation,
cannot be neglected. In this case we will have to sum over a
large number of domains and the higher-order terms will
become increasingly important. The approximation used in
(A1) will therefore break down.
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