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We present a systematic approach to the linearized Yang-Mills-Higgs equations in the background of a

’t Hooft-Polyakov monopole and use it to unify and extend previous studies of their spectral properties.

We show that a quaternionic formulation allows for a compact and efficient treatment of the linearized

equations in the Bogomol’nyi-Prasad-Sommerfield limit of vanishing Higgs self-coupling and use it to

study both scattering and bound states. We focus on the sector of vanishing generalized angular

momentum and analyze it numerically, putting zero-energy bound states, Coulomb bound states, and

infinitely many Feshbach resonances into a coherent picture. We also consider the linearized Yang-Mills-

Higgs equations with nonvanishing Higgs self-coupling and confirm the occurrence of Feshbach

resonances in this situation.
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I. INTRODUCTION

Solitons—spatially localized and stable solutions of
nonlinear differential equations—are widely used in mod-
eling physical and biological phenomena. In many of these
applications, it is also of interest to study the behavior of
small perturbations around the soliton. In the context of
quantum field theory, the small perturbations are inter-
preted as particles after quantization [1]. In that case,
studying perturbations around a soliton amounts to study-
ing the interaction of these (quantum) particles with the
classical soliton. In Skyrme’s model for nuclei [2–4], for
example, the solitons describe nuclei and the small pertur-
bations correspond, after quantization, to pions. Their
properties in the background of a Skyrmion can therefore
be interpreted in terms of pion-nucleus scattering.

Mathematically, studying perturbations of a soliton
amounts to studying the spectral properties of the linear
operator obtained by linearizing the soliton equations
around the soliton. It turns out that these spectral properties
are often interesting; see [1] for a textbook treatment of
some examples. A particularly interesting example is pro-
vided by magnetic monopoles in SUð2Þ Yang-Mills-Higgs
(YMH) theory. It has long been known that the linearized
YMH equations in the background of a monopole have
interesting zero modes in the Bogomol’nyi-Prasad-
Sommerfield (BPS) limit [5–7] and that they support infi-
nitely many bound states [8]. Scattering of fermions off the
monopole has also been studied extensively [9–12].
However, fairly recently interesting new scattering phe-
nomena were observed. In [13] and, more recently and in
more detail in [14], Fodor and Rácz studied spherically
symmetric but nonlinear perturbations of the ’t Hooft-
Polyakov monopole, in the BPS limit. The authors studied

the evolution of such excitations numerically and found
that the monopole holds on to a significant fraction of the
energy from the initial excitation for a surprisingly long
time. In particular, the amplitude of the excitation decays

as t�5=6 for late times.
Motivated by this work, Forgács and Volkov carried out

a perturbative analysis [15] of the ’t Hooft-Polyakov mono-
pole, still in the BPS limit and preserving the hedgehog
form of the monopole. Their linearized equations of mo-
tion are a system of two weakly coupled, second-order
ordinary differential equations. By using the dispersion
relation, one of these channels is seen to be massive and
one massless. Some intuition about the system is gained by
artificially decoupling it and considering only the massive
channel. The potential appearing in it has an (attractive)
Coulomb tail, so that it possesses infinitely many bound
states approaching a critical value, beyond which there is a
continuous spectrum. On recoupling and considering the
full system, a phase shift analysis of the massless channel
shows that the infinity of bound states in the massive
channel turn into an infinity of resonances in the coupled
system. The energy held by the resonances leaks out slowly
to the massless channel, leading to the long-lived excita-
tion observed by Fodor and Rácz.
The aim of this work is to extend the results of Forgács

and Volkov and to place it in the context of other spectral
properties of the linearized YMH equations. We develop a
quaternionic formalism for studying the linearized YMH
equation in the case of vanishing Higgs self-coupling (i.e.
in the BPS limit). We show that this quaternionic formal-
ism allows for a systematic treatment of perturbations,
organized in terms of the eigenvalues of the generalized
angular momentum operator (combining orbital angular
momentum, spin, and isospin). For vanishing generalized
angular momentum we recover the equations studied by
Forgács and Volkov but also find another system, consist-
ing of two coupled, second-order ordinary differential
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equations. These have bound states, already found by Bais
and Troost in [8]. The two systems found for vanishing
generalized angular momentum thus already display a
wealth of interesting spectral properties, including bound
states at zero energy, bound states embedded in the
continuum, and resonance scattering. Moreover, the BPS
condition allows one to map either of the systems into
equivalent but sometimes simpler systems using a first-
order differential operator (essentially a supersymmetry
charge, but we do not consider the fully supersymmetric
theory here). This turns out to explain some of the surpris-
ing features we find.

We also consider the case of nonvanishing Higgs self-
coupling �. In this regime, our quaternionic formalism is
no longer effective. Thus we do not study general pertur-
bations but instead focus on the generalization of the
system studied by Forgács and Volkov when � � 0. We
find that the Coulomb tail in the massive channel is re-
placed by an attractive 1=r2 potential. This is strong
enough to support infinitely many bound states after de-
coupling (by hand), and our numerical analysis suggests
that it will also produce infinitely many resonances in the
coupled systems. We conclude that the qualitative features
found by Forgács and Volkov survive the ‘‘switching on’’
of �.

The paper is organized as follows. In Sec. II, we study
the general form of the linearized YMH equation around a
background which satisfies the first-order BPS equation
(which includes the ’t Hooft-Polyakov monopole in the
BPS limit). We introduce a quaternionic language and
show that the linearized YMH equations for stationary
time-dependent perturbations can be expressed as a qua-
ternionic wave equation, supplemented by a background
gauge condition. For nonzero kinetic energy there is a
second, equivalent form of this wave equation, related to
the original one by the application of a Dirac-type operator.
Our strategy for studying the linearized YMH equations is
therefore to study the quaternionic wave equation and to
check if solutions satisfy the background gauge condition.

In Sec. III, we carry out a partial wave analysis of the
quaternionic wave equation and derive two systems of two
second-order ordinary differential equations which arise in
the sector with vanishing generalized angular momentum.
We also derive the form of the alternative but equivalent
systems obtained by acting with the Dirac-type operator of
the previous section. Section IV contains a detailed, nu-
merical investigation of the two systems found in Sec. III.
Even though these systems look superficially very similar,
their spectral properties are quite different. One of the
systems is the hedgehog system already discussed in
[15]; we briefly repeat the analysis of this system, using
it to set out our conventions. We then observe that the other
system decouples, after application of the Dirac-type op-
erator, into one channel which supports bound states and
another which only has scattering states. We are able to

relate the bound states to those discussed in [8]. The
scattering states do not satisfy the background gauge con-
dition and therefore are not valid bosonic states in the
linearized theory, but we point out their relation to the
fermionic scattering states studied in [12]. In Sec. V, we
continue our study of SUð2Þ monopoles but allow for
nonzero Higgs self-coupling. We perturb around the back-
ground of the non-BPS ’t Hooft-Polyakov monopole and
find scattering resonances in the linearized hedgehog
fields. Finally, in Sec. VI we discuss possible extensions
of our work and the interpretation of our results in the
context of electric-magnetic duality.

II. PERTURBING THE BPS MONOPOLE

A. The BPS monopole

Much background material for this section can be found
in the textbook [4], to which we refer for details. We work
on four-dimensional Minkowski space-time with coordi-
nates x�, � ¼ 0; 1; 2; 3, and Minkowski metric ��� ¼
diagð1;�1;�1;�1Þ. We denote the time coordinate by
x0 or t and write three-component Euclidean vectors with
bold letters, e.g. x ¼ ðx1; x2; x3Þ. We write the inner prod-

uct as x � y and r for the spatial radial coordinate, i.e. r ¼
jxj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23

q
. The YMH model we are interested

in has gauge group SUð2Þ, often referred to as isospin
symmetry. Monopoles emerge when the Higgs mechanism
breaks the SUð2Þ symmetry to Uð1Þ. In the notation and
nomenclature of this paper we treat this Uð1Þ as the gauge
group of Maxwell electrodynamics. We work in units
where the speed of light and the gauge coupling are 1.
The fields of the YMH model are an SUð2Þ gauge

potential A�, coupled to a Higgs field �. Both take values

in the Lie algebra suð2Þ and transform in the adjoint
representation of SUð2Þ. For the Lie algebra suð2Þ, we
use the basis ta ¼ � i

2 �a, where �a, a ¼ 1; 2; 3, are the

Pauli matrices, with brackets ½ta; tb� ¼ �abctc, noting that
this is not the same convention as [4]. We will also need an
inner product h; i on suð2Þ, which we normalize so that
hta; tbi ¼ �ab. The covariant derivative is D� ¼
@� þ ½A�; � and the Yang-Mills field strength tensor, or

curvature 2-form, is F�� ¼ @�A� � @�A� þ ½A�; A��.
From this we can extract the non-Abelian electric field
Ei ¼ F0i and the non-Abelian magnetic field

Bi ¼ �1
2�ijkFjk; i; j; k ¼ 1; 2; 3: (2.1)

The YMH Lagrangian density is

L ¼ � 1

4
hF��F

��i þ 1

2
hD��D��i � �

4
ð1� j�j2Þ2;

(2.2)

where j�j2 ¼ h�;�i. The equations of motion derived
from the Lagrangian density are
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D�D
�� ¼ �ð1� j�j2Þ�; (2.3a)

D�F
�� ¼ ½D��;��: (2.3b)

Static configurations play an important role in this paper
as background configurations. For such configurations
we work in the temporal gauge A0 ¼ 0 and assume time
independence of the remaining fields Ai and�. Sometimes
we collect the static gauge field into a spatial one-form
A ¼ Aidx

i and write ðA;�Þ for the field configuration.
For such configurations, the energy computed from the
Lagrangian (2.2) can only be finite if we impose the
boundary condition

j�j ! 1 as r ! 1: (2.4)

The equations of motion (2.3) then reduce to

DiDi� ¼ ��ð1� j�j2Þ�; (2.5a)

DiFij ¼ �½Dj�;��: (2.5b)

The ’t Hooft-Polyakov static monopole solution found in
[16,17] has the hedgehog form

AiðxÞ ¼ xk
r2
ð1�WðrÞÞ�aikta; �ðxÞ ¼HðrÞ

r2
xata: (2.6)

Regularity at the origin requires that Wð0Þ ¼ 1 and
Hð0Þ ¼ 0, while the boundary conditions at infinity (2.4)
are satisfied if we require H ! �r as r ! 1. To recover a
more standard definition of the Higgs field HðrÞ we can
scale by�r. Our definition ofHðrÞ follows the conventions
of Forgács and Volkov in [15] for the hedgehog ansatz, for
better comparison with their work.

HðrÞ and WðrÞ satisfy differential equations derived
from (2.5): �

�r2
d2

dr2
þW2 þH2 � 1

�
W ¼ 0; (2.7a)

�
�r2

d2

dr2
þ 2W2 � �ðr2 �H2Þ

�
H ¼ 0: (2.7b)

The BPS limit amounts to setting � ¼ 0 in (2.2) but
maintaining the boundary condition on �. As the mass of

the Higgs is proportional to
ffiffiffiffi
�

p
, the Higgs field is massless

in this limit. The static field equations (2.5) become

DiDi� ¼ 0; (2.8a)

DiFij ¼ �½Dj�;��; (2.8b)

while Eqs. (2.7) reduce to�
�r2

d2

dr2
þW2 þH2 � 1

�
W ¼ 0; (2.9a)

�
�r2

d2

dr2
þ 2W2

�
H ¼ 0: (2.9b)

These equations have an analytic solution found by Prasad
and Sommerfield in [18]:

HðrÞ ¼ 1� r cothðrÞ; WðrÞ ¼ r

sinhðrÞ : (2.10)

The corresponding field configuration is called the BPS
monopole.
Further insight into the BPS limit can be gained from

considering the static energy

E ¼ 1

2

Z
hBi; Bii þ hDi�;Di�id3x (2.11)

and rearranging it to

E ¼ 1

2

Z
hBi þDi�; Bi þDi�id3x�

Z
@ihBi;�id3x;

(2.12)

where we used the Bianchi identity DiBi ¼ 0. Using
Stokes’ law and the quantization of magnetic flux, one
finds

E ¼ 1

2

Z
hBi þDi�; Bi þDi�id3xþ 2	N; (2.13)

where N is an integer called the monopole number. Then
for N > 0 (i.e. monopoles as opposed to antimonopoles),
the energy is bounded by

E � 2	N: (2.14)

This bound is saturated when the Bogomol’nyi equation
[19]

Bi þDi� ¼ 0 (2.15)

holds. The exact monopole solution (2.10) satisfies this
equation, and WðrÞ and HðrÞ thus satisfy first-order equa-
tions derived from (2.15), which we will use later:

rH0ðrÞ ¼ WðrÞ2 þHðrÞ � 1; (2.16a)

rW 0ðrÞ ¼ WðrÞHðrÞ: (2.16b)

It is straightforward to check that the first-order partial
differential equations (2.15) imply the second-order equa-
tions (2.8) and that the first-order ordinary differential
equations (2.16) imply the second-order equations (2.9).

B. Static linearization

We fix a static background configuration ðAs;�sÞ,
assumed to satisfy the Bogomol’nyi equation (2.15), and
write Ds

i for the covariant derivative D
s
i ¼ @i þ ½As

i ; � and
likewise Fs

ij for the curvature of As
i . Although we are

ultimately interested in time-dependent perturbations, we
begin by considering static perturbations ða; ’Þ of ðAs;�sÞ
and insert

Ai ¼ As
i þ ai; � ¼ �s þ ’ (2.17)

into (2.8). Substituting into (2.8a), applying the static
background gauge condition, and collecting linear terms
in the perturbation we find
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DiDi� ’ Ds
iD

s
i’þ ½ai; Ds

i�
s� þDs

i ½ai; �s� ¼ 0:

(2.18)

To linearize (2.8b), we need to use that, to linear order,

Fij ’ Fs
ij þ @iaj � @jai þ ½ai; As

j� þ ½As
i ; aj�: (2.19)

Then substituting into (2.8b), the left-hand side is

DiFij ’ Ds
iF

s
ij þDs

iD
s
iaj �Ds

iD
s
jai þ ½ai; Fs

ij�: (2.20)

Likewise the right-hand side of (2.8b) becomes

�½Dj�;�� ’ ½�s;Ds
j�

s� þ ½�s;Ds
j’� þ ½’;Ds

j�
s�

þ ½�s; ½aj; �s��: (2.21)

Putting (2.20) and (2.21) together and applying the static
equation (2.8b) we obtain the linearization

Ds
iD

s
iaj �Ds

iD
s
jai þ ½ai; Fs

ij�
’ ½�s;Ds

j’� þ ½’;Ds
j�

s� þ ½�s; ½aj; �s��: (2.22)

In most of the remainder of the paper we will only use
the covariant derivative Ds

i and the field strength Fs
ij asso-

ciated with a fixed static background configuration. In
order to simplify notation we therefore drop the super-
scripts on As

i and �s and also on the associated covariant
derivative and curvature. In this notation, the linearized
Yang-Mills-Higgs equations for static fields are

DiDi’þ ½ai; Di�� þDi½ai; �� ¼ 0; (2.23a)

DiDiaj �DiDjai þ ½ai; Fij�
¼ ½�;Dj’� þ ½’;Dj�� þ ½�; ½aj; ���: (2.23b)

We can similarly linearize the Bogomol’nyi equations.
Substituting (2.17) into the Bogomol’nyi equation (2.15),
linearizing, using the Bogomol’nyi equation, and renaming
�s ! �;As

i ! Ai gives

�ijkDjak ¼ Di’þ ½ai; ��: (2.24)

There are infinitely many solutions of this equation with
ai ¼ �Di#, ’ ¼ ½#;��, where # is an arbitrary function
onR3 with values in suð2Þ. These do not physically change
the original static solution, as they are infinitesimal gauge
transformations. We can exclude such solutions by requir-
ing that perturbations ðai; ’Þ satisfyZ

ðhai; Di#i þ h’; ½#;��iÞd3x ¼ 0; (2.25)

for all # which are nonzero on a closed and bounded subset
of R3. The requirement of compact support means that we
can integrate by parts and rearrange to obtain the back-
ground gauge condition

Diai þ ½�;’� ¼ 0: (2.26)

Interestingly, the linearized Bogomol’nyi equations
together with the background gauge condition imply the
linearized YMH equations [just as solutions of the
Bogomol’nyi equation (2.15) are solutions to the static
YMH equations (2.8)]. To see this, we apply Di to (2.24)
and then use (2.15) to obtain (2.23a). In order to derive
(2.23b), we apply Dj to the background gauge condition

(2.26) and ½�; �� as well as Dl to the linearized
Bogomol’nyi equation (2.24). The algebra is a little tedious
and makes repeated use of (2.15). We will give a much
quicker derivation in the next section.

C. Quaternionic formulation

We will now show that the language of quaternions is
very convenient for studying the linearized equations of the
previous section. We denote the set of all quaternions as H
and introduce the usual basis e
, 
 ¼ 1; 2; 3; 4. The real
unit quaternion e4 commutes with all quaternions and is
often written as a 1 or omitted. The remaining (imaginary)
quaternions satisfy

eiej ¼ ��ij þ �ijkek ði; j; k ¼ 1; 2; 3Þ: (2.27)

We can identify ej ¼ �i�j, where �j are again the Pauli

matrices (but not denoted �i here in order to avoid con-
fusion with the isospin Lie algebra), and e4 with the 2� 2
identity matrix 12. The conjugates are

�e i ¼ �ei; �e4 ¼ e4: (2.28)

We combine the gauge fields Ai and� into a quaternion-
valued field

Q ¼ Aiei þ�: (2.29)

Since Ai is an isovector vector and� is an isovector scalar,
we can view this field as a map:

Q : R3 ! H � su2:

Next, we define Dirac-type derivative operators

6D ¼ Diei þ ½�; �; 6Dy ¼ Diei � ½�; �; (2.30)

which act on functions q: R3 ! H � su2 by quaternionic
multiplication on the quaternions and by commutator on
the isospin part su2. These operators are closely related to
the Bogomol’nyi equation for the background field Q.
Note that

6Dy 6D ¼ �D2
i ��2 þ ðDi�� BiÞei;

6D 6Dy ¼ �D2
i ��2 þ ð�Di�� BiÞei;

(2.31)

so that, for BPS monopoles,

6Dy 6D ¼ �D2
i ��2 þ 2Di�ei; 6D 6Dy ¼ �D2

i ��2;

(2.32)

by virtue of (2.15).
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It turns out that the linearized YMH and BPS equations
can both be expressed very compactly in terms of these
operators. To see this, let

q ¼ aiei þ ’: (2.33)

We look for the quaternionic expression equivalent to the
linearized Bogomol’nyi equation (2.24) and observe that

6D �q ¼ Diai þ ½�;’� þ eiðDi’� �ijkDjak � ½�; ai�Þ:
(2.34)

The real part of (2.34) vanishing is precisely the back-
ground gauge condition (2.26), while setting the complex
part to zero is equivalent to (2.24). The linearized
Bogomol’nyi equation (2.24) together with the background
gauge condition therefore have the following, very simple
quaternionic formulation:

6D �q ¼ 0: (2.35)

This was used extensively in [20].
We now express the linearized YMH equations (2.23) in

quaternionic notation, which has not been previously
considered. We expect it to be some second-order equation
in 6D, since the linearized Bogomol’nyi equation is a

first-order equation in 6D. In fact, we will now show that
the quaternionic equation

6Dy 6D �q ¼ 0 (2.36)

is equivalent to the linearized field equations (2.23a) and
(2.23b), provided the background gauge condition (2.26)
holds.
In order to prove our claim we first note a number of

useful relations. Using the definition of the curvature as
the commutator of covariant derivatives, as well as the
Bogomol’nyi equation (2.15) and the definition (2.1) of
the non-Abelian magnetic field, one finds

�limDlDi’ ¼ 1
2�lim½Dl;Di�’ ¼ 1

2�lim½Fli; ’�
¼ ½Bm;’� ¼ ½’;Dm��: (2.37)

The Leibniz rule, again with the Bogomol’nyi equation
(2.15) and the definition (2.1) of the non-Abelian magnetic
field, gives

�limDl½�; ai� ¼ ½Fim; ai� þ �lim½�;Dlai�: (2.38)

Then we compute

6Dy 6D �q ¼ 6DyðDiai þ ½�;’�Þ þ 6DyeiðDi’� �ijkDjak � ½�; ai�Þ
¼ 6DyðDiai þ ½�;’�Þ �DiDi’� ½ai; Di�� �Di½ai; �� þDiDiajej �DiDjaiej þ ej½ai; Fij� � ej½�;Dj’�

� ej½’;Dj�� � ej½�; ½aj; ���: (2.39)

The terms after the last equality sign are the operator 6Dy ¼
elDl �� applied to the background gauge expression
(2.26) and terms appearing in the linearized field equations
(2.23). Thus, with the background gauge condition Diai þ
½�;’� ¼ 0 imposed, the quaternionic equation (2.36) and
the linearized static YMH equations (2.23) are equivalent,
as claimed.

In the quaternionic notation it is obvious that the first-
order equation 6Dy �q ¼ 0 (combining the background gauge
condition and linearized Bogomol’nyi equation) implies
the second-order equation 6Dy 6D �q ¼ 0 (and hence the lin-
earized static field equations, since the background gauge
is in place).

D. Time-dependent perturbations

We now introduce time-dependent perturbations around
a static configuration ðAs

i ; �
sÞ satisfying (2.15), using the

following stationary ansatz:

Aiðt;xÞ ¼ As
i ðxÞ þ aiðxÞei!t;

�ðt;xÞ ¼ �sðxÞ þ ’ðxÞei!t:
(2.40)

We recall that we work in the temporal gauge A0 ¼ 0 and
the BPS limit � ¼ 0. Inserting the ansatz in the YMH

equations (2.3), linearizing, and renaming again �s ! �,
As
i ! Ai, we find

DiDi’þ ½ai; Di�� þDi½ai;�� ¼ �!2’; (2.41a)

DiDiaj �DiDjai þ ½ai; Fij�
¼ ½�;Dj’� þ ½’;Dj�� þ ½�; ½aj;��� �!2aj:

(2.41b)

For ! ¼ 0 we recover the static linearized YMH equation
(2.36), as one would expect.
With the results of the previous two subsections, we can

express the linearized equations in quaternionic language.
Provided the background gauge condition (2.26) holds, the
simple equation

6Dy 6D �q ¼ !2 �q (2.42)

is equivalent to the stationary linearized YMH equations
(2.41). This observation is fundamental for the remainder
of this paper and the foundation of our strategy for inves-
tigating (2.41) by studying (2.42) and then imposing the
background gauge condition.
Like all differential equations, Eq. (2.42) can be written

as a first-order system. In this case, it takes the form of a
Dirac equation:
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@t 6Dy
6D �@t

� �
�q
p

� �
¼ 0

0

� �
; (2.43)

where �q and p are quaternion-valued fields.
With the stationary ansatz we have the eigenvalue

equation

0 6Dy
6D 0

� �
�q
p

� �
¼ !

�q
p

� �
: (2.44)

This equation is closely related to a Dirac equation studied
by Jackiw and Rebbi in [5], where they investigated the
zero-energy solutions. Bais and Troost [8] looked at the
same Dirac equation, extending the analysis to higher
energies and looking for bound states.

The other second-order equation which it is possible to
arrange (2.44) into is

6D 6Dyp ¼ !2p: (2.45)

This equation is equivalent to (2.42), provided ! � 0. The
map between solutions is

6D �q ¼ !p and 6Dyp ¼ ! �q; (2.46)

as seen in (2.44). Explicitly, we can obtain a solution of
(2.45) from a solution of (2.42) by applying 6D to each side
of (2.42) and using (2.46):

6D 6Dy 6D �q ¼ !2 6D �q ) 6D 6Dyp ¼ !2p; (2.47)

where we also divided by!. Conversely, we can also map a
solution of (2.45) into a solution of (2.42) by substituting
for p using (2.46), provided! � 0. As we shall see later in
this paper, it is fruitful to investigate both (2.42) and (2.45),
using the map (2.46) to relate the results.

Finally, we note that the transformation (2.46) also
provides a convenient way of checking if a solution �q of
(2.42) satisfies the background gauge condition. According
to (2.34), the latter is the requirement that the real part (in
the quaternionic sense) of 6D �q vanishes. In other words, to
see if the background gauge condition holds we simply
check if the quaternion p obtained from �q according to
(2.46) has a vanishing real part.

III. THE QUATERNIONIC WAVE EQUATION IN
THE BACKGROUND OF THE BPS MONOPOLE

A. Structure and symmetries of the wave equation

We begin our detailed study of Eq. (2.42) in the case
where the background field is the BPS monopole (2.6),
with the profile functions given in (2.10). The Dirac
operator introduced in (2.30) now takes the form

6Dy
BPS ¼ ðei@iÞ þ ð1�WÞ

r
ðe� x̂Þ � t�H

r
x̂ � t: (3.1)

Using Eqs. (2.16) satisfied by the profile functions (2.10)
we find

Di� ¼
�
@i þ xk

r2
ð1�WÞ�aikta

��
H

r2
xbtb

�

¼ �ib

H

r2
tb þ xixb

r

�
H

r2

�0
tb

þ ð1�WÞ
�
H

r2

�
xkxb
r2

�aik�abctc

¼ xixa
r3

H0ta � xixa
r2

ð1þWÞH
r2

ta þWH

r2
ti;

(3.2)

so that

ð 6Dy 6DÞBPS¼�D2
i ��2þ2Di�ei

¼���2ð1�WÞ
r2

L � t�ð1�WÞ2
r2

t2

þð1�WÞ2�H2

r2
ðx̂ � tÞ2þ2H0

r
ðx̂ � tÞðx̂ �eÞ

�2ð1þWÞH
r2

ðx̂ � tÞðx̂ �eÞþ2WH

r2
ðe � tÞ; (3.3)

where the orbital angular momentum operator L has
components

Li ¼ ��ijkxj@k (3.4)

and the Laplace operator can be written as

� ¼ @21 þ @22 þ @23 ¼
1

r
@2rrþ 1

r2
L2: (3.5)

We also note that the differential operator in (2.45) now
takes the form

ð 6D 6DyÞBPS ¼ �D2
i ��2

¼ ��� 2ð1�WÞ
r2

L � t� ð1�WÞ2
r2

t2

þ ð1�WÞ2 �H2

r2
ðx̂ � tÞ2: (3.6)

We will use the quaternionic formulation for studying
the operators in (3.3) and (3.6). This means that we will let
them act on functions

q: R3 ! H � su2; (3.7)

as explained after (2.30). We begin with (3.8), which arises
directly from the linearization discussed in the previous
section, and look for eigenfunctions, i.e. solutions of

ð 6Dy 6DÞBPS �q ¼ !2 �q: (3.8)

The BPS monopole is spherically symmetric in the sense
that a spatial rotation can be compensated for by an iso-
rotation. The operator generating the combined spatial and
isorotations can be expressed in terms of the angular
momentum operator L (3.4), the spin operator s ¼ 1

2 e

[whose components act on the quaternion part of (3.7)
via commutator], and the isospin operator t (whose com-
ponents ti ¼ � i

2 �a act in the adjoint representation on

the su2 part of q). It is easy to check that, with our
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conventions, the components of the generalized angular
momentum operator

J ¼ Lþ sþ t (3.9)

satisfies ½Ji; Jj� ¼ �ijkJk and commutes with 6DBPS and

6Dy
BPS defined in (3.1). As a result we are able to organize

eigenfunctions of the operator ð 6Dy 6DÞBPS in terms of mul-
tiplets of the generalized angular momentum operator J.
Doing this in practice is the subject of the next section.

B. Partial wave analysis

In order to split the set of eigenfunctions in (3.8) into
irreducible representations (multiplets) of the generalized
angular momentum operator J we apply basic results from
the representation theory of SUð2Þ. Denoting irreducible
representations of SUð2Þ by their spin j 2 1

2Nwe recall the

basic tensor product decomposition rule

j1 � j2 ¼
Mj1þj2

n¼jj1�j2j
n: (3.10)

From the point of view of representation theory, we may
think of quaternions as a direct sum of a spin 0 and a spin 1
representation of s:

H 1 ’ 0 � 1:

The quaternionic function (3.7) can be viewed as a tensor
product of (i) a scalar function on R3, (ii) a quaternion, and
(iii) a spin 1 representation of the isospin operator t. The
three terms in J act on each of these separately according to
J ¼ L � 1 � 1þ 1 � s � 1þ 1 � 1 � t. If we split the
space of scalar functions onR3 further into a tensor product
of functions of the radial coordinate r and the space L2ðS2Þ
of square-integrable functions on the two-sphere, then J
acts trivially on the radial functions, and the decomposition
of L2ðS2Þ into irreducible representations of the orbital
angular momentum operator L is the usual decomposition
of functions on the two-sphere into spherical harmonics:

L2ðS2Þ ¼ M1
l¼0

l:

Thus, applying the rule (3.10) to the tensor product of
quaternions and su2 we observe

ð0 � 1Þ � 1 ¼ 1 � 0 � 1 � 2:

Tensoring further with irreducible representations of the
orbital angular momentum operator L we deduce that, for
l � 2,

l � ð0 � 1Þ � 1 ¼ l � ð0 � 1 � 1 � 2Þ
¼ l � ðl� 1Þ � l � ðlþ 1Þ � ðl� 1Þ

� l � ðlþ 1Þ � ðl� 2Þ � ðl� 1Þ
� l � ðlþ 1Þ � ðlþ 2Þ: (3.11)

For l ¼ 1 we have

1 � ð0 � 1Þ � 1 ¼ 1 � ð0 � 1 � 1 � 2Þ
¼ 1 � 0 � 1 � 2 � 0 � 1 � 2 � 1 � 2 � 3;

(3.12)

while for l ¼ 0 we have

0 � ð0 � 1Þ � 1 ¼ 0 � 1 � 1 � 2: (3.13)

We can use these equations to count the number of
angular momentum representations that can occur for a
given value of the total angular momentum j. To do this,
we fix a value of j and count, with multiplicity, the values
of l which occur on the right-hand side of Eqs. (3.11),
(3.12), and (3.13). For j � 2 we find that l ¼ j contributes
4 times, l ¼ j� 1 and l ¼ jþ 1 contribute 3 times each,
and l ¼ j� 2 and l ¼ jþ 2 contribute once each, giving a
total of 12 modes. For j ¼ 1, the value l ¼ jþ 2 ¼ 3 does
not contribute, and l ¼ j ¼ 2 ¼ �1 is impossible, so only
10 modes occur. Finally, for j ¼ 0, the possibility l ¼ 0
occurs once, the possibility l ¼ 1 twice, and l ¼ 2 once,
giving a total of four modes. For a given value of j, each of
the modes has the usual, additional degeneracy of
2jþ 1. However, because of overall invariance of the
situation under generalized rotations, these 2jþ 1 states
are physically equivalent (and obey the same differential
equation).

C. The j ¼ 0 sector

The four modes with j ¼ 0 can be constructed very
simply by combining l ¼ 0; 1; 2 functions with the quater-
nionic and isospin degrees of freedom to obtain overall
scalars under the action of J. Since all states must have
isospin 1, the l ¼ 0 (constant) function can only be com-
bined with e � t to obtain an overall scalar. Using the
Cartesian coordinates of the unit vector x̂ on the spatial
two-sphere as the three l ¼ 1 states, we can obtain one
overall scalar from the scalar (s ¼ 0) field as x̂ � t. Another
overall scalar can be constructed from the vector ðs ¼ 1Þ
field as x̂ � ðe� tÞ. Finally, the five independent functions
spanning the l ¼ 2 multiplet are the components of the
tensor x̂ix̂j � 1

3�ij. We can combine these with the isovec-

tor and the spin 1 part of the quaternion as ðx̂ � tÞðx̂ � eÞ �
1
3 e � t to obtain an overall scalar. We thus have four basis

states of the j ¼ 0 sector and can use any linear combina-
tion (with coefficients being functions of r) to study the
j ¼ 0 sector of (3.8). It turns out that, for our purposes, the
following basis states are most convenient:

v1 ¼ ðx̂ � tÞðx̂ � eÞ � e � t; (3.14a)

v2 ¼ ðx̂ � tÞðx̂ � eÞ; (3.14b)

v3 ¼ x̂ � ðe� tÞ; (3.14c)

v4 ¼ x̂ � t: (3.14d)
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We note that v3 and v4 are perturbations of the hedgehog
fields as defined in (2.6) and are the assumed shape of the
perturbations used in [15].

It is worth interpreting our chosen basis physically
before proceeding with the mathematical analysis. The
generator x̂ � t in the isospin Lie algebra is in the direction
of the asymptotic Higgs field and thus the generator of the
unbroken Uð1Þ subgroup of the original isospin symmetry.
Even though the YMH model studied here is not a realistic
physical model, we adopt a terminology where this Uð1Þ is
interpreted as the gauge group of electromagnetism. Then
we note that v2 is the unbroken part of the su2 gauge field
and can therefore be thought of as the photon field. The
other spin 1 states v1 and v3 are eigenstates of ðx̂ � tÞ2 with
eigenvalue �1 and therefore have electric charges �1.
Neither of them is an eigenstate of x̂ � t so both should
be thought of as linear combinations of excitations of the
chargedW bosons in this model. Finally, the spin zero state
v4 is proportional to the asymptotic value of Higgs field
and describes a massless and uncharged excitation of the
Higgs field. We still need to ascertain which linear combi-
nation of these states satisfies the background gauge con-
dition (2.26). We will do this below by applying the
operator 6D, as outlined at the end of Sec. II D.

Our next task is the application of the operator ð 6Dy 6DÞBPS
(3.3) to a linear combination

�q ¼ X4
n¼1

bnðrÞvn (3.15)

of the basis functions of the j ¼ 0 sector. In order to
organize the calculation we note that ð 6Dy 6DÞBPS is a linear
combination of the operators �,L � t, t2, ðx̂ � tÞ2, ðx̂ � eÞ�
ðx̂ � tÞ, and e � t, multiplied by simple functions of W and
H. We list, in Table I, the action of the relevant operators
on the modes v1; . . . ; v4 (3.14).
Using (3.3), we find that (3.8) becomes

ð�rðrb1Þ00v1 � rðrb2Þ00v2 � rðrb3Þ00v3 � rðrb4Þ00v4Þ þ ð2b1v1 þ 2b2v1 þ 4b1v2 þ 4b2v2 þ 2b3v3 þ 2b4v4Þ
þ ð�2ð1�WÞb1v1 � 2ð1�WÞb2v1 � 4ð1�WÞb1v2 � 4ð1�WÞb2v2 � 2ð1�WÞb3v3 � 4ð1�WÞb4v4Þ
þ ð2ð1�WÞ2b1v1 þ 2ð1�WÞ2b2v2 þ 2ð1�WÞ2b3v3 þ 2ð1�WÞ2b4v4Þ þ ðð�ð1�WÞ2 þH2Þb1v1

þ ð�ð1�WÞ2 þH2Þb3v3Þ þ ð2ðrH0 � ð1þWÞHÞb1v1 þ 2ðrH0 � ð1þWÞHÞb3v3Þ
þ ð2WHb1v1 � 2WHb2v1 � 4WHb1v2 þ 2WHb3v3 � 2WHb4v3 � 4WHb3v4Þ

¼ r2!2ðb1v1 þ b2v2 þ b3v3 þ b4v4Þ: (3.16)

Each group of terms which is bracketed in (3.16) comes
from one part of (3.8). We compare coefficients of v1, v2,
v3, and v4 in (3.16) to obtain equations for the radial
functions bnðrÞ. We find that b1ðrÞ and b2ðrÞ are coupled
and that b3ðrÞ and b4ðrÞ are coupled. As noted previously,
b3ðrÞ and b4ðrÞ are related to the functions wðrÞ and hðrÞ in
[15], as they are also perturbations of the basic hedgehog
fields (2.10). The coupling is not quite symmetric but this
can be remedied by defining

w ¼ rb3; h ¼ rb4ffiffiffi
2

p : (3.17)

A similar redefinition

v ¼ rb1; 
 ¼ rb2ffiffiffi
2

p (3.18)

for the other coupled system aids comparison with the
previous work and again results in the coupling being
symmetric.

With these abbreviations, we conclude that the insertion
of

�q ¼ 1

r
ðvv1 þ

ffiffiffi
2

p

v2 þ wv3 þ

ffiffiffi
2

p
hv4Þ (3.19)

into (3.8) gives a system of second-order differential equa-
tions which decouples into two systems:

�
� d2

dr2
þ 3W2 þH2 � 1

r2

�
v� 2

ffiffiffi
2

p
WðH� 1Þ
r2


¼!2v;

(3.20a)�
� d2

dr2
þ 2W2 þ 2

r2

�

� 2

ffiffiffi
2

p
WðH� 1Þ
r2

v¼!2
; (3.20b)

and

TABLE I. The action of the operators in (3.3) on each of the
zero angular momentum modes (3.14).

v1 v2 v3 v4

L2 �2ðv1 þ 2v2Þ �2ðv1 þ 2v2Þ �2v3 �2v4

L � t v1 þ 2v2 v1 þ 2v2 v3 2v4

t2 �2v1 �2v2 �2v3 �2v4

ðx̂ � tÞ2 �v1 0 �v3 0

ðx̂ � eÞðx̂ � tÞ v1 0 v3 0

e � t v1 � 2v2 �v1 v3 � 2v4 �v3
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�
� d2

dr2
þ 3W2 þH2 � 1

r2

�
w� 2

ffiffiffi
2

p
WH

r2
h¼!2w; (3.21a)

�
� d2

dr2
þ 2W2

r2

�
h� 2

ffiffiffi
2

p
WH

r2
w¼!2h: (3.21b)

As noted, wðrÞ and hðrÞ are perturbations of the hedgehog
fields WðrÞ and HðrÞ, and thus we could have obtained
(3.21) by linearizing (2.16). This is what is done in [15]. In
the following sections we will investigate bound and scat-
tering states in the systems (3.20) and (3.21). Recalling the
interpretation of the basis (3.14) we note that the system
(3.20) describes a photon mode interacting with aW-boson
mode and that (3.21) describes a massless Higgs perturba-
tion interacting with a W-boson mode. Correspondingly,
we will often refer to the former as the photon system and
the latter as the Higgs system.

So far, we have focused on Eq. (2.42) since it is directly
related to the linearized YMH equations. The alternative
but equivalent Eq. (2.45), however, also plays an important
role in our analysis. As explained at the end of Sec. II D,
the background gauge condition (2.26) is conveniently
implemented in this formulation. It also turns out that
Eq. (2.45) is also sometimes easier to analyze than (2.42).

Recalling the definition (3.6), we thus consider the
eigenvalue problem

ð 6D 6DyÞBPSp ¼ !2p: (3.22)

Inserting, in analogy to (3.19), the expression

p ¼ 1

r
ð�v1 þ

ffiffiffi
2

p
cv2 þ 
v3 þ

ffiffiffi
2

p
�v4Þ; (3.23)

for four radial functions 
, �, �, and c we obtain again
two systems of second-order differential equations:�

� d2

dr2
þW2 þH2 þ 1

r2

�

 ¼ !2
; (3.24a)

�
� d2

dr2
þ 2W2

r2

�
� ¼ !2�; (3.24b)

and�
� d2

dr2
þW2 þH2 þ 1

r2

�
�þ 2

ffiffiffi
2

p
W

r2
c ¼ !2�; (3.25a)

�
� d2

dr2
þ 2W2 þ 2

r2

�
c þ 2

ffiffiffi
2

p
W

r2
� ¼ !2c : (3.25b)

According to (2.46), we can relate a solution (3.19) of (3.8)

to a solution (3.23) of (3.22) via the Dirac operator 6Dy
BPS in

(3.1) according to

! �q ¼ 6Dy
BPSp: (3.26)

We are now in a position to apply the background gauge
condition (2.26) to solutions of (2.45). As discussed at the
end of Sec. II D, we can do this by ensuring that the
quaternion p has no real quaternionic part. Of all the basis

elements (3.14), only v4 is real in the quaternionic sense.
Hence solutions of the form (3.23) correspond, via (3.26),
to solutions of the linearized YMH equations if the coef-
ficient function � in (3.23) is identically zero. Note that,
according to (3.24), this can be imposed consistently since
� satisfies a homogeneous linear equation and does not
couple to any other mode.
Working out the relation (3.26) explicitly is a little

tedious but can be done by careful application of some of
the results in (3.3) as well as the application of the operator
ðei@iÞ to v1; . . . ; v4. It can be seen without too much effort
that the transformation (3.26) permutes the basis elements
v1; . . . ; v4. In particular, the coefficient functions 
 and �
of v3 and v4 are mapped to the coefficient functions v and

 of v1 and v2. Equally, the coefficient functions � and c
of v1 and v2 are mapped to the coefficient functions w and
h of v3 and v4. Since the background gauge condition does
not restrict the functions � and c , we deduce that any
solution of (3.21) satisfies the background gauge condition.
However, in order to understand the implication of the

background gauge for (3.20), we need to know the relation
between 
; � and v;
. To compute the effect of applying
(3.1) to the basis (3.14) we note that, in terms of the usual
spherical coordinates ðr; �; ’Þ for R3,

x̂ ¼
sin� cos’

sin� sin’

cos�

0
BB@

1
CCA;

�̂ ¼ @�x̂ ¼
cos� cos’

cos� sin’

� sin�

0
BB@

1
CCA;

’̂ ¼ @’x̂ ¼
� sin’

cos’

0

0
BB@

1
CCA;

and

x̂�L ¼ �̂@� þ ’̂

sin�
@’:

Therefore

ei@i ¼ x̂ � e@r þ 1

r
�̂ � e@� þ 1

r sin�
’̂ � e@’

¼ x̂ � e@r þ 1

r
e � x̂�L:

Then we compute, for example,

ðei@iÞv4 ¼ � 1

r
v1; ðei@iÞv3 ¼ 1

r
ð2v2 � v1Þ:

Evaluating the other terms (3.26) we arrive at

RESONANCES AND BOUND STATES OF THE ’t HOOFT- . . . PHYSICAL REVIEW D 83, 065004 (2011)

065004-9



!
 ¼ d�

dr
� �

r
þ

ffiffiffi
2

p
W

r

; (3.27a)

!v ¼ �d


dr
�H

r

�

ffiffiffi
2

p
W

r
�: (3.27b)

Remarkably, the transformation (3.27) relates the coupled
system (3.20) to the decoupled system (3.24). Thus, the
most efficient way of studying the coupled system (3.20) is
to look at (3.24) instead and then apply (3.27). In addition,
if one is only interested in bosonic modes satisfying the
background gauge condition (as we are in this paper), one
should set � to zero.

IV. SPECTRAL PROPERTIES OF
THE j ¼ 0 SECTOR

A. General considerations

Before we turn to the numerical investigation of bound
states and scattering in the j ¼ 0 sector, we note some
general features of the systems (3.20) and (3.21) on the one
hand and (3.24) and (3.25) on the other. For this purpose we
note the asymptotic behavior of the coefficient functionsW
and H (2.10):

WðrÞ 	 1� r2

6
; HðrÞ 	 � r2

3
for small r (4.1)

and

WðrÞ 	 r

2
e�r; HðrÞ 	 1� rþOðe�rÞ for large r:

(4.2)

It follows that the systems (3.20) and (3.21) both
decouple at large values of r. We can think of them as
two channels which are coupled in the region of the
background monopole but whose coupling falls off expo-
nentially fast as we go away from the core of the monopole.
It is instructive to set the coupling terms to zero and
consider the resulting single channels. Equations (3.20a)
for v and (3.21a) for w are the same after decoupling and
take the form�

� d2

dr2
þ 3W2 þH2 � 1

r2

�
v ¼ !2v: (4.3)

The potential appearing in this equation has the asymptotic
form

3W2 þH2 � 1

r2
	 1� 2

r
þOðe�rÞ as r ! 1 (4.4)

and, in particular, tends to the positive constant 1 for large
r. Thus, thinking of (4.3) as the spatial part of a radial wave
equation, we see that its wave solutions correspond to
massive particles of mass 1, which is in agreement with
our interpretation of v andw as excitations of theW bosons
in the YMH theory. By contrast, the equation for the
function 
 after decoupling contains the potential

2W2 þ 2

r2
	 2

r2
þOðe�rÞ for large r; (4.5)

while the equation for the function h after decoupling
contains the potential

2W2

r2
	 Oðe�rÞ for large r: (4.6)

Therefore, the corresponding radial waves are massless
excitations, in agreement with their interpretation as,
respectively, photon and Higgs excitations.
The potential ð3W2 þH2 � 1Þ=r2 is plotted in Fig. 1.

The plot and the appearance of the attractive Coulomb tail
in the asymptotic form (4.4) suggest that the Sturm-
Liouville problem (4.3) should have an infinity of bound
states for !2 < 1 accumulating at !2 ¼ 1, with a continu-
ous spectrum for !2 > 1.
The coupling of massless channels to a massive channel

with infinitely many bound states constitutes the generic
situation for the occurrence of Feshbach resonances, or
quasinormal modes. We give a brief summary and refer-
ences in the appendix. On the grounds of the general
theory, we might expect both (3.20) and (3.21) to exhibit
resonance scattering for 0<!2 < 1. However, we also
note an important difference between the systems (3.20)
and (3.21). It follows from (4.1) that the coupling terms in
(3.20) are singular at r ¼ 0, whereas they are smooth for
(3.21).
Turning now to the systems (3.24) and (3.25) we observe

they, too, consist of a massive and a massless channel each.
The potential in the massive channels is

W2 þH2 þ 1

r2
	 1� 2

r
þ 2

r2
þOðe�rÞ as r ! 1 (4.7)

FIG. 1 (color online). The potential 3W
2þH2�1
r2

plotted against r.
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and, because of the attractive Coulomb term, should again
support infinitely many bound states. However, while the
system (3.25) has the same generic form as the photon and
Higgs systems (3.20) and (3.21) discussed above, the equa-
tions in (3.24) are decoupled. As a result, we expect this
system to have true bound states for the excitation denoted

 in the range 0<!2 < 1. There are scattering states in
the excitation � , but these do not satisfy the background
gauge condition, as already discussed after (3.26). Hence,
on the basis of the decoupled form (3.24), we expect the
system (3.20) to have infinitely many bound states and no
(physical) scattering states in the range 0<!2 < 1. This is
in marked contrast with the Feshbach resonances of the
Higgs system (3.21).

Before we present our numerical results we briefly com-
ment on our numerical methods. All of our scattering
calculations require a shooting-to-a-fitting-point method
for finding solutions which decay at large enough values
in one of the channels. Numerical instability would always
create difficulties where the exponentially increasing term
creeps into the solution. Thus, we choose an appropriately
large value of r to integrate to and use a shooting method to
find the decaying solution.

B. Bound states

It is well known that the zero modes of the ’t Hooft-
Polyakov monopole give rise to zero-energy bound states
of the linearized YMH equations. The zero modes of the
’t Hooft-Polyakov monopole are obtained from infinitesi-
mal translations in R3 and a special ‘‘large’’ gauge trans-
formation generated by the Higgs field itself. This
transformation does not vanish at infinity and is therefore
considered as a physical symmetry transformation rather
than a gauge transformation. The infinitesimal form of the
large gauge transformation generated by the Higgs field is

�� ¼ 0; �Ai ¼ Di� ¼ �Bi: (4.8)

In our quaternionic formulation the corresponding zero
mode is simply

q � ¼ eiBi; (4.9)

while the other three zero modes related to translations are

q k ¼ ekðeiBiÞ: (4.10)

It is easy to check that (4.9) [and hence (4.10)] satisfies the
linearized Bogomol’nyi equation (2.35), and hence (3.8)
for ! ¼ 0. Of the four zero modes just found, only q� has

j ¼ 0. It has the explicit form

Bi ¼ �Di� ¼ � xixa
r3

H0ta þ xixa
r2

ð1þWÞH
r2

ta �WH

r2
ti

(4.11)

and is thus a linear combination of the basis states v1 and
v2 as defined in (3.14). In particular, it is therefore a
solution of the photon system (3.21).

Bais and Troost first investigated bound states in single
channels arising in the linearized BPS system in [8]. In
particular, they computed bound state energies in the sys-
tem (3.24a). For completeness of our discussion we have
repeated the numerical analysis here. Using the Numerical
Algorithms Group (NAG) shooting method D02KEF for
Sturm-Liouville type problems we find the eigenvalues
!2

n and hence !n > 0 of the first few bound states of
(3.24a), to 3 significant figures. As explained in our quali-
tative discussion in the previous section, we expect there to
be infinitely many Coulomb bound states in this channel.
We can estimate their energies by neglecting the exponen-
tially small terms in the potential (4.7) and using the
standard formula for Coulomb bound state energies. In
Table II we list both the numerically computed bound state
energies of (3.24a) and the Coulomb approximations

�n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

ðnþ 1Þ2
s

; (4.12)

where we used the standard expression for Coulomb bound
state energies, recalling that l ¼ 1 in this case by virtue of
the 1=r2 term in (4.7). Even for very small n, the Coulomb
approximation is surprisingly good.
We have also computed the wave functions 
n, n ¼

1; 2; . . . , for each of the bound states. They have the
standard form of Coulomb bound states, but it is interesting
to note that they correspond, via (3.27), to bound states in
the coupled system (3.20). The functions v and 
 for
each of the bound states describe, via (3.19), the profile
of the excited monopole. Since h andw both vanish for this
excitation the bound state only involves the photon exci-
tation 
 and the component v of the field describing the
W boson.
From the point of view of the system (3.20), it is surpris-

ing that there are true bound states. As explained in
Sec. IVA, one would generically expect two-channel prob-
lems like (3.20) to have Feshbach resonances but no bound
states.

C. Scattering

In the appendix we discuss what kind of coupled sys-
tems are likely to possess Feshbach resonances. Both
(3.20) and (3.21) have the required features in the parame-
ter range 0<!2 < 1: They consist of two channels which
are weakly coupled at large distances and are such that,
after removing the coupling term, there are bound states
in one channel and only scattering states in the other.

TABLE II. Values for !n for the eigenvalue problem (3.24a)
and �n given in (4.12).

n 1 2 3 4 11

!n 0.877 0.946 0.970 0.980 0.997

�n 0.866 0.943 0.968 0.980 0.996
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In fact, the system (3.21) shows exactly the expected
Feshbach resonance behavior. This was first noticed by
Forgács and Volkov in [15], and we will revisit it below.
However, we will also see that the system (3.20), whose
bound states we analyzed in the previous section, has no
scattering states which satisfy the background gauge
condition.

We begin with a brief review of the results of [15]. This
will establish our conventions and terminology and serve
as a preparation of our generalization in Sec. V. The system
(3.21) has a regular singular point at the origin, which
means that the numerical integration must start a little
away from r ¼ 0. We make a series expansion near
r ¼ 0 and find the following leading terms:

w 	 Ar2; h 	 Br2 for small r; (4.13)

with real constants A and B. Because of the linearity of the
problem we can scale the solution to fix one of those
constants. The remaining free constant plays the role of
the shooting parameter.

Once the correct initial conditions are determined to
ensure a decaying solutionw (for!2 < 1), we can consider
the scattering problems in the massless channel (3.21b).
It has the general form�

� d2

dr2
þ lðlþ 1Þ

r2
þ VðrÞ �!2

�
uðrÞ ¼ 0; (4.14)

where VðrÞ ! 0 as r ! 1 exponentially fast. In the equa-
tion for h, the total potential is (4.6) so l ¼ 0.

For large values of r, where V can be neglected, the
solution must be a combination of spherical Bessel
functions:

uðrÞ ¼ rðAljlð!rÞ þ Blylð!rÞÞ for r large: (4.15)

Since, asymptotically, jlð!rÞ 	 sinð!r� l
2	Þ=ð!rÞ and

ylð!rÞ 	 � cosð!r� l
2	Þ=ð!rÞ we have the asymptotic

form

uðrÞ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
l þ B2

l

q
!2

sin

�
!rþ �l � l

2
	

�

of the radial wave function, with the phase shift defined via

tanð�lÞ ¼ �Bl

Al

:

By evaluating both sides of (4.15) for two large values of r
(or by evaluating both sides and their derivatives for large
r) we extract the coefficients Al andBl, for each value of!,
and hence the phase shift �l at!. The latter determines the
partial scattering cross section according to the standard
expression

�lð!Þ ¼ 4	ð2lþ 1Þ
!2

sin2�lð!Þ

and the total cross section according to

�ð!Þ ¼ 4	

!2

X1
l¼0

ð2lþ 1Þsin2�lð!Þ:

Near a resonance, �l increases rapidly by 	. The function
sin2�lð!Þ takes values between 0 and 1, is maximal at the
resonance, and is thus an expedient quantity to plot when
looking for resonances.
Applying this procedure to the l ¼ 0 contribution to the

scattering cross section for the massless channel h from the
Higgs system (3.21) we confirm the result shown in Fig. 1
of [15], suggesting infinitely many resonances as the en-
ergy approaches the critical value !2 ¼ 1. A graph of
sin2�ð!Þ against ! for the massless channel h is shown
in Fig. 2.
We have also computed the bound state energies of the

decoupled massive channel (4.3) which occurs in both
(3.20) and (3.21), using the numerical method summarized
in the previous section. They were also computed in [15].
Our results are listed in Table III, given to 4 significant
figures. They are in good agreement with the results in
Table II of [15]. Comparing with Fig. 2, one sees that the
energies of the bound states are close to the energy values
where the resonances occur. The bound states of the de-
coupled problem have turned into resonances in the
coupled problem. This is typical Feshbach behavior.
Next we turn to scattering states in the system (3.20),

exploiting the equivalence with the simpler system (3.24).
In the energy range that we are interested in, with !2 < 1,
only Eq. (3.24b) has scattering solutions. However, from
our discussion after (3.26) we know that a nonvanishing �
violates the background gauge condition. We can therefore

0.7 0.75 0.8 0.85 0.9 0.95 1
 ω 
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1

si
n2  δ

(ω
)

FIG. 2. For the system (3.21), the partial scattering cross
section sin2�0ð!Þ is plotted against !.

TABLE III. Values of !n for the eigenvalue problem (4.3).

n 1 2 3 4 5 10 15

!n 0.7984 0.9263 0.9618 0.9766 0.9842 0.9956 0.9980

K.M. RUSSELL AND B. J. SCHROERS PHYSICAL REVIEW D 83, 065004 (2011)

065004-12



conclude that the system (3.20) has no scattering states
satisfying the background gauge condition in the range
!2 < 1. This is surprising in view of the superficial simi-
larity to the system (3.21), which, as we saw above, shows
interesting resonance scattering.

We end this section with some observations about scat-
tering solutions of (3.24b). Even though they do not satisfy
the background gauge condition and therefore do not cor-
respond to solutions of the linearized YMH equations we
expect them to play a role in the supersymmetric version of
the theory as fermionic scattering states. The scattering
problem associated to (3.24b) is also of independent inter-
est since it can be solved exactly. Inserting the expression
(2.10) for the profile function W, Eq. (3.24b) takes the
following simple form:

� d2�

dr2
þ 2

sinh2ðrÞ � ¼ !2�: (4.16)

This equation was studied in the context of fermion scat-
tering off monopoles in [12] [the authors there did not
include the Higgs field, but this does enter (4.16) anyway].
A scattering solution regular at the origin is

�ðrÞ ¼ ði!þ cothðrÞÞe�i!r þ ði!� cothðrÞÞei!r; (4.17)

from which we can read off the expression

e2i�ð!Þ ¼ iþ!

i�!
(4.18)

for the phase shift. Hence sin2�ð!Þ ¼ !2=ð1þ!2Þ, so
that the partial scattering cross section is simply

�0 ¼ 4	

1þ!2
:

V. PERTURBATIONS OF
THE NON-BPS MONOPOLE

We now extend our study of the linearization around
SUð2Þ monopoles in the YMH theory by moving away
from the BPS limit and allowing for a nonzero value of � in
(2.3). Outside the BPS limit we cannot use the quaternionic
version of the linearized YMH equations (2.36), because it
relied on the quaternionic version of the Bogomol’nyi
equation (2.35), which no longer holds. We therefore will
not study the most general perturbations in this section but
restrict attention to the hedgehog ansatz (2.6) and study
perturbations within this ansatz. With � � 0 we do not
have the analytic solutions (2.10) for WðrÞ and HðrÞ of
Eqs. (2.7) for the profile functions in the hedgehog, so we
must solve these numerically. We use D02GAF, which solves
nonlinear boundary value problems using a finite differ-
ence technique with deferred correction. Plots for a range
of different values of � can be found in [4].

As we switch on �, the asymptotic behavior of the
monopole changes, and this will be crucial in studying
perturbations. The asymptotic function for WðrÞ is still as

in (4.1), but HðrÞ no longer has a constant term as r ! 1.
The new leading terms are

WðrÞ 	 1
2e

�r; HðrÞ 	 �rþOðe�rÞ as r ! 1:

(5.1)

Even for small values of �, integration beyond around
r ¼ 10 becomes unstable, so for use in the linearized
equations we spline with the asymptotic approximations
for WðrÞ and HðrÞ. In studying the linearized problem we
fix a value of � and use the profile functions for that case.
Thus, from now on we set � ¼ 0:1.
The linearization of (2.7) was already given in [15].

Denoting the hedgehog profile functions by Hs and Ws,
inserting

Wðr; tÞ ¼ WsðrÞ þ ei!twðrÞ;
Hðr; tÞ ¼ Hs þ ffiffiffi

2
p

ei!thðrÞ;
(5.2)

and keeping only linear terms inw and h, one obtains, after
renaming Hs ! H, Ws ! W,

� d2w

dr2
þ 3W2 þH2 � 1

r2
w� 2

ffiffiffi
2

p WH

r2
h ¼ !2w; (5.3a)

� d2h

dr2
þ 2W2

r2
hþ �

�
H2

r2
� 1

�
h� 2

ffiffiffi
2

p WH

r2
w ¼ !2h:

(5.3b)

We note that (5.3a) is the same equation as (3.21a), but the
differing asymptotic behavior (5.1) of HðrÞ means that the
potential appearing in this equation now behaves as

3W2 þH2 � 1

r2
	 1� 1

r2
þOðe�rÞ for large r: (5.4)

This potential is plotted in Fig. 3.
The system (5.3) has the same generic form as the

systems (3.21) and (3.20) studied in the previous section.
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FIG. 3 (color online). The potential 3W
2þH2�1
r2

plotted against r,
for � ¼ 0:1.
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We follow the same strategy in analyzing it as we did in
Sec. IVC. Thus we first consider the bound state problem,
where the right-hand side of (5.3a) is set to zero, so that it is
artificially decoupled from the system. The eigenvalue
problem we need to solve is�

� d2

dr2
þ 3W2 þH2 � 1

r2

�
w ¼ !2w: (5.5)

As we saw in (5.4), the potential appearing here tends to the
limiting value 1 faster than in the Coulomb case but still
according to an inverse square law, which is the threshold
case for supporting infinitely many bound states, as dis-
cussed in [21]. As shown there, the radial Schrödinger
problem

� d2w

dr2
þ VðrÞw ¼ Ew; (5.6)

where VðrÞ 
 �
r2

for large r, has infinitely many bound

states with E< 0 if �<� 1
4 (for 0>� � � 1

4 only a finite

number of bound states are supported). Thus we expect
infinitely many bound states with !2 < 1 in (5.5), with all
but the lowest values of!2 lying very close to 1. This poses
problems for the NAG routine D02KEF, which requires a
good initial estimate of the eigenvalue. Fortunately, the
inverse square potential is a well-studied problem, and
the WKB method provides an approximation for the ratio
of successive eigenvalues [22]. Writing !2

n for the nth

eigenvalue in (5.5) we have the following formula, valid
for large n:

!2
n � 1

!2
nþ1 � 1

¼ e4	=
ffiffi
3

p
: (5.7)

The first eigenvalue and eigenfunction is easily com-
puted using the NAG routine D02KEF; the eigenfunction is
displayed in Fig. 4. Initial guesses for subsequent eigen-
values can then be computed using (5.7). This approxima-
tion is expected to be good only for large n but worth using
as an initial estimate in D02KEF for n ¼ 2; 3; 4. The com-
puted eigenvalues, predicted values, and estimated error in
the computed value are displayed in Table IV. Rather
surprisingly, the WKB guess even for n ¼ 3 is already
accurate to 10 decimal places. The associated eigenfunc-
tions are plotted in Fig. 5. They only show the exponential
decay characteristic of bound state wave functions for
rather large values of r, and we therefore plot them twice,
using different scales.
As discussed in the appendix, the presence of bound

states in (5.5) suggests the presence of (Feshbach) reso-
nances in the radiative channel of the two-channel problem
(5.3). We now look for such resonances by studying
the scattering associated with (5.3), in the energy range
!2 < 1. We follow the procedure summarized and used in
Sec. IVC. Thus we integrate (5.3) for � ¼ 0:1 and a range
of !2 < 1, using the D02L suite of NAG routines for the
integration. These solve initial value problems for ordinary
differential equations using the Runge-Kutta-Nystrom
method. We then tune the initial conditions with a shooting
method to ensure that the function wðrÞ decays at large r.
The system has a regular singular point at the origin, which
means that the numerical integration must start a little
away from r ¼ 0. We make a series expansion of (5.3)
about r ¼ 0 to find the correct initial data. We find that
wðrÞ 	 Ar2 and hðrÞ 	 Br2 for real constants A and B, as
in the � ¼ 0 case.
We determine the ratio A=B which allows w to decay at

infinity and integrate to compare the solution for h at large
distances to the spherical Bessel function j0, as in (4.15)
and to extract the phase shift �ð!Þ. Our results are shown in
Fig. 6. We see that as ! ! 1, the phase shift � increases
sharply in value. An increase in � by 	 suggests a reso-
nance. However, successive and closely spaced increases
cannot easily be separated.

0 10 20 30 40
r

0

1

2

3

4

FIG. 4. The lowest bound state of (5.5) for � ¼ 0:1.

TABLE IV. Eigenvalues !n of (5.7) with � ¼ 0:1, the predicted values for n > 1 from (5.7),
and the estimated accuracy d!n of the computed value !n.

n 1 2 3 4

!n 0.953 43 0.999 98 0.999 999 985 0.999 999 999 990

WKB prediction 0.999 97 0.999 999 985 0.999 999 999 989

d!n 0:38� 10�6 0:68� 10�6 0:63� 10�10 0:42� 10�13
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In Fig. 7 we plot sin2� as a function of!. We can clearly
see one fairly wide resonance centered around ! ¼ 0:985.
Again, the accumulation of the bound state energies at 1,
as shown in Table IV, makes it difficult to discern the

interesting behavior as ! ! 1. We stretch out the region
near threshold to see if there are, as we expect, more
resonances as ! ! 1. The result is plotted on the right in
Fig. 7. We can see that there is at least one more resonant
peak. We solved (5.3) for energies up to ! ¼ 0:999 998,
which takes us past only the first two bound state energies
in Table IV, and thus the occurrence of two distinct reso-
nance peaks in the scattering cross section is exactly what
is expected. At higher energies the wave functions are
extremely long range, of the order of r ¼ 106. Therefore,
integrating for higher energies becomes increasingly time
consuming. We expect, however, that each of infinitely
many bound states of (5.5) will turn into resonances and
that infinitely many more resonant peaks in the scattering
cross section arise as ! ! 1.

VI. DISCUSSION AND CONCLUSION

The linearized YMH equations in the background of a
’t Hooft-Polyakov monopole have very interesting spectral
properties. We have seen that there is a zero-energy bound
state and an infinity of Coulomb bound states in the same
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FIG. 5. The second (top) and third (bottom) bound states of (5.5), for � ¼ 0:1. The scale on the right is chosen to show the first
oscillation near the origin.
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FIG. 6. The phase shift �ð!Þ for the system (5.3).
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energy region as an infinity of Feshbach resonances. For
vanishing total angular momentum, there are two coupled
systems which, despite their superficial similarity, have
very different spectral properties: In one (called the
Higgs system here) there are infinitely many Feshbach
resonances, while in the other (called the photon system
here) there are infinitely many true bound states, but no
scattering states satisfying the background gauge condition
and, in particular, no resonances. The occurrence of bound
states can be understood in terms of a decoupling trans-
formation.We also showed that the Feshbach resonances in
the Higgs system persist when the Higgs self-coupling � is
switched on. We saw that they become even more densely
spaced, essentially because an attractive 1=r potential in
the BPS limit is replaced by an attractive 1=r2 potential
when � � 0.

In this paper we restricted attention to the frequency
range !2 < 1 and to spherically symmetric perturbations
(in the generalized sense). In this setting, the scattering is
effectively single-channel scattering, fully described by a
single phase shift. When one goes beyond the threshold
!2 ¼ 1, the scattering will be genuine two-channel scat-
tering, whose study is more involved, both numerically and
in terms of the interpretation of the results. However, very
similar multichannel scattering problems are much studied
in atomic and nuclear physics and were considered in [23]
in the context of monopole scattering, so there is no prob-
lem, in principle, in carrying out a similar study here.

It would also be interesting to explore systems arising
for larger eigenvalues of the generalized total angular
momentum operator J. The combination of our quater-
nionic formalism with the techniques developed in
[5,8,24] should provide an efficient method for finding
the corresponding systems of coupled differential equa-
tions. As explained in Sec. III B, we expect the system for
j ¼ 1 to consist of ten equations and for j > 2 of 12.
However, a parity argument will split each of these system
into two subsystems (as it did in our j ¼ 0 case), so that the
largest system one needs to consider has six channels.

To end, we point out the striking similarity between the
spectral properties of the linearized YMH system in the
background of the ’t Hooft-Polyakov monopole and those
of the Laplace operator on the moduli space of charge two
SUð2Þ monopoles [20,23]. The latter also include zero-
energy bound states, Coulomb bound states embedded in
the continuum, and Feshbach resonance scattering. These
similarities are likely to have an interpretation in terms of
electric-magnetic duality. Spelling this out is left as the
topic for a future investigation.

APPENDIX: FESHBACH RESONANCES

A Feshbach resonance [25] is a resonance in a system
consisting of several channels in which a bound state
occurs if the coupling(s) between the channels vanishes.
Feshbach resonances are much studied in the context
atomic physics [26] but also occur in other contexts; see
[27] for a pedagogical and recent account.
Consider a simple system consisting of two channels

with coupling terms including, for convenience, a parame-
ter 0 � q � 1:

� 1

r

d2

dr2
ðruÞ þ VðrÞuþ qCðrÞv ¼ Eu;

� 1

r

d2

dr2
ðrvÞ þ V̂ðrÞvþ qCðrÞu ¼ Ev:

(A1)

We can decouple the equations by setting the parameter q
to zero. With V < 0, suppose that the eigenvalue problem

� 1

r

d2

dr2
ðruÞ þ VðrÞu ¼ Eu (A2)

has bound states for E< 0, occurring at E0; E1; E2; . . . but
that those values are part of the continuous spectrum for the
other decoupled equation

� 1

r

d2

dr2
ðrvÞ þ V̂ðrÞv ¼ Ev: (A3)

0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
 ω 

0

0.2

0.4

0.6

0.8

1

si
n2  δ

(ω
) 

151050
-ln(1- ω )

0

0.2

0.4

0.6

0.8

1

si
n2  δ

FIG. 7. For the system (5.3), the function sin2� is plotted as a function of ! (left) and as a function of � lnð1�!Þ (right).
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When the coupling parameter q is nonzero, the bound
states in (A2) can leak into the radiative channel (A3) and
decay. When that happens, Feshbach resonances in (A1)
generically occur at values close to E0; E1; E2; . . . .
Examples of such resonances are studied in [15,23],
both in the context of magnetic monopoles. A single-
channel eigenvalue problem such as (A2) is generally
much easier to solve than a two-channel coupled problem

such as (A1). Hence, it is worth looking at the bound state
problem, as it gives an idea of where the resonances
will occur. In systems where the coupling terms are
weaker at large distances than the potential, the decoupled
problem is a good approximation. Then these preliminary
calculations mean that the region of searching for reso-
nances is narrowed down, so that computational time is
reduced.
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[14] G. Fodor and I. Rácz, Phys. Rev. D 77, 025019 (2008).
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