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We discuss a deformation of superspace based on a Hermitian twist. The twist implies a ?-product that

is noncommutative, Hermitian and finite when expanded in a power series of the deformation parameter.

The Leibniz rule for the twisted supersymmetry transformations is deformed. A minimal deformation of

the Wess-Zumino action is proposed and its renormalizability properties are discussed. There is no tadpole

contribution, but the two-point function diverges. We speculate that the deformed Leibniz rule, or more

generally the twisted symmetry, interferes with renormalizability properties of the model. We discuss

different possibilities to render a renormalizable model.
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I. INTRODUCTION

It is well known that quantum field theory encounters
problems at high energies and short distances. This sug-
gests that the structure of space-time has to be modified at
these scales. One possibility to modify the structure of
space-time is to deform the usual commutation relations
between coordinates; this gives a noncommutative (NC)
space [1]. Different models of noncommutativity have
been discussed in the literature; see [2–4] for references.
A version of the standard model on the canonically
deformed space-time was constructed in [5], and its
renormalizability properties were discussed in [6].
Renormalizability of different noncommutative field the-
ory models was discussed in [7].

A natural further step is modification of the superspace
and introduction of non(anti)commutativity. A strong mo-
tivation for this comes from string theory. Namely, it was
discovered that a noncommutative superspace can arise
when a superstring moves in a constant gravitino or grav-
iphoton background [8,9]. Since that discovery there has
been a lot of work on this subject and different ways of
deforming superspace have been discussed. Here we men-
tion some of them.

The authors of [10] combine supersymmetry (SUSY)
with the �-deformation of space-time, while in [11] SUSY
is combined with the canonical deformation of space-time.
In [8] a version of non(anti)commutative superspace is
defined and analyzed. The anticommutation relations be-
tween fermionic coordinates are modified in the following
way:

f�� ;?��g ¼ C��; f �� _� ;
? �� _�g ¼ f�� ;? �� _�g ¼ 0; (1.1)

where C�� ¼ C�� is a complex, constant symmetric ma-
trix. This deformation is well defined only when undotted
and dotted spinors are not related by the usual complex

conjugation. The notion of chirality is preserved in this
model, i.e., the deformed product of two chiral superfields
is again a chiral superfield. On the other hand, one half
of N ¼ 1 supersymmetry is broken, and this is the so-
called N ¼ 1=2 supersymmetry. Another type of defor-
mation is introduced in [12,13]. There the product of two
chiral superfields is not a chiral superfield but the model is
invariant under the full supersymmetry. Renormalizability
of different models (both scalar and gauge theories) has
been discussed in [13–16]. The twist approach to non-
anticommutativity was discussed in [17].
In our previous paper [18] we introduced a Hermitian

deformation of the usual superspace. The non(anti)com-
mutative deformation was introduced via the twist

F ¼ eð1=2ÞC
��@��@�þð1=2Þ �C _� _�

�@ _�� �@
_�

: (1.2)

Here C�� ¼ C�� is a complex constant matrix, �C _� _� its
complex conjugate and @� ¼ @

@�� are fermionic partial

derivatives. The twist (1.2) is Hermitian under the usual
complex conjugation. Because of this choice of the twist,
the coproduct of the SUSY transformations becomes de-
formed, leading to the deformed Leibniz rule. The inverse
of (1.2) defines the ?-product. It is obvious that the
?-product of two chiral fields will not be a chiral field.
Therefore we have to use the method of projectors to
decompose the ?-products of fields into their irreducible
components. Collecting the terms invariant under the
twisted SUSY transformations, we construct the deformed
Wess-Zumino action.
Being interested in implications of the twisted symmetry

on renormalizability properties, in this paper we calculate
the divergent part of the one-loop effective action. More
precisely, we calculate divergent parts of the one-point and
the two-point functions. The plan of the paper is as follows:
In Sec. II we summarize the most important properties of
our model; more details of the construction are given in
[18]. In Sec. III we describe the method we use to calculate
divergent parts of the n-point Green functions: the back-
ground field method and the supergraph technique.
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In Sec. IV the tadpole diagram and the divergent part of the
two-point function are calculated. Finally, we discuss re-
normalizability of the model in Sec. V. We give some
comments and compare our results with the results already
present in the literature. Some details of our calculations
are presented in the Appendix.

II. CONSTRUCTION OF THE MODEL

There are different ways to realize a noncommutative
and/or a nonanticommutative space and to formulate a
physical model on it; see [2,4]. We shall follow the ap-
proach of [3,18].

Let us first fix the notation and the conventions which we
use. The superspace is generated by supercoordinates xm,
��, and �� _� which fulfill

½xm; xn� ¼ ½xm; ��� ¼ ½xm; �� _�� ¼ 0;

f��; ��g ¼ f �� _�; �� _�g ¼ f��; �� _�g ¼ 0;
(2.1)

with m ¼ 0; . . . ; 3 and �, � ¼ 1, 2. We refer to xm as
bosonic and to �� and �� _� as fermionic coordinates. We
work in Minkowski space-time with the metric
ð�;þ;þ;þÞ and xmxm ¼ �ðx0Þ2 þ ðx1Þ2 þ ðx2Þ2 þ ðx3Þ2.

A general superfield Fðx; �; ��Þ can be expanded in
powers of � and ��:

Fðx; �; ��Þ ¼ fðxÞ þ ��ðxÞ þ �� ��ðxÞ þ ��mðxÞ þ �� ��nðxÞ
þ ��m ��vmðxÞ þ �� �� ��ðxÞ þ �� ���’ðxÞ
þ �� �� �� dðxÞ: (2.2)

Under the infinitesimal N ¼ 1 SUSY transformations, it
transforms as

	
F ¼ ð
Qþ �
 �QÞF; (2.3)

where 
� and �
 _� are constant anticommuting parameters,
and the SUSY generators Q� and �Q _� are given by

Q� ¼ @� � i�m
� _�

�� _�@m; �Q _� ¼ � �@ _� þ i���m
� _�@m:

(2.4)

Transformations (2.3) close in the algebra:

½	
; 	�� ¼ �2ið��m �
� 
�m ��Þ@m: (2.5)

The product of two superfields is a superfield again; its
transformation law is given by

	
ðF � GÞ ¼ ð
Qþ �
 �QÞðF � GÞ ¼ ð	
FÞ � Gþ F � ð	
GÞ:
(2.6)

The last line is the undeformed Leibniz rule for the infini-
tesimal SUSY transformation 	
.

Nonanticommutativity is introduced following the twist
approach [3]. For the twist F we choose

F ¼ eð1=2ÞC
��@��@�þð1=2Þ �C _� _�

�@ _�� �@
_�

; (2.7)

with the complex constant matrix C�� ¼ C��. Note that

C�� and �C _� _� are related by the usual complex conjuga-
tion. It can be shown [19]that the twist (2.7) satisfies all
necessary requirements [20].
The inverse of the twist (2.7)

F �1 ¼ e�ð1=2ÞC
��@��@��ð1=2Þ �C _� _�

�@ _�� �@
_�

(2.8)

defines a new product in the algebra of superfields called
the ?-product. For two arbitrary superfields F and G, the
?-product is defined as follows:

F ? G ¼ �?fF � Gg ¼ �fF�1F � Gg ¼ �fe�ð1=2ÞC��@��@��ð1=2Þ �C _� _�
�@ _�� �@

_�

F � Gg
¼ F � G� 1

2
ð�1ÞjFjC��ð@�FÞ � ð@�GÞ � 1

2
ð�1ÞjFj �C _� _�ð �@ _�FÞð �@ _�GÞ � 1

8
C��C
	ð@�@
FÞ � ð@�@	GÞ

� 1

8
�C _� _�

�C _
 _	ð �@ _� �@ _
FÞð �@ _� �@
_	GÞ � 1

4
C�� �C _� _�ð@� �@ _�FÞð@� �@

_�GÞ þ 1

16
ð�1ÞjFjC��C
	 �C _� _�ð@�@
 �@ _�FÞð@�@	 �@ _�GÞ

þ 1

16
ð�1ÞjFjC�� �C _� _�

�C _
 _	ð@� �@ _� �@ _
FÞð@� �@
_� �@

_	GÞ þ 1

64
C��C
	 �C _� _�

�C _
 _	ð@�@
 �@ _� �@ _
FÞð@�@	 �@ _� �@
_	GÞ; (2.9)

where jFj ¼ 1 if F is odd (fermionic) and jFj ¼ 0 if F is
even (bosonic), and the pointwise multiplication � is the
bilinear map from the tensor product to the space of super-
fields (functions). The definition of the multiplication�? is
given in the first line. No higher powers of C�� and �C _� _�

appear since the derivatives @� and �@ _� are Grassmannian.
Expansion of the ?-product (2.9) ends after the fourth order
in the deformation parameter. This ?-product is different
from the Moyal-Weyl ?-product [21] where the expansion
in powers of the deformation parameter leads to an infinite
power series. One should also note that the ?-product (2.9)
is Hermitian,

ðF ? GÞ� ¼ G� ? F�; (2.10)

where � denotes the usual complex conjugation.
The ?-product (2.9) implies

f�� ;?��g ¼ C��; f �� _� ;
? �� _�g ¼ �C _� _�;

f�� ;? �� _�g ¼ 0; ½xm ;?xn� ¼ 0;

½xm ;?��� ¼ 0; ½xm ;? �� _�� ¼ 0:

(2.11)

Relations (2.11) enable us to define the deformed super-
space or ‘‘nonanticommutative superspace.’’ It is generated
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by the usual bosonic and fermionic coordinates (2.1) while
the deformation is contained in the new product (2.9).

The next step is to apply the twist (2.7) to the Hopf
algebra of SUSY transformations. We will not give details
here; they can be found in [18]. We just state the most
important results.

The deformed infinitesimal SUSY transformation is de-
fined in the following way:

	?

F ¼ ð
Qþ �
 �QÞF: (2.12)

The twist (2.7) leads to a deformed Leibniz rule for the
deformed SUSY transformations (2.12). This ensures that
the ?-product of two superfields is again a superfield. Its
transformation law is given by

	?

ðF ? GÞ ¼ ð
Qþ �
 �QÞðF ? GÞ; (2.13)

¼ ð	?

FÞ ? Gþ F ? ð	?


GÞ
þ i

2
C��ð �
 _
�m

� _
ð@mFÞ ? ð@�GÞ þ ð@�FÞ ? �
 _
�m
� _
ð@mGÞÞ

� i

2
�C _� _�ð
��m

� _
"
_
 _�ð@mFÞ ? ð �@ _�GÞ þ ð �@ _�FÞ ? 
��m

� _
"
_
 _�ð@mGÞÞ: (2.14)

Note that we have to enlarge the algebra (2.5) by introduc-
ing the fermionic derivatives @� and �@ _�. Since these de-
rivatives commute with the generators of Poincaré algebra
@m and Mmn, the super Poincaré algebra does not change.
Especially the Leibniz rule for @m and Mmn does not
change.

Being interested in a deformation of the Wess-Zumino
model, we need to analyze properties of the ?-products
of chiral fields. A chiral field� fulfills �D _�� ¼ 0, with the
supercovariant derivative �D _� ¼ � �@ _� � i���m

� _�@m.

In terms of component fields the chiral superfield � is
given by

�ðx; �; ��Þ ¼ AðxÞ þ ffiffiffi
2
p

��c �ðxÞ þ ��FðxÞ þ i��l ��@lAðxÞ
� iffiffiffi

2
p ��@mc

�ðxÞ�m
� _�

�� _� þ 1

4
�� �� ��hAðxÞ:

(2.15)

It is easy to calculate the ?-product of two chiral fields
from (2.9). It is given by

� ?� ¼ A2 � C2

2
F2 þ 1

4
C�� �C _� _��m

� _��
l
� _�
ð@mAÞð@lAÞ þ 1

64
C2 �C2ðhAÞ2

þ ��
�
2

ffiffiffi
2
p

c �A� 1ffiffiffi
2
p C
� �C _� _�"
�ð@mc �Þ�m

� _�
�l

� _�ð@lAÞ
�

� iffiffiffi
2
p C2 �� _� ��m _��ð@mc �ÞFþ ��ð2AF� c c Þ þ �� ��

�
�C2

4

�
FhA� 1

2
ð@mc Þ�m ��lð@lc Þ

��

þ i��m ��

�
ð@mA2Þ þ 1

4
C�� �C _� _��m� _��

l
� _�
ðhAÞð@lAÞ

�
þ i

ffiffiffi
2
p

�� �� _� ��m _��ð@mðc �AÞÞ þ 1

4
�� �� ��ðhA2Þ; (2.16)

where C2 ¼ C��C
	"�
"�	 and �C2 ¼ �C _� _�
�C _
 _	"

_� _
"
_� _	.

One sees that due to the ��-term and the �� �� -term (2.16) is
not a chiral field. But, in order to write an action invariant
under the deformed SUSY transformations (2.12), we need
to preserve the notion of chirality. This can be done in
different ways. One possibility is to use a different
?-product, the one which preserves chirality [8].
However, a chirality-preserving ?-product implies work-
ing in a space where �� � ð�Þ�. Since we want to work in
Minkowski space-time and keep the usual complex con-
jugation, we use the ?-product (2.9) and decompose the
?-products of superfields into their irreducible components
using the projectors defined in [22]. In that way, (2.16)
becomes

� ?� ¼ P1ð� ?�Þ þ P2ð� ?�Þ þ PTð� ?�Þ;
(2.17)

with antichiral, chiral, and transversal projectors given by

P1 ¼ 1

16

D2 �D2

h
; (2.18)

P2 ¼ 1

16

�D2D2

h
; (2.19)

PT ¼ � 1

8

D �D2D

h
: (2.20)
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Finally, the deformed Wess-Zumino action is con-
structed, requiring that the action is invariant under the
deformed SUSY transformations (2.12) and that in the
commutative limit it reduces to the undeformed Wess-
Zumino action. In addition, we require that deformation
is minimal: We deform only those terms that are present in
the commutative Wess-Zumino model. We do not, for the
time being, add the terms whose commutative limit is zero.

Taking these requirements into account, we propose the
following action:

S¼
Z
d4x

�
�þ?�j�� �� ��

þ
�
m

2
P2ð�?�Þj��þ�

3
P2ð�?P2ð�?�ÞÞj��þc:c:

��
;

(2.21)

wherem and � are real constants. To rewrite (2.21) in terms
of component fields and as compactly as possible, we
introduce the following notation:

C�� ¼ Kabð�ab"Þ��; (2.22)

�C _� _� ¼ K�abð" ��abÞ _� _�; (2.23)

where Kab ¼ �Kba is an antisymmetric self-dual complex
constant matrix. Then we have

C2 ¼ 2KabK
ab; �C2 ¼ 2K�abK

�ab; KabK�ab ¼ 0;

(2.24)

K�cdKabð�n ��cd ��m�abÞ�� ¼�4	�
�KmaK�na

þ 8KmaK�nbð�baÞ��; (2.25)

C�� �C _� _��m
� _��

l
� _�
¼ 8KamK�a l: (2.26)

Using these formulas and expanding (2.21) in component
fields, we obtain

S ¼
Z

d4x

�
�þ ?�j�� �� �� þ

�
m

2
P2ð� ?�Þj�� þ �

3
P2ð� ? P2ð� ?�ÞÞj�� þ c:c

��

¼
Z

d4x

�
A�hAþ ið@m �c Þ ��mc þ F�Fþ

�
m

2
ð2AF� c c Þ þ �ðFA2 � Ac c Þ � �

3
ðKm

aK
�nac ð@nc Þ

� 2Km
aK
�n

bð@nc Þ�bac Þð@mAÞ � �

12
KmnKmnF

3 þ �

6
Km

lK
�nlFð@mAÞð@nAÞ þ �

3
Km

lK
�nlF

1

h
@mðð@nAÞhAÞ

þ �

192
KabKabK

�cdK�cdFðhAÞ2 þ c:c:

��
: (2.27)

Partial integration was used to rewrite some of the terms in
(2.27) in a more compact way. Note that this is the com-
plete action; there are no higher order terms in the defor-
mation parameter Kab. However, for simplicity in the
following sections we shall keep only terms up to second
order in the deformation parameter.

III. ONE-LOOP EFFECTIVE ACTION

In this section we look at the quantum properties of our
model. We calculate the one-loop divergent part of the one-
point and the two-point functions up to second order in the
deformation parameter. We use the background field
method, dimensional regularization, and the supergraph
technique. The supergraph technique significantly simpli-

fies calculations. However, we cannot directly apply this
technique since our action (2.27) is not written as an
integral over the whole superspace and in terms of the
chiral field � and its derivatives. This is a consequence
of the particular deformation (2.2) and differs from [13].
In order to be able to use the supergraph technique, we

notice the following: From (2.15) (see also [22]), it follows
that the fields A, c , and F can be written as

A ¼ �j�; ��¼0; c � ¼ 1ffiffiffi
2
p D��j�; ��¼0;

F ¼ � 1

4
D2�j�; ��¼0:

(3.1)

Inserting this in (2.27) we obtain

S ¼
Z

d8z

�
�þ�þ

�
�m

8
�
D2

h
�� ��2 D2

12h
�þ ��� �� ��

�
1

768
KmnKmnðD2�Þ3 � 1

6
ðKm

aK
�naðD��Þð@nD��Þ

� 2Km
aK
�n

bð@nD��Þð�baÞ��D��Þð@m�Þ � 1

24
Km

aK
�naðD2�Þð@m�Þð@n�Þ

� 1

12
Km

aK
�naðD2�Þ 1

h
@mðð@n�Þðh�ÞÞ

�
þ c:c:

��
; (3.2)
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with fðxÞ 1
h
gðxÞ ¼ fðxÞR d4yGðx� yÞgðyÞ. Notice that

two spurion fields

Umn
ð1Þ ab ¼Km

aK
�n

b��
�� ��; Uð2Þ ¼KmnKmn�� �� �� (3.3)

appear in (3.2). This is a consequence of rewriting the
action (2.27) as an integral over the whole superspace.

Now we can start the machinery of the background field
method. First we split the chiral and antichiral superfields
into their classical and quantum parts,

�! �þ�q; �þ ! �þ þ�þq ; (3.4)

and integrate over the quantum superfields in the path
integral. Since �q and �þq are chiral and antichiral fields,

they are constrained by

�D _��q ¼ D��
þ
q ¼ 0:

To simplify the supergraph technique, we introduce the
unconstrained superfields � and �þ,

�q ¼ � 1

4
�D2�; �þq ¼ � 1

4
D2�þ: (3.5)

Note that we do not express the background superfields �
and �þ in terms of � and �þ, only the quantum parts �q

and �þq . After the integration of quantum superfields, the

result is expressed in terms of the (anti)chiral superfields.
This is a big advantage of the background field method and
of the supergraph technique. The unconstrained superfields
are determined up to a gauge transformation

�! �þ �D _�
�� _�; �þ ! �þ þD���; (3.6)

with the gauge parameter �. This additional symmetry has
to be fixed, so we add a gauge-fixing term to the action. For
the gauge functions, we choose

�� ¼ D��; �� _� ¼ �D _��
þ: (3.7)

The product 	ð�Þ	ð ��Þ in the path integral is averaged by

the weight e�i

R

d8z �fMf:

Z
dfd �f	ð�� � f�Þ	ð �� _� � �f _�Þe�i


R
d8z �f _�M _��f

�

; (3.8)

where

�f _�M _��f
� ¼ 1

4
�f _�

�
D�

�D _� þ 3

4
�D _�D�

�
f�; (3.9)

and the gauge-fixing parameter is denoted by 
. The
gauge-fixing term becomes

Sgf¼�

Z
d8zð �D _�

��Þ
�
3

16
�D _�D�þ1

4
D� �D _�

�
ðD��Þ:

(3.10)

One can easily show that the ghost fields are decoupled.
After the gauge-fixing, the part of the classical action

quadratic in quantum superfields is given by

Sð2Þ ¼ Sð2Þ0 þ Sð2Þint ; (3.11)

with

Sð2Þ0 ¼
1

2

Z
d8zð� �þ ÞM �

�þ
� �

(3.12)

and

Sð2Þint ¼
1

2

Z
d8zd8z0ð� �þÞðzÞV ðz;z0Þ �

�þ
� �

ðz0Þ: (3.13)

Kinetic and interaction terms are collected in the matrices
M and V , respectively. The matrix M is given by

M ¼ �mh1=2P� hðP2 þ 
ðP1 þ PTÞÞ
hðP1 þ 
ðP2 þ PTÞÞ �mh1=2Pþ

 !
;

(3.14)

with

Pþ ¼ D2

4h1=2
; P� ¼

�D2

4h1=2
: (3.15)

The interaction matrix V is

V ¼ F 0
0 �F

� �
: (3.16)

There are two types of elements in V , local and nonlocal.
We split them into F1 and F2:

Fðz; z0Þ ¼ F1ðzÞ	ðz� z0Þ þ F2ðz; z0Þ: (3.17)

Elements of F1 are given by
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F1ðzÞ¼
X10
i¼0

FðiÞ

¼��

2
� �D2� �

48
Km

aK
�na �D2D�

 
ð@m�Þ�� �� ��@nD�

�D2� �

48
Km

aK
�na �D2D�

 
ð@mD��Þ�� �� ��@n �D2

� �

48
Km

aK
�na@m �D2

 
ðD��Þ�� �� ��@nD�

�D2þ �

24
Km

aK
�n

b
�D2D�
 
ð�abÞ��ð@m�Þ�� �� ��@nD�

�D2

þ �

24
Km

aK
�n

b@m
�D2
 
ðD��Þð�abÞ���� �� ��@nD�

�D2þ �

24
Km

aK
�n

b@m
�D2
 
ð@nD��Þð�baÞ���� �� ��D�

�D2

� �

512
KmnKmn

�D2D2
 

� �� ��D2 �D2� �

96
Km

aK
�na@m �D2

 
ð@n�Þ�� �� ��D2 �D2� �

192
Km

aK
�na@m �D2

 
ðD2�Þ�� �� ��@n �D2

þ �

96
Km

aK
�nah �D2

 �Z
d8z0ð@mD2�Þðz0Þ 1

hz0
	ðz0 �zÞ

�
�� �� ��@n �D2; (3.18)

while the elements of F2 read

F2ðz; z0Þ ¼
X12
i¼11

FðiÞ

¼ �

96
Km

aK
�na@m �D2D2

 

� 1

hz0
	ðz0 � zÞ�� �� ��ðð@n�Þh �D2Þðz0Þ

þ �

96
Km

aK
�na@m �D2D2

 

� 1

hz0
	ðz0 � zÞ�� �� ��ðh�@n �D2Þðz0Þ: (3.19)

The one-loop effective action is then

� ¼ S0 þ Sint þ i

2
Tr logð1þM�1V Þ: (3.20)

The last term in (3.20) is the one-loop correction to the
effective action, andM�1 is the inverse of (3.14) given by

M�1

¼ A B

�B �A

 !

¼
mD2

4hðh�m2Þ
D2 �D2

16hðh�m2Þþ
�D2D2�2 �DD2 �D

16
h2

�D2D2

16hðh�m2ÞþD2 �D2�2D �D2D
16
h2

m �D2

4hðh�m2Þ

0
@

1
A:

(3.21)

Expansion of the logarithm in (3.20) leads to the one-loop
corrections

�1 ¼ i

2
Tr

X1
n¼1

ð�1Þnþ1
n

ðM�1V Þn ¼ X1
n¼1

�ðnÞ1 : (3.22)

IV. ONE-POINTAND TWO-POINT FUNCTIONS

The first term in the expansion (3.22) gives the divergent
part of the one-point functions, the tadpole contribution.
We obtain

�ð1Þ1 ¼
i

2
TrðM�1V Þ ¼ i

2
TrðAFþ �A �FÞ ¼ 0: (4.1)

Therefore just like in the commutative Wess-Zumino
model there is no tadpole contribution.
Next we calculate the divergent part of the two-point

functions. It is given by

�ð2Þ1 ¼ �
i

4
TrðM�1V Þ2

¼ � i

4
TrðAFAFþ 2 �BFB �Fþ �A �F �A �FÞ: (4.2)

First we calculate the AFAF contributions. They are given

by [remember that FðiÞ is the i-th element of the expansions
(3.18) and (3.19)]

TrðAFð0ÞAFð0ÞÞ ¼ 0;

TrðAFð1ÞAFð0ÞÞjd:p: ¼ � im2�2Km
aK
�na

6�2"

Z
d4x@mA@nA;

TrðAFð2ÞAFð0ÞÞ ¼ 0;

TrðAFð3ÞAFð0ÞÞ ¼ 0;

TrðAFð4ÞAFð0ÞÞ ¼ 0;

TrðAFð5ÞAFð0ÞÞ ¼ 0;

TrðAFð6ÞAFð0ÞÞ ¼ 0;

TrðAFð7ÞAFð0ÞÞjd:p: ¼ � im2�2KmnKmn

8�2"

Z
d4xF2;

TrðAFð8ÞAFð0ÞÞjd:p: ¼ im2�2Km
aK
�na

12�2"

Z
d4x@mA@nA;

TrðAFð9ÞAFð0ÞÞ ¼ 0;

TrðAFð10ÞAFð0ÞÞ ¼ 0;

TrðAFð11ÞAFð0ÞÞjd:p: ¼ 0;

TrðAFð12ÞAFð0ÞÞjd:p: ¼ 0:

Adding these terms, we obtain
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Tr ðAFAFÞjd:p: ¼ TrðAFð0ÞAFð0ÞÞjd:p: þ 2
X12
i¼1

TrðAFðiÞAFð0ÞÞjd:p:

¼ � im2�2Km
aK
�na

6�2"

Z
d4x@mA@nA� im2�2KmnKmn

4�2"

Z
d4xF2: (4.3)

The �BFB �F term is more difficult to calculate. Some of the identities we use are given in the Appendix. We obtain the
following contributions:

Trð �BFð0ÞB �Fð0ÞÞjd:p: ¼ i�2

2�2"

Z
d8z�y�;

Trð �BFð1ÞB �Fð0ÞÞjd:p: ¼ � i�2Km
aK
�na

12�2"

Z
d4xA�ðh� 4m2Þ@m@nA;

Trð �BFð2ÞB �Fð0ÞÞjd:p: ¼ ��2Km
aK
�na

36�2"

Z
d4x �c ��l@l@m@nc þ �2Km

aK
�na

12�2"

Z
d4x �c ��n

�
m2 �h

6

�
@mc ;

Trð �BFð3ÞB �Fð0ÞÞjd:p: ¼ �2Km
aK
�na

72�2"

Z
d4x �c ��l@l@m@nc ;

Trð �BFð4ÞB �Fð0ÞÞjd:p: ¼ � i�2Km
aK
�na

2�2"

Z
d4xA�

�
m2 �h

6

�
@m@nA;

Trð �BFð5ÞB �Fð0ÞÞjd:p: ¼ ��2Km
aK
�n
b

72�2"

Z
d4x �c ð ��b@a � ��a@b þ i"abcd ��d@cÞ@m@nc

þ �2Km
aK
�na

12�2"

Z
d4x �c ��n

�
m2 �h

6

�
@mc ;

Trð �BFð6ÞB �Fð0ÞÞjd:p: ¼ ��2Km
aK
�n
b

36�2"

Z
d4x �c ð ��b@a � ��a@b þ i"abcd ��d@cÞ@m@nc

� �2Km
aK
�na

12�2"

Z
d4x �c ��n

�
m2 �h

6

�
@mc ;

Trð �BFð7ÞB �Fð0ÞÞ ¼ 0;

Trð �BFð8ÞB �Fð0ÞÞjd:p: ¼ im2�2Km
aK
�na

12�2"

Z
d4x@mA

�@nA;

Trð �BFð9ÞB �Fð0ÞÞjd:p: ¼ i�2Km
aK
�na

72�2"

Z
d4xF�@m@nF;

Trð �BFð10ÞB �Fð0ÞÞjd:p: ¼ im2�2Km
aK
�na

12�2"

Z
d4xd4y@m@nFðxÞh�1x 	ðx� yÞF�ðyÞ;

Trð �BFð11ÞB �Fð0ÞÞjd:p: ¼ � im2�2Km
aK
�na

12�2"

Z
d4x@mA

�@nA;

Trð �BFð12ÞB �Fð0ÞÞjd:p: ¼ � i�2Km
aK
�na

36�2"

Z
d4xA�@m@nhA:

Collecting all contributions, we have

Trð �BFB �FÞjd:p: ¼ Trð �BFð0ÞB �Fð0ÞÞjd:p: þ 2
X12
i¼1

Trð �BFðiÞB �Fð0ÞÞjd:p:

¼ i�2

2�2"

Z
d8z�þ�� i�2Km

aK
�na

3�2"

Z
d4xA�

�
m2 þh

6

�
@m@nA� �2Km

aK
�n
b

12�2"

Z
d4x �c ð ��b@a � ��a@b

þ i"abcd ��d@cÞ@m@nc þ �2Km
aK
�na

6�2"

Z
d4x �c ��n@m

�
m2 �h

6

�
c � �2Km

aK
�na

36�2"

Z
d4x �c ��l@l@m@nc

þ i�2Km
aK
�na

36�2"

Z
d4xF�@m@nFþ im2�2Km

aK
�na

6�2"

Z
d4xd4y@m@nFðxÞh�1x 	ðx� yÞF�ðyÞ: (4.4)
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Finally, adding (4.3) and (4.4) we obtain the divergent part of the two-point function:

�ð2Þ1 jd:p: ¼ �
m2�2Km

aK
�na

24�2"

Z
d4xð@mA@nAþ @mA

�@nA�Þ �m2�2KmnKmn

16�2"

Z
d4xF2 �m2�2K�mnK�mn

16�2"

Z
d4xF�2

þ �2

4�2"

Z
d8z�þ�� �2Km

aK
�na

6�2"

Z
d4xA�

�
m2 þh

6

�
@m@nAþ i�2Km

aK
�n
b

24�2"

Z
d4x �c ð ��b@a � ��a@b

þ i"abcd ��d@cÞ@m@nc � i�2Km
aK
�na

12�2"

Z
d4x �c ��n@m

�
m2 �h

6

�
c þ i�2Km

aK
�na

72�2"

Z
d4x �c ��l@l@m@nc

þ �2Km
aK
�na

72�2"

Z
d4xF�@m@nFþm2�2Km

aK
�na

12�2"

Z
d4xd4y@m@nFðxÞh�1x 	ðx� yÞF�ðyÞ: (4.5)

We immediately see that the divergences appearing in (4.5)
cannot be absorbed by counterterms since the terms ap-
pearing in (4.5) do not exist in the classical action. All
terms in (4.5) quadratic in the deformation parameter are
also quadratic in fields. However, the deformation of the
classical action (3.2) is only present in the interaction term,
and terms in the action quadratic in the deformation
parameter will always be of the third order in fields. We
have to conclude that our model, as it stands, is not
renormalizable.

V. DISCUSSION AND CONCLUSIONS

Let us now summarize what we have done so far and
discuss the obtained results in more detail.

In order to see how different deformations (different
twists) affect renormalizability of the Wess-Zumino
model, we considered one special example of twist, (2.7).
The main advantage of this twist is that it is Hermitian and
therefore implies the Hermitian ?-product. Compared with
the undeformed SUSY Hopf algebra, the twisted SUSY
Hopf algebra changes. In particular, the Leibniz rule (2.13)
becomes deformed. The notion of chirality is lost, and we
had to apply the method of projectors introduced in [18] to
obtain the action. A nonlocal deformation of the commu-
tative Wess-Zumino action invariant under the deformed
SUSY transformations (2.12) and with a good commuta-
tive limit was introduced, and its renormalizability prop-
erties were investigated. Notice that the nonlocality comes
from the application of the chiral projector P2.

1

To calculate the divergent part of the effective action, we
used the background field method and the supergraph
technique. Like in the commutative Wess-Zumino model,
there is no tadpole contribution. There is no mass counter-
term, which is again the same as in the undeformed
Wess-Zumino model. However, the divergent part of the
two-point function cannot be canceled, and we have to
conclude that our model is not renormalizable.
Calculating divergent parts of the three-point and higher

functions does not make sense, and it is technically very
demanding.
Having in mind results of [23], we also investigated on-

shell renormalizability of our model. In general, on-shell
renormalizability leads to a one-loop renormalizable
S-matrix. On the other hand, one-loop on-shell renorma-
lizable Green functions may spoil renormalizability at
higher loops. After using the equations of motion which
follow from the action (3.2) to obtain the on-shell divergent
terms, we see that the divergences in the two-point function
remain, and therefore the model is also not on-shell
renormalizable.
In our previous work [13], we had a similar problem, a

deformed model which was not renormalizable. To obtain
a renormalizable model, we had to relax the condition of
minimality of deformation and to include nonminimal
terms. Also, in [15], new terms of the formR
d8z�� �� ��D2� and

R
d8z�� �� ��ðD2�Þ2 were added in

order to absorb divergences produced by the
R
d4xF3 ¼R

d8z�� �� ��ðD2�Þ3 term. Since the model we work with is
more complicated than the models of [13,15], it is not
obvious which terms should be added. Let us list possible
terms. Note that the new terms have to be invariant under
the deformed SUSY transformations (2.12). This require-
ment gives three possibilities:

T1 ¼
Z

d4xP1ð� ?�Þj �� ��

¼ 1

2
KabKab

Z
d4x

�
1

2
ð@mc Þ�m ��nð@nc Þ � FhA

�
:

(5.1)

T2 ¼
Z

d4xP1ð� ? P2ð� ?�ÞÞj �� ��

¼ 1

4
KabKab

Z
d4x

�
�AFhA� 1

2
FhA2

þ 1

2
c chAþ @mðAc Þ�m ��nð@nc Þ

�
: (5.2)

1Unlike the Moyal-Weyl ?-product, the ?-product (2.9) is
finite and it does not introduce nonlocality.
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T3¼
Z
d4x�?P1ð�?�ÞÞj�� �� ��

¼3

4
KabKab

Z
d4xðFð@mc Þ�m ��lð@lc Þ�F2hAÞ

þKm
aK
�naZ d4xðAðhAÞð@m@nAÞ

þAð@m@lAÞð@n@lAÞÞ: (5.3)

The term T1 produces divergences of the type
R
d4x�þ�,

so it would not spoil the renormalizability of the model.
However, it cannot improve renormalizability, since diver-
gences appearing in (4.5) are not of the type T1. The term
T2 produces additional divergences that cannot be ab-
sorbed, so we have to ignore it. The T3 term does not
cancel any of the terms present in the action (2.27).
Additionally, it produces new divergent terms. However
these terms might look, they can never cancel all the
divergences in (4.5), as divergences proportional to
Km

aK
�n

b will remain. This analysis forces us to conclude

that even with a nonminimal deformation our model re-
mains nonrenormalizable.

Let us make a remark about the nonrenormalization
theorem and its modifications in the case of deformed
SUSY. One easily sees that the divergent terms of the
effective action (4.5) can be rewritten as

�ð2Þ1 jd:p: ¼
Z

d4x1d
4x2d

2�d2 ��G2ðx1; x2; Uð1Þ; Uð2ÞÞ
� f1ðx1; �; ��Þf2ðx2; �; ��Þ; (5.4)

with fi ¼ fið�;�þ; D�; �D�; D�þ; �D�þ; . . .Þ. The non-
local term in (5.4) appears as a consequence of nonlocality
in the classical action (3.2). The result (5.4) confirms the
modified nonrenormalization theorem [15]. The appear-
ance of the spurion fields in (5.4) signals breaking of the
undeformed SUSY. In our case, symmetry which remains
after the breaking is the twisted SUSY (2.12). However, it
seems that the twisted SUSY is not enough to guarantee
renormalizability.

It is obvious that different deformations obtained from
different twists lead to models with different quantum
properties. In our previous work [13], we studied a defor-
mation which preserves the full undeformed SUSY. There,
after relaxing the condition of minimality of deformation,
we obtained a renormalizable Wess-Zumino model. In this
paper we work with a deformation given in terms of the
non-SUSY-covariant derivatives. The Leibniz rule for the
SUSY transformation (2.12) changes, and the deformed
action (2.27), though invariant under twisted SUSY trans-
formations, is not invariant under the undeformed SUSY
transformations. For example, the term KmnKmnF

3 breaks
the undeformed SUSY. On the other hand, the twisted
SUSY allows this term as a part of the invariant term
P2ð� ? P2ð� ?�ÞÞj��; see Eqs. (5.13) and (5.14) in [18].

The classical properties of theories with twisted symme-
tries are not fully understood [3,24]. For example, one

cannot apply standard methods to find conserved charges,
and the modification of the Noether theorem in the case of
twisted symmetry has not yet been formulated. In this
paper we analyze quantum properties of the theory with
the twisted SUSY. This is the first time that renormaliz-
ability of a theory with a twisted symmetry has been
analyzed. Even after relaxing the condition of minimality
of deformation, our model remains nonrenormalizable.
This indicates that theories with twisted symmetries do
not have the same quantum properties as theories with
undeformed symmetries. In our example, we see that the
twisted SUSY is not enough to guarantee renormalizability
of the Wess-Zumino model. It is obvious that a better
understanding of the twisted symmetry and its consequen-
ces, both classical and quantum, is needed.
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APPENDIX: CALCULATION

In this appendix we collect details of some calculations
and some important side results.
(1) Transformation laws of the component fields of the

superfield F (2.2):

	
f ¼ 
��� þ �
 _� �� _�; (A1)

	
�� ¼ 2
�mþ �m
� _�

�
 _�ðvm þ ið@mfÞÞ; (A2)

	
 ��
_� ¼ 2 �
 _�nþ ��m _��
�ð�vm þ ið@mfÞÞ; (A3)

	
m ¼ �
 _�
�� _� þ i

2
�
 _� ��m _��ð@m��Þ; (A4)

	
n ¼ 
�’� þ i

2

��m

� _�ð@m �� _�Þ; (A5)

�m
� _�	
vm ¼ �ið@m��Þ
��m

� _� þ 2
�
�� _�

þ i�m
� _�

�

_�ð@m �� _�Þ þ 2’�

�
 _�; (A6)

	

�� _� ¼ 2 �
 _�dþ i ��l _��
�ð@lmÞ

þ i

2
��l _���m

� _�
�

_�ð@mvlÞ; (A7)

	
’� ¼ 2
�dþ i�l
� _�

�
 _�ð@lnÞ

� i

2
�l

� _� ��m _��
�ð@mvlÞ; (A8)

	
d ¼ i

2

��m

� _�ð@m �� _�Þ � i

2
ð@m’�Þ�m

� _�
�
 _�:

(A9)
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(2) Irreducible components of the superfield F:

P2F¼ 1

16

�D2D2

h
F

¼ 1

h

�
d� i

2
ð@mvmÞþ1

4
hf

�
þ ffiffiffi

2
p

��
�

iffiffiffi
2
p

h
�m

� _�ð@m �� _�Þþ 1

2
ffiffiffi
2
p ��

�
þ��mþ i��l ��@l

�
d

h
� i

2h
ð@mvmÞþ1

4
f

�

þ 1ffiffiffi
2
p �� �� _�

�
1ffiffiffi
2
p �� _�þ i

2
ffiffiffi
2
p ��m _��ð@m��Þ

�
þ1

4
�� �� ��

�
d� i

2
ð@mvmÞþ1

4
hf

�
: (A10)

P1F¼ 1

16

D2 �D2

h
F

¼ 1

h

�
dþ i

2
ð@mvmÞþ1

4
hf

�
þ ffiffiffi

2
p

�� _�

�
iffiffiffi
2
p

h
��m _��ð@m’�Þþ 1

2
ffiffiffi
2
p �� _�

�
þ �� ��n� i��l ��@l

�
d

h
þ i

2h
ð@mvmÞþ1

4
f

�

þ 1ffiffiffi
2
p �� ����

�
1ffiffiffi
2
p ’�þ i

2
ffiffiffi
2
p �m

� _�ð@m �� _�Þ
�
þ1

4
�� �� ��

�
dþ i

2
ð@mvmÞþ1

4
hf

�
; (A11)

PTF ¼ 1

2
f� 2

h
dþ ��

�
1

2
�� � i

1

h
�m

� _�@m �� _�

�
þ �� _�

�
1

2
�� _� � i

1

h
��m _��@m’�

�
þ ��m ��

�
vm � 1

h
@m@lv

l

�

þ �� �� _�

�
1

2
�� _� � i

4
��m _��ð@m��Þ

�
þ �� �� ��

�
1

2
’� � i

4
�m

� _�ð@m �� _�Þ
�
þ 1

4
�� �� ��

�
2d� 1

2
hf

�
: (A12)

The following identity holds:

PT ¼ I � P1 � P2: (A13)

(3) Some general formulas for the divergent parts of traces, where K ¼ h�m2:

Tr ðK�1fÞ ¼ i

8�2�
m2

Z
d4xf; (A14)

Tr ð@aK�1fÞ ¼ 0; (A15)

Tr ðhK�1fÞ ¼ im4

8�2�

Z
d4xf; (A16)

Tr ðh2K�1fÞ ¼ im6

16�2�

Z
d4xf; (A17)

Tr ðK�1fK�1gÞ ¼ i

8�2�

Z
d4xfg; (A18)

Tr ð@nK�1fK�1gÞ ¼ i

16�2�

Z
d4x@nfg; (A19)

Tr ð@nK�1f@mK�1gÞ ¼ � i

16�2�

Z
d4xf

�
1

3
@n@m þ 1

6
�mnh� �mnm

2

�
g; (A20)

Tr ð@nK�1f@m@pK�1gÞ ¼ � i

32�2�

Z
d4xf

�
1

3
@n@m@p þ ð�mp@n � �np@m � �nm@pÞ

�
m2 � 1

6
h

��
g: (A21)
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