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The existence of anisotropic stress of a purely geometrical origin seems to be a characteristic of higher

order gravity models, and has been suggested as a probe to test these models observationally, for example,

in weak lensing experiments. In this paper, we seek to find a class of higher order gravity models of

fðR;GÞ type that would give us a zero anisotropic stress and study the consequences for the viability of the
actual model. For the special case of a de Sitter background, we identify a subclass of models with the

desired property. We also find a direct link between anisotropic stress and the stability of the model as well

as the presence of extra degrees of freedom, which seems to be a general feature of higher order gravity

models. Particularly, setting the anisotropic stress equal to zero for a de Sitter background leads to a

singularity that makes it impossible to reach the de Sitter evolution.
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I. INTRODUCTION

Even though it is now well over ten years since super-
nova data [1,2] led to the general acceptance among
cosmologists that the expansion of the Universe is accel-
erating, there are no natural models that could explain this
phenomenon. The nature of the postulated dark energy
which is responsible for the accelerated expansion is still
a mystery [3–9]. This fact, as well as expectations from
candidates for the ‘‘theory of everything,’’, like string
theory, have led researchers to investigate models in which
general relativity (GR) itself is modified [10–18]. One
crucial question therefore is whether it is possible to dis-
tinguish between a dark energy ‘‘field’’ or fluid on the one
hand, and an accelerated expansion due to a modification
of the theory of gravity on the other hand.

Although strictly speaking cosmological probes cannot
provide conclusive proof [19–21], there are certain signa-
tures that can point the way. One of them is the presence of
a significant anisotropic stress: canonical scalar fields do
not create additional anisotropic stress, while the modified-
gravity models like scalar-tensor theories, braneworld
models like the Dvali-Gabadadze-Porrati (DGP) model
[22] and fðR;GÞ type theories generically induce a large
effective anisotropic stress.

In this paper we investigate one specific class of models,
fðR;GÞ type modifications of GR, and ask the question
whether it is possible to construct viable models with a
vanishing, or arbitrarily small effective anisotropic stress.
Or in other words, is it possible to mimic ‘‘GR’’ with these
models, at least up to first order in perturbation theory and
in the sense that the extra anisotropic stress is small
enough? Since fðRÞ models have many things in common
with scalar-tensor theories, we expect that our discussion is

also relevant for those models, and as we discuss later, also
for DGP and other braneworld models.
We structure the paper as follows: The following section

serves to define our notation and introduces the main
equations. In Sec. III we discuss the notion of anisotropic
stress in general, and how this plays an important role in
modified gravity models and then we investigate the pos-
sibility of a vanishing anisotropic stress in the particular
cases of fðRÞ and fðGÞ models, before we look at the more
general fðR;GÞ case. In Sec. IV we identify and discuss the
link between anisotropic stress and stability in modified
gravity models in the context of both homogeneous and
inhomogeneous perturbations around de Sitter space. We
further derive the relevant stability conditions. We general-
ize the discussion to arbitrary backgrounds in Sec. V and
give some results for a matter-dominated evolution. In
Sec. VI, we apply the above to characteristic toy models,
and then discuss our conclusions. Some explicit intermedi-
ate calculations and formulas can be found in the
Appendices.

II. ACTION AND EQUATIONS OF MOTION

We are interested in the class of models described by the
action

S ¼
Z
M

d4x
ffiffiffiffiffiffiffi�g

p ½fðR;GÞ þ Lmatter�; (1)

where R and G are the Ricci and Gauss–Bonnet scalar,
respectively, M denotes the four-dimensional spacetime,
and Lmatter is the Lagrangian for any matter fields or fluids
present. ‘‘f’’ is an analytic function and its form is
constrained by both classical and quantum stability re-
quirements as well as agreement with both large scale
and solar system data. (We will revisit this point in
Sec. IV.) In the following, we will work in natural units
where 8�G ¼ c ¼ 1, unless otherwise stated.
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The Gauss-Bonnet term, which is a topological invariant
in four dimensions, is defined as

G � R2 � 4R��R�� þ R����R����; (2)

and belongs to the so-called Lovelock scalars [23], which
is the first term in a series of nonlinear corrections to the
Einstein-Hilbert term.

The class of models described by action (1) are a natural
generalization of the well-studied fðRÞ models [10–13].
The introduction of curvature scalars other than the Ricci
one has been physically motivated by the lower energy
limit of string theory [24], although care must be taken to
avoid generic instabilities (e.g. [25]). It is well known that
actions like (1) can be expressed in an equivalent way as
a scalar-tensor action in the so-called Jordan frame;
however, in this paper we will work in the original
representation.

Varying action (1) with respect to the metric g��, and
using the Bianchi identities, we get the equations of motion
[26,27]

FðR�� � 1
2g��RÞ ¼ TðmatterÞ

�� þ TðeffÞ
�� ; (3)

where TðeffÞ
�� is an effective energy-momentum tensor of

geometrical origin (in contrast to the ordinary matter one)
and is defined as

TðeffÞ
�� � �

�
r�r�F� g��hFþ 2Rr�r��� 2g��Rh�

� 8Rð�
�r�r�Þ�þ R��h�þ 4g��R

��r�r��

þ 4R����r�r��� 1
2g��VðR;GÞ

�
; (4)

where we used the additional definitions1

F � fR � @fðR;GÞ
@R

; (5)

� � fG � @fðR;GÞ
@G

; (6)

VðR;GÞ ¼ RFþ �G� fðR;GÞ: (7)

Taking the limits � ! 0 and F ! 1 in (3), we recover the
fðRÞ and Rþ fðGÞ equations of motion, respectively.

We can formally recover a GR-like equation of motion
by moving additionally ðF� 1ÞðR�� � 1

2g��RÞ to the

right-hand side of Eq. (3) and adding this to TðeffÞ
�� to

form a total effective ‘‘dark energy’’ energy-momentum

tensor, Tðeff;totalÞ
�� . We can then compute effective fluid

quantities, for example, the equation of state, pressure
perturbation and anisotropic stress, that a dark energy
needs to have to lead to the same cosmological observa-
tions as the original fðR;GÞ model. But strictly speaking,

Tðeff;totalÞ
�� although covariantly conserved, is not an energy-

momentum tensor in the usual sense, since it is a function
of the spacetime geometry and its first and second
derivatives.
In the following, we will be interested in homogeneous,

isotropic and flat cosmologies, described by the flat, four-
dimensional Friedmann-Robertson-Walker (FRW) metric

ds2 ¼ �dt2 þ aðtÞ2dx2; (8)

with aðtÞ the scale factor. In this background, the two key
quantities, R and G, can be expressed purely as a function
of the Hubble parameter H � HðtÞ and its time derivative,

RðtÞ ¼ 6ð2H2 þ _HÞ; (9)

GðtÞ ¼ 24H2ðH2 þ _HÞ: (10)

The t� t component of the fðR;GÞ equations of motion
(3) gives a modified version of the usual Friedmann equa-
tion which reads as

H2 ¼ 1

F

�
1

3
TðmatÞ0

0 �H _F� 4H3 _�þ 1

6
V

�
; (11)

with dots denoting differentiation with respect to cosmic
time t. Notice that the above equation is of fourth order
with respect to the scale factor, in contrast to the usual
Friedmann equation.

III. THE EFFECTIVE ANISOTROPIC STRESS IN
HIGHER ORDER GRAVITY

Let us here introduce the notion of anisotropic stress in
gravity. As a starting point, we consider scalar perturba-
tions around a flat FRW background in the conformal
Newtonian gauge, where the metric is of the form2

ds2 ¼ �ð1þ 2c Þdt2 þ aðtÞ2ð1� 2�Þdx2; (12)

and the gravitational potentials c � c ðx; tÞ and
� � �ðx; tÞ are closely related to observations: light de-
flection is sourced by the lensing potential �þ c and
nonrelativistic particle motion by c alone.
The scalar anisotropic stress � is then defined as the

difference in the potentials

�� c � �ðx; tÞ; (13)

or the difference of the relevant potentials in some other
gauge. Equation (13) is called the anisotropy equation, and
can be found by calculating the ij (i � j) component of the
perturbed equations of motion around the FRW metric,

�Gi
j �

1

3
gij�G

�
� ¼ �Tðeff;totalÞi

j �
1

3
gij�T

ðeff;totalÞ�
�

� �ðeffÞi
j; (14)

1Here we follow the notation of [27].

2The general form of the perturbed line element is given in
Appendix B.
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from which one then extracts the scalar part as usual to get

�� c ¼ �ðeffÞ: (15)

We emphasize that this is the anisotropic stress one would
infer by assuming GR to hold, not only the anisotropic
stress from the matter fields. Indeed, here we are precisely
interested in the contribution to �� c due to a modifica-
tion of gravity. While relativistic particles do induce an
anisotropic stress, it is small at late times and we will

neglect the contribution of TðmatterÞ
�� in Eq. (3) to �� c .

Notice that because of the nature of TðeffÞi
j in modified

gravity theories, the right-hand side (r.h.s.) of above equa-
tion will in principle have a spacetime dependence, i.e. it
will be a function of �, c as well as their first and second
derivatives with respect to time (in Fourier space), in
contrast to GR, where the r.h.s. is just a function of the
matter content. The usefulness of (15) is that it has a
GR-like left-hand side (l.h.s.), allowing to compute pre-
dictions for cosmological observations as usual, while all
the extra contributions are moved to the r.h.s. and inter-
preted as a ‘‘modified gravity energy-momentum tensor.’’

In particular, for GR (and neglecting any relativistic

species) we have �ðeffÞ ¼ 0 and therefore � ¼ c at all
times. Therefore, the inequality of the Newtonian poten-
tials is a ‘‘signature’’ of departures from GR on large scales
[19]. The ratio �=c , or variables derived from it, like

	ðt; kÞ � c
� � 1, can be extracted observationally by com-

bining weak lensing experiments with e.g. galaxy surveys
or redshift space distortions, making cosmological obser-
vations a powerful test of GR [28]. Current limits are rather
weak, with deviations of order unity from 	 ¼ 0 still
allowed, but future probes will measure the ratio c =�
with an accuracy of a few percent (e.g. [29–33]).

In this paper, we raise and investigate the following
question: Can we construct a viable modified gravity
model with �=c ¼ 1, or in other words, is � � c an
unavoidable consequence of modifying gravity to explain
the dark energy?Wewill try to answer this question step by
step, by investigating the anisotropy equations of fðRÞ,
Rþ fðGÞ as well as of the more general fðR;GÞ gravity
models.

The equations for general spaces tend to be complex and
in general do not admit simple solutions. For this reason in
this paper we will first focus on the case of a de Sitter
background. On the one hand, solutions that explain the
observed accelerated expansion usually tend towards a
de Sitter fixed point, and also the observed background
expansion requires no deviation from p ¼ �
 for the
inferred dark energy component. On the other hand, the
equations simplify significantly in this limit, which allows
us to give explicit solutions that we can then discuss in
detail. We comment on the behavior for other backgrounds
in Sec. V, but leave a fully general study for future work.
We nonetheless expect our conclusions to be quite generic
for models that try to explain the dark energy.

A. The anisotropic stress in fðRÞ models

Let us begin with the special case of fðRÞ gravity,
described by the action

S ¼
Z
M

d4x
ffiffiffiffiffiffiffi�g

p
fðRÞ; (16)

which corresponds to the limit of � ! 0 of the general
fðR;GÞ models. It is well known that these models are
characterized by an extra, dynamical scalar degree of free-
dom F, which is proportional to the first derivative of fðRÞ,
F � fRðRÞ � f0ðRÞ. This can be explicitly seen by taking
the trace of the corresponding equations of motion and
arriving at a Klein–Gordon type equation for F. However,
unless the theory is written in the so-called Jordan frame,
the latter degree of freedom is still of geometrical origin.
The expression for the anisotropic stress for the general

case of fðR;GÞ gravity is given in Eq. (24). For fðRÞ
gravity, in the Newtonian gauge, it takes the form

�� c ¼ �F

F
� �ðeffÞ

R ; (17)

which holds for any spacetime, not just de Sitter.
Since �F ¼ fRRðRÞ�R, the stress contribution is pro-

portional to the derivative of the extra scalar degree of
freedom with respect to R, that is, it depends on the
evolution of the scalar F � f0ðRÞ. Seeking a form for the

function fðRÞ that would make �ðeffÞ vanish at all times
corresponds to solving the equation fRR ¼ 0with a general
solution fðRÞ ¼ Rþ�, i.e. of all fðRÞ models it is pre-
cisely GR that satisfies this equation. In other words, the
requirement of zero anisotropic stress in fðRÞ theories is
equivalent to suppressing the extra degree of freedom of
the theory, leading to the GR limit. (In the parametrized
post-Friedmannian framework of Ref. [21], fRR ! 0 cor-
responds to B ! 0, B being a parameter introduced to
quantify the modification from GR.)

Although it is not possible to make�ðeffÞ exactly zero at
all times without reverting back to GR, one can try to make
it sufficiently small for a given cosmological period, by an
appropriate choice of the model parameters. This corre-
sponds to setting fRR sufficiently small for some particular
initial conditions and ensuring that it stays small, by an
appropriate choice of model. This has been done, for
example, in Ref. [34]. The price one pays is a rapid
oscillatory behavior for both the gravitational potentials
and the curvature perturbation. What is more, the ampli-
tude of the latter can grow arbitrarily asfRR ! 0. We will
come back to this later, when we will study the relevant
stability conditions and will see that this is a general
feature of fðR;GÞ and other modified gravity models: the
existence of anisotropic stress is related to the extra scalar
degree of freedom of these models, and an attempt to
suppress it causes unstable behavior. In the fðRÞ case,
suppression of the extra scalar corresponds to fRR ! 0.
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As can be seen from Eq. (17), another way to force

�ðeffÞ
R ¼ 0 would be to impose the condition �R ¼ 0.

The crucial difference between �R ¼ 0 and fRR ¼ 0, is
that the latter is a background requirement, i.e. a require-
ment on the particular form of the fðRÞ action. On the other
hand, the condition �R ¼ 0 imposes a dynamical condition
on the potentials �, c and their first and second time
derivatives. If we also take into account that in that case
the l.h.s. implies � ¼ c , we find the equation

€�þ 5H _�þ 3H2

�
H2

_H
þ k2

6H2a2
þ 2

�
� ¼ 0; (18)

which not only in general is unstable, but also fixes the
perturbation evolution needed to keep �R ¼ 0, which is in
general incompatible with the desired evolution of the
universe, e.g. structure formation. In other words, the
requirement �R ¼ 0 imposes an evolution that in general
we do not want. For this reason, what we seek in this paper
is a condition of the first kind, i.e. a condition on model
space rather than on the evolution of the perturbations.

B. The anisotropic stress in fðGÞ models

Since fðRÞ models do not allow for a vanishing aniso-
tropic stress, we will instead look at the other limiting case
of fðR;GÞ models, namely, those described by the action

S ¼
Z
M

d4x
ffiffiffiffiffiffiffi�g

p ½Rþ fðGÞ�: (19)

These models posses an instability in the presence of a
matter fluid, irrespective of the form of the function fðGÞ
[35], which rules them out as realistic scenarios, but here
we just want to see whether it is possible to construct fðGÞ
models that contribute no additional effective anisotropic
stress.

The first term in the action does not contribute any extra
anisotropic stress. In an FRW background, these models
posses an extra scalar degree of freedom, proportional to
� � fGðGÞ ¼ f0ðGÞ. The anisotropy equation in a general
spacetime in this case reads as

�� c � �ðeffÞ
G ¼ 4H _�c � 4 €��þ 4ðH2 þ _HÞ��;

(20)

with �� ¼ fGG�G. For a de Sitter background, the equa-
tion simplifies to�� c ¼ 4H2

0fGG�G. One possibility to
have no anisotropic stress is to set fGG ¼ 0 at all times,
leading to the model fðGÞ ¼ Gþ�. In four dimensionsG
is a topological invariant [23], i.e. it is a total derivative and
so it has no contribution to the equations of motion, and we
are left only with Rþ� for the relevant gravitational
Lagrangian, which is equivalent to GR. Alternatively we
require �G ¼ 0 which suffers from the same problems as
�R ¼ 0 and does not allow in general for a sensible
evolution of the perturbations.

For a general background, the similarity to the case of
fðRÞ is spoiled by the first two terms in the anisotropy
equation. In general, the condition on the evolution of �
and c imposed by those terms will again be difficult to
enforce as a function of time. On the other hand, if the

background quantities vary only slowly, _�, €� � 0, then the
anisotropy equation can be simplified as3

�� c � �ðeffÞ
G ¼ �4ð1þ 3weffÞ��; (21)

where we used the relation

_H

H2
� � 3

2
ð1þ weffÞ; (22)

with weff � p=
 being the effective equation of state
parameter for the background evolution. Now, the situation
is again similar to the one encountered for fðRÞ: one has
either to require either fGG ¼ 0, �G ¼ 0, or weff ¼ �1=3.
As discussed above, the first condition leads to GR (in

which case automatically _� ¼ €� ¼ 0 at all times), while
the second does not allow for an acceptable evolution of
the perturbations. The third condition, which corresponds
to the evolution of a universe dominated by curvature, is
also not very relevant given current observational results in
cosmology.

C. The anisotropic stress in fðR;GÞ models

We saw in the previous sections that the vanishing of the
anisotropic stress in fðRÞ and fðGÞ models corresponds to
either trivial or unphysical situations. We now turn to study
the more general case of fðR;GÞ models. Here, the func-
tion fðR;GÞ has two contributions, coming from the R and
G part, respectively, and the anisotropy equation reads as

�� c ¼ 1

F
½�Fþ 4H _�c � 4 €��þ 4ðH2 þ _HÞ���:

(23)

Unlike the fðRÞ case, where we simply had to demand that
fRRðRÞ ¼ 0, the nature of the anisotropy equation here
does again not allow us to write down an explicit condition
for the function fðR;GÞ that would give a zero anisotropic
stress contribution in a general spacetime: as in fðGÞ
models, we find extra factors of �, c and their time
derivatives. The only case for which we can find a simple
condition is for the de Sitter spacetime, and therefore we
shall restrict ourselves in this case for the time being.
Furthermore, for models that try to explain the dark energy,
it is at late times that we expect modifications of gravity to
become important, and that deviations from GR should
appear in observations. For such a late-time accelerating

3We obtain effectively the same condition on scales that are
well inside the horizon, k � aH, as �� is in general boosted by
factors of ðk=ðaHÞÞ2 relative to � and c .
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epoch, a de Sitter spacetime is expected to provide a
reasonable approximation.

The anisotropy equation in de Sitter space reads as

�� c ¼ 1

F
½�Fþ 4H2

0��� � �ðeffÞ
G þ�ðeffÞ

R � �ðeffÞ
tot ;

(24)

where, as before, we have defined the contribution coming
from the R and G part of the action, respectively, as

�ðeffÞ
R � �F

F
and �ðeffÞ

G � 4H2
0

��

F
: (25)

Notice that this case is just the sum of the corresponding
limiting cases of fðRÞ and Rþ fðGÞ gravity, respectively,
although now either term depends on both R and G.

We now ask the same question as before: Is it possible in
this case to find a class of fðR;GÞ models that give a zero

anisotropic stress �ðeffÞ
tot ¼ 0, having at the same time a

sensible evolution of the perturbations? By inspection of
(25) one can see that in order for the total scalar anisotropic
stress to be zero, we require that at all times

�ðeffÞ
R ¼ ��ðeffÞ

G : (26)

In other words, we require that the particular anisotropic
stress contributions have equal magnitude and opposite
sign at all times, or at least for the cosmological era of
interest.

We can rewrite condition (26) using the relations

�F ¼ FRðR;GÞ�Rþ FGðR;GÞ�G; (27)

�� ¼ �RðR;GÞ�Rþ �GðR;GÞ�G: (28)

In de Sitter space we have additionally

G ¼ 4H2
0R; (29)

which implies that �G ¼ 4H2
0�R. Using the last relation

together with (27) and (28) (and so limiting ourselves to
de Sitter backgrounds) condition (26) becomes

ðfRR þ 4H2
0fRG þ 4H2

0fGR þ 16H4
0fGGÞ�R ¼ 0: (30)

If fðR;GÞ is an analytic function, we have fRG ¼ fGR, and
requiring that the above equation is valid for any variation
�R (see the discussion on fðRÞ in Sec. III A) we arrive at

fRR þ 8H2
0fRG þ 16H4

0fGG ¼ 0: (31)

The above equation is a second order partial differential
equation with constant coefficients, for the class of func-
tions f � fðR;GÞ that give a vanishing anisotropic stress
in de Sitter space. Its general solution is

fðR;GÞ ¼ f1ð�Þ þ Rf2ð�Þ; (32)

with � � R�G=ð4H2
0Þ, and f1, f2 arbitrary but analytic

functions of�. Models with vanishing anisotropic stress in

de Sitter space need to be of this form locally near the
de Sitter point.
We specify the function fðR;GÞ in the action, which is

agnostic of quantities like H0. For this reason it is prefer-
able to consider a more general class of models with

� �
�
R� G

M2

�
; (33)

with M a parameter with mass dimensions, so that

�ðeffÞ ! 0 corresponds to the special case of a model
with a de Sitter expansion rate of H0 ¼ M=2. As we will
also discuss later on, the mass parameterM controls which
of the two contributions in fðR;GÞ dominates.
Assuming that the de Sitter point exists and is stable, we

see that it is in principle possible to find a nontrivial class of
fðR;GÞ models that give exactly zero anisotropic stress in
de Sitter space at all times, by selecting a model in the class
(32). However, as we will see by studying the stability of
de Sitter space below, the case M ! 2H0 corresponds to a
singularity for the actual model, and therefore the model
cannot be viable. Furthermore, we will see that the aniso-
tropic stress cannot become arbitrarily small, since this will
cause unstable behavior for the curvature perturbations.

IV. ANISOTROPIC STRESS AND STABILITY FORA
DE SITTER BACKGROUND

There are different stability criteria that a gravitational
theory aiming to describe the late-time acceleration should
satisfy, each leading to a different condition for the form of
the function fðR;GÞ. At the background level, a viable
model should give rise to sufficiently long radiation and
matter eras, as well as a transition to a stable de Sitter era
[36–38]. Furthermore, avoidance of singularities and of
rapid collapse of perturbations (positivity of the sound
speed) as well as agreement with local gravity constraints
should be ensured [39–41]. Of great importance is also the
absence of ghost -like degrees of freedom [42–44]. For the
class of fðR;GÞ models in a de Sitter background the latter
requirement translates into fRðR;GÞ> 0.
Modified gravity models of the type fðRÞ or Rþ fðGÞ

suffer from a curvature singularity at very early times of
the cosmological evolution [45–49].4 The latter singular
behavior can lead to oscillations of the scalar degree of
freedom with infinite amplitude and frequency. As ex-
plained in Ref. [47], the singularity lies at a finite field
value and energy level and therefore is easily accessible.
Wewill see in the following that this singularity is a feature
of fðR;GÞ models as well.
In this paper we are interested in the classical stability,

and particularly its connection to the effective anisotropic

4Other types of singularities in the context of modified gravity
have been earlier observed in Ref. [50]. For a discussion on
various type of singularities in the same context see, for ex-
ample, Ref. [51] and references therein.
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stress. As we will show and discuss below, the attempt of
turning off or making sufficiently small the effective an-
isotropic stress for a de Sitter background leads to serious
stability problems that question the actual viability of

models with vanishing �ðeffÞ.

A. Existence of a de Sitter point

Since we will specifically study the behavior near the
de Sitter point, it is necessary that this solution exists for
the models of interest. De Sitter space is a vacuum, maxi-
mally symmetric space described by the conditions

H ¼ H0 ¼ constant> 0; _R ¼ _G ¼ _F ¼ _� ¼ 0:

(34)

Furthermore, in maximally symmetric spaces any curva-
ture invariant can be expressed as a function of the Ricci
scalar, and particularly for the Gauss-Bonnet term we get

G ¼ R2

6
: (35)

We can derive the condition for the existence of the
de Sitter point by taking the trace of the equations of
motion (3) and using relations (34) and (35), to arrive at

FðRÞRþ 2GðRÞ�ðRÞ � 2fðRÞ ¼ 0; (36)

where everything is assumed to be expressed in terms of
the Ricci scalar and evaluated on de Sitter space. The cases
� ¼ 0 and F ¼ 1, give the relevant conditions for fðRÞ and
Rþ fðGÞ gravity, respectively. Solving the algebraic equa-
tion given above, we get the de Sitter point solution, which
in general is not unique. Minkowski space corresponds to
the special case of R0 ¼ H0 ¼ 0.

For the models of the type (32), we find with the help of
Eq. (36) that the de Sitter point is given by solutions of the
equation

f1ðuÞ þ uf2ðuÞ ¼ 0 (37)

and R ¼ 2u. The next step in our analysis will be the study
of the stability of de Sitter space at both homogeneous and
inhomogeneous level.

B. Homogeneous perturbations

Now we turn to study the stability of the de Sitter
solution, first with respect to homogeneous (background)
perturbations. As wewill see, there is a strong link between
effective anisotropic stress and stability in modified gravity
models.

Let us consider the t� t component of the Friedmann
equation (3) and perturb it linearly around the de Sitter
solution H ¼ H0

HðtÞ ¼ H0 þ �HðtÞ: (38)

Under perturbation (38) the perturbed function fðR;GÞ
reads as

f ¼ f0 þ F0�Rþ �0�G; (39)

and similar expressions hold for the other quantities of
interest. The explicit formulas and calculations for any
space can be found in Appendix A.
Now, evaluating relations (A13)–(A15) and using con-

ditions (34), we can write the linearized perturbed modified
Friedmann equation (11) in the form

C1� €H þ C2� _H þ C3�H ¼ 0; (40)

with the constants C1, C2 and C3 defined in Appendix A.
There is no constant term since we know that de Sitter,
�H � 0, is a solution. This equation then admits an ex-
ponential solution of the form

�H ¼ Aþea
þt þ A�ea

�t; (41)

with

a� � � 3

2
H0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
H2

0 �
�
F

3!
� 4H2

0

�s
; (42)

and

! � FR þ 8H2
0ðFG þ 2H2

0�GÞ; (43)

where we dropped the subscript ‘‘0’’ from FR, etc. for
simplicity.
From solution (42), we can read off the condition for

de Sitter space stability with respect to homogeneous
perturbations:

F

3½FR þ 4H2
0ð2FG þ 4H2

0�GÞ� � 4H2
0 � 0: (44)

The latter condition ensures that the de Sitter point is an
attractor for the particular fðR;GÞ model under study,
which is important for the viability of a cosmological
model of gravity. The limit � ! 0 in (44) gives the corre-
sponding condition for fðRÞ gravity, that has been derived
before in Ref. [52],

F

3FR

� 4H2
0 � 0; (45)

while when F ! 1 we get a similar condition for the
Rþ fðGÞ models also derived in Ref. [48]

1

48H4
0fGG

� 4H2
0 � 0: (46)

The stability condition (44) is general, but now we can
check what it tells us for the class of models that give a zero
anisotropic stress, described by Eq. (33) asM2 ! 4H2

0 . We

can see that in this case necessarily ! ! 0, and so the
eigenvalues (42) tend to infinity.5 In particular, when ! is

5Since the no-ghost condition requires that F > 0, the question
whether the background solution moves towards or away from
de Sitter depends on whether ! ! 0þ or ! ! 0�.

IPPOCRATIS D. SALTAS AND MARTIN KUNZ PHYSICAL REVIEW D 83, 064042 (2011)

064042-6



exactly zero, which corresponds to the case of a vanishing
anisotropic stress, it is not possible to reach the de Sitter
state without triggering a singularity in the model: the
quantity C1 ¼ 18H! in Eq. (40) goes to zero as we
approach de Sitter, together with C2 ! 0 (see
Appendix A). In general � €H � ðC3=C1Þ�H ! 1 which
requires � €H to diverge in order to satisfy the evolution
equation, except possibly for a lower dimensional and thus
infinitely fine-tuned set of trajectories in specific models.
We will show and discuss this explicitly in Sec. VI con-
sidering examples for particular fðR;GÞ models.

Additionally, if the effective anisotropic stress is not
exactly zero, but very small, then the rapid background
oscillations lead to potentially large time derivatives of
�H, which makes the linear analysis unreliable, i.e. the
evolution becomes nonlinear. We give an explicit example
in Sec. VIA.

Similarly, in the fðRÞ and Rþ fðGÞ cases, where the
zero anisotropic stress condition was that fRRðRÞ ¼ 0 and
fGGðGÞ ¼ 0, respectively, conditions (45) and (46), give
the obvious result that one gets infinities when trying to
suppress the extra degree of freedom. The difference with
the more general fðR;GÞ models is that the singularity
appears for a finite value of the mass parameter M of the
model, while in fðRÞ and Rþ fðGÞ the same happens for
rather trivial cases. We conclude therefore that a fðR;GÞ
type model that has no anisotropic stress in a de Sitter
background cannot dynamically reach this background
solution.

C. Inhomogeneous perturbations

In this subsection we will study the behavior of inho-
mogeneous perturbations in de Sitter space and we will
first show that the stability condition coincides with the
stability condition derived in Sec. IVB on homogeneous
perturbations. This was found to be true for fðRÞmodels in
Ref. [52] and in general is not true for scalar-tensor models.
We will then make the relation between anisotropic stress
and stability clear by studying the evolution of the pertur-
bations. The full set of perturbation equations together with
some useful relations can be found in the Appendix B.

We follow [27] and choose the gauge invariant expres-
sion

� � 1

2F
½�Fþ 4H2

0��� (47)

for the gravitational potential, as it reduces to � in the
Newtonian gauge and remains well defined for a de Sitter
background. For that background, we find that the potential
is just given by

� ¼ ðfRR þ 8H2
0fRG þ 16H4

0fGGÞ�R
2F

; (48)

where we used the fact that fRG ¼ fGR and that in de Sitter
space we have �G ¼ 4H2�R. From condition (30) we see

that in de Sitter space and for models that have no aniso-
tropic stress,� is necessarily zero. However, let us assume
that we are not exactly in this limit. Then by substituting
the expression of �R in terms of the gauge invariant �,
relation (B11), we arrive at the evolution equation,

€�þ 3H0
_�þ

�
k2

a2
þm2

eff

�
� ¼ 0; (49)

with

m2
eff �

F

3!
� 4H2

0 ; (50)

with ! as defined in (43), and aðtÞ / expðH0tÞ. m2
eff is the

effective mass of the Klein-Gordon type equation for the
scalar perturbation in de Sitter space, and has a purely
geometrical origin. Equation (49) reduces to that of
fðRÞ and Rþ fðGÞ for the limits of � ! 0 and F ! 1,
respectively.
As k ! 0, the requirement for superhorizon stability

dictates that the effective mass is positive,

m2
eff > 0; (51)

which leads to the same stability condition as derived
before with the homogeneous analysis, Eq. (44).
Therefore, the two stability criteria, with respect to homo-
geneous and inhomogeneous perturbations, respectively,
lead to the same conditions, as it is the case for fðRÞ gravity
as well [52].
Turning back to the effective anisotropic stress, we can

see that considering again the class of models found in (32)

and requiring M ! 2H0 (�ðeffÞ
tot ! 0), will make the de-

nominator of (50) go to zero so that

lim
M!2H0

m2
eff � lim

!!0

�
F

3!
� 4H2

0

�
¼ �1; (52)

depending on the sign of ! as it approaches zero. In the
case of positive infinity the stability condition is not vio-
lated, while the minus infinity will obviously violate the
stability condition, as it would make the square of the
effective mass negative (tachyonic).
The effective mass going to infinity means that the scalar

degree of freedom becomes frozen and so it is effectively
suppressed. This is also the case in the special cases of fðRÞ
and Rþ fðGÞ gravity, as can be seen by inspection of
Eqs. (45) and (46) for fRR ! 0 and fGG ! 0, respectively.
However, here the singularity appears in a nontrivial way,
i.e. for a critical value of the mass parameter M where the
two different contributions, i.e. the R and the G contribu-
tion in (26) balance each other. By consequence, in fðR;GÞ
type models, the anisotropic stress is related to the extra
scalar degree of freedom of the theory. As the same hap-
pens in scalar-tensor models (e.g. Eq. (43) of [28]), and
also in DGP where the absence of anisotropic stress re-
quires the crossover scale to diverge, rc ! 1, which ef-
fectively restores GR, we conjecture that this is a quite
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general feature of modified gravity models. In addition, in
the fðR;GÞ case, turning the anisotropic stress off (or
trying to make it sufficiently small) has a direct impact
on the stability and time evolution of the model.

To see what happens when the mass diverges, it is
possible to study the solution of the evolution Eq. (48)
using a WKB approximation. We discuss the procedure in
more detail in Appendix C, where we show that the solu-
tion in this regime, and for a sufficiently large effective
mass meff , is approximately given by

�ðtÞ � X
�
C� exp

�
� 3

2
H0t� imefft

�
; (53)

with C� constants and H0 > 0. From the above solution it
can be seen that the frequency of the oscillations is pro-
portional to meff . Suppressing the anisotropic stress leads
to a very large effective mass and thus to a very rapid
oscillation of �. Although we have shown this here only
for the de Sitter limit, we expect that the result is more
general, and similar oscillations have been seen, for ex-
ample, in Ref. [34] during matter domination for numeri-
cally reconstructed fðRÞ models which mimic GR at early
times.

From relation (50) it can be seen that a sufficiently large
effective mass corresponds to a sufficiently small aniso-
tropic stress. However, the curvature perturbation �R (or
�G) has an amplitude that is / m2

eff ,

�RðtÞ ¼ 6ðm2
eff þ 4H2

0Þ�ðtÞ (54)

and as m2
eff � 1 one can get very large curvature pertur-

bations. The latter behavior, occurring while we try to
suppress the effective anisotropic stress (unless the initial
conditions are tuned appropriately), is very similar to the
one caused by the singularity found in Starobinsky’s
‘‘disappearing cosmological constant’’ model,
Refs. [45,47]. In that case, the singularity appeared in the
high curvature limit of the particular model, while in our
case it appears in the model space of different fðR;GÞ
models, respectively. The latter oscillatory behavior en-
dangers the stability of the actual model as has been
pointed out in Refs. [45,47], and for an explicit discussion
on the subject the reader is referred to Refs. [45,47].

Another interesting aspect of the models of the type
fð�Þ concerns the sound speed. The propagation speed
in de Sitter space equals the speed of light (c2s ¼ 1).
However, using the formula derived in [27] we find that
the sound speed in a general background is given by

c2s ¼ 1þ 8 _H

4H2 �M2
� 1þ

�
2

1� �

� _H

H2
; (55)

where � � M2

4H2 is a dimensionless parameter (constant in a

de Sitter background). � � 1 implies that the Ricci scalar
part of the fðR;GÞ contribution to the anisotropic stress
dominates, while for � 	 1 the Gauss-Bonnet part is

larger. � ¼ 1 corresponds to the case where the two con-
tributions in fðR;GÞ models become equal and cancel.
We can calculate _H from the equations of motion, and

for this particular class of models we get

_H ¼ ð1� �ÞðH _�� €�Þ
8H2ðFþ 4H _�Þ ; (56)

which can then be substituted in (55). However, consider-
ing an expansion characterized by an effective weff ,
Eq. (22), the sound speed takes the form

c2s � 1� 3ð1þ weffÞ
1� �

: (57)

Assuming a background with weff � �1, we immediately
see that as � ! 1, c2s ! 1. The sound speed becomes
negative for � < 1 (Gauss-Bonnet part dominates) and
positive for � > 1 (Ricci scalar part dominates), respec-
tively. The value � ¼ 1, which corresponds to the effective
anisotropic stress becoming zero is the critical value where
the sound speed diverges and changes sign. In other words,
if one wishes to enforce cs 
 1 then one has to ensure that
the model lies sufficiently far from the regime where
the two contributions balance (see e.g. [53,54] for a dis-
cussion on possible issues of superluminal propagation of
perturbations).

V. GENERAL AND MATTER-DOMINATED
BACKGROUND

In this section we extend the analysis to a general
background evolution, and then consider specifically the
important case of matter domination. In general we have to
consider Eq. (23). In this equation, �F and �� are func-
tions of �R and �G through Eqs. (27) and (28). These in
turn can be expressed in terms of the metric perturbations,
� and c , see e.g. [55]. In the small-scale limit, k � aH,
we find that � ¼ c implies

fRRþ16ðH2þ _HÞðH2þ2 _HÞfGGþ4ð2H2þ3 _HÞfRG¼0:

(58)

In order to retransform this condition into one involving
only R and G, we can eliminate H and _H with the help of
Eqs. (9) and (10),

H2 ¼ 1
12ðRþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � 6G

p
Þ; (59)

_H ¼ �1
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � 6G

p
: (60)

Using this prescription we find for the general no
anisotropic-stress condition

0 ¼ fRR þ 2
9

�
�9Gþ 2R

�
R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � 6G

p ��
fGG

þ 2
3ðR� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � 6G

p
ÞfRG: (61)
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While it is difficult to find general solutions, we can
instead study the case for a background evolving with a
given weff , as defined in (22). We notice that in this case
Eq. (58) can be written as

0 ¼ fRR � 2H2ð5þ 9weffÞfRG
þ 8H4ð2þ 9weffð1þ weffÞÞfGG: (62)

For weff ¼ �1 (de Sitter expansion) we recover Eq. (31),
while for weff ¼ 0 (matter-dominated expansion) we find

fRR � 10H2fRG þ 16H4fGG ¼ 0: (63)

The Hubble parameter in the latter equation can be elim-
inated in favor of R andG using Eqs. (9) and (10) evaluated
for a matter background,

R ¼ 3H2; G ¼ �12H4; G ¼ �4
3R

2: (64)

We now try to construct an explicit example for a model
that has no anisotropic stress during matter domination.
For this purpose, we make an ansatz

fðR;GÞ ¼ RþGn�ðRÞ: (65)

Here we take � as an a priori general function of R.
Inserting this model into Eq. (63) and using (64) we can
re-express the condition in terms of R only. We find that �
needs to satisfy the following differential equation:

2nðn� 1Þ�þ 5nR�0 þ 2R2�00 ¼ 0: (66)

This equation has clearly a power-law solution,
�ðRÞ ¼ cRm, with

m1;2 ¼ 1
4ð2� 5n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ nð9n� 4Þ

p
Þ; (67)

and the general solution is of the form

fðR;GÞ ¼ Rþ c1G
nRm1 þ c2G

nRm2 ; (68)

where mi ¼ miðnÞ is given by the equations for m1 and m2

above.
A successful model with zero anisotropic stress should

at the same time satisfy the Friedmann equation as well.
During matter domination we can write the latter as

0 ¼ R2fRR � 2G2fGG þ RGfRG � 1
6RfR

þ 1
6GfG � 1

6fþ 3
4
0R: (69)

Here we chose R and G so as to correspond to the partial
derivatives, since the choice is not unique. The final term is
due to 
mðtÞ / t�2 / R. Inserting a model of the form (68)
but for a general exponent m, we find the condition

� 6m2 þmð7� 6nÞ þ ðn� 1Þð12n� 1Þ ¼ 0: (70)

A model of this form that satisfies simultaneously (67) and
(70) allows for a matter-dominated evolution and contrib-
utes no anisotropic stress during that period. This is the
case for

n ¼ 1
90ð11�

ffiffiffiffiffiffi
41

p Þ; m ¼ 1
180ð61� 11

ffiffiffiffiffiffi
41

p Þ; (71)

where one needs to use either both positive or both negative
signs. An additional solution is given bym ¼ 0 and n ¼ 1,
which is just GR.
Therefore, there is at least one model in the context

of fðR;GÞ gravity that is able to give a zero effective
anisotropic stress, in the subhorizon limit of a matter
background.
Let us now turn attention to homogeneous perturbations

around the matter point, keeping the function fðR;GÞ in its
general form for the start. In Appendix Awe calculate the
evolution of homogeneous perturbations for a general ex-
pansion aðtÞ / tp. For the matter case we get for p ¼ 2=3

� €H þ
�
_!

!
þ 9H

2

�
� _Hþm2

eff�H ¼ �
m

18H!
; (72)

with the effective mass defined as

m2
eff �

F

3!
� F

3½FR þ 4H2ð2FG þ 4H2�GÞ�
: (73)

Equation (72) can be solved approximately at the WKB
regime using an iterative approach [45,46],

�H ¼ �HðoscÞ þ �HðindÞ: (74)

�HðoscÞ is the solution describing oscillations of the scalar

degree of freedom, obtained setting �
m ¼ 0. �HðindÞ de-
notes the matter induced part, which is obtained by turning
off all the derivatives on the l.h.s. of Eq. (72). We assume
that j�HðoscÞj 	 �HðindÞ, so that the deviations from GR are

sufficiently small.
Stability in this case requires, apart from the no–ghost

condition F > 0, that the effective mass is positive,

m2
eff > 0: (75)

Let us turn attention to the oscillatory part of the solution
(74). It can be obtained using the WKB approximation, by
assuming the solution is a slowly varying quantity in time,

�HðoscÞ � Aei
ðtÞ; (76)

with €
 	 1. Plugging above ansatz into (72), and after
some algebra, we find that

�HðoscÞ �
X
�
A� exp

�
� 1

2

Z t
dt0

�
9

2
H þ _!

!

��

� exp

�
�i

Z t
dt0meff

�
; (77)

with A� constants. Using the fact that H � HmðtÞ ¼
2=ð3tÞ, and performing the integration in the first exponen-
tial we arrive at

�HðoscÞ �
X
�

A�
ð!t3Þ1=2 exp

�
�i

Z t
dt0meff

�
: (78)
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The second integration can be performed after choosing
a particular model. From (78) one can see that the ampli-
tude of the oscillating solution grows as one goes back-
wards in time, which is exactly the behavior pointed out for
fðRÞ models in Refs. [45–47], and was due to a curvature
singularity as explained in Ref. [47]. Therefore, fðR;GÞ
models suffer from the same problem too.

For the model giving a zero effective anisotropic stress
during matter domination, see relations (68) and (71), one
can check that both ! and m2

eff become complex, which is

unphysical. What is more, the latter fact renders the analy-
sis of homogeneous stability for this model impossible, or
at least highly nontrivial. One could possible seek to find a
model without this peculiarity, however we shall leave this
for future work.

We notice that the models of type (32) that have no
anisotropic stress during a de Sitter phase with specific
expansion rate H0 ¼ M=2 will pass through ! ¼ 0 and
thus meff ! 1 in any background if the expansion rate
HðtÞ crosses this critical value M=2.

A different, general way to decrease the anisotropic
stress is to move close to GR by decreasing the deviations
from the extra fðR;GÞ contributions, which effectively
implies

fRR; fRG; fGG 	 1: (79)

In this case, we also make! small while F ! 1. Again this
will lead to rapid oscillations, and we suspect that this is
the reason for those seen in [34]. Once the genie of extra
degrees of freedom is out of the bottle, it is difficult to push
it back in without further complications.

VI. TOY MODELS

In this section we will study the de Sitter behavior for
some characteristic cases of the class of models found in
(32). For the sake of generality we will consider

� ¼ Rþ �
G

M2
; (80)

with � ¼ �1. The particular class of models with a vanish-
ing of the anisotropic stress, found in (32), correspond to
� ! �1 and M ! 2H0.

First note that, for the class of models (32), it is possible
to parametrize both the de Sitter existence and stability
conditions in terms of the parameter �, which controls the
different regimes of the model. For simplicity and illus-
tration let us assume that f2 ¼ 0. Then, the de Sitter con-
dition (36) becomes�

�þ �

2�þ �

�
f��0 � fð�0Þ ¼ 0; (81)

with f� � f�ð�0Þ, and

�0 ¼ 6H2
0

�
2�þ �

�

�
: (82)

Furthermore, for the de Sitter stability condition (51)
we get �

�

�þ �

�
2 f�
f��

� 2

�
�

2�þ �

�
�0: (83)

We will assume that �0 > 0, � > 0 and real. The limits
� ! 1 and � ! 0 correspond to the pure fðRÞ and fðGÞ
regimes, respectively.
In principle, we will assume that through (81) we can

express�0 in terms of � and the other possible parameters
of the model as �0 ¼ �0ð�; ciÞ, and then use (83) to get a
constraining condition.

A. fð�Þ ¼ �þ�lnð�=c2Þ
Here, c is a positive constant of mass dimensions. This

model is able to reproduce a late-time acceleration, since at
late times� 	 1, and the logarithmic term will dominate.
In four dimensions the linear term � is essentially equiva-
lent to the Ricci scalar R since the Gauss-Bonnet term does
not contribute to the equations of motion. The absence of a
Minkowski solution makes this model rather unrealistic.
A nontrivial de Sitter solution can be found using (36)

�0 ¼ c2e�=�; (84)

and the Hubble parameter is then trivially given by (82).
The stability condition (83) yields

2�2 � 1

2�þ �
� 0: (85)

For both branches, � ¼ �1, de Sitter space is stable when

� >
ffiffiffi
2

p
=2.

To illustrate the singularity when trying to reach

de Sitter, we set � ¼ 1 and for simplicity c ¼ ffiffiffiffiffi
6e

p
so

that the de Sitter solution is given by H0 ¼ 1. Expanding
the equation of motion in �H we find to first order,

2ð1þ 2ð� _HÞ2Þ�H þOðð�HÞ2Þ ¼ 0: (86)

Only in the second order term a contribution � €Hð�HÞ2
appears. We notice that it is not possible to solve the first
term for real �H, so that necessarily � €H / 1=�H will
diverge when we try to dynamically reach de Sitter. The
only exception is �H ¼ 0, i.e. the solution that is always
de Sitter.
If we are looking at a model that is close to the critical

case but has not quite zero anisotropic stress, � ¼ 1þ ",
then the stability analysis indicates that model is stable as
long as " >�0:29, and indeed numerically we observe
rapid oscillations of �H around de Sitter for most cases.
For very small " we can get an idea of the model behavior
by first solving the equation of motion for � €H and then
linearizing the full equation with respect to �H, under the
assumption that we will look at the evolution close to
de Sitter. We can then expand the resulting equation in ",

which to lowest order in " and for c ¼ ffiffiffiffiffi
6e

p
results in
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� €H � 2

"2
�Hð2ð� _HÞ2 � 1Þ: (87)

We see that the second time derivative of �H will become
very large as " ! 0, which shows again the presence of the
singularity for the critical case of zero anisotropic stress.
But we also see that even close to de Sitter the evolution of
�H is governed by a nonlinear differential equation since
the time derivatives of �H will in general be large for
models with small anisotropic stress and so cannot be
neglected. A detailed study of how small the anisotropic
stress can be made is therefore not straightforward and left
to future work.

B. fð�Þ ¼ �þ c�n

In the context of fðRÞ gravity, models of this type were
suggested as an explanation for late-time acceleration
[56,57] with n < 0, while models with n > 0 can lead to
acceleration at early times and explain inflation.
Furthermore, it was found that de Sitter space is unstable
unless cn < 0 [52]. Here, we assume that cn > 0, other-
wise the no-ghost condition F > 0 could be violated.

The de Sitter point Eq. (81) gives two solutions, namely
�0 ¼ 0 (for n > 0) which corresponds to Minkowski
spacetime and a nontrivial de Sitter one,

�0 ¼
�

�

cð�ðn� 2Þ þ �ðn� 1ÞÞ
�
1=ðn�1Þ

: (88)

In order for�0 to be real and positive one has to ensure that
the quantity in the denominator in the latter relation is
positive. We shall also require that the Hubble parameter,
as given implicitly in relation (82), will be real and positive
too.

For both branches � ¼ �1, de Sitter is always unstable
when n < 0. For n > 0, it is always unstable if � ¼ 1, but
for � ¼ �1, n > 2, the stability condition (83) gives

n� 1

n� 2
< �<

nþ ffiffiffiffiffiffiffiffi
n=2

p � 1

n� 2
; (89)

with both � and H0 being real and positive.
To avoid a superluminal sound speed, the model should

lie in the fðRÞ regime, characterized by � > 1, which is
satisfied here, as the right branch of above inequality
approaches the value 1þ as n ! 1. Further, for n > 2,
Minkowski space is always stable.

To consider the equation of motion close to de Sitter, we

set � ¼ �1, � ¼ 1 and choose c ¼ �6ð1�nÞ, for which
H0 ¼ 1. We also assume that n � 1. We again expand in
�H. The lowest order equation becomes now

ð1þ 2nð� _HÞ2Þ�H þOðð�HÞ2Þ ¼ 0: (90)

Again the second derivative of �H appears only at order
ð�HÞ2. This time we can in principle make the first order
term vanish for n < 0, which would allow to cross �H ¼ 0
with a finite second derivative. However, there are

two problems: First, we can only cross, not move
into and stay on �H ¼ 0, since locally we need

�H � ðt� t0Þ=
ffiffiffiffiffiffiffiffiffiffi�2n

p
to avoid triggering the instability,

and secondly this requires an infinite amount of fine-tuning
in the initial conditions: we need to reach de Sitter at
exactly the right speed, else we are either repelled, or a
catastrophe engulfs the Universe. So in reality again it is
impossible to reach de Sitter dynamically.

C. fð�Þ ¼ �þ c0�ðð1þ �2

c2
0

Þ�n � 1Þ
This is a straightforward generalization of Starobinsky’s

disappearing cosmological constant model [45]. It was
proposed in the context of fðRÞ gravity as a late-time
acceleration model, that has a vanishing cosmological
constant in Minkowski spacetime. It is trivial to check
that Minkowski, fð0Þ ¼ 0, is indeed a solution, but un-
stable since f��ð0Þ< 0.
The model is characterized by three parameters, c0, �,

� > 0.
From the de Sitter point equation, one can find an

expression for � as a function of �, and x1 � �0=c0

� ¼ x1ðg0 � 1Þð1þ x21Þnþ1

½x21ð2ng0 þ 1Þ � ð1þ x21Þnþ1 þ 1� ; (91)

where g0 � ð�þ �Þ=ð2�þ �Þ. Taking the limit � ! 1 in
the above expression one recovers the one given in
Starobinsky’s paper Ref. [45].
Let us assume that c0 is of the order of the de Sitter scale,

�0=c0 � x1 ¼ 1. The de Sitter stability condition then
reads

2ð�þ �Þn2 þ ð2�þ 1Þnþ ð2�þ �Þð1� 2nÞ 
 0: (92)

For n ¼ 1 de Sitter is stable if

� 2�

2�þ �
� 0; (93)

which is never satisfied for both branches � ¼ �1.
However, choosing x1 ¼ 1=2, n ¼ 1, we find that
de Sitter is stable for � ¼ 1 and � > 1=2, as well as for
� ¼ �1 and � * 0:68.
Stability can be established for a wide range of the

model parameters, but that would require a detailed explo-
ration of the parameter space of fc0; �; ng, and we are not
interested in this here.
For the critical case � ¼ �1, � ¼ 1, choosing the � of

(91) and in addition c0 ¼ 6H2
0 for simplicity, we find to

first order in �H�
1� nðH4

0 � 2nð� _HÞ2Þ
ð2n � 1ÞH4

0

�
�H þOðð�HÞ2Þ ¼ 0: (94)

This equation is of the same kind as the one found for the
previous toy model, and it leads to the same behavior. The
special case n ¼ 1 leads to the equation ð� _HÞ2�H ¼ 0,
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which prohibits any crossing of �H ¼ 0 as otherwise � €H
has to diverge.

VII. CONCLUSIONS

In this paper we study the anisotropic stress in fðR;GÞ
type modified gravity models. We investigated the possi-
bility of finding models that are able to mimic GR at least
in the sense that they do not create an additional, effective
contribution to the anisotropic stress, i.e. � ¼ c in the
Newtonian gauge. For the needs of our analysis, we also
derived the necessary background stability conditions. We
started by considering the case of a de Sitter background,
since this allowed us to find the general class of models
with vanishing anisotropic stress. The de Sitter case is in
addition interesting as current observations indicate that
the Universe is approaching this state. We further consid-
ered the general case in the small-scale limit, and in more
detail the case of a matter-dominated expansion.

We find that for de Sitter expansion, the anisotropic
stress is inextricably linked to the presence of an extra
scalar degree of freedom. Suppressing the effective, geo-
metric anisotropic stress is equivalent to suppressing the
extra degree of freedom, which either requires the model to
revert back to GR or else leads to an instability in the
background evolution. In addition, it leads to problematic
effects like rapid oscillations of the gravitational potential
and the curvature perturbation (with possible runaway
production of scalar particles) and superluminal propaga-
tion of the perturbations. The same problems appear when
one tries to generally decrease the extra degrees of freedom
through a model reconstruction, in order to obtain an
evolution similar to GR. We think that this has been
observed for numerically reconstructed fðRÞ models in a
matter-dominated background [34], indicating that it is
more general and not restricted to de Sitter.

Furthermore, our stability analysis reveals that the cur-
vature singularity present in fðRÞ models [45–47] appears
in the more general fðR;GÞ case as well. What is more, its
unwanted effect on the behavior of curvature perturbation
is amplified for all models that try to suppress the aniso-
tropic stress by decreasing fRR, fRG, and fGG. In these
cases we find rapid curvature oscillations with arbitrarily
high amplitude as �� c ! 0.

In the case of a pure matter-dominated background, we
were able to construct an explicit model that gives a zero
effective anisotropic stress in the subhorizon limit. At late
times, when the gravity modifications are expected to
appear and the evolution ceases to be matter dominated,
this model will no longer give � ¼ c . This could possibly
be avoided by constructing such models for a whole ex-
pansion history including late-time accelerated expansion.
However, such a procedure would necessarily involve sig-
nificant fine-tuning as changes in the expansion rate would
have to coincide with changes in the behavior of
the function fðR;GÞ, which would in general depend

sensitively on initial conditions. This appears to be rather
difficult to construct. In addition, as discussed above, such
a model would not be able to reach the de Sitter state
without encountering a singularity.
While the link between effective anisotropic stress and

the scalar degree of freedom of the theory was studied here
in the context of fðR;GÞmodels, it is also present in scalar-
tensor and DGPmodels: If a scalar-tensor model is coupled
to the Ricci scalar in the action through Fð’ÞR then the
anisotropic stress is proportional to ðF0=FÞ�’ and the
analogy to the fðRÞ case is obvious. In DGP, the effective
anisotropic stress vanishes for rc / M2

4=M
3
5 ! 1 where

M4 and M5 are the four- and five-dimensional Planck
scales [58,59]. In this limit, the five-dimensional part of
the action is suppressed and only the usual four-
dimensional Einstein-Hilbert action remains.
We conjecture that suppressing the effective anisotropic

stress in modified gravity models is difficult, if not impos-
sible, to achieve in a realistic scenario. In models with
a single extra degree of freedom that we looked at [fðRÞ,
fðGÞ, scalar-tensor models and DGP] it is not possible at
all to have no effective anisotropic stress except in the GR
limit. In more complicated cases like fðR;GÞ it is possible
to cancel the contributions to the effective anisotropic
stress coming from several extra degrees of freedom, but
this appears to be fine-tuned and the resulting models tend
to develop fatal singularities. This reinforces the role of the
anisotropic stress as a key observable for current and future
dark energy surveys. While the observation of a strong
anisotropic stress would point towards a modification of
GR, the absence of anisotropic stress would present a
significant challenge for modified gravity models and
would require strong fine-tuning, which in turn favors
scenarios where the dark energy is a cosmological constant
or an extra minimally coupled field with negative pressure.
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APPENDIX A: HOMOGENEOUS PERTURBATIONS
OF fðR;GÞ

In this section we will present the stability analysis of
any fixed point of the fðR;GÞ Friedmann equation, using
homogeneous perturbations around the relevant solution.
Our starting point is the t� t Eq. (11), which for conve-
nience we reproduce it here again,

3H2Fþ 3H _Fþ 12H3 _�� 1
2V � 
i ¼ 0: (A1)
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If H � HðtÞ is a solution of above equation, then per-
turbing around it as HðtÞ ! HðtÞ þ �HðtÞ, and keeping up
to first order terms we get for the curvature scalars and their
first time derivatives, respectively,

R ! Rþ 6ð4H�H þ � _HÞ; (A2)

G ! Gþ 24½2ð2H3 þ _HHÞ�H þH2� _H�: (A3)

The next step is to perturb the modified Friedmann equa-
tion (11). Particularly, the scalar potential becomes

V ! V þ R�FþG��

¼ V þ ðRFR þG�RÞ�Rþ ðRFG þG�GÞ�G
� V þ VðRÞ�Rþ VðGÞ�G; (A4)

and after evaluating the scalar field perturbations, it takes
the form

V ! V þ 6ðVðRÞ þ 4H2VðGÞÞ� _H

þ 24ðHVðRÞ þ 2ð2H3 þ _HHÞVðGÞÞ�H; (A5)

where subscripts in brackets simply denote indices, while
those outside brackets denote derivative with respect to the
corresponding variable.

Using relations given above, and after some algebra, the
modified Friedmann equation becomes

CðHÞ�H þ CðRÞ�Rþ CðGÞ�Gþ C _ðRÞ� _Rþ C _ðGÞ� _G� �
i

¼ 0; (A6)

with

CðHÞ � 6HFþ 3 _Fþ 36H2 _�; (A7)

CðRÞ � 3H2FR þ 3H _FR þ 12H3 _�R � 1
2VðRÞ; (A8)

CðGÞ � 3H2FG þ 3H _FG þ 12H3 _�G � 1
2VðGÞ; (A9)

C _ðRÞ � 3HFR þ 12H3�R; (A10)

C _ðGÞ � 3HFG þ 12H3�G: (A11)

Substituting for the perturbations of �R, �G and their
derivatives we arrive at

C1� €H þ C2� _H þ C3�H � �
i ¼ 0; (A12)

with

C1 � 6½C _ðRÞ þ 4C _ðGÞH
2�; (A13)

C2 � 6½CðRÞ þ 4CðGÞH2 þ 4C _ðRÞHþ 16C _ðGÞðH3 þ _HHÞ�;
(A14)

C3 � 6

�
HFþ 1

2
_Fþ 6H2 _�þ 4CðRÞH þ 4Cð _RÞ _H

þ 8CðGÞð2H3 þ _HHÞ þ 8C _ðGÞð6H2 _H þ _H2 þ €HHÞ
�
:

(A15)

Defining! � FR þ 8H2ðFG þ 2H2�GÞ, the generaliza-
tion of Eq. (43) for arbitrary H, we find that always

C1 ¼ 18H!: (A16)

For a polynomial background expansion, described by
aðtÞ / tp, the other coefficients become

C2 ¼ 18H

p
½p _!þ 8H3ð1þ 3pÞð�R þ 2H2�GÞ

þ ð1þ 3pÞHFR�; (A17)

C3 ¼ 3

�
_Fþ 2HFþ 12H2

�
4ð5p2 þ 2Þ

p3
H3ð�R þ 4H2�GÞ

� 4

p
H2ð _�R þ 4H2 _�GÞ� 2ðH!� _!Þþ _�

��
: (A18)

For a de Sitter expansion, aðtÞ / exp½H0t�, and H ¼ H0 ¼
const, we get

C2 ¼ 3H0C1; (A19)

C3 ¼
�
F

3!
� 4H2

0

�
C1: (A20)

APPENDIX B: INHOMOGENEOUS
PERTURBATIONS AND
DE SITTER STABILITY

The general metric element for scalar perturbations
around a flat FRW background reads

ds2 ¼ �ð1þ 2�Þdt2 � 2aðtÞ@i�dtdxi þ aðtÞ2ð�ij

� 2��ij þ 2@i@j�Þdxidxj: (B1)

The general form of scalar perturbation equations
around FRW for fðR;GÞ models can be found in
Ref. [27]. Here, we shall present the full set of equations
for the case of de Sitter space only.
Before we proceed, let us define the gauge invariant

variable � as

� � �ðtÞ � �Fþ 4H2��

2F
; (B2)

with H � H0 as well as the rest of the background quan-
tities evaluated on the de Sitter point. The perturbation
equations then read as
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3H2c þ k2

a2
ðH�þ�Þ þ 3H _� ¼ 3H _�þ

�
k2

a2
� 3H2

�
�;

(B3)

Hc þ _� ¼ _��H�; (B4)

_�þH�þ�� c ¼ 2�; (B5)

�R ¼ �2

�
12H2c þ 3 €�þ 12H _�

þ 3H _c
k2

a2
ð _�þ 2H�þ 2�� c Þ

�
; (B6)

�G ¼ �8

�
12H4�� 3H2 €�þ 3H3 _�� 12H3 _�

þ k2

a2
H2ð2H�þ �� 2�� �Þ

�
: (B7)

Equations (B3)–(B5) correspond to the 00, the 0i and the
ijði � jÞ components, respectively. Particularly, Eq. (B5)
is the anisotropy equation, and the choice of variable � is
now evident: it is the r.h.s. of the latter equation, describing
the effective anisotropic stress in de Sitter space,

� ¼ �ðeffÞ, and therefore is gauge invariant.
In order to re-express above equations in terms of gauge

invariant variables only, we need a second gauge invariant
variable apart from �. Following [27], we define

� � �þ��H�: (B8)

Now, using Eq. (B4) in (B3) we get

� ¼ �þH�; (B9)

which can be inserted into (B8) to give

� ¼ 0: (B10)

Using Eqs. (B4) and (B5) as well as (B9) we can re-express
the curvature perturbation in terms of the gauge invariant
potential �

�R ¼ �6

�
€�þ 3H _�þ

�
k2

a2
� 4H2

0

��
: (B11)

APPENDIX C: SUBHORIZON SOLUTION FOR �
IN THE WKB APPROXIMATION

Considering the evolution Eq. (49) in de Sitter space for
the gauge invariant potential �, we assume a solution of
the form

�ðtÞ ¼ Cei
ðtÞ; (C1)

with C a constant, and €
ðtÞ 	 1. Then, we can calculate
that

�ðtÞ � X
�
C� exp

�
i
Z t

dt0 _
�ðt0Þ
�

� X
�
C� exp

�Z t
dt0

�
�ðAþ _Bðt0Þ

Bðt0ÞÞ � iBðt0Þ
��

(C2)

with

A�3H0

2
; BðtÞ�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðk2e�2H0tþm2

effÞ�9H2
0

q
: (C3)

From solution (C2) we can calculate the limit when

m2
eff � 1, which is the case when �ðeffÞ ! 0. In this

case, we have

BðtÞ � meff ; _BðtÞ � 0; (C4)

and the solution is approximately given by

�ðtÞ � X
�
C� exp

�
� 3

2
H0t� imefft

�
: (C5)
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