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Maintaining gauge symmetry in renormalizing chiral gauge theories
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It is known that the s scheme of Breitenlohner and Maison in dimensional regularization requires
finite counterterm renormalization to restore gauge symmetry and implementing this finite renormaliza-
tion in practical calculation is a daunting task even at 1-loop order. In this paper, we show that there is a
simple and straightforward method to obtain these finite counterterms by using the rightmost 5 scheme in
which we move all the 5 matrices to the rightmost position before analytically continuing the dimension.
For any 1-loop Feynman diagram, the difference between the amplitude regularized in the rightmost ys
scheme and the amplitude regularized in the Breitenlohner and Maison scheme can be easily calculated.
The differences for all 1-loop diagrams in the chiral Abelian-Higgs gauge theory and in the chiral non-
Abelian gauge theory are shown to be the same as the amplitudes due to the finite counterterms that are

required to restore gauge symmetry.
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I. INTRODUCTION

It is generally accepted that the original y5 dimensional
regularization scheme proposed by 't Hooft and Veltman
[1] and later systematized by Breitenlohner and Maison [2]
can be used to regulate and renormalize chiral gauge
theories in a rigorous manner. In this BM scheme, 75 is
maintained as

ys = iy'y'y*y? (1)

even when the space-time dimension n departs from 4.
Such y5 anticommutes with y* for u in the first 4 dimen-
sions but commutes with y# when the index u falls
beyond the first 4 dimensions. As a consequence, an iden-
tity such as ysy* = —y*vys in n = 4 dimensional space
no longer holds under dimensional regularization when the
polarization u is continued beyond the first 4 dimensions.
The continuation to n # 4 for the Lagrangian of a theory
with a gauge invariant 4 dimensional Lagrangian, there-
fore, depends on how we express and continue the terms
involving the product of s and y* matrices in the
Lagrangian. Furthermore, terms that are not gauge invari-
ant in the n dimensional Lagrangian must vanish when
n — 4 and thus contain a factor of (n — 4) or a y* matrix
with u in the extra 4 dimensions. Such gauge variant
evanescent terms will contribute to the violation of gauge
symmetry in the perturbative calculation of the theory
under dimensional regularization.

The breakdown of gauge symmetry in the Breitenlohner
and Maison (BM) scheme can be remedied by introducing
gauge variant local counterterms to restore the renormal-
ized Ward identities [3] or BRST [4] gauge symmetry
[5-9]. This procedure of removing spurious anomalies is
usually a complicated and tedious task even at the 1-loop
order. C. P. Martin and D. Sanchez-Ruiz [8] managed to
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successfully calculate the 1-loop finite counterterms
needed for restoring gauge symmetry of the chiral non-
Abelian gauge theory. The 1-loop finite counterterms for
the chiral Abelian-Higgs theory were later obtained by
D. Sanchez-Ruiz [9] in which the laborious calculations
were handled by computer routines.

In this paper, we shall present a simple and straightfor-
ward method for obtaining these finite counterterms. This
is done with the help of the rightmost 5 scheme [10] in
which the dimension »n is analytically continued after all
the 5 matrices have been moved to the rightmost position.

II. THE RIGHTMOST ys SCHEME
For the QED theory, the identity
1 I 1
L+k—m £—-—m {€—m L+k—m

is the foundation that a Ward identity is built upon. For a
gauge theory involving 7ys, there is a basic identity similar
to (2) for verifying Ward identities:

1

2

. k-2
Py AL
1 1
= + .
Vsg—m t+k-—m" )

The above identity, valid at n = 4, is derived by decom-
posing the vertex factor (X — 2m)ys into (£ + k — m)ys
and ys5(f — m) to annihilate, respectively, the propagators
of the outgoing fermion with momentum € + k and the
incoming fermion with momentum €. Positioning y5 at the
rightmost site, (3) becomes

1 1
f+k—m(lé 2m)—f—m75

1 1
_(—f—m+f+k—m)ys' @)
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If we disregard the rightmost 5 on both sides of the above
identity, we obtain another identity

1 1 1
f+k—m(k Zm)—f—m_—f—m+£+k—m
)

that is valid at n = 4. This new identity (5), which is void
of vys, may be analytically continued to hold when n # 4.
We then multiply ys on the right to every analytically
continued term of this ys-free identity (5) to yield the
analytic continuation of the identity (3).

As a side remark, we note that when we go to the
dimension of n # 4, (3), in the form presented above, is
not valid. This is because y5 does not always anticommute
with y# if n # 4. Adopting the rightmost s ordering
avoids this difficulty, as the validity of the identity in the
form of rightmost ys ordering no longer depends on 7ys
anticommuting with the -y matrices.

Before analytic continuation is made, a ‘ys-odd
(ys-even) matrix product may always be reduced to a
matrix product with only one (zero) 7ys factor. For an
amplitude corresponding to a diagram involving no fer-
mion loops, we shall move all y5 matrices to the rightmost
position before we continue analytically, the dimension 7.
The subsequent application of dimensional regularization
gives us regulated amplitudes satisfying the Ward identi-
ties. An identity relating the traces of matrix products
without y5 at n = 4 can always be analytically continued
to hold when n # 4. Therefore, the portion of an amplitude
in which the count of 5 on every fermion loop is even has
no vys difficulty and does not violate any Ward identity in
this continuation scheme.

For any 1-loop Feynman diagram, the amplitude calcu-
lated according to the rightmost 5 scheme can be easily
compared to that calculated according to the BM scheme.
In fact, the difference between these two amplitudes can be
straightforwardly calculated. If the rightmost y5 scheme is
a gauge invariant scheme, we should be able to attribute the
difference to the amplitude due to local counterterms that
are required to restore BRST symmetry. It will be verified
below with detailed results that this is indeed what hap-
pens. For the chiral Abelian-Higgs theory, the finite coun-
terterms obtained by calculating the difference between the
rightmost 75 scheme and the BM scheme are found to be
exactly the same as those obtained in [9]. For the chiral
non-Abelian gauge theory, the finite counterterms obtained
in [8] can also be accounted for by the difference. These
results serve to confirm that the rightmost ys scheme is
indeed a gauge invariant regularization scheme.

ITII. LAGRANGIAN FOR THE CHIRAL
ABELIAN-HIGGS THEORY

The BRST invariant Lagrangian density for the chiral
Abelian-Higgs gauge theory is
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1
Ly == Ful* + (D)1 (D, ¢)
Ly of 4 VoV o
_E)lg ¢ d)_iv + YL D),
+ R ) pr — N2f(Prdibg + Il i)
1 .
— Z(G#A” — al¢,)? + ic(d, 0" + aAM)c
+ igaACHc, (6)
where c is the ghost field, ¢ is the antighost field, and
F,=0,A,—0d,A,
D,¢= (0, +igA,)d,
b =Ly, br =Ry,
with the chiral projection operators L and R defined as
=11—-ys), R=41+ys).
The complex scalar field ¢ is related to real H and ¢, by
b= H+ip, +v
7 .

The Lagrangian Lp of (6) is invariant under the BRST
variations:

(N

oA, = 9,0,

Ophy = —Mc — gcH,
OpH = gcds,

Opth = —igeyy,
Sppr =0,

§pc = — é(a“AM — alp,),

5yc =0, ®)
We define two mass parameters M and m by
m = fuv. 9)

Both M and m will be regarded as zero order quantities in
perturbation.

Let us introduce the notation p* for the component of
p* vector in the first 4 dimensions and the notation p’y for
the component in the remaining dimensions, i.e.,

M = gv,

p* = p* + pk,
with
ph=0 if u€{01,23}
pt =0 if u &40, 1,2, 3}
Likewise, the Dirac matrix y* is decomposed as

v =yt
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with ¥y = 0 when u € {0, 1,2, 3} and y* = 0 when u &
{0, 1, 2, 3}. Since the definition (1) for ys is valid even

when the space-time dimension n departs from 4, we have
ysyE + ytys = 2v47s (10)

The free term involving the fermion fields in (6) is equal
to

Prid iy + dridr — fo(d g + Pripr)
= YURIL +iLgR —m)p = ¢(if —m)yp, (11
where
g=0,7" =0, 7" =3, ¥k =7 — da

The fermion propagator corresponding to the free
Lagrangian (11) is

p -

which is independent of p,, the component of the momen-
tum p in the extra 4 dimensions and cannot be used for
perturbative dimensional calculation.

To remedy this ill behavior, let us add the term

Eo= Yifath = gridpr + iy (12)

to the BRST invariant Lz of (6). The theory defined by the
Lagrangian

Loy = Lg + Ey (13)

will have a well-behaved free fermion propagator
i
p—m

and can be used to calculate amplitudes perturbatively
under the BM dimensional regularization scheme. By
doing so, we also incur a loss of the BRST symmetry since
OpLes = O0pEy # 0. Because E, vanishes as n — 4, E
does not have any tree level contribution. At one or more
loop orders, simple .~ pole factors or higher pole terms
may arise from dlvergent loop integrals so that the contri-
bution of E; cannot be neglected and additional local
counterterms are required to restore the BRST symmetry.

For the Abelian theory with the Lagrangian (13), the
propagators can be readily read off the free Lagrangian and
vertex factors can be determined from the interaction terms
in the Lagrangian. The propagators and vertices that are
relevant to the 1-loop finite counterterm calculation are
listed in Appendix A 1.

IV. DIFFERENCE BETWEEN THE RIGHTMOST v5
SCHEME AND THE BM SCHEME IN THE
ABELIAN-HIGGS THEORY

To illustrate how the counterterm amplitude is evaluated
by calculating the difference between the rightmost s
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scheme and the BM scheme for the chiral Abelian-Higgs
theory, consider the fermion self-energy diagram:

A&A

The horizontal line signifies an internal fermion line and
the wavy line is a vector meson line. The Feynman ampli-
tude in the BM scheme is

(14)

d"e
[BM = (—; 2[ D(A* A” ;) Ry* L ——— R YL
(—ig) (277)"( JRyH y p Y
n " v
_— d"e . ;€)Ry L(£ +p)R7 L,
2m)" €+ p)?—m?
(15)

where ¢ is the momentum of the internal vector meson line
and the external momentum p flowing into the fermion
self-energy correction has only components in the first 4
dimensions. Anticommuting ‘s to the rightmost position,
we obtain the corresponding amplitude in the rightmost y5
scheme:

Y (fﬂb)y L

€+ p)? — - (16)

ng
R =—j Zf—D AF AV L
'8 2m)" ( )

Both (15) and (16) are linearly divergent. Since the differ-
ence ('™ — I'®M) contains at least a factor of y, matrix in
the extra 4 dimensions, terms that are convergent will not
survive the n — 4 limit. We are free to change the mass
pole of any propagator in evaluating (' — I'®M) because
the terms neglected are proportional to the mass square
difference and are therefore convergent by power counting.
Furthermore, if we expand the amplitude in a Taylor series
with respect the external momentum p, terms proportional
to p" with N = 2 are convergent and can be discarded in
the difference between (15) and (16), i.e., we may sub-

Y 4 (g 1)L
stitute —i(g (e(z_mz))fff”“ for D(A*, A”;€) and ﬁ
(1- %) for m. The difference (I'®> — I'BM)
after utilizing Ry*L = y*L, Ry"L = y”L, and LR =
LR can be written as

. R5 _ T'BM 52 d’l€
im0 = =¢lim | o
(8" + (o — D FLH) (1 — 252
X (€2 2)2
X (yHE + p)y” — y* (€ + p)y")L.
(17)

The symmetric integrals
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nv
[ e erer =8 / dmeF(E) e,
n
(g""gP” + ghrg"” + gh7gl”)
nOF(E2) R0V P LT =
,[d 1) n(n +2)
x f aeFe) e,

enable us to set

Jaresexe- pe = ! [aerere
n

gHp+ Pty + piy
n(n +2)

x f e,

f dEFE)CR (€ - p) =

and reduce (17) to

11n3‘(1"R5 — I‘BM)

lim € (n—4)
n—d (277')” (€ — m?)?

(1+2a)pL

g
6

_ (41)2 81+ 2a) pL. (18)

where we have also utilized the integral

lim

dt¢ (n—4) d*e m* =2
n—4 ) 2m)" (€2 — m)2 f

Cm* (2 =17 (@4m)?

In the BM scheme, this amplitude (18) can be accounted
for by adding the counterterm

! (1 + 2a)yRi JL (19)
(@) 3
to the Lagrangian (13).

The counterterm amplitude for any divergent 1-loop 1PI
diagram can be similarly calculated. The diagrams that are
responsible for all 1-loop counterterms are listed in
Figs. 1-7 in Appendix A. The corresponding counterterm
amplitudes are calculated and summarized in Tables IV, V,
VI, VII, VIII, IX, and X.

PHYSICAL REVIEW D 83, 065011 (2011)

V. 1-LOOP RESULTS FOR THE CHIRAL
ABELIAN-HIGGS THEORY

For the chiral Abelian-Higgs theory, D. Sanchez-Ruiz
[9] has successfully computed in the BM scheme the
I-loop finite counterterms that are required to restore
the BRST symmetry by evaluating the terms that break
the Slavnov-Taylor identities and then solving a linear
system of 27 equations with 32 variables to find a solution.
The calculation in [9] is rather cumbersome and has to be
relied on computer routines. The general solution for the
1-loop finite counterterms is given by (30) of [9]

32
nSY, = Z nille; + h Z A1, (20)

where each I, i = 1,2,...11 is BRST invariant and é¢;,
i=1,2,...32 givenby (16) in [9] form a basis of the space
of the integrated Lorentz scalar CP-invariant polynomials
in the fields and their derivatives with maximal canonical
dimension 4 and ghost number 0. A particular solution for
the coefficients X ~( ) is given by (29) in [9] and tabulated in
the 2nd columns of Tables I, II, and III. Counterterms that
involve fermion fields are listed in Table I. Otherwise, they
are listed in Tables II and III.

The theory defined by the L. of (13) corresponds to the
theory of (5) in [9] with ¢’ = @, p = —aA, 6 =0, and
r = 1. Correspondingly, the 3rd column of Table I is
obtained from the 2nd column with the substitution & =
a,p=—alA,0=0,and r = 1.

From Tables IV, V, VI, and VII, the sum of counterterms
due to the diagrams from Figs. 1-4, obtained according to
the method of evaluating the difference between the right-
most ys scheme and the BM scheme is equal to

1 2 -
W[—‘%(l +2a)JRIFLY
+SalM = Mg + g7 + 5a) JRALY

gf

+ Pedhysy + 28T ¢<H+l¢zy5)¢] @1)

which, after subtracting out the gauge invariant term,

TABLE I. Counterterms due to diagrams with open fermion lines are shown in the table.
é; —(4m)’5y) d=a,p=—al,0=0r=1 Rightmost y5 method
4= l,_b W _ f[3/”+4g2(9(61r+ﬁr)v(5+§/)] %aAf _ %aAfg
&5 = PifLp 0 0 0
ey = YigRy 0 0 0
- —6f2r 2 r 2, !
en = DALY — erre el P-igG+a AR TACREY)
~ 7 - 2 292 !
Gy = PJARY [—6f +869 (5+&)] _f2 fZg
&y = YHY —3f870(0 + )5+ ¢ 0
30 = Pboysy 0 0
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TABLE II. Counterterms without A fields due to diagrams
with a closed fermion loop are shown in the table.

Z; —(477)2)282 Rightmost s method
é,=H —8f*v? —8f*v?
&, = H — 12402 — 12402
é3 = (¢)? 0 0

e, =H3 —8f*v —8f*v
¢s = H(¢$,)? 0 0

&, = H —o Y
& = (¢2)* i i
ég = H*(¢,)? 0 0

& = (0,H)(d"H) 0 0

€10 = (9,02)(0% ¢5) -2/ -3

1
(4m)*

g’ -
[— 801+ 20) IRUJ — gA)LY

N ag’f
2

J(H + v+ i¢2y5)w],

becomes

| el (565 + @)~ Pe)iRALY
+ fg J/ARLp:I. (22)
The above expression (22), decomposed as a linear combi-
nation of &;, is listed under the column “rightmost s
method” in Table I. The Lagrangian (13) is defined differ-
ently from that in [9]. The covariant derivative D, is
defined as D, = 9, + igA, for the theory (13) but as
D, =9, —iA, in[9]. The vector field A in a counterterm
expression obtained in [9] needs to be scaled to —gA to be
identified as the corresponding counterterm for the theory

TABLE III. Counterterms involving A fields due to diagrams
with a closed fermion loop are shown in the table.

¢, —(477-)2)283 Rightmost 75 method
e = ¢2(3,A%) 0 0

e = AL H(0" ) 0 0

é13 = A, (0" H) —4f? 4f%g
By = AL AN — 202 — 2922
&5 = A, AMH —2f% —2f*¢%v
21 = A, ArH? —f? —f*¢
217 = A AM () =3f? —3f%g?
21y = (0,A")? : 68
I 0 0

& = (A, AR = 58
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of (13). There is a single vector A field in é,; = Y AL or
¢y = WARY. As a consequence, multiplying —g to the
coefficient of either é,; or é,3 under the 3rd column of
Table I should give us the corresponding coefficient under
the column “‘rightmost ys method.” Furthermore, the coun-
terterm proportional to &, = ¢ actually stems from
diagrams (d) and (e) of Fig. 1. The ratio of the coefficient
of &, for the theory of (13) over that obtained in [9] as
shown in Table I is equal to — g and can be accounted for by
the ratio of vertex factors due to the single ¢y — A — ¢
vertex in each of the diagrams (d) and (e) of Fig. 1. Table I,
in fact, shows that the 1-loop counterterms that involve
fermion fields calculated by the rightmost y5 method are
in agreement with those obtained in [9].

The 1-loop counterterms due to the diagrams without
external fermion lines from Figs. 5-7 are summarized in
Tables VIII, IX, and X. The total of these counterterms is

1
(4)?

(40228 = 702 = ma?
+ é 82(9,A,)(9*AY) + 83 mH(¢y)* — 2fg*mHA?
+ AP0, I + 4 (8% + 5 F(8)°

— PEIPR < 3PL@I A+ 2] @)

and can be written as the sum of

! 1
G | 2 02+ (6222 =2 4 P |
@4

and

2
— [—2f4(H4 + 4vH? + 6V H? + 4vPH) + = fH(hy)*
(4m) 3
2 1
- §f2(6¢>2)2 + 85>’2(<9,¢1”“)2 — g'm*A? = 2fg*mHA?

1
+4f2gpy(d, H)A* — f2g?H?A? + Eg4(A2)2

- 3f2g2(¢z)2A2]- 25)

Equation (24) is gauge invariant and (25), expressed as a
linear combination of ¢&;, is tabulated in Tables II and III
under the column “rightmost s method” while the result
from [9] is listed under the column —(477)2)?8?. Taking the
—g factor into consideration for each vector field A in
comparing the counterterm expressions, the counterterms
listed in Tables II and III obtained by the rightmost s
method for the theory of (13) are in exact agreement with
those obtained in [9].
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VI. LAGRANGIAN FOR THE CHIRAL
NON-ABELIAN GAUGE THEORY

The BRST invariant Lagrangian density for the chiral
non-Abelian gauge theory is

1 - -
Ly = =g Fu B0+ PLiP Y + Prif g

IPRIDUR + DL~ 5 (4 AL AD)
+ i O + igC™e(9#c*)AL c°, (26)
where ¢“ is the ghost field, ¢“ is the antighost field, and
Fo, = 9,A% — d,A% — gCAL AS,

Two fermion fields  and ' whose left-handed compo-
nent ¢ = Ly and right-handed component ¢ = R’
are coupled to Af,. The covariant derivatives for ¢ and

Y are
D, = (9, +igALT!) Y,
Dygg = (9, +igALTR) i,
where 77 (Tg) are group generators that satisfy
[T¢, TP] = iCabeTy, (T8, TE] = iCeTg
te(TeTP) = Ty 8%, tr(TTR) = Trd
YTTE =C, D TETE = Cr.
¢ ¢
For convenience, we also adopt the following shorthand
notations defined in [8]:
tr(TETPTETY) = Teved,  w(TETRTRTE) = Tghed.

The Lagrangian (26) is invariant under the BRST varia-
tions:

SpAY, = 9,c" + gCPccP AL,

Spi = —ic“TL Y, Spr =0,
Spihp = —ic' Ty, SpYL =0,
(SBCa — %gcabccbcc’

1444

As with the chiral Abelian-Higgs theory (13), a gauge
variant evanescent term

Eo= $ifssp + §igatp! 27
needs to be added to the BRST invariant (26) to define the
Lagrangian

L =L+ E, (28)

for the chiral non-Abelian gauge theory that can be
calculated perturbatively in the BM scheme. For the
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non-Abelian theory (28), the propagators and vertices
that are relevant to 1-loop finite counterterm calculation
are listed in Appendix B 1.

VIIL. 1-LOOP RESULTS FOR THE CHIRAL
NON-ABELIAN GAUGE THEORY

C.P. Martin and D. Sanchez-Ruiz have obtained with
tedious calculations the 1-loop finite counterterms that are
needed for restoring BRST symmetry in the BM dimen-
sional regularization formalism for the chiral non-Abelian
gauge theory with the result given in (69) of [8]. In
Appendix B, the 1-loop counterterms for this non-Abelian
theory are computed straightforwardly by evaluating the
difference of amplitudes between the rightmost 5 scheme
and the BM scheme with the results summarized in Table XI.
Specifically, diagrams in Figs. 8 and 9 yield the counterterms
that involve fermion fields and can be written as

1 1 - -
G| 30 2 Gyt i C)
1 - -
+ 580 SQIATLIC + PATERC) |

(29)
Subtracting out the gauge invariant term

1
(4m)?

L+ igAaTg)¢gcR]

[ 15 €20 + 500 + iga TG

from (29), we get

1 - i -
@)y [(1 Ll . 1)>g2(¢Lia¢LCL + lp;{ig%cR)],
(30)

which, after the identification of a with &/, is consistent with
the finite counterterms (69) of [8].

Figures 10-12 are responsible for the counterterms that
are free of fermion fields. From Table XI, the sum of these
counterterms is equal to

1 1 2
(477_)2[ _ggz(TL + Tr)AGOA%H — 583(71 +Tg)

1
X Cabc(a“Ag)AZAC’V + Eg4(Tﬁde + Tﬁde)

5
X A“’/‘AZAC’ vAd + ﬂg“(TL +TRr)
X Ce“bCe"dAfLA,lZAC’”Ad”’], (31)
which can be written as the sum of the gauge invariant term
% X (T + TR)FS,, F@*Y

and
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1
(4)?

(T, + TR)g2<15—2(6A)2 + %ADA)

+ (TL‘gTR) g3cabc(a,uAl11/)A,ZA$/ (32)

+ ﬁg“(Tﬁde + Tﬁde)Aa"uAZAC’VAg

Upon the scaling of A — —gA, the chiral non-Abelian
gauge theory with the tree action defined by (32) in [8]
becomes the non-Abelian theory defined by (26). Taking
the A — —gA scaling into consideration, (32) is also in
agreement with (69) of [8].

VIII. CONCLUSION

In the BM scheme, simply removing the pole terms from
the amplitudes of 1-loop diagrams does not yield renor-
malized amplitudes that satisfy Ward identities. Instead,
some finite renormalization terms have to be added. These
finite counterterms are determined from restoring the val-
idities of Ward identities. Implementing this finite renor-
malization in practical calculation is usually a daunting
task even at 1-loop order.

For the chiral Abelian-Higgs gauge theory and the chiral
non-Abelian Yang-Mills theory, we have verified that the
renormalized amplitudes for all 1-loop diagrams calculated
in the BM scheme with finite counterterm renormalization

PHYSICAL REVIEW D 83, 065011 (2011)

are equal to those obtained directly in the rightmost 5
scheme. This means we can be spared the tedious finite
renormalization procedures if the rightmost 5 scheme is
adopted. Furthermore, since all the ys matrices are moved
to and consolidated at a single position before continuing
the dimension in our scheme, the burden of evaluating the
matrix products or trace of matrix products is considerably
less than that in the BM scheme. In our opinion, this
rightmost 5 prescription is a much simpler scheme than
the BM scheme for calculating amplitudes in gauge theo-
ries involving vys.

For the rightmost y5 scheme, the prescription that leads
to the preservation of Ward identities makes no use of the
specific type of gauge theories in question. As a conse-
quence, the rightmost 5 scheme should be applicable for
any type of chiral gauge theory, in particular, the standard
model.

APPENDIX A: THE CHIRAL ABELIAN-HIGGS
THEORY

1. Feynman rules

The propagators and vertices used in the 1-loop counter-
term calculation for the chiral Abelian-Higgs theory
defined by (13) are listed below.

a. Propagators

)y )
S(¢7¢,p). _p_m
- L HV_% k,2_ A2 EH LY
D(A* A" k)1  ~AAAAN = 92 o a (k2 — ah?) :
H v k2 — M k2 (k2 — aAM)
ey M — A) kH
D (A", ¢o; k) AVIVIViV VE— :Oé(—)2
H ¢ (kK2 —ahM)
<k M — A) kH
D(QS??Au; k) D ANV _ _OZ(—)/{?2
P2 H (k? — aAM)
- (k2 — o)

¢ (k> —aAM)?
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b. Vertex factors

@EA“@D : g,u = —1gRY"L

Vo) : P2

. =f (R - L) = fs
e _ | = if
k
H Ay B aw
p+k —  T—0p
H 05

2. 1-Loop counterterms
a. Figure 1: i i self-energy diagrams

The possible diagrams that may contribute to the
fermion self-energy are depicted in Fig. 1.

In each diagram of Fig. 1, the horizontal line signifies an
internal fermion line and the wavy line is a vector meson
line.

Diagram (c):

PHYSICAL REVIEW D 83, 065011 (2011)

A)INVHIA HL \H 6o/ LHLA AAJJJ

(a) (b) (0) (d) (e)

02 02

FIG. 1. The fermion self-energy diagrams are shown.

Diagram (a):
This diagram has been discussed thoroughly in Sec. V.

The Feynman amplitude in the BM scheme is denoted
y IBM:
1(a)®

dae 1
BM — 2[ D(A* A”;{)Ry*L———Rvy"L.
l(a) '8 2m)" ( )Ry L+p—m Y

The corresponding amplitude in the rightmost y5 scheme is

denoted by T :

d"{ £+ p
RS — _;,2 D(A® v. n v
Fl(“) '8 ,[(Zﬂ)" (4%, A% Oy (€ + p)? — m? V'L

The difference has been shown in Sec. IV to be

hm(F —IBMY) = —

1(a) 1(a) ( ) l_(l + ZCV)PL

Diagram (b):
There is no 5 in the BM amplitude Fl(b) The rightmost

vs amplitude TR is the same as I'BM and no finite

1) 1(b)

counterterm is generated:

R5 BM _
1—‘1 (b) 1—‘l(b) 0.

TR = 7 [ S Db b2 O s,
M = [ e D@ b 0
ti(I, — 00 = i [ 55Dl by 0 LT T
= if? [ G Pl 0 =0
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TABLE IV. Counterterms due to diagrams in Fig. 1 are shown in the table.

Figure (47)? X (I'® — TBM) (47)? X counterterm
1(a) —i% (1 +2a) pL — £ (1 + 2a)JRifLY
1(b) 0 0
1) 0 o
1(d) fa(M — A)fgL Ja(M — A)fgyLi
1(e) fa(M — A)fgR Ja(M — A)fgyRy
Diagram (d):
ey = (—ig)ffﬂD(A“ b3 0)y ;RY’LL
l(d) 2 )n ’ 2> 5[ + f) —m ’

l(d) = (_lg)ff(z D(A ¢2,€);7“L,

——p-m
tim(TY5, — T3 = gt [ 5 D(A%, 9 O~ 208yt
— alvt = Mg ftim [ S5 oy _(fz _Ynszu
4 - i‘oz(M—A)fgL.

= —a(M - A)gfiﬂf(zﬁ)n (€2 _ m)3 - (477.)2 2

Diagram (e):

B = (—ig)f [ D, A5 €) RyHL

2 T
(£ + p)R — mL
i, ) = 59 / L )7 R R L
€2
— —a(M - Mﬂ/&)ﬂﬁ_if
1
(477.)2 ) a(M AN)fgR.

To summarize, the amplitudes and finite counterterms due to diagrams in Fig. 1 are tabulated in Table I'V.

b. Figure 2: YAy Vertex diagrams
In Fig. 2, u € {0, 1, 2, 3} is a polarization the in the first 4 dimensions.

AM AM

P— P~ P
SOAR N / I ./ / N\,
AA ol A \H s/ A;E \o s/ \H H \bo

(a) (b) (c) (d) (e)

FIG. 2. The diagrams for /A vertex are shown.
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Diagram (a):

de i
I'BM — (—; 3[ P
2w = (i) (2m)" DAy, Ar O Ry LK +p+k— mR

C+p+k L L+

d"e
FR5——‘3f D(A,, A,, €)y” oL,
20 = 18 | G PAe A OV e e 2 Y T e Yk
d"e yPLy* Ly’ L — RyPLLRy* LLRy°L
R5 BM _
FZ(a) 1_‘2(11) (2 )n D(A AO” €) (€2 _ m2)2
_ A (@7 (= DEH (P Lyt by — yP iyt Lyo)L
Q" @ = n)*
(2—n)? _ (& f)
e (e 4@ )DL
(277.)71 (02 — m2)*
! g7+ 5a)y*L.

(477)2

Diagram (b):

d"e i i
l“BM — (—; . 2/ CH; - P ——
20y = (T | G DO g Ry L
1 &+ p)R+ mL
& — o [ 9 b e z
20~ i8S (2 2t ey s
e 1 1 [ y*€R  Ry"L{
R5 _ 1B — 2 _
i~ 12 = & | Gap 62—m2f—m<€2—m2 (32—m2)

at  ys 1 1.
= ef [ Gy @ = GRS

Diagram (c¢):

BM _ o2 S ) L
F2(C) lgf _[(2 )nD(¢29¢2’€)757€+p+k mR‘y L;€+[)—m75

- 1 (& + p)R —mL
res lgf2[(2 TSIl pryrarey a7 e

a1 1 LR 1 1
: RS BM) — , 2
}llm(rz(c) FZ(C)) gf (277),1 €2 _ m2 (7€ + m ’yﬂ' €2 — m2 + '}’Sf _ mR’y’U“Lf —-m 75)

d"t oy 1
= —of2 AYS _
8f Qm)" (€2 — m2)3 4 )2 gf vHys.

Diagram (d):
, [ d'€ 1

BV = ——-D(¢y, h2; € — k)2 — k)*D(H, H; €)75m

8 n
@ ear

5 = 0 [ (o5 D(a 6210~ DL~ 0P DH, H: O

C+p+m

de 1 1
tim (IS, ~ TN = &7 [ 35 Dl i OD(H, Hi 0204 (s = v m)

r fA?’s

@ )—O.

— 4gp? f Gyt Db 23 ODUH, H 0)
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TABLE V. Counterterms due to diagrams in Fig. 2 are shown in the table.

Figure (47r)* X (IR — ['BM) (47r)? X counterterm
2(a) Le3(7 + 5a) yAL £83(7 + 5a)yRAL Y
2(b) Sigf*y*ys sef*PAysy
2(c) sigf*y*ys s8f*PAysi
2(e) 0 0

2(e) 0 0

Diagram (e):

3 = gf? at D(H, H; € — k)(k — 2€)*D(¢», ¢2;€);75
2(e) (277)11 —m

L+ p
= gf? dt D(H, H; € — k)(k — 20)*D(¢,, ¢ '€)¥7
2(e) (2m)" T 2P h—m
5 _ —
56 — g = 0.

To summarize, the amplitudes and finite counterterms due to diagrams in Fig. 2 are tabulated in Table V.

c. Figure 3: yH s Vertex diagrams
Diagram (a):

at 1
BM — _:ir,2
F3(“) ife [(2 n A+ptk—ml+p—m

. d"e _ mQL +2p+ k) ,
T8y = 6 [ G DA A OV G e

dt gu, t+ (a— l)é*{ff” my* £y .
27)" (> — m?)? —yH(m + Ly )y")

B d’l€g,,+(a—l)
= —2f¢ ,[(2 ) = (€2 — m?)3

YR V; RYVL;

S (TRS _ TBMY —
}lﬂ(rz(a) ISw) = 2f8 / (

s Yy Laly"L = 0.

Diagram (b):
No 75 is involved, and therefore

RS BM _
1ﬂ%(b) 1_‘3(17) 0.

FIG. 3. The diagrams for ¢ Hr vertex are shown.
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Diagram (c¢):

o — —if3 (jn)nD(sz, ¢2,€)75[ iy j—k —m il 11 —r
e = —if3f(jn)nD(¢2’ $2: 05 +p ik+ m L +;+ m’
timS, - TR = 7 [ 5 e mlevm) ) )

Diagram (d):

1
BM _ ,2 . -0+ _ " v
B = ff(z )”D(¢2’ 623 OD(A Ay 4 R~ B ys p+k— P

ng 1
RS — _,2 . -0+ AV v
F3(d) 8 f[(2 nD(¢2r ¢27€)D(A,u,rAV’€ k)(€ k) Y, +p T+ m7 L,

. 1 1
tim (%, - 1) =~ [ o D> ¢2;e>D<AM,AV;e)€M( L v RY'L)

= —ng[( (€2 ) (€>L + ys£RLL)

a€2
Bl f P @ — -
1 ag’f
—(477_)21 > L.

Diagram (e):

e [ g DAy Ay O(=8(€ + 20)D(, o3 € + B Ry'L vs

1
L+p+k—m
£+ p+ kR —mL
€+ p+k?—m>’

%) = o [ (g DG A O(—(€ + 2090D(d, i €+ 1)y

aty

2
lim(I'%5) — T5Y) = — g2 ] 5 )n s (CR— RAL Uy

a€2
=& f Qm (@ = mp

_ 1 ; ag’f
(4m)? 2

R.

To summarize, the amplitudes and finite counterterms due to diagrams in Fig. 3 are tabulated in Table VI.

TABLE VI. Counterterms due to diagrams in Fig. 3 are shown in the table.

Figure (4m)? X (I'® — ['BM) (47)? X counterterm
3(a) 0 0
3(b) 0 0
3(0) 0 0

.aglf agf 5
3(d) il CLGHLY
3(e) i“LR L G HRY
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/,,,v‘(-\\ ’/,,,‘; ~
AA /22 \g /P2 N o

[ e G2 g 0

(a) (®) (0) (d) (¢)

FIG. 4. The diagrams for ¢ ¢, vertex are shown.

d. Figure 4: i ¢, Vertex diagrams
Diagram (a):

dre 1 1
IBM = fg? ——D(A,, A,; ) Ry*L Ry"L,
sw I8 Q)" (A A O RY Crprk—mC+p—m "~
d'¢ m Kk
TR = f D(A,, A, €) y* 'L,
0TI ) Gy P A Y Gy R i e

dt gu, + (a— 1)
Q)" (02— m2)3

lllim(F4R(5) ) = —ifg? 42 (=2my* £,y")L = 0.

Diagram (b):

d"t 1 1
BM 3
Fin =7 Q)" D(¢2 ¢2,6) C+p+k—mBt+p—m
at 1 1
RS — _ 3
B = =1 Q)" D(¢» ¢2’€)f+p+k—mf+p+m75’
da{ 1 1 1 1
R5 _ TBM) — _ 43 +
llm(r4(b) F‘W’)) if [(277)" (€2 — m?) ((€2 — m?) LR —C m)
. da{ 1 1
=i @wwﬁ—wﬁ@“Wﬁ—m%““)
d"e 3
— _nif3 A
W) G @y
= (4 )2f3’)/5
Diagram (c)
d"e 1 1
BM _— _ 3
F4(C) ff(z )n (¢2)¢23€)75[+p+k_m)/57€+1)_m75
at 1 1
3
4(c) f (2 )nD(¢2)¢2’€)/€+p+k+m(+p_mYS’
. dan{ 1 1
hm(F4R(5L - I‘E(CN[)) lf3 (277_),, (‘62 _ 2)2 (‘YS + (€2 _ m2) F}/S 767/5 ZVS)
d"e (72
=23
W) Gy @ =
1
= Wﬁ%-
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TABLE VII. Counterterms due to diagrams in Fig. 4 are shown in the table.

Figure (47)? X (IR — TBM) (477)* X counterterm
4(a) 0 0
4(b) — s if? l_ﬂ_¢2 Vs
4(c) f‘j)’s —if Ydrysy
4(d) el —i%zfl_ﬂ%Ll/f
4(e) — /R i95L G pyRip
Diagram (d):
v — i [ o b= DAL A k) Ry
“d) Qmn p £+p+k—m '
d"{ 1
Ff&) = —ifg? D(H, H; £)(k — €)*D(A,, A,; € + k) v'L

Q)" L+p+k—m
, ot L, ,

lim(I'%5, — T5) — —ifg f G DU, H: Ol = 09 D(A,, A + 1) 7= (y"L = Ry'L)
de afi 1

T ) @y @t

1
3 afg’L.

Diagram (e):

d"t
BM __ __; 7 . v . mwyr o
1—‘4(6) lgf[(zﬂ.)nD(AwAwe)g(g—i_Zk) D(H, H; €+ k) Ry L;€+[7+k—m,
&+ p+ER+ mL
(+p+k?—m*’

[ ane
IR = —igf [ Sy Dl A4z Og(E + 200" D(H, H3 € + )y

. e ) (R 1
lim(T, — TR0 = i [ 3 5 D, At O DU, H: Oy (5~ RyrL =)

(2,”_)}1
_ o[ _eh 1 ag’f
G e L e

To summarize, the amplitudes and finite counterterms due to diagrams in Fig. 4 are tabulated in Table VIIL.

e. Figure 5: One-fermion-loop 2-point 1PI

Diagram (a):
No 75 occurs in the amplitude. Thus,

RS _ TBM _
ISty —Tsey = 0.

H Q H 02 ©¢2 A‘L@@V b2 QQ\#
(a) (b) (c) (d)

FIG. 5. The diagrams for 2-point 1PI are shown.
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Diagram (b):

ae i i
BM _ _ 2
Tso) ! tr,[(27r)”f—m75{—p—m’
de i i
RS _ 2
FS(I’) fu Qm)"L—ml—p+m’

lin}t([‘RS —IBM) = —f2¢r

d*e 1 1
5(b) 5(b)

1
QCm)" L —m f—p+m+75f—p——m75)
_ o[ (€ + m)2£,]
Qm)" (€ = m*)((¢ — p)* — m?)
_ d"t 1 20-p—p*  (2€-p—p*)
- szf(zﬂ)n €2A<(€2 _ m2)2 + ({2 _ m2)3 + (€2 _ m2)4 )

Diagram (c):

dre 1 1
FBM=—2t/ Ry*L Ry"L,
5(e) g Q2m)" £ —m Y £—p—m Y

vt 1 L—p
’y#
Qm)L—m’" (€—pP?—m
vt 1 £—L LR
RS _ T'BM) — _,2 " v
e b i ey s L

d"( 1 20-p—p> (2€-p— p?)?
= Doh? 2[ (22( + + )
878 Qmr M@ =) (@ - m2)y? (02 = m2)*

2 V'L

T

Diagram (d):
IS = —ifg (j:jn tr(z — ; — ysf _1 mRyML),
I — —ifg (jﬂ‘j = ; )

e 1 1 1
: R5 _ T'BM) — ; > .
}II_I,I}L(FS(d) rS(d)) lfgf(zﬂ)n tr([ — p — m(f +m Ty £ — mR)y L>

_ [t 20— p+mlayL N _
-y gf Q) “((({f — PP — M) - mZ)) 0

To summarize, the amplitudes and finite counterterms due to diagrams in Fig. 5 are tabulated in Table VIII.

TABLE VIII. Counterterms due to diagrams in Fig. 5 are shown in the table.

Figure (4m)> X (T® — I'BM) (47)? X counterterm

5(a) 0 0

5(b) if*(8m* — 5 p?) 4m? f2(2)* = 129 ,,2) (0 b3)
5(c) igh”g*(=2m? + 5 p?) —g'm*A% +§8%(9,A,)(04AY)
5(d) 0 0

065011-15
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H H H H
o) © (@ ©

FIG. 6. The diagrams for 3-point 1PI are shown.

[. Figure 6: One-fermion-loop 3-point 1PI

Diagram (a):
No 75 is involved and therefore there is no finite counterterm.
Diagram (b):

ae 1 1 1
BM _ /3
Vo) =/ | Gy = m b=y —m T =y~ —m ™
de 1 1 1
RS _ _ 43
Lew f“f(zww—mf—fal—mf—ﬁl—fwm’
. ae 1 1 (= +pi+po+m)—ys(C—p—p,+mys
RS _ TBM) — /3
i@t ~ Vo) =S | i r—m t =i = € —p— p2)? —m’

g d"¢ £ +m) — py + m)ly

s tr[(Zw)" (€2 = m*)((€ = p)* = m*)((€ = py = p2)* — m?)
dt (py +2mt; 1
Qm)" (€ —m?)> (4w

= —2ftr 8if3m.
There is another diagram corresponding to the exchange of the two ¢, fields or the reverse of the fermion-loop direction
which also yields the same amplitude i 41 > 8if>m.
. )
Diagram (c):

de 1 1 1
[BM = — fg? f Ry* Ry"L,
6(c) fgtu Qm)l—mAl—p, —m yf—pl—pz—m Y
a1 1 £—p— D2
I‘RS —_ 2t i I/L’
w0 = I o e m e m Wt m?”
de (€ + m)(€ — p; + m)y* £ovy”L]

mToe = Too) = /¢ | Gy @ =w) (@ = po? = w0 = pr = p2P =)

d't  imghv
4fg2 A
18" ) oy @ = wy

1
= 2ifg’mgh”.

@y
Interchanging the two external A fields gives us another topologically different diagram whose amplitude is also equal to
~ e 2187 mgh"-
Diagram (d):
d"e 1 1 1
M = —if2gt Ry"L,
6(d) if g (277)"[—m£—191—m%f—j)l—pz—m Y
de 1 1 1
R = if’gt Ry"L,
o = S o e m = py—m =y~ —m Y

) . ng 2t[(€ + m)£ — py + m)£,y”L]
lin(TEy = T80 = % [ G @ = po == 1 5=

ng €2
= lfzg[(277)n (€2 _Am2)3 tr[ﬁ]yy]
1
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TABLE IX. Counterterms due to diagrams in Fig. 6 are shown in the table.

Figure (4m)?> x Multiplicity (4m)? x
(CRS — T'BM) counterterm

6(a) 0 2 0

6(b) 8if3m 2 8f3mH(¢)?

6(c) —2ifg’mgh 2 —2fg’>mHA?

6(d) 2f*gpy 1 2f2g ¢y (0, H)AH

6(e) 2f%gpy 1 21?8 ¢,(0,, H)AH

Diagram (e):
dat 1 1
BM _ ) v
Fee = ~if g (277)”f—mf—pl—mR7 L[—pl—pz—m%’
F RS __ 2 t 14 R
w0 = T e m e —m (@@= pr = o — )
. . d't ul(€ + m)(£ — py + m)y” £,]
LHm(TR — 'BM) — ;2
Pl = o) = U7 | Gyt @ = w) (€~ p? — md)(€— pr — pa? — )
. dt A
=if’g Q)" (@ = m) tulp1y”]
1
= e 2f%gpy.

To summarize, the amplitudes and finite counterterms due to diagrams in Fig. 6 are tabulated in Table IX. Note the
column “Multiplicity” indicates the combinatorial factor that needs to be multiplied.

g. Figure 7: One-fermion-loop 4-point 1PI

Only T, order terms may be divergent. For the sake of simplicity, we may assume all the external momenta are zero.
Diagram (a):

No 75 is involved and therefore diagram (a) generates no finite counterterm.

Diagram (b):

de 1 1 1 1
[BM _ ¢4y ’
) = S (277)"f—mf—m(—mysf—my5
de 1 1 1 -1

RS5 4
o0 = fu Qo) b—ml—ml—mAl+m

11m(F7R(5b) - FBM )

d"t L
4 _p_
f hmtr/(Zw)" = 2)4( £—vystys)

n—4
el |
-2 41 =
Fim | oay @ —m2f — @np

Exchanging the two H and the two ¢, gives a combinatorial factor of 4. The total counterterm amplitude is

4ift,

G )24X4lf4 = )216lf4
H H H H o2 H @2 [ H H
H H P2 P2 H 02 P2 02 A* AV
(a) (b) () (d) (e)
An H ¢2 ®2 A $2 AV A
H Au A/L Au 0‘2 Al/ Ap Aﬂ

(f) (9) (h) (i)

FIG. 7. The diagrams for 4-point 1PI are shown.
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Diagram (c¢):

F?(l\c/l):f“tr (S:Tgnf_lm(_lm%[_lm[_lmys,
R P S et
N TR
Diagram (d):
M = —f'u (;:Tfn 7 _1 m?’s[_lmysf_lm)’sf _1 —7s
s g (4C L L1 ]

Qo)L —ml+ml—ml+m’

: dt ul€* — LysLysLysLys]
5 _ 4
}lﬂ(rl;(d) I‘7]3(1:1/[)) =-f f(zw)n 02 — m2)

¢ 6Ge 1 32
Qm)" (2 —m®*  (4m)? 3

— 324 if*.

Permutation of the four ¢, on a loop gives a combinatorial factor of 3!. The total counterterm amplitude due to this type of
diagram is 31 X (47'7)2 2ift = (4717)2 64if*.
Diagram (e):

i = —f¢’w

a1 1 1 1
Ry*L Ry'L,
m

Qm)rd—ml—mfl—m £ —
de 1 1 1 £
yh
Qo)L —ml—mt—m" (£*>—m?
d'€ u[€? £y Ly"L — €> Ly Ly L]
Gny &=y
d"0 tully* Lyy”L]

Fs(se) = —f2g%tr v'L,

: RS _ TBM) _ _ 2.2
,111_1}3(F7<e> F7(e)) g

=—f¢ Qm)" (€2 — m2)
= e

Exchanges of the two H and of the two A multiply the above amplitude by a factor of 4, i.e., the total amplitude is
1 4f2 2 GV
@np 1778787

Diagram (f):
s VR O N SN SRS B B
W = e (277)”f—mf—mRy Lf—mf—mRy ’

at 1 1 2mAl
I‘RS — _ 2 2t [ n VL’
) e (27T)”f—mf—my (€2—m2)2y

. TR5S _ TBM)Y —
lim(T3) = Tagp) = O
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Diagram (g):

de 1 1 1 1
TEM — g2 2tf Ry*L——Ry'L,
A (27T)"f—m75/f—mysf—m et
dae 1 1 1 £
I"RS — _ 2 2t " VLy
(8) fret (277')"f—m£+mf—my fz—mzy

d"¢ ul€?Ly* Ly"L + LysLys{Ry*L £Ry"L]

hm(FRS _ FBM) _f2g2

g 108 7(2) (2m)" (0> — m?)*
1 are €% ((72 + 262)
= _ ,u. v
= 1 2,2 mv.

Permuting the two external ¢, and the two external A yields three additional diagrams and each of them contributes
the same counterterm amplitude as the above. The total counterterm amplitude is therefore equal to 2 X 2 X

(— G i3f’8’e") = —gris 788"

Diagram (h):

de 1 1 1 1
[BM — f2 th Ry*L Ry”L.
o = S (277)”f—my5f—m L Ll

The rightmost-ys amplitude vanishes in the T}, order;

R5 _—
1_‘7(h)

dat —Ly*Ly'L
@ @ -y

dt¢ (n—4)
n(n +2) ) Qo))" (€2 — m2)2

— (4 )2 f2g2g/tv

lim (IS5, — T5Y) = 4/

14

By reversing the loop direction, or by exchanging the two external ¢, fields or the two external A fields, we obtain another
diagram that also contributes the same counterterm amplitude as the above. The total counterterm amplitude is

2 X (_ W : ifzgzg,w) — (477)2 fZng,uV
Diagram (i):

d"¢ t[Ry*LARy"LLRy"LLRy’L]

BM _ _
1—‘7(1') 8 (277.)n (gz _ m2)4 ’
RS — gt d"0 tlly* Ly” £yP [y"L]
i(i) (277.)n (52 _ m2)4
. d"0 tlly* Ly LyP £y L — Ly*Ly " £vPLyo L]
RS BM
}}m(rm) I%6) = Q)" 02 — m2)*
_ L [ dne Gl (29 y Py + v Y8+ gR P yT) — Ry Yy Y]
28 Qm)" (€2 — m2y?*
1 o4 VPO 5 vo T PV
= @ny ig (g" gk — gg“”g + gh7gP ) (A2)

The above amplitude is invariant if we reverse the loop direction or make the interchange (u < o). For the 4-point AAAA
1PI function, there are in total 6 topologically different diagrams that may be obtained from Fig. 7(i) by permuting the
indices v, p, and o. The total amplitude for AAAA is equal to
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TABLE X. Counterterms due to diagrams in Fig. 7 are shown in the table.

Figure (47r)% X (IR — ['BM) Multiplicity (477)* X counterterm
7(a) 0 31 0

7(b) 4if* 4 4f*H*(¢,)
T(c) 0 2 0

7(d) Zift 3! S

7(e) —if?ggh” 4 —frg?HA?
7(f) 0 2 0

7(2) —iifrg*g"” 4 — 1178 (¢)°A?
7(h) —igfrg* g™ 2 =378 (¢)°A?
760) + (p = v) + (p = o) iP5 (ghVgPT + ghPghT + ghvgh?) 2 L gt(a2y

, 5

l2g4<g””g’” —38M8" T gt (p o)+ (p = rr))
.

Gm?

(41)>

38" (g gl & ghrgt + gh7gh”).

To summarize, the amplitudes and finite counterterms due to diagrams in Fig. 7 are tabulated in Table X.

APPENDIX B: THE CHIRAL NON-ABELIAN GAUGE THEORY

1. Feynman rules

The propagators and vertices used in the 1-loop counterterm calculation for the chiral Abelian-Higgs theory defined by
(28) are listed below.

a. Propagators

_ D ) ;
S dip): e =ip
B / P i .
S,y Y =%
- Lk o v
Dt A A, = (e 0 ) o
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b. Vertex factors

AsH
PYADHY o < §¢< ““““““ = —1gRY" LT}
w/Aa,,uw “““““ D Aj”u — —@gLﬁy“RTa
v :
AsH
™

a Ab pc .
A A A°

A XA
ko ks

= —gC" (g (k1 — ks)”

2. 1-Loop counterterms
a. Figure 8: Fermion self-energy diagram

The fermion field in Fig. 8 can be either ¢ or /. If the
fermion field is ¢, the Feynman integral for Fig. 8 without
including the non-Abelian group factor 3, 7{ T{ = C\_ is the
same as the one for the diagram of (14) of which the counter-
term has been demonstrated to be (19) in Sec. IV. If the
fermion field is ', the counterterm can be obtained from
that for the ¢ field by replacing 5 with —7y5 and the group
factor Cp with 3, T{T§ = Cr. The counterterm therefore is
equal to

S +2a)(YLig iy CL + diifPprCr).  (BI)

 @4m)23

b. Figure 9: YAy and ' Ay’ Vertex diagrams

Diagram (a):

The amplitude for this diagram excluding the non-
Abelian group factor is the same as that for Fig. 2(a). If
¢ is the fermion field, the non-Abelian group factor is

Y TETiTE = CLTY + iC“”"Tfo and
hm(Fw o(a) Fﬁh’(lg)a) = (4 )2 (7 +5a)

X y*L(CLT¢ + iCabeTPTE),

I

FIG. 8. The fermion self-energy diagram is shown.

(B2)

vp (k)g — k)g)“ + g“” (k)g — ]ﬁ)l/)

If ' is the fermion field, the non-Abelian group factor is
Y TRTETE = CrTE + iC°TETG and

1 lg
t/f’9(a)) 4 )2

X yHR(CRTS + iCUCTLTY).
(B3)

hm(F ——(7+ 5a)

9

The counterterm that is responsible for the amplitudes of

(B2) and (B3) is

837 + 5a)h A (CLTE + iCPTYTE) gy,
+13(7 + 5a) 'R AY(CRTE + iCPTRTY) . (B4)

Diagram (b):
If ¢ is the fermion field, we have

FBl//l’\g(b) —ig llmf(2 T
X =Ry’ LCHTITED,, (€ — ky)
< (2577208 — 015 — g0 01D, 0,
AL
Az m
(a) (b)
FIG.9. Ay and /’Ayy’ vertex diagrams are shown.
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and

BM
11m(r¢9(b) r 9(b))

= —lg3hm [(2

X ng(@i

1
@26

Do, (()2g"7200 — ghver — ghr ()
(yffy" _ ,yrf,ya)chacTIlef
(7 +5a)g3yF LCWCTPTE. (B5)

If ' is the fermion field, we have

F¢M9(b) = —ig rlnlir(l) (2 )n
X [ Ly"RCb“CTbTﬁDT,,({f
X (2g””2€'“ — ghver — g’“’€”)D,m(€)
and
(52 o) ~ o)

da"t
- 31:
ig'lim [ 55000
X (257260 — gh (7 — gh ()D,, ()
1

X 7€ 5 (y"Ly” — yLy?)RCPTETG

1

(4 @26 (7 + 5a)g3y*RCCTETS. (B6)

The counterterm to generate the amplitudes of (B5) and
(BO6) is

GG L3 + Sa)( Ao coreTd e g

+ PRACPTLTE ). (B7)

Diagram (a):

PHYSICAL REVIEW D 83, 065011 (2011)

a b
Au

FIG. 10. The diagram for 2-point 1PI is shown.

To summarize, the sum of (B4) and (B7) is the total
counterterm due to the two diagrams in Fig. 9:

1
(4m)? 6

3(7 +5a)(PLATE YL CL + YrATRYRCrR).
(B8)

c. Figure 10: One-fermion-loop 2-point 1PI

Ignoring the non-Abelian group factor, the diagram in
Fig. 10 is the same as diagram (c) in Fig. 5. For the
fermion field, the group factor is tr(T¢T?V) = Ty 8.
Consequently,

1
hm(I‘l/I 10— o) = W;g# §g2p2TL5ab,
where p is the external momentum. The group factor for
' is tw(TATS) = T 8" which yields the difference

1
hm(Fﬁs, 0~ FBz/fMIO) = (4 s igh” 3g2p2TR5“b.

The above two amplitudes can be accounted for by the
counterterm

1

(4 )2 g (TL + TR)Aa DAaM

(B9)

d. Figure 11: One-fermion-loop 3-point 1PI

We are only interested in terms that have an even count
of 5. Assume the incoming momenta entering A%, A%, A
are kl’ kz, k3.

1
BM vp P abc
Fw,ll(ﬂ) 8 hm tr[(z )n (;€ m L7€ - kl - mRy Lf + k3 - mRy L)75-even tr(T T )’
d"C uw(fyr (€ — k)y" (€ + k3)y? — Ly (€ — k)y" (£ + k3)yP) :
BM abc
11m(F¢ nw ~ ) = ) rlnl—>0 Q)" @ — (€ — ky)? — D) (€ + ko) — D) tr(T9T?T¢)
- (4l 73 2 el — k) g + (ks — k)8 + (ky — k)P g#) w(TETYTY), (B10)
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45 4
A A, A A
(a) (b)
FIG. 11. The diagrams for 3-point 1PI are shown.
Similarly,
hm(l“l//, 1@ 3M11(a))
1 2
=~ G 38 = k) o+ (s — k)gee

+ (ky — ky)P g*) te(TRTRTR). (B11)
Diagram (b):

Diagram (b) can be obtained from diagram (a) by the
interchange (a, u, k;) < (b, v, ky)

hm(r¢ e — Blell(b))
1 21
(4 @3 S ((ky — k3)"g"? + (ky — ky)" gh*
+ (ky — k)P g*) (TP TETY), (B12)
hm(FW 11(b) FBz//Mll(b))
1 2 ,
(4 )2 g 3(ky — k3) g"P + (ky — ki) gh*
+ (k) = k)P g"") te(TRTRTR). (B13)

Utilizing tr([T¢, TP1T¢) = iTy C?%¢ and w([T&, TZ]TS) =
iTrC*c, the summation from (B10) to (B13) can be
written as

1

(4 )2 g (( 2 k3),ugllp + (k'i - k) glup

+ (ky — k)P gH)CoPe(Ty, + Ty),
which leads to the counterterm

1

G 3 g 3Ty, + TR)C(9#A4)ALASY.

(B14)

e. Figure 12: One-fermion-loop 4-point 1PI

Diagram (a):

If ¢ is the fermion field, the amplitude for this diagram
is equal to the group factor tr(T¢TPTETY) = T¢be? times
the amplitude for diagram (7) in Fig. 7. According to (A2),
we then have

PHYSICAL REVIEW D 83, 065011 (2011)

AL AL AN,
AXuag Apke—ad Ak
(a) (b) ()
AS Ac AS booAC AS
AL Akl A
() (e) (f)

FIG. 12. The diagrams for 4-point 1PI are shown.

im0 — T
5
— . 4Tahcd< HV oGP0~ GUP VO | GO Vp)‘
(477_)218 L 8§78 38 8 8778
(B15)
Likewise, if ' is the fermion field, t(T4TRTSTd) = Tabed

is the group factor and

BM
llm(r¢/ 12((1) ‘//1’12(“))

ig“Tﬁbc"(g””g”" - %g’”’g”" + g‘“’g””)-

(B16)

N (477)2

The contribution to the difference from both ¢ and ¢’
fermion loops is the sum of (B15) and (B16), which is
equal to

11m(F12(a) - F'f%))

1
= F o4 (Tabed abcd
(477_)2 lg (TL + TR )

5
X (g“”g"” BRI g‘“’g””). (B17)

Diagram (b):

The interchange (a, u) < (b, v) on (B17) yields

R5 BM
hm(ru(b) Fl2(b))

1
— sS4 (Thbacd bacd
(477_)2 lg (TL + TR )

5
X (g“”gf'” + gHrgrT — gg’“’g””) (BI8)
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TABLE XI. Counterterms due to diagrams in Figs. 8—12 are shown in the table.

Figure Where (47r)? X counterterm
8 (B1) =182 (1 + 2a) (i #p . CL + ki YR CR)
9 (B8) §8° (T +5a) (L AT{ . Co + PRATEYRCr)
10 (B9) — LTy + Tp)AL A
11 (B14) =3¢ (T, + Tp)CPe (9" A%)AL AcY
12 (B24) (F5 84 (Tgbed + Tgbed)A®r AL AP Ad + 2 ¢*(Ty, + TR)CeP Ce?A4 AL AC ALY
Diagram (¢): Diagram (e):
The interchange (a, u) < (¢, p) on (B17) yields The interchange (b, v) < (¢, p) on (B19) yields
. Lim(TR = — I'BM )
’lqﬂ(Fﬁ‘;(c,) - I A e T 12
1
L 4 eha ha — . jo¥(Tbead 4 Tbead
= 5 g (T(ed + Tghad) @) ig"(Ty 27
(4m) s
X (g,uvgpo _ ggp,pgwr + g/,LO'gl/p). (B19) X <_§gl“’gl’0' + gl’“ﬂgva + gl’«o'gvp)' (B21)
Diagram (f):
Diagram (d):

The interchange (a, u) < (c, p) on (B20) yields

The interchange (b, v) < (¢, p) on (B17) yields

12()
: RS _ T'BM
lim(I'5 ) = ) _ 1 a(peaba 4 peaba
1 @y '8 (Tt K
= (4 )2 ig4(Tﬁde + Tﬁde)
a

5
s X (g“”gp" tghreg" = gg’“’g””)- (B22)
X (- 38187+ ghrgm g“”g””)- (B20)

The summation from (B17) to (B22) gives

ghrer (T + TR + T TR — 3 + 1)

L+R
i | T (TS TR+ TR+ T30 — 3T+ TESO) . (B23)
T
FgRg (TP + TEY + TR+ TR — LT+ 1)
where T{5d = T@b¢d + T4bed The above amplitude can be f- One-loop counterterms for
accounted for by the counterterm the non-Abelian theory
1 4 1 abed . ab Ac 4d 5 abed ga.p Aby ac Ad The results for the finite counterterms stemming from
(47r)2g ETHRA' ApA© AV_ETHRA' APTALAS the difference of amplitudes between the rightmost
1 1 scheme and the BM scheme calculated for the diagrams
~a e g4(ETfﬁ‘§’A“’“AZAC’VA,‘f in Fig. 8-12 in the chiral non-Abelian gauge theory are
™ summarized in Table XI.
5
+ ﬁ(TL + TR)C“‘bC“"AZA,IZAC’“A‘L”) (B24)
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