
Effective gravitational wave stress-energy tensor in alternative theories of gravity

Leo C. Stein and Nicolás Yunes

Department of Physics and MIT Kavli Institute, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
(Received 14 December 2010; published 28 March 2011)

The inspiral of binary systems in vacuum is controlled by the stress-energy of gravitational radiation

and any other propagating degrees of freedom. For gravitational waves, the dominant contribution is

characterized by an effective stress-energy tensor at future null infinity. We employ perturbation theory

and the short-wavelength approximation to compute this stress-energy tensor in a wide class of alternative

theories. We find that this tensor is generally a modification of that first computed by Isaacson, where the

corrections can dominate over the general relativistic term. In a wide class of theories, however, these

corrections identically vanish at asymptotically flat, future, null infinity, reducing the stress-energy tensor

to Isaacson’s. We exemplify this phenomenon by first considering dynamical Chern-Simons modified

gravity, which corrects the action via a scalar field and the contraction of the Riemann tensor and its dual.

We then consider a wide class of theories with dynamical scalar fields coupled to higher-order curvature

invariants and show that the gravitational wave stress-energy tensor still reduces to Isaacson’s. The

calculations presented in this paper are crucial to perform systematic tests of such modified gravity

theories through the orbital decay of binary pulsars or through gravitational wave observations.
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I. INTRODUCTION

Feynman has argued that no matter how beautiful or
elegant a certain theory is, or how authoritative its propo-
nents, if it does not agree with experiments, then it must be
wrong. For the past 40 years, this philosophy has been
applied to gravitational theories with great success. Many
modified gravity theories that were prominent in the 1970s
have now been essentially discarded, as they were found to
disagree with Solar System experiments or binary pulsar
observations [1]. Similarly, this decade is beginning to
bring a wealth of astrophysical information that will be
used to constrain new modified gravity theories. In fact,
precision double binary pulsar observations [2–4] have
already allowed us to constrain modified theories to
exciting new levels [5,6]. Future gravitational wave
(GW) observations on Earth, with the Advanced Laser
Interferometer Gravitational Observatory [7–9], aVIRGO
[10], and its collaborators, and in space, through the Laser
Interferometer Space Antenna [11–14], will allow new
precision tests of strong-field gravity [15].

Such tests of alternative theories of gravity will be very
sensitive to the motion of compact bodies in a regime of
spacetime where gravitational fields and velocities are
large, i.e. the so-called strong-field. Gralla [16] has shown
that motion in classical field theories that satisfy certain
conditions (the existence of a Bianchi-like identity and
field equations no higher than second order) is ‘‘univer-
sally’’ geodesic to leading order in the binary system’s
mass ratio, with possible deviations from geodesicity due
to the bodies’ internal structure. He also argues that one
might be able to relax the second condition, as it does not
seem necessary. In fact, motion in certain higher-order
theories, such as Chern-Simons (CS) modified gravity

[17], is already known to be purely geodesic to leading
order in the mass ratio, without influence of internal struc-
ture due to additional symmetries in the theory.
Tests of modified gravity theories in the strong field,

however, not only require a prescription for the conserva-
tive sector of motion, but also of the dissipative sector, that
which describes how the objects inspiral. Geodesic motion
must thus be naturally corrected by a radiation-reaction
force that drives nongeodesic motion toward an ultimate
plunge and merger [18]. Similarly, one can think of such
motion as geodesic but with varying orbital elements
[19–23] (energy, angular momentum, and the Carter con-
stant). The rate of change of such orbital elements is
governed by the rate at which all degrees of freedom
(gravitational and nongravitational) radiate.
In the gravitational sector and to leading order in the

metric perturbation, such a rate of change is controlled by
an effective stress-energy tensor for GWs, first computed
by Isaacson in general relativity (GR) [24,25]. In his
approach, Isaacson expanded the Einstein equations to
second order in the metric perturbation about an arbitrary
background. The first-order equations describe the evolu-
tion of gravitational radiation. The second-order equation
serves as a source to the zeroth-order field equations, just
like a stress-energy tensor, and it depends on the square of
the first-order perturbation. This tensor can then be aver-
aged over several gravitational wavelengths, assuming the
background length scale is much longer than the GW
wavelength (the short-wavelength approximation). In this
approximation, Isaacson found that the effective GW
energy-momentum tensor is proportional to the square of
first partial derivatives of the metric perturbation, i.e. pro-
portional to the square of the gravitational frequency.
Components of this stress-energy then provide the rate of
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change of orbital elements, leading to the well-known
quadrupole formula.

Alternative theories of gravity generically lead to a
modified effective GW stress-energy tensor. It is some-
times assumed that this stress-energy tensor will take the
same form as in GR [26,27], but this need not be the case.
In GR, the scaling of this tensor with the GW frequency
squared can be traced to the Einstein-Hilbert action’s de-
pendence on second derivatives of the metric perturbation
through the Ricci scalar. If the action is modified through
the introduction of higher powers of the curvature tensor,
then the stress-energy tensor will be proportional to higher
powers of the frequency. Therefore, the consistent calcu-
lation of the modified Isaacson tensor needs to be carried
out until terms similar to the GR contribution (proportional
to frequency squared) are obtained. This in turn implies
that calculations of effective energy-momentum tensors
in modified gravity theories to leading order in the GW
frequency can sometimes be insufficient for determining
the rate of change of orbital elements.

In this paper, we present a formalism to compute the
energy-momentum tensor consistently in generic classical
field theories. We employ a scheme where the action itself
is first expanded in the metric perturbation to second order,
and the background metric and metric perturbation are
treated as independent fields. Varying with respect to the
background metric leads to an effective GW stress-energy
tensor that can then be averaged over several wavelengths.
This produces results equivalent to Isaacson’s calculation.

We exemplify this formulation by first considering CS
gravity [17]. This theory modifies the Einstein-Hilbert
action through the addition of the product of a scalar field
with the contraction of the Riemann tensor and its dual.
This scalar field is also given dynamics through a kinetic
term in the action. The leading-order contribution to the
CS-modified GW stress-energy tensor should appear at
order frequency to the fourth power, but Sopuerta and
Yunes [28] have shown that this contribution vanishes at
future null infinity.

We here continue this calculation through order fre-
quency cubed and frequency squared and find that such
CS modifications still vanish at future null infinity. This is
because the background scalar field must decay at a certain
rate for it to have a finite amount of energy in an asymptoti-
cally flat spacetime. If one insists on ignoring such a
requirement, such as in the case of the nondynamical
theory, then frequency-cubed CS modifications to the en-
ergy momentum do not vanish.

We explicitly calculate such modifications for a canoni-
cal embedding, where the scalar field is a linear function of
time in inertial coordinates. This is similar to previous
work [29] that calculated another effective stress-energy
tensor for the nondynamical version of Chern-Simons.
In this case, the dominant modification to the radiation-
reaction force is in the rate of change of radiated

momentum, which leads to so-called recoil velocities after
binary coalescence. In GR, such recoil is proportional to
the product of the (mass) quadrupole and octopole when
multipolarly decomposing the radiation field. In nondy-
namical CS gravity with a canonical embedding, the recoil
is proportional to the square of the mass quadrupole, which
dominates over the GR term.
We then construct a wide class of alternative theories

that differ from GR through higher-order curvature terms
in the action coupled to a scalar field. We compute the GW
stress-energy-momentum tensor in such theories and find
that corrections to the Isaacson tensor vanish at future null
infinity provided the following conditions are satisfied:
(i) The curvature invariants in the modification are qua-
dratic or higher order; (ii) the nonminimally coupled scalar
field is dynamical; (iii) the modification may be modeled
as a weak deformation away from GR; (iv) the spacetime is
asymptotically flat at future null infinity. These results
prove that the effective stress-energy tensor assumed in
[26,27] is indeed correct.1

Even if the effective GW energy-momentum tensor is
identical to that in GR, in terms of contractions of first
derivatives of the metric perturbation, this does not imply
that GWs will not be modified. First, background solutions
could be modified. For example, in dynamical CS gravity,
the Kerr metric is not a solution to the modified field
equations for a rotating black hole (BH) [30], but it is
instead modified in the shift sector [31]. Second, the solu-
tion to the GW evolution equation could also be modified.
For example, in nondynamical CS gravity, GWs become
amplitude birefringent as they propagate [32–34]. Third,
additional degrees of freedom may also be present and
radiate, thus changing the orbital evolution. All of these
facts imply that even if the Isaacson tensor correctly de-
scribes the effective GW energy-momentum tensor, GWs
themselves can and generically will be modified in such
alternative theories.
In the remainder of this paper we use the following

conventions. Background quantities are always denoted
with an overhead bar, while perturbed quantities of first
order with an overhead tilde. We employ decompositions

of the type g�� ¼ �g�� þ �~h�� þOð�2Þ, where g�� is the

full metric, �g�� is the background metric, and ~h�� is a

small perturbation (� � 1 is a bookkeeping parameter).
Covariant differentiation with respect to the background

metric is denoted via �r�B�, while covariant differentiation

with respect to the full metric is denoted via r�B�.

Symmetrization and antisymmetrization are denoted
with parentheses and square brackets around the indices,
respectively, such as Að��Þ � ½A�� þ A���=2 and

1The authors of [26,27] presented an energy loss formula
which was not evaluated at Iþ. In the limit of r ! 1, their
energy loss formula reduces to the Isaacson formula.
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A½��� � ½A�� � A���=2. We use the metric signature

ð�;þ;þ;þÞ and geometric units, such that G ¼ c ¼ 1.
This paper is organized as follows: Section II describes

the perturbed Lagrangian approach used in this paper to
compute the effective GW stress-energy tensor. Section III
applies this framework to GR. Section IV discusses dy-
namical CS gravity. Section V computes the full effective
stress-energy tensor in this theory. Section VI generalizes
the calculation to a wider class of alternative theories.
Section VII concludes and points to future research.

II. PERTURBED LAGRANGIAN APPROACH

Isaacson [24,25] introduced what is now the standard
technique to obtain an effective stress-energy tensor for
gravitational radiation, via second-order perturbation the-
ory on the equations of motion. This technique requires an
averaging procedure to construct an effective stress-energy
tensor. This is because of the inability to localize the
energy of the gravitational field to less than several wave-
lengths of the radiation and because of the ambiguities of
the metric perturbation on distances of order the wave-
length due to gauge freedom.2 Isaacson employed the
Brill-Hartle [37] averaging scheme, although one can ar-
rive at an identical quantity by using different schemes
[38–40], e.g. Whitham or macroscopic gravity.

An alternative approach to derive field equations and an
effective stress-energy tensor for GWs is to work at the
level of the action. One possibility is to use the Palatini
framework [41,42], where the connection is promoted to an
independent field that is varied in the action, together with
the metric tensor. Such a framework, however, is problem-
atic in alternative theories of gravity, as it need not lead to
the same field equations as variation of the action with
respect to the metric tensor only.

A similar but more appropriate approach is that of
second variation [43]. In this approach, the action is first
expanded to second order in the metric perturbation, as-
suming the connection is the Christoffel one ��

��. Then, the

action is promoted to an effective one, by treating the
background metric tensor and the metric perturbation as
independent fields. Variation of this effective action with
respect to the metric perturbation and the background
metric yields the equations of motion. The former variation
leads to the first-order field equations, when the back-
ground field equations are imposed. The latter variation
leads to the background field equations to zeroth order in
the metric perturbation and to an effective GW stress-
energy tensor to second order.

Let us begin by expanding all quantities in a power
series about a background solution

’ ¼ �’þ � ~’þ �2 ~~’þOð�3Þ; (1)

where � � 1 is an order counting parameter and ’ repre-
sents all tensor fields of the theory with indices suppressed:
�’ is the background field, ~’ is the first-order perturbation
to ’, and ~~’ is the second-order perturbation. The action
can then be expanded, as

S½’�¼Sð0Þ½ �’�þSð1Þ½ �’; ~’�þSð2Þ½ �’; ~’; ~~’�þOð�3Þ; (2)

where Sð1Þ is linear in ~’ and Sð2Þ is quadratic in ~’ but linear
in ~~’. We now define the effective action as Eq. (2) but
promoting �’ and ~’ to independent fields.
One might wonder why the field ~~’ is not also treated as

independent. First, variation of the action with respect to ~~’
would lead to second-order equations of motion, which we
are not interested in here. Second, the variation of the
action with respect to ~’ cannot introduce terms that depend
on ~~’, because the product of ~’ and ~~’ never appears in
Eq. (2), as this would be of Oð�3Þ. Third, the variation of
the action with respect to �’ can only introduce terms linear
in ~~’, which vanish upon averaging, as we describe in
Sec. II A. This is because averages of any odd number of
short-wavelength quantities generically vanish. Therefore,
we can safely neglect all terms that depend on ~~’ in the
effective action, which renders Eq. (2) a functional of only
�’ and ~’.
As in the standard approach, the second-order variation

method still requires that one performs a short-wavelength
average of the effective stress-energy tensor. Upon averag-

ing, the variation of the first-order piece of the action Sð1Þ
with respect to �’ vanishes because it generates terms linear

in ~’. Since Sð1Þ does not contribute to the effective stress-
energy tensor, we can safely drop it from the effective
action for now.
The effective action reduces to

Seff½ �’; ~’� ¼ Seffð0Þ½ �’� þ Seffð2Þ½ �’; ~’�: (3)

Naturally, the variation of Seffð0Þ with respect to the back-
ground metric �g�� yields the background equations of
motion. The effective stress-energy tensor comes from

averaging the variation of Seffð2Þ with respect to �g��:

�Seffð2Þ ¼ �2
Z

d4x
ffiffiffiffiffiffiffi��g

p
��g��t��; (4a)

Teff
�� � �2�2hht��ii; (4b)

where the factor of 2 is conventional for agreement with
the canonical stress-energy tensor, and hh ii is the averaging
operator, which we discuss below. One of the immediate
benefits of working from an action principle comes from
the diffeomorphism invariance of the action. The diffeo-
morphism invariance immediately implies that the varia-
tion of the total action with respect to the metric is
divergence-free [42]. When the matter stress-energy tensor
is itself divergence-free, then the gravity sector—the sum
of the stress-energy of nonminimally coupled degrees of

2Gauge freedom in perturbation theory stands for the freedom
to identify points between the physical and ‘‘background’’
manifolds [35,36].
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freedom and the effective stress-energy tensor of gravita-
tional waves—will also be divergence-free.

A. Short-wavelength averaging

The goal of the averaging scheme is to distinguish
radiative quantities, those which are rapidly varying func-
tions of spacetime, from Coulomb-like quantities, those
which are slowly varying functions. This is accomplished
by defining the operator hh ii as a linear integral operator.
This operator may either be an average over the phase of
the rapidly varying quantities or over spacetime. If the
integral is over spacetime, there is an averaging kernel
with characteristic length scale Lave that separates the
foreground short-wavelength �GW from the background
length scale Lbg, that is, �GW � Lave � Lbg.

The details of the averaging scheme are not as important
as their properties [38–40], since one arrives at equivalent
results using different schemes. The most useful properties
of hh ii are

(1) The average of a product of an odd number of short-
wavelength quantities vanishes.

(2) The average of a derivative of a tensor vanishes, e.g.

for some tensor expression T�
��, hh �r�T

�
��ii ¼ 0.

(3) As a corollary to the above, integration by parts can
be performed, e.g. for tensor expressions R�

�, S�,

hhR�
�
�r�S�ii ¼ �hhS� �r�R

�
�ii.

Let us briefly mention where some of these properties
come from and some caveats. When considering mono-
chromatic functions, an odd oscillatory integral has an
average value about zero, while an even oscillatory integral
has a nonzero average. This is enough to find that averages
of expressions linear in a short-wavelength quantity will
vanish. Expressions at third (and higher odd) order would
vanish for monochromatic radiation but not in general.
However, these are at sufficiently high order that we ne-
glect them.

The vanishing of averages of derivatives is a subtle
point. In the spacetime average approach, this is found
by integrating by parts, leaving a term with a derivative
on the averaging kernel. This term is smaller than non-
vanishing averages by a factor of Oð�GW=LaveÞ and de-
pends on the averaging kernel. From physical grounds, the
choice of averaging kernel should not affect any physical
quantities, so the average should in fact vanish identically.
From the action standpoint, the average of a derivative can
be seen to arise from an action term which is a total
divergence. Since total divergences in the action do not
affect the equations of motion, the average of a derivative
vanishes.

A similar argument holds for integration by parts. In the
Brill-Hartle average scheme, integration by parts incurs an
error of order Oð�GW=LaveÞ from a derivative of the aver-
aging kernel. From the action standpoint, though, integra-
tion by parts at the level of the action incurs no error, since
there is no averaging kernel in the action.

The fact that the variation of Sð1Þ with respect to �’ does
not contribute to the effective stress-energy tensor is a
direct consequence of property (1) above. The vanishing
of all terms linear in ~~’ upon averaging is also a conse-
quence of (1). As one can see, these properties greatly
simplify all further calculations.

B. Varying Christoffel and curvature tensors

Let us now consider what types of terms arise from the
variation of the effective action with respect to �g��. In
order to perform this variation properly, any implicit
dependence of the action on �g�� must be explicitly re-

vealed; for example, terms which contain the trace ~h must

be rewritten as �g��
~h��. Indices should appear in their

‘‘natural’’ positions (see Sec. II D), for indices raised and
lowered with the metric have implicit dependence on it.
Furthermore, since we are approaching gravity from the
metric formulation, rather than the Palatini formulation,

there will be contributions from the variation of �r� and

curvature tensors.
Consider a term in the effective action such as

Sex:1 ¼
Z

d4x
ffiffiffiffiffiffiffi��g

p
T	...

�...
�r�S

�...
�...; (5)

where g is the determinant of the metric and T	...
�... and

S�...�... are some tensor expressions, with all indices con-

tracted in some fashion, as the action must be a scalar.
When such a term is varied with �g�� ! �g�� þ ��g��, be-
sides the obvious contributions from �

ffiffiffiffiffiffiffi��g
p

, and explicit
dependence of T	...

�... and S�...�... on �g��, there are also

contributions from varying the Christoffel connection ��
��

in �r�. The general expression is

�ð �r�S
�1...�n

�1...�m
Þ ¼ �r�ð�S�1...�n

�1...�m
Þ

þXn
i¼1

� ���i

��S
...�...

�1...�m

� Xm
j¼1

� ���
��j

S�1...�n
...�...; (6)

where . . .� . . . in the ith term of a sum means replacing �i

or �i in the index list with � and where

� ���
�� ¼�1

2½�g�� �r���g
�� þ �g��

�r���g
�� � �g�� �g��

�r���g���:
(7)

Curvature tensors also depend on derivatives of the
connection, so one naturally expects terms of the form
�r


�r���g
�� from the variation of curvature quantities, i.e.

the Riemann tensor R�
���, Ricci tensor R��, or Ricci

scalar R. For example, one can show that

� �R�
��� ¼ 2 �r½�� ��

�
���; (8)
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where the contribution from � ^ � cancels [42]. Upon
integration by parts any scalar in the action that contains
curvature tensors, one can convert a term containing
�r


�r���g
�� into

�Sex:2 ¼
Z

d4x
ffiffiffiffiffiffiffi��g

p
P�

��
�r���g

��: (9)

In fact, many terms in the variation of the action can be
written in the form of Eq. (9).

The contribution of Eq. (9) to the effective stress-energy
tensor is found by integrating by parts and then averaging,
according to Eq. (4). Upon averaging, however, one finds
that such terms do not contribute to the effective stress-
energy tensor because

Teff;ex:2
�� ¼ 2hh �r�P

�
��ii (10)

vanishes according to property (2) in Sec. II A.
The above arguments and results imply that the varia-

tions of curvature tensors and connection coefficients with
respect to �g�� do not contribute to the effective stress-

energy tensor. Only metric tensors which are raising, low-
ering, and contracting indices in the action contribute to
this tensor. We can thus concentrate on these, when com-
puting Teff

��.

C. Contributions at asymptotic infinity

When calculating the radiation-reaction force to leading
order in the metric perturbation, it is crucial to account for
all the energy-momentum loss in the system. The first
contribution is straightforward: Energy momentum is radi-
ated outward, toward future, null infinity Iþ. Since the
stress-energy tensor is covariantly conserved, the energy
momentum radiated to Iþ can be calculated by performing
a surface integral over a 2-sphere at future, null infinity.3

However, not all energy-momentum loss escapes to
infinity, as energy can also be lost due to the presence of
trapped surfaces in the interior of the spacetime. Trapped
surfaces can effectively absorb GW energy momentum,
which must also be accounted for, e.g. in the calculation
of extreme mass-ratio inspiral (EMRI) orbits around super-
massive BHs [44,45]. Calculations of such energy-
momentum loss at the BH horizon are dramatically more
complicated than those at Iþ and we do not consider them
here.

What is the relative importance of energy momentum
lost to Iþ and that lost into trapped surfaces? To answer
this question, we can concentrate on the magnitude of the
leading-order energy flux, as the argument trivially extends
to momentum. The post-Newtonian approximation [46],
which assumes weak-gravitational fields and slow veloc-
ities, predicts that the energy flux carried out to Iþ is

proportional to v10 to leading order in v, where v is the
orbital velocity of a binary system in a quasicircular orbit
(see e.g. [46]). On the other hand, a combination of the
post-Newtonian approximation and BH perturbation the-
ory predicts that, to leading order in v, the energy flux
carried into trapped surfaces is proportional to v15 for
spinning BHs and v18 for nonspinning BHs [47]. BH
GW flux absorption is then clearly smaller than the GW
flux carried out to Iþ if v < 1, which is true for EMRIs for
which the post-Newtonian approximation holds.
Intuitively, this hierarchy in the magnitude of energy-

momentum flux lost by BH binaries can be understood by
considering the BH as a geometric absorber in the radiation
field. Radiation which is longer in wavelength than the size
of the BH is very weakly absorbed. Only at the end of an
inspiral will the orbital frequency be high enough that GWs
will be significantly absorbed by the horizon. Notice that
this argument is independent of the particular theory con-
sidered, only relying on the existence of trapped surfaces.
This result does not imply that BH absorption should be
neglected in EMRI modeling, but just that it is a smaller
effect than the flux carried out to infinity [44,45].
In the remainder of the paper, we will only address

energy momentum radiated to Iþ and relegate any analysis
of radiation lost into a trapped surface to future work. The
only terms which can contribute to an energy-momentum
flux integral on a 2-sphere at Iþ are those which decay as
r�2, since the area element of the sphere grows as r2. No
terms may decay more slowly than r�2, as the flux must be
finite; i.e. the effective stress-energy cannot scale as r�1, as
a constant, or with positive powers of radius. Similarly, any
terms decaying faster than r�2 do not contribute, as they
would vanish at Iþ. Of course, to determine which terms
contribute and which do not, one must know the leading
asymptotic forms of all quantities in the effective stress-
energy tensor.
In GR, as we shall see in Sec. III, the only fields

appearing in the effective stress-energy tensor are the
background metric �g�� and derivatives of the metric per-

turbation ~h��. As one approaches Iþ, �g�� � ��� in

Cartesian coordinates, while j~h��j � r�1 � j �r

~h��j.

Curvature tensors scale as j �R����j � r�3, since they quan-

tify tidal forces. For a theory that is a deformation away
from GR, and far away from regions of strong curvature,
these asymptotic forms cannot change.
Consider now terms in the general effective action at

order Oð�2Þ that contain background curvature tensors.
Because of their ordering, they would contribute to the
effective stress-energy. One such term is

Sex:3 ¼ �2
Z

d4x
ffiffiffiffiffiffiffi��g

p
�r
 ~’

�
1
�r� ~’

�
2
�R


��� �g
��; (11)

where ~’1 and ~’2 are the first-order perturbations to two

fields in the theory (e.g. the metric perturbation ~h�� and the

CS scalar perturbation ~# that we introduce in Sec. V).

3We will not consider spacetimes which are not asymptotically
flat, e.g. de Sitter space; the calculations are more involved in
such spacetimes.
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Since there is no contribution to the effective stress-energy
tensor from the variation of curvature quantities (see
Sec. II B), the only contributions to the effective stress-
energy come from

Teff;ex:3
�� ¼ �2�2

��
ð�1

2
�g�� �g

�� þ ��
ð��

�
�ÞÞ

� �r
 ~’
�
1|fflffl{zfflffl}

r�1

�r� ~’
�
2|fflffl{zfflffl}

r�1

�R

���|fflffl{zfflffl}

r�3

��
; (12)

which has the same functional form as the integral. Note
that the curvature tensor always remains when varying with
respect to �g��.

Combining this result with the asymptotic arguments
above, such terms can be ignored as one approaches Iþ.
Each of the first-order fields possess a radiative part that
scales as r�1. The square of the first-order fields would
then satisfy the r�2 scaling requirement for the flux inte-
gral. The curvature tensor, however, scales as r�3, which
implies that the term in Eq. (12) vanishes at Iþ.

We then conclude that terms in the action that contain
background curvature quantities at Oð�2Þ may be ignored
in calculating the effective stress-energy tensor at Iþ. As
an immediate corollary to this simplification, we may also
freely commute background covariant derivatives if we are
interested in the stress-energy tensor at infinity only, since
the commutator is proportional to background curvature
tensors.

D. Imposing gauge in the effective action

Wewill choose as our dynamical field not ~h�� but rather
~h��, where the underline stands for the trace-reverse op-
eration, and we take the natural position of the indices to be
contravariant. The resulting stress-energy tensor is equal to

the one calculated using ~h�� after evaluating both of them

on-shell, i.e. imposing the equations of motion.
We also impose a gauge condition to simplify future

expressions: the Lorenz gauge condition

�r�
~h�� ¼ 0: (13)

Typically one may not impose a gauge condition at the
level of the action. However, in our case, the gauge condi-
tion in Eq. (13) has the important property of having all of
the indices in their natural positions: The contraction of the
indices does not involve the metric.

Consider a term in the effective action that contains this
divergence:

Sex:4 ¼ �2
Z

d4x
ffiffiffiffiffiffiffi��g

p
T�

�r�
~h��; (14)

with T� some tensor expression at first order in �. The �

index that is contracted above does not require the metric

for such contraction. Therefore, �r�
~h�� always remains

upon variation:

Teff;ex:4
�� ¼ �2�2

���
� 1

2
�g��T� þ �T�

��g��

�
�r�

~h��
��
: (15)

If we delayed imposing the Lorenz gauge condition until
after the calculation of the effective stress-energy tensor,
we would find the same effective tensor as if we had
imposed the gauge condition at the level of the action.
Having said that, one should not impose the gauge condi-

tion when varying with respect to ~h�� as clearly �r�
~h��

must also be varied.

III. EFFECTIVE STRESS-ENERGY IN GR

Let us now demonstrate the principles described in the
previous section by deriving the standard Isaacson stress-
energy tensor in GR. Consider the Einstein-Hilbert action

SGR ¼ �
Z

d4x
ffiffiffiffiffiffiffi�g

p
R; (16)

where � ¼ ð16GÞ�1. Now perturb to second order to
form the effective action

SeffGR ¼ Seffð0ÞGR þ Seffð2ÞGR ; (17a)

Seffð0ÞGR ¼ �
Z

d4x
ffiffiffiffiffiffiffi��g

p
�R; (17b)

Seffð2ÞGR ¼ �2�
Z

d4xLeff;1
GR þLeff;2

GR ; (17c)

where

Leff;1
GR ¼ 1

8

ffiffiffiffiffiffiffi��g
p ½4 �R��ð2~h��

~h�� � ~h�� ~hÞ
þ �Rð~h2 � 2~h�� ~h

��Þ� (17d)

and

Leff;2
GR ¼ ffiffiffiffiffiffiffi��g

p ½�~h�� �r�
�r�

~h���1
8ð �r�

~hÞð �r� ~hÞ
�ð �r�

~h��Þð �r�
~h��Þþ1

2ð �r�
~hÞð �r�

~h��Þ
� ~h�� �r�

�r�
~h��þ1

2
~h �r�

�r�
~h��þ ~h�� �h~h��

�1
4
~h �h ~h�1

2ð �r�
~h��Þð �r� ~h��Þþ3

4ð �r�
~h��Þð �r� ~h��Þ�;

(17e)

and ð �R��; �RÞ refer to the background Ricci tensor and

scalar, respectively. The integrands have been written in

terms of the trace-reversed metric perturbation ~h��. From

Sec. II C, Leff;1
GR does not contribute at Iþ because it

depends explicitly on curvature quantities, so we ignore

it. The variation and averaging of Leff;2
GR produces the

Isaacson stress-energy tensor.
By integrating by parts, all terms in Eq. (17e) can be

written as ð �r�
~h
�Þð �r�

~h��Þ (with indices contracted to

form a scalar) rather than ~h
� �r�
�r�

~h�� (again, with in-

dices contracted). Leff;2
GR is thus rewritten in the more

compact form
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LMT ¼ ffiffiffiffiffiffiffi��g
p ½12ð �r�

~h��Þð �r�
~h��Þ � 1

4ð �r�
~h��Þð �r� ~h��Þ

þ 1
8ð �r�

~hÞð �r� ~hÞ�; (18)

which is the expression that appears in MacCallum and
Taub [43]. With this simplified expression at hand, we can

promote ~h�� to an independent dynamical field in Eq. (17)

and vary it with respect to both �g�� and ~h�� to obtain the
effective stress-energy tensor and the first-order equations
of motion, respectively.

Let us first derive the first-order equations of motion.

Varying Eq. (17) with respect to ~h��, we find

�h~h�� � 2 �r� �rð� ~h�Þ� � 1
2
�g��

�h ~h ¼ 0; (19a)

whose trace is

2 �r�
�r�

~h�� þ �h ~h ¼ 0: (19b)

We can now impose the Lorenz gauge on Eq. (19b), which

then leads to �h ~h ¼ 0. If ~h ¼ 0 is further imposed on an
initial hypersurface while maintaining Lorenz gauge, then
the evolution equation preserves the trace-free gauge [41].
The combination of these two gauge choices (Lorenz
gauge plus trace-free) is the transverse-trace-free gauge,
or TT gauge. After commuting derivatives in Eq. (19a) and
imposing the TT gauge, the tensor equation of motion
reads

�h~h�� þ 2 �R����
~h�� ¼ 0; (19c)

where �R���� is the background Riemann tensor. At Iþ,
this equation reduces to �h~h�� ¼ 0, which leads to the

standard dispersion relation for GWs, traveling at the speed
of light.

Let us now calculate the effective stress-energy tensor.
Note that the first term in LMT may be integrated by parts
and covariant derivatives commuted to form the Lorenz
gauge condition, so the first term may be ignored. Varying
the action with respect to �g��, we find

�G�� ¼ ��2�

��
1ffiffiffiffiffiffiffi��g

p �

��g�� LMT

��
� 1

2
Teff
MT��; (20a)

where

Teff
MT�� ¼ 2�2�hh14 �r�

~h�� �r�
~h�� � 1

2
�r�

~h��
�r� ~h�

�

� 1
8
�r�

~h �r�
~hþ 1

4
�r�

~h��
�r� ~h

þ 1
2
�g��ð��gÞ�1=2LMTii; (20b)

which we refer to as the MacCallum-Taub tensor. Terms

that depend on the trace ~h�� in this tensor can be elimi-

nated in the TT gauge.
Let us now evaluate the MacCallum-Taub tensor on-

shell, by imposing the equations of motion [Eq. (19)].
When short-wavelength averaging, derivatives that are
contracted together can be converted into the
d’Alembertian via integration by parts; such terms vanish

at Iþ. What results is the usual Isaacson stress-energy
tensor

Teff
GR�� ¼ �2

�

2
hhð �r�

~h��Þð �r�
~h��Þii: (20c)

Notice that this expression is only valid at Iþ and in the TT
gauge. As mentioned earlier, this tensor cannot be used to
model energy-momentum loss through trapped surfaces,
since then curvature quantities cannot be ignored.

IV. CHERN-SIMONS GRAVITY

CS gravity is a modified theory introduced first by
Jackiw and Pi [32] (for a recent review see [17]). The
dynamical version of this theory modifies the Einstein-
Hilbert action through the addition of the following terms:

S ¼ SEH þ SCS þ S# þ Smat; (21)

where

SEH ¼ �
Z

d4x
ffiffiffiffiffiffiffi�g

p
R;

SCS ¼ �

4

Z
d4x

ffiffiffiffiffiffiffi�g
p

#�RR;

S# ¼ ��

2

Z
d4x

ffiffiffiffiffiffiffi�g
p

g��ðr�#Þðr�#Þ;

Smat ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
Lmat:

(22)

The quantity � ¼ ð16GÞ�1 is the gravitational constant,
while � and � are coupling constants that control the
strength of the CS coupling to the gravitational sector
and its kinetic energy, respectively. In the nondynamical
version of the theory, � ¼ 0 and there are no dynamics for
the scalar field, which is promoted to a prior-geometric
quantity.
The quantity # is the CS field, which couples to the

gravitational sector via the parity-violating Pontryagin
density �RR, which is given by

�RR :¼ R��	�
�R��	� ¼ 1

2"
����R��	�R

	�
��; (23)

where the asterisk denotes the dual tensor, which we con-
struct using the antisymmetric Levi-Civita tensor "����.
This scalar is a topological invariant, as it can be written as
the divergence of a current:

�RR ¼ 4r�½"���	��
��ð12@���

	� þ 1
3�

�
���

�
	�Þ�: (24)

Equation (21) contains several terms that we describe
below: The first one is the Einstein-Hilbert action; the
second one is the CS coupling to the gravitational sector;
the third one is the CS kinetic term; and the fourth one
stands for additional matter degrees of freedom. The CS
kinetic term is precisely the one that distinguishes the
nondynamical and the dynamical theory. In the former,
the scalar field is a priori prescribed, while in the dynami-
cal theory, the scalar field satisfies an evolution equation.
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The field equations of this theory are obtained by vary-
ing the action with respect to all degrees of freedom:

G�� þ �

�
C�� ¼ 1

2�
ðTmat

�� þ Tð#Þ
�� Þ; (25a)

�h# ¼ ��

4
�RR; (25b)

where Tmat
�� is the matter stress-energy tensor and Tð#Þ

�� is the

CS scalar stress-energy:

Tð#Þ
�� ¼ �½ðr�#Þðr�#Þ � 1

2g��ðr�#Þðr�#Þ�: (26)

The C tensor C�� is given by

C�� ¼ ðr�#Þ"���ð�r�R
�Þ

� þ ðr�r�#Þ�R�ð��Þ�: (27)

Many solutions to these field equations have been found.
In their pioneering work, Jackiw and Pi showed that the
Schwarzschild metric is also a solution in CS gravity [32].
Later on, a detailed analysis showed that all spherically
symmetric spaces, such as the Friedman-Robertson-
Walker metric, are also solutions [30]. Axially symmetric
spaces, however, are not necessarily solutions, because the
Pontryagin density does not vanish in this case, sourcing a
nontrivial scalar field. Specifically, this implies the Kerr
metric is not a solution.

A slowly rotating solution, however, does exist in dy-
namical CS gravity. Yunes and Pretorius [31] found that
when the field equations are expanded in the Kerr parame-
ter a=M � 1 and in the small-coupling parameter
� � �=M4 ¼ �2=ð��M4Þ � 1, then the CS field equa-
tions have the solution

d�s2 ¼ ds2Kerr þ
5

8
�
Ma

r4

�
1þ 12

7

M

r
þ 27

10

M2

r2

�
sin2�dtd�;

�# ¼ 5

8

�

�

a

M

cos�

r2

�
1þ 2M

r
þ 18M2

5r2

�
; (28)

to second order in a=M and to first order in � , assuming no
matter sources. These equations employ Boyer-Lindquist
coordinates ðt; r; �;�Þ, and ds2Kerr is the Kerr line element.
The solution for # may also include an arbitrary additive
constant, but this constant is unimportant, since only de-
rivatives of # enter the CS field equations. Recently, the
same solution has been found to linear order in a=M in
the Einstein-Cartan formulation of the nondynamical the-
ory [48].

The divergence of the field equations reduce to
r�Tmat

�� ¼ 0. This is because the divergence of the

Einstein tensor vanishes by the Bianchi identities.
Meanwhile, the divergence of the C tensor exactly cancels
the divergence of the CS scalar field stress-energy tensor,
upon imposition of the equations of motion [Eq. (25b)].
Therefore, test-particle motion in dynamical CS gravity is

exactly geodesic.4 This result automatically implies the
weak-equivalence principle is satisfied.
The gravitational perturbation only possesses two inde-

pendent, propagating degrees of freedom or polarizations.
Jackiw and Pi showed that this was the case in the non-
dynamical theory [32], while Sopuerta and Yunes did the
same in the dynamical version [28]. One can also show
easily that a transverse and approximately traceless gauge
exists in dynamical CS gravity. The trace of the field
equations take the interesting form

� R ¼ 1

2�
ðTmat þ Tð#ÞÞ; (29)

where R is the Ricci scalar and T is the trace of the stress-
energy tensor. Notice that the trace of the C tensor vanishes
identically.
In vacuum (Tmat

�� ¼ 0) and when expanding to linear

order about a Minkowski background, Eq. (29) reduces to

�h ~h ¼ �

2�
ð �r� �#Þð �r�

�#Þ; (30)

where ~h � ��� ~h�� is the trace of the metric perturbation,
�h is the d’Alembertian operator with respect to the back-

ground metric, and �# is the background scalar field. Since
the latter must satisfy the evolution equation [Eq. (25b)],
we immediately see that # / �=�. This means that the
right-hand side of Eq. (30) is proportional to � . To zeroth

order in the small-coupling approximation, ~h then satisfies
a free wave equation and can thus be treated as vanishing.
Deviations from the trace-free condition can only arise at
Oð�Þ and they are suppressed by factors of the curvature

tensor, as �# must satisfy Eq. (25b). Approaching Iþ, the
right-hand side of Eq. (30) vanishes. This allows one to
impose the TT gauge at future null infinity.

V. EFFECTIVE STRESS-ENERGY IN CS GRAVITY

The perturbed Lagrangian for the Einstein-Hilbert ac-
tion has already been calculated, so here we need only
consider the contribution from SCS. At Oð�2Þ, there are a
large number of terms generated (we used the package
XPERT [49–53] to calculate the perturbations). Many of

these terms are irrelevant when considering their contribu-
tion at Iþ.
Let us classify the types of terms that arise in SCS.

At Oð�2Þ, these are of two types:
(1) the second-order part of one field, or
(2) the product of first-order parts of two fields.

As mentioned in Sec. II A, terms containing the second-
order part of one field are linear in a short-wavelength
quantity, which vanishes under averaging. Thus we only

4This statement is true only in the absence of spins, since
otherwise the CS effective worldline action would contain new
self-interaction terms.
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need to consider the latter case. There are five fields in SCS
(

ffiffiffiffiffiffiffi�g
p

, ", #, R, and �R), so one would at first think that

there are ð52Þ ¼ 10 types of terms arising; however, from the

definition of the Levi-Civita tensor, we have

ffiffiffiffiffiffiffi�g
p

"���� ¼ sgnðgÞ½�����; (31)

where ½����� is the Levi-Civita symbol, which is not a
spacetime field. The combination

ffiffiffiffiffiffiffi�g
p

"���� therefore has

no perturbation, and there are only three spacetime fields
which contribute. We are left with only ð32Þ ¼ 3 possibil-

ities for the types of terms that could appear, corresponding
to two perturbed fields and one unperturbed one among the
set ð#; R����; R����Þ. Two of these possibilities are ac-

tually the same by exchanging the two copies of R����.

Therefore, we are left with only the following two types
of terms in the CS Lagrangian density:

L ~# ~R � ffiffiffiffiffiffiffi��g
p

�"���� ~# ~R	
���

�R�
	��; (32a)

L ~R ~R � ffiffiffiffiffiffiffi��g
p

�"���� �# ~R	
���

~R�
	��; (32b)

where ~R	
��� is the first-order perturbation to the Riemann

tensor, in terms of ~h��. Variation of these terms with
respect to the background metric yields the CS contribu-
tions to the effective stress-energy tensor, while variation
with respect to the metric perturbation yields CS correc-
tions to the first-order equations of motion.

A. Variation with respect to the perturbation

Just as in GR, the final expression for the stress-energy
tensor must be put on-shell by imposing the equations of
motion. The first-order equations of motion of dynamical
CS gravity, in vacuum and at Iþ, are

�h~h�� ¼ � 1

�
~Tð#Þ
�� þ �

�
½ �r�

�# �r�
�h~h	ð� �"��	�Þ

þ �r�
�r�

�# �"�	�ð�
�r�ð �r�Þ ~h�	 � �r� ~h�Þ

	Þ�: (33)

Imposing these equations of motion is easier when tak-
ing advantage of the weak-coupling limit �GW � 1, where

�GW � � �r#=ð��GWÞ quantifies the size of the deforma-
tion away from GR. Let us then expand the metric pertur-
bation in a Taylor series

~h �� ¼ X1
n¼0

ð�GWÞn ~hðnÞ��: (34)

To zeroth order, it is clear that Eq. (33) reduces to
�h~hð0Þ�� ¼ 0, which is the standard GR equation of motion.

To next order, the leading-order piece of the right-hand
side vanishes and one is then left with

�h~hð1Þ��¼�

�
�r�

�r�
�# �"�	�ð�

�r�ð �r�Þ ~h
�	
ð0Þ � �r� ~h�Þ

	
ð0ÞÞ

� 1

�
~Tð#Þ
��: (35)

In the remainder of this section, we drop the superscripts
that indicate �GW ordering.

B. Variation with respect to the background

Let us first discuss terms of type L ~# ~R under variation

with respect to �g��. From Sec. II B, only total derivative
terms arise from � �R	

���, and these vanish upon averaging.

The remaining terms contain �R	
���, which must vanish at

Iþ. Thus, as mentioned before, terms in the effective
action which contain curvature tensors do not contribute
to the effective stress-energy tensor at Iþ.
We are then only left with L ~R ~R. Writing these in terms

of ~h��, the effective action reads

Seffð2ÞCS ¼ �2
�

4

Z
d4xLeff;1

CS þLeff;2
CS ; (36)

where

Leff;1
CS ¼ þ ffiffiffiffiffiffiffi��g

p
�"��	� �# �r
 �r�

~h�
� �r�

�r

~h�	; (37a)

Leff;2
CS ¼ � ffiffiffiffiffiffiffi��g

p
�"��	� �# �r�

�r

~h�

� �r�
�r�

~h
	: (37b)

Naively, one might think that these expressions lead to an
effective stress-energy tensor at Oð��4

GWÞ. This is prema-

ture, however, as there can be a cancellation of ��4
GW terms

that lead to a less steep wavelength dependence. One
should try to move as many derivatives away from the
perturbed quantities as possible before proceeding. In
fact, we know that this must be possible from [32]: The
Pontryagin density can be written as the divergence of a
4-current, so at least one derivative can be moved off of
~h��. This automatically implies that there cannot be ��4

GW

terms in the effective stress-energy tensor, as shown
explicitly by Sopuerta and Yunes [28].

Let us transform Leff;1
CS in the following way. The Levi-

Civita tensor is contracted onto two derivative operators

( �r� and �r�). One may integrate by parts to move one of

these derivative operators onto the remaining terms in
Eq. (37a). This generates two types of terms: one with
three derivatives acting on the metric perturbation and one
with one derivative on the CS scalar (the term acting on the
Levi-Civita tensor or the determinant of the metric van-
ishes by metric compatibility). Let us focus on the former
first. Because of the contraction onto the Levi-Civita ten-
sor, only the antisymmetric part of the second derivative
operator would contribute. Such a combination is nothing
but the commutator of covariant derivatives, which can be
written as the Riemann tensor, and thus vanishes at Iþ.
The remaining term with a covariant derivative of the CS
scalar does not generically vanish. Dropping terms propor-

tional to the Riemann tensor, Leff;1
CS becomes

L eff;1
CS ¼ ffiffiffiffiffiffiffi��g

p
�"��	� �r�

�# �r
 ~h�
� �r�

�r

~h�	: (38a)

Equation (37b) can be analyzed with the property dis-
cussed in Sec. II D: The Lorenz gauge may be imposed
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at the level of the action for the purposes of calculating the
effective stress-energy tensor. This means that if one in-

tegrates by parts, moving �r� and �r
 onto remaining terms,

the only term that survives is proportional to �#, as the

divergence of ~h�� vanishes (after commuting derivatives,
dropping Riemann terms, and imposing the Lorenz gauge).

Thus Leff;2
CS becomes

L eff;2
CS ¼ ffiffiffiffiffiffiffi��g

p
�"��	� �r


�r�
�# �r�

~h�
� �r	

~h�

: (38b)

With these simplified Lagrangian densities at hand, we
can now compute the total effective stress-energy tensor
for GWs in CS gravity:

Teff
CS�� ¼ Teff

MT�� þ Teff;1
CS�� þ Teff;2

CS��; (39)

where Teff;1
CS�� and Teff;2

CS�� are due to the variation of Leff;1
CS

and Leff;2
CS , respectively. These expressions are

Teff;1
CS�� ¼ ��2

�

2
hh �r�

�#½ �"��	�ð �rð� ~hj�j
� �r�Þ �r�

~h�	

� �r
 ~h�ð� �rj�j �rj
j ~h�Þ	Þ
� 2 �"�ð�

	� �r
 ~h�Þ� �r�
�r


~h�	�ii (40a)

and

Teff;2
CS�� ¼ ��2�hh �r�

�r

�# �"�ð�

	� �rj�j ~h�Þ
� �r	

~h
�ii: (40b)

C. Imposing the on-shell condition

The equation of motion may be imposed anywhere
�h~h�� may be formed in Teff

CS�� via integration by parts.

There is no contraction of derivative operators onto each

other in Teff;2
CS��, so it remains unchanged. In the final two

terms of Teff;1
CS��, the derivative operator

�r
 may be moved

onto �r�
�# �r
 ~h��. This would generally make two terms,

but the term proportional to �r�
�# �h ~h�� isOð�2GWÞ relative

to the Isaacson piece, so we only keep one term. This gives

Teff;1
CS�� ¼ ��2

�

2
hh �"��	�ð �r�

�# �rð� ~hj�j
� �r�Þ �r�

~h�	

þ �r

�r�

�# �r
 ~h�ð� �rj�j ~h�Þ	Þ
þ 2 �r


�r�
�# �"�ð�

	� �r
 ~h�Þ� �r�
~h�	ii: (41)

Let us now evaluate Teff
MT�� on-shell. Since Teff

MT�� is

Oðð�GWÞ0Þ, imposing the equation of motion Eq. (35)
will introduce terms of Oð�GWÞ, which are kept since

they are the same order as Teff;1
CS�� and Teff;2

CS��. We can also

impose a gauge condition. We have already imposed the
Lorenz gauge throughout at the level of the action. We may
further specialize this to the TT gauge. While the TT gauge
may not be imposed globally, it may be imposed at Iþ,
where the effective stress-energy tensor is being evaluated.
In the TT gauge,

Teff
MT�� ¼ �2�hh12 �r�

~h��
�r�

~h�� � �r

~h��

�r
 ~h�
�

� 1
4
�g��

�r

~h��

�r
 ~h��ii
¼ Teff

GR�� þ Teff;1
MT�� þ Teff;2

MT��; (42a)

where

Teff;1
MT�� ¼ ��2�hh �r


~h��
�r
 ~h�

�ii; (42b)

Teff;2
MT�� ¼ ��2

�

4
hh�g��

�r

~h��

�r
 ~h��ii: (42c)

Integrating by parts, imposing the equations of motion
Eq. (35), and integrating by parts again where appropriate,
these contributions to the effective stress-energy tensor at
Iþ are

Teff;1
MT��¼��2hh~h�ð� ~Tð#Þ

�Þ�ii
��2

�

2
hh �r�

�r

�# �r� ~h�� �"�	�ð�ð �r�Þ ~h
	� �r
 ~h�Þ

	Þ
þð�$�Þii; (42d)

Teff;2
MT�� ¼ 1

4
�g�� �g

��Teff;1
MT��: (42e)

Finally, we may write an expression for Teff
CS�� at Iþ

after imposing the equations of motion:

Teff
CS�� ¼ Teff

GR�� þ �Teff
CS��; (43a)

�Teff
CS�� ¼ Teff;1

MT�� þ Teff;2
MT�� þ Teff;1

CS�� þ Teff;2
CS��; (43b)

where �Teff
CS�� contains the Chern-Simons correction at

Oð�GWÞ. The summands are taken from Eqs. (40b), (41),
(42d), and (42e). Putting them together for convenience,
the final result is

�Teff
CS�� ¼ ��2

��
~h�ð� ~Tð#Þ

�Þ� þ 1

4
�g��

~h�� ~Tð#Þ
��

��

� �2
�

2

��
�r�

�r

�#

�
�r� ~h�� �"�	�ð�ð �r�Þ ~h
	 � �r
 ~h�Þ

	Þ þ �r� ~h�� �"
�
	�ð�ð �r�Þ ~h
	 � �r
 ~h�Þ

	Þ

þ 1

2
�g��

�r� ~h�� �"�	�ð�ð �r�Þ ~h
	 � �r
 ~h�Þ
	Þ þ 2 �"�ð�

	� �rj�j ~h�Þ
� �r	

~h
�

þ �"��	� �r
 ~h�ð� �rj�j ~h�Þ	 þ 2 �"�ð�
	� �r
 ~h�Þ� �r�

~h�	

�

þ �"��	� �r�
�# �rð� ~hj�j

� �r�Þ �r�
~h�	

��
: (44)
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In the above, we have organized the terms by their
scaling with powers of wavelength. The first line contains
terms which scale as �0

GW and ��1
GW; the first of these

corresponds to a ‘‘mass’’ term in the effective stress-energy
tensor. Both of these scale more slowly with inverse wave-
length than the GR contribution, so they are subdominant.
The next three lines have the same scaling with inverse
wavelength as GR: ��2

GW. The final line scales more
strongly with inverse wavelength ��3

GW. This term in prin-
ciple could dominate over the GR term in the high fre-
quency limit.

Notice that the effective stress-energy tensor presented
here is applicable to both the dynamical and the nondy-
namical versions of CS gravity. Also note that if # were a
constant, rather than a function, the effective stress-energy
tensor would be identical to that of GR (which is expected,
since, in that case, the modification to the action is purely a
boundary or topological term).

D. In dynamical CS gravity

From asymptotic arguments, we can argue that �Teff
CS��

does not contribute to dissipation laws at Iþ in the dy-
namical version of CS gravity. As mentioned in Sec. II C,
the dissipation of energy and linear and angular momen-
tum of a system is computed by integrating components of
the stress-energy tensor on a 2-sphere at Iþ. Since the area
of the 2-sphere grows as r2, for the dissipation integrals to
be finite, the components of the stress-energy tensor must
fall off at least as r�2. In fact, only the r�2 part of the
stress-energy contributes as one takes the r ! 1 limit.
Therefore, any part of the stress-energy tensor that decays
faster than r�2 does not contribute to dissipation laws.

The CS correction to the effective stress-energy tensor,
�Teff

CS��, always falls off faster than r�2 in the dynamical

theory. To see this, we must analyze the behavior of #,
which is restricted. This restriction comes from demanding
that the field # sourced by an isolated system and in an
asymptotically flat space contains a finite amount of en-
ergy. The energy in # is computed by integrating the time-

time component of Tð#Þ
�� on a hypersurface of constant time

and over all space. For the energy to be finite, the integralR1ðr#Þ2r2dr (in an asymptotically flat, Cartesian spatial

slice, appropriate to Iþ) must be finite. This restrictsr# to

fall off at least faster than r�3=2. We then conclude that the
CS correction to the energy-momentum tensor must vanish

at Iþ, as Teff;1
MT��, T

eff;2
MT��, T

eff;1
CS��, and Teff;2

CS�� decay at least

as r�7=2 or faster.
The only contribution at Iþ to the effective stress-

energy of GWs in dynamical CS gravity which decays as
r�2 is the GR part:

Teff
CS�� ¼ Teff

GR��: (45)

Again, we stress that this only accounts for the outgoing
GW radiation. However, the same argument as in Sec. II C

holds; the correction to the energy flux absorbed by trapped
surfaces is only important at the end of an inspiral, in both
GR and deformations away from GR. This is supported by
the small velocity, small mass-ratio expansion of [47]
(see also [44,45]).

E. In nondynamical CS gravity

In the dynamical theory, since the scalar field # must
carry a finite energy, we were able to argue for the vanish-
ing of �Teff

CS�� at Iþ. In the nondynamical theory, there is

no such demand and no further simplification can be made

beyond the vanishing of Tð#Þ
�� . However, for a particular

choice of �# field, the effective stress-energy tensor may be
evaluated. We demonstrate this below.

In the canonical embedding

The canonical embedding of nondynamical CS gravity
is given by [32]

v� � �r�
�# ¼: ð1=�; 0; 0; 0Þ; (46)

in Cartesian coordinates in the asymptotically flat part of
the spacetime. Approaching infinity, this yields

�r �
�r�

�# ¼ 0; (47)

so by extension Teff;2
CS�� ¼ 0, the first-order equation of

motion becomes �h~h�� ¼ 0þOð�2GWÞ, the final two terms

of Teff;1
CS�� vanish, and Teff;1

MT�� ¼ 0 ¼ Teff;2
MT��. Notice that

here there is no amplitude birefringence in flat spacetime

as €# ¼ 0 [33,34,54,55].

The first term of Teff;1
CS�� is the only Oð�GWÞ correction

which survives. The total stress-energy tensor in the ca-
nonical embedding of nondynamical Chern-Simons grav-
ity at Iþ, with this correction, is

Teff
CS�� ¼ Teff

GR�� þ �Teff
CS��;

�Teff
CS�� ¼ ��2

�

2
hh �r�

�# �"��	� �rð� ~hj�j
� �r�Þ �r�

~h�	ii

¼ þ�2
�

2�
hh �"ijk �rð� ~hjij

� �r�Þ �rk
~h�jii; (48)

where �"ijk is the Levi-Civita tensor on the 3-space orthogo-
nal to ð@=@tÞ�, and the sign change arises from the factor of
sgn(g) in Eq. (31).
From the form of the correction �Teff

CS��, we can briefly

mention the leading modification to radiation reaction in a
binary inspiral at Newtonian order. At this order, there is no
modification to the trajectories of the two bodies from the
�# field. Since the first-order equation of motion is identical
to that of GR at order Oð�GWÞ, the leading solution to
~h�� is the same as in GR: ~h�� ¼ ~hGR��.

Inserting this solution in the TT gauge into �Teff
CS��, the

energy, linear momentum, and angular momentum radi-
ated by the system can be computed. Adopting a Cartesian
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coordinate system at asymptotic infinity, the correction to
the radiated quantities is given by

� _ECS¼�
Z
d�r2�Teff

CS0jnj¼þ
Z
d�r2�Teff

CS00; (49a)

� _PCS
i ¼þ

Z
d�r2�Teff

CSijnj¼�
Z
d�r2�Teff

CSi0; (49b)

� _JCSi ¼�
Z
d�r2"ijkxj�T

ð�3Þ
CSklnl; (49c)

where �Tð�3Þ
CS�� is the part of �Teff

CS�� which decays as r�3

[56]. In evaluating these integrals, the only angular depen-
dence is in factors of ni or xi. An angular integral of an odd
number of such factors vanishes, while an integral of an
even number of them reduces to a symmetrized product of
Kronecker delta tensors. These factors arise explicitly in
the definitions of Eqs. (49) and from spatial derivatives

acting on ~h�� in Teff
��. The most important difference

between Teff
GR�� and �Teff

CS�� is the parity of the number

of derivatives, which leads to the following behavior.
In GR, the leading contribution to _EGR is from the

ðmass quadrupoleÞ2 combination. Compare this with the
same integral for �Teff

CS00, where the ðmass quadrupoleÞ2
term has an odd number of factors of ni and thus vanishes.
The leading contribution is then from the product of the
mass quadrupole and mass octupole.

The same situation takes place in calculating _Ji. In GR,
the leading contribution is from the product of mass quad-
rupole with itself. In the correction from CS gravity, the
mass quadrupole squared term has an odd number of
factors of ni; the dominant contribution is again from the
mass quadrupole times the mass octupole.

Finally, the situation is different in the calculation of _Pi.
In GR, the quadrupole squared contribution to _Pi has an
odd number of ni factors. The dominant contribution is
from the mass quadrupole times the mass octupole.
However, for the CS correction, the quadrupole squared
term has an even number of factors of ni. Using

~h TT
ij ¼ 1

8�r
€ITT
ij ðt� rÞ; (50)

this evaluates to

� _PCS
i ¼ � �

120�2�
"ijkI

ð3Þ
lj I

ð4Þ
lk ; (51)

where I ij is the reduced quadrupole moment of the matter,

and I ðnÞ
ij � ðd=dtÞnI ij.

For a binary in a circular orbit about the ẑ axis with
masses m1 and m2, total mass m ¼ m1 þm2, symmetric
mass ratio � ¼ m1m2=m

2, separation d, and orbital fre-
quency !, we find the momentum flux correction to be

� _PCS
z ¼ � 8�

15�2�
ð�md2Þ2!7; (52a)

or, in terms of the velocity v ¼ !d, with Kepler’s third law
v2 ¼ m=d,

� _PCS
z ¼ � 128

15

�
�

��m

�
�2v13; (52b)

where we notice that the quantity in parentheses is
dimensionless. This is to be compared with the leading
momentum luminosity in GR, which is proportional
to _PGR

z / �2v11�m=m, where �m ¼ m1 �m2 [57].
Although the GR effect is two powers of v stronger, it
depends on the difference in masses, whereas the non-
dynamical CS correction only depends on the total mass.
This implies that in the limit of comparable masses
m1 � m2, the recoil velocity would not asymptote to
zero in CS gravity, as it does in GR for nonspinning
binaries.
A physical interpretation of this effect is related to the

parity-violating nature of the theory. When one chooses a
canonical embedding, the action becomes parity-violating
as the Pontryagin density is parity odd. The embedding
coordinate chooses a (temporal) direction to which the
modification to the Einstein equations can couple, inducing
a new term in the stress-energy that is proportional to the
curl of the metric perturbation. Because kicks are predomi-
nantly generated during merger, the CS modification is
indeed dominant over the GR result, leading to the first,
nonlinear, strong-field modification computed in CS
gravity.

VI. EFFECTIVE STRESS-ENERGY TENSOR OF
MODIFIED GRAVITY THEORIES

Let us now consider a broader class of modified gravity
theories. There is an infinite variety of GR modifications
one could construct. However, there are several properties
that are desirable and that we require here:
(1) Metric theories.—The action depends on a symmet-

ric metric tensor that controls the spacetime
dynamics.

(2) Deformations of GR.—Analytically controllable
and small corrections to the Einstein-Hilbert action
with a continuous GR limit.

(3) High-rank curvature.—Corrections depend on qua-
dratic or higher products of the Riemann tensor,
Ricci tensor, or Ricci scalar.

(4) Minkowski stable.—The theory must admit
Minkowski spacetime as a stable vacuum solution,
and future null infinity should be asymptotically flat
for isolated matter spacetimes.

Besides the metric, there may be new fields introduced
which are considered part of the ‘‘gravity sector.’’ This
distinction means that said fields are not minimally
coupled; i.e. they may be coupled to connection and cur-
vature quantities. These additional fields may be of any
spin: scalars, spinors, vectors, etc. For simplicity, we will
only consider scalar fields here, but the results may also be
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extended to higher spin fields. Scalar fields are well-
motivated from quantum completions of GR; e.g. moduli
fields are common appearances in string theoretical
models [58].

A. Action

In defining a modified gravity theory, let us consider
what terms may arise in the action. These terms must
include the Einstein-Hilbert and matter terms, along with
modifications built from additional scalar fields and curva-
ture invariants. Additionally, it ought to contain a dynami-
cal term for the scalars that couple to the curvature
invariants, as we will motivate in Sec. VIB.

In principle, there are an infinite number of curvature
invariants to consider. The first few of these are simple to
construct: �; R; R2;r�Rr�R;R��R

��; R����R
����; . . . ,

where � is any scalar constant, e.g. the cosmological
constant. These may be specified by their rank r, which
is the number of curvature tensors which are contracted
together, and by further specifying a list of r non-negative
integers f�1; . . . ; �rg, where �i specifies the number of
derivatives acting on the ith curvature tensor. For a rank
r and case f�igri¼1, there are a finite number of independent
curvature invariants corresponding to the number of ways
to contract indices. Thus all curvature invariants may be
countably enumerated, assigning some number n to each
independent invariant.

We here consider only combinations of algebraic cur-
vature invariants, i.e. �i ¼ 0 for all cases. This means we
do not allow modifications that depend on derivatives of
curvature tensors. Such a simplification is a good one, from
the standpoint that it automatically guarantees the field
equations to be no higher than fourth order.

Consider then a modified gravity theory defined by the
action

S ¼ SEH þ Smat þ Sint þ S#; (53a)

where S# is the canonical kinetic term for #,

S# ¼��

2

Z
d4x

ffiffiffiffiffiffiffi�g
p ½g��ðr�#Þðr�#Þþ2Vð#Þ�; (53b)

with V an arbitrary potential function, and where Sint is the
interaction term between the scalar # and some algebraic
combination of curvature tensors, for example,

Sint;0 ¼ �0

Z
d4x

ffiffiffiffiffiffiffi�g
p

f0ð#Þ�; (53c)

Sint;1 ¼ �1

Z
d4x

ffiffiffiffiffiffiffi�g
p

f1ð#ÞR; (53d)

Sint;2 ¼ �2

Z
d4x

ffiffiffiffiffiffiffi�g
p

f2ð#ÞR2; (53e)

or generally

Sint ¼ �
Z

d4x
ffiffiffiffiffiffiffi�g

p
fð#ÞR; (53f)

with f an arbitrary ‘‘coupling function’’ and R an alge-
braic combination of curvature invariants. Alternatively,
notice that we could have assigned each term proportional
to �i a separate #i coupling with its associated kinetic and
potential terms. The arguments presented below would
also hold for such constructions.

B. Dynamical scalar fields

The requirement for the scalar # to be dynamical arises
from demanding diffeomorphism invariance in the theory.
Consider the infinitesimal transformation of the action
under a diffeomorphism generated by the vector field v�.
Specifically, look at the terms containing #, i.e. the sum
Smod ¼ Sint þ S# . The infinitesimal transformation under
the diffeomorphism is

�Smod ¼
Z

d4x

�
�

�g��

Lint

�
Lvg�� þ

�
�

�#
Lint

�
Lv#

þ
Z

d4x

�
�

�g��

L#

�
Lvg�� þ

�
�

�#
L#

�
Lv#;

(54)

where Lint is the interaction Lagrangian density, L# is the
kinetic Lagrangian density, and Lv stands for the Lie
derivative along v�.
For a theory to be diffeomorphism invariant, the infini-

tesimal transformation in the total action must vanish,
�S ¼ 0. Since Lv# may be arbitrary for some # and
some v�, the functional multiplying Lv# must vanish
for �S to vanish. This means

�

�#
ðLint þL#Þ ¼ 0: (55)

When the scalar field # has dynamics, i.e. � � 0, then
Eq. (55) is identical to the equations of motion of the field
# and is therefore automatically satisfied. However, if the
field is not dynamical, � ¼ 0, then Eq. (55) gives

f0ð#ÞR ¼ 0: (56)

Except in the case where f0ð#Þ ¼ 0, this is an additional
constraint on the geometry of spacetime, namely, that
R ¼ 0. Given that the equations of motion already satu-
rate the number of equations for the degrees of freedom
present, this would be an overconstrained system. This is in
fact the case in the nondynamical version of CS gravity, as
discussed in [30,59]. We therefore only admit dynamical
scalar fields or terms with no scalar field dependence
[fð#Þ ¼ const].

C. Special cases: Zeroth and first rank

Before doing a calculation for a general curvature in-
variantR, let us briefly discuss some special cases. As we
will see, curvature invariants of zeroth and first rank will
not be considered.
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1. Zeroth rank

At zeroth rank, there is only one algebraic curvature
invariant: a constant. The nonconstant part of f0ð#Þ may
simply be reabsorbed into the potential Vð#Þ. This gives a
minimally coupled scalar field, which may be absorbed
into Smat. The constant part of f0 leads to a ‘‘cosmological
constant.’’ Since we are only considering theories which
are Minkowski stable and asymptotically flat, this cosmo-
logical part must vanish.

2. First rank

There is only one algebraic curvature invariant of rank 1,
the Ricci scalar R. If we allow f to be a nonconstant
function, we would have a classical scalar-tensor theory,
akin to the Brans-Dicke theory (see e.g. [1]). The effective
GW stress-energy tensor for the scalar-tensor theory has
been computed, for example, in the Brans-Dicke theory
(see [60]), so we do not consider it here. Since we already
include the Einstein-Hilbert term in Eq. (53a), there can be
no additional term linear in R without affecting Newton’s
constant. Thus we only consider quadratic and higher rank
curvature invariants.

D. Cubic and higher ranks

At cubic rank, one can easily show that there are
five algebraic invariants that may not be factored as
products of lower rank invariants (R�

�R
�

R



�,

R��R��R����, R
��

��R
��


�R

�

��,
�R
���R��

��R
���,

and �R
�
��R


�R
�
�) and four that may be factorized

(R3, RR��R
��, RR����R

����, and R�R

�
��R�


��). The

arguments that follow work for all of them, so for con-
creteness we choose just one: R�

�R
�

R



�. The modifica-

tion to the action arising from this term is

Sex:5 ¼ �
Z

d4x
ffiffiffiffiffiffiffi�g

p
fð#ÞR�

�R
�

R



�: (57)

The contribution from this term to the effective action at
second order is

Seffð2Þex:5 ¼ �2�
Z

d4x
ffiffiffiffiffiffiffi��g

p �~h
2
ðf0ð �#Þ ~# �R�

�
�R�



�R


�

þ 3fð �#Þ ~R�
�
�R�



�R


�Þ þ 3f0ð �#Þ ~# ~R�
�
�R�



�R


�

þ 3fð �#Þ ~R�
�
~R�



�R


�

�
: (58)

Immediately we see that all terms have at least one power
of background curvature tensors. This means that each
term can be written similarly to an earlier example in
Sec. II C, in Eq. (11). When evaluating this effective
stress-energy tensor at Iþ, all of the background curvature
tensors vanish. This automatically implies that cubic and
higher rank terms in the action do not contribute to the
effective stress-energy tensor at asymptotically flat, future
null infinity.

The stress-energy tensor is then given by the
MacCallum-Taub tensor, Eq. (20b), which need not be
identical to the GR one yet, as one must first impose the
first-order equations of motion at Iþ. These equations
could be modified by the introduction of higher-order
operators in the action. Let us analyze such equations again
through the example of Eq. (57). As the calculation de-
pends only on the rank of the curvature invariant appearing
in the action and not on its specific form, the results shown
below extend to all cubic and higher rank algebraic curva-
ture invariants as well.
The equation of motion arising from Eq. (57) is

�G�� þ 3�fð#ÞR��R
�
	R

	
� � �

2
g��fð#ÞR�

�R
�
	R

	
�

þ 3�

2
½g��r�r�ðfð#ÞR�

	R
	�Þ þhðfð#ÞR�	R

	
�Þ

� 2r�rð�ðfð#ÞR	
�ÞR

�
	Þ� ¼ Tmat

�� þ Tð#Þ
�� : (59)

The important feature to note is that all terms containing �,
that is, all terms deforming away from GR, are cubic or
quadratic in curvature tensors. This is a general feature:
From a term in the action of rank r, terms in the equations
of motion will be of rank r and rank r� 1.
Now consider evaluating the first-order equations of

motion at asymptotically flat, future null infinity, which
we need in order to put the MacCallum-Taub stress-energy
tensor on-shell. We will not write out the full first-order
equations of motion; it suffices to say that the modification
terms (those terms containing �) are of rank r, r� 1, and
r� 2 in the first-order equations of motion. When going

to Iþ, only the terms of rank 0 survive, e.g. �h~h��.

Immediately we see that the only modifications to the
action that affect the first-order equations of motion at Iþ
are those of rank 2 and lower. Thus for modifications that
are cubic and higher, the first-order equations of motion at

Iþ are simply those of GR: �h~h�� ¼ 0.

Inserting this asymptotically flat, on-shell condition into
the MacCallum-Taub stress-energy tensor yields the
Isaacson stress-energy tensor. Cubic and higher rank mod-
ifications to the Lagrangian do not modify the effective
stress-energy tensor due to GWs. We again emphasize that
radiation reaction will still be different in a higher-order
theory because of different motion in the strong field,
additional energy carried in the scalar field #, and energy
carried down horizons being different. But the energy of a
GW at Iþ is the same as in GR.

E. Quadratic terms

Let us now consider quadratic deformations to the ac-
tion, as these are the only ones left to study, and let us
classify the types of modifications possible. There are two
important characteristics that we use for such a classifica-
tion. The first depends on the nature of the curvature
quantity R. This quantity may either be topological or
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not. A curvature quantity that is topological may be ex-
pressed as the divergence of a current: R ¼ r�K�. As

we mentioned in Sec. IV, Eq. (24), the Pontryagin density
�RR is a topological curvature invariant. In metric gravity,
the only other nonvanishing, algebraic, second rank curva-
ture invariant that is topological is the Gauss-Bonnet term

G ¼ R����R
���� � 4R��R

�� þ R2; (60)

as the Nieh-Yan invariant vanishes in torsion-free theories.
The second characteristic we can use to classify theories

is the behavior of the scalar field #, which depends on the
potential Vð#Þ. The two possibilities are a potential that is
flat, Vð#Þ ¼ 0, or one that is nonflat, V varying with #.
A flat potential does not choose out any preferred values of
the scalar field, whereas a nonflat potential must be
bounded from below for stability and thus has a global
minimum (or several minima). The presence or absence of
a preferred field value is important in the limit going to Iþ.

For nonflat potentials, without loss of generality, the
global minimum can be shifted to # ¼ 0 by simulta-
neously shifting the potential function and the coupling
function f. Such a shift does not affect the derivative term
in the kinetic term for #, since it simply adds a global
constant to the field. The only problematic situation is if
the global minimum is in the limit # ! 	1, which we do
not allow here.

We begin by discussing the asymptotic behavior of #,
which satisfies the sourced wave equation

�ðh# � V 0ð#ÞÞ ¼ ��f0ð#ÞR: (61a)

At Iþ, the right-hand side vanishes. Furthermore, if we are
interested in static or quasistatic background solutions for
�# around which we can expand, time derivatives in the
d’Alembertian will vanish leaving only the Laplacian:

�r 2 �# � V0ð �#Þ ¼ 0: (61b)

For a nonflat potential, V0ð#Þ � 0, the zeroth-order asymp-

totic solution will be �# going to the minimum of the

potential, which we have shifted to �# ¼ 0.
For a flat potential, the background equation of motion

for #, Eq. (61b), at Iþ becomes

�r 2 �# ¼ 0: (61c)

There are two asymptotic solutions: # asymptotes to a
constant or # asymptotes to a function linear in
Cartesian coordinates. The latter case would contribute a

constant stress-energy tensor Tð#Þ
�� at Iþ. This would lead

to an asymptotically de Sitter spacetime, not an asymptoti-
cally flat spacetime. Therefore, we only consider the case
where # asymptotes to a constant.

The equation of motion Eq. (61c) does not determine to

what value �# asymptotes. A boundary condition is re-
quired in this case. Again, without loss of generality, for
some given asymptotic value determined by some

boundary condition, the field and coupling function fð#Þ
may be shifted so as to redefine the asymptotic value to be
# ! 0 without changing the physics.
A boundary condition is not required if the theory is

‘‘shift-symmetric.’’ In a shift-symmetric theory, the trans-
lation operation # ! # þ c, where c is a constant, leaves
the equations of motion invariant. Such a theory, therefore,
must have equations of motion that depend only on the
derivativer�#. Such is the case, for example, if the action

depends on a topological term multiplied by some scalar
field, fð#Þr�K�, as then the action can be rewritten as

ðr�fð#ÞÞK� via integration by parts. Of course, in this

case, the potential must also be flat and f must be linear for
the theory to be shift-symmetric. Such types of corrections
arise naturally in the low-energy limit of string theory
[17,61–63].
Let us rewrite the action and split the interaction term

into a dynamical and a nondynamical part. Since we can
always shift the field, potential, and coupling function so
that the asymptotic value is # ! 0, let us define

�0 � �fð0Þ; (62a)

Fð#Þ � fð#Þ � fð0Þ: (62b)

Then, the interaction term in Eq. (53f) may be rewritten as

Sint ¼ Sn-d þ Sdyn

¼ �0 Z d4x
ffiffiffiffiffiffiffi�g

p
Rþ �

Z
d4x

ffiffiffiffiffiffiffi�g
p

Fð#ÞR: (62c)

The first term is the nondynamical part, i.e. the part that
does not couple to the scalar field, while the second part is
the dynamical part. If R is a topological curvature invari-
ant, then the first term in Eq. (62c) does not contribute to
the equations of motion, as it is the integral of a total
derivative.

1. Dynamical contribution

Let us perturb Sdyn to second order to calculate the

contribution to the effective action, keeping in mind that
~~# and ~~h do not contribute. This part of the effective
action is

Seffð2Þdyn ¼ �2�
Z

d4x
ffiffiffiffiffiffiffi��g

p �
Fð �#Þ ~~R

þ
�~h
2
Fð �#Þ þ F0ð �#Þ ~#

�
~R

þ 1

8
ð~h2 � 2~h�� ~h��ÞFð �#Þ �R

þ 1

2
ð~hF0ð �#Þ ~# þ F00ð �#Þ ~#2Þ �R

�
: (63)

To determine the contribution to the effective stress-energy
tensor at Iþ, again analyze the asymptotic form of all of
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the fields appearing in Eq. (63). The asymptotic forms are
summarized in Table I.

The simplest way to see that the dynamical part of the
effective action does not contribute at Iþ is to examine the

asymptotics of �R, ~R, and
~~R. Since curvature tensors

�R���� are tidal tensors, they goes as r
�3; since �R contains

two curvature tensors, it scales as r�6. The slowest decay-

ing (i.e. leading) part of ~R roughly comes from �R ~R (with

indices suppressed); the leading part of ~R is �r2 ~h, which,

being radiative, goes as r�1. This means that ~R� r�4.

Similarly, the leading part of
~~R goes as ð �r2 ~hÞð �r2 ~hÞ, so

~~R� r�2.
Examining the effective action, Eq. (63), we see that

there are no terms that decay as r�2, which are the only
ones that can contribute to the GW effective stress-energy

tensor at Iþ. Any term with �R or ~R already decay too

quickly; only terms with
~~R could remain, and only if they

were multiplied by terms that asymptote as Oð1Þ.
Having performed the splitting into the dynamical and

nondynamical parts,
~~R is multiplied by

ffiffiffiffiffiffiffi��g
p

Fð �#Þ in the
effective action. This splitting was specifically constructed
so that Fð0Þ ¼ 0. Since F must be differentiable at # ¼ 0,

Fð �#Þ must go to zero at least as fast as �# goes to zero,

which is at least r�1=2.
We have thus shown that the dynamical part of the

interaction term does not contribute to the effective
stress-energy tensor at Iþ directly. However, it could still
contribute indirectly through the imposition of the first-
order field equations. We examine this in a later section.

2. Nondynamical contribution

Let us now consider Sn-d in Eq. (62c). This term generi-
cally contributes to the effective stress-energy tensor of
GWs at Iþ. To show this contribution, consider the general
rank 2 modification as the linear combination of the four
independent rank 2 curvature invariants

�R � �1R
2 þ �2R��R

�� þ �3R����R
���� þ �4

�RR

(64a)

and absorb fð0Þ into the coefficients �0
i in the nondynami-

cal part:

�0R � �0
1R

2 þ �0
2R��R

�� þ �0
3R����R

���� þ �0
4
�RR:

(64b)

Note that this form also includes the Weyl squared invari-
ant, which is a dependent linear combination of the above
terms: C����C���� ¼ R2=3� 2R��R�� þ R����R����,

which is considered in [26,27]. The Pontryagin density
�RR, being a topological invariant, does not contribute to
the action in Sn-d, so we may drop the final term. Similarly,
if the linear combination is proportional to the Gauss-
Bonnet (or Euler) invariant, which has �1 ¼ 1 ¼ �3,
�2 ¼ �4, then R would be topological and there would
be no contribution to Sn-d and hence no contribution to the
effective stress-energy tensor of GWs.
The calculation of the effective action for the nondy-

namical term is straightforward but long, so we do not
show the steps here. An outline of the calculation is to
perturb

ffiffiffiffiffiffiffi�g
p

R to second order; the only parts that may

contribute to an effective stress-energy tensor at Iþ are of
the form

ffiffiffiffiffiffiffi��g
p ~R ~R , where again we have suppressed in-

dices on the perturbed curvature tensor ~R. This is calcu-
lated in terms of the trace-reversed metric perturbation
~h��. As before, the Lorenz gauge may be imposed at the
level of the action. All terms that remain will be of the form
�r�

�r�
~h�� �r�

�r�
~h
� with all indices contracted to form a

scalar. If any derivative is contracted onto ~h��, by integrat-
ing by parts and commuting covariant derivatives, one may

form the Lorenz gauge condition �r�
~h�� ¼ 0 and ignore

the term in the effective action. Thus the only surviving
terms have derivatives contracted together, which can be

put into one of two forms: �h~h�� �h~h�� and �h ~h �h ~h . After

the explicit calculation, the prefactors are found and

Seffð2Þn-d ¼ �2

4

Z
d4x

ffiffiffiffiffiffiffi��g
p ½ð�0

1 � �0
3Þ �h ~h �h ~h

þ ð�0
2 þ 4�0

3Þ �h~h�� �h~h���: (65)

Note again that �4 does not appear, and if �1, �2, and �3

are in the Gauss-Bonnet ratio, then the effective action of
Eq. (65) vanishes.
Putting all indices in their natural positions, so as to

expose implicit metric dependence, and varying the effec-
tive action of Eq. (65) with respect to �g��, the contribution
to the effective stress-energy tensor is

Teff
n-d��¼�2hhð�0

1��0
3Þ �h ~hð �h~h��� �r�

�r�
~hÞ

þð�0
2þ4�0

3Þð �h~h�� �h~h�
�� �h~h��

�rð� �r�Þ ~h��Þii:
(66)

We then find that the effective stress-energy tensor of
GWs at Iþ is given by the MacCallum-Taub stress-energy
tensor (coming from the Einstein-Hilbert action) plus the

TABLE I. The asymptotic forms of fields appearing in the
effective action for a rank 2 modification to the action. All
tensor indices have been suppressed.

Field Asymptotic form Field Asymptotic form

�g Oð1þ r�1Þ �r �# At least r�3=2

�� r�2 �# At least r�1=2

�R r�3 Fð �#Þ At least r�1=2

�R� �R2 r�6 FðnÞð �#Þ Oð1Þ
~h, �rðnÞ ~h r�1 ~#, �rðnÞ ~# r�1

~R� �Rð �r2 ~hÞ r�4 ~~R� ð �r2 ~hÞ2 r�2
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direct contribution from the nondynamical part of the rank
2 interaction term, Teff

n-d��:

Teff
�� ¼ Teff

MT�� þ Teff
n-d��: (67)

The only remaining part of the calculation is to put the
stress-energy tensor on-shell, that is, to impose the first-
order equations of motion at Iþ.

3. First-order equations of motion

We need the first-order equations of motion at Iþ of the
full theory, including both the dynamical and nondynam-

ical terms of the action. At Iþ, however, �# and �r�
�# decay

at least as r�1=2 and r�3=2. The only remaining dependence

on �# is through fð �#Þ ! fð0Þ.
The general zeroth- and first-order equations of motion

are quite long, so we do not reproduce them here, but they

do simplify as r ! 1. These equations are linear in ~h��

and ~#, which are both radiative and decay as r�1. This r�1

scaling is the asymptotic scaling of the first-order equa-

tions of motion, as there are terms of the form �h~h�� that

appear with no curvature tensors or background scalar field
�# multiplying them. However, all terms containing ~# have
curvature tensors multiplying them, so they decay faster
than the leading behavior of r�1.

Keeping only the terms that go as r�1, the first-order
equation of motion in the Lorenz gauge at asymptotically
flat, future null infinity is

� �h~h�� ¼�ð2�1 þ�2 þ 2�3Þfð �#Þð �r�
�r�

�h� �g��
�h �hÞ~h

�ð�2 þ 4�3Þfð �#Þ �h �h ~h��; (68a)

and the trace of this equation is

� �h ~h ¼ 2ð3�1 þ �2 þ �3Þfð �#Þ �h �h ~h : (68b)

Again we see that if the � coefficients are in the Gauss-
Bonnet ratio, the GR equation of motion is recovered
at Iþ.

This wave equation can be seen to be a massive wave

equation for the auxiliary variable ~r�� � �h~h��, with mass

m� 1= ��, where ��2 � j�ijfð0Þ=�. In the weak-coupling
limit, ��=�GW � 1, the equations simplify considerably.
This simplification comes from treating the solution to
the full theory as a deformation away from GR; this means
expanding the fields as power series in a small parameter,
namely, �� ¼ ð ��=�GWÞ2. As in Eq. (34), we impose

~h�� ¼ X1
n¼0

��n ~hðnÞ��; (69)

and similarly for other fields, where the zeroth field ~hð0Þ�� is

the GR solution. Inserting this expansion in the first-order
equation of motion Eq. (68) and matching order by order
gives

� �h~hðnþ1Þ
�� ¼�ð2�1þ�2þ2�3Þfð �#Þð �r�

�r�
�h� �g��

�h �hÞ~hðnÞ
�ð�2þ4�3Þfð �#Þ �h �h ~hðnÞ��; (70a)

for all orders n 
 0, and

�h~hð0Þ�� ¼ 0; (70b)

for the GR solution. Substituting Eq. (70b) into Eq. (70a)
and iteratively solving the field equations one order at a
time, we find at all orders that

�h~hðnÞ�� ¼ 0: (70c)

This is the GR first-order equation of motion, and just as in
GR, we may specialize the Lorenz gauge to the TT gauge
at Iþ.5 This expansion has discontinuously turned the
massive wave equation into a massless one by killing the
massive modes in the limit of m ! 1. Such an order-
reduction procedure, where certain solutions are elimi-
nated through perturbative constraints, has been shown to
select the physically correct ones in all studied cases
[31,65,66].
We can now evaluate the complete effective stress-

energy tensor of GWs at Iþ. As shown in Sec. VI E 1,
there is no direct contribution from the dynamical part of
the interaction term. Section VI E 2 showed that the non-
dynamical part does contribute directly, but imposing
Eq. (70c) forces this contribution to also vanish. Since
the MacCallum-Taub tensor on-shell is equal to the
Isaacson tensor, we then have

Teff
�� ¼ ðTeff

MT�� þ Teff
n-d��Þjð �h~h��¼0Þ ¼ Teff

GR��: (71)

That is, the effective GW stress-energy tensor is identical
to the Isaacson one at Iþ for this wide class of modified
gravity theories.

VII. CONCLUSIONS

We have here addressed the energy content of GWs in a
wide class of modified gravity theories. We focused on
theories that are weak deformations away from GR and
calculated the effective stress-energy tensor where GWs
are extracted: in the asymptotically flat region of spacetime.
The main calculation tool we employed was the per-

turbed Lagrangian approach. We demonstrated the calcu-
lation explicitly for GR, recovering the Isaacson effective
stress-energy tensor. We also explicitly calculated this
effective tensor in dynamical modified CS gravity, where
again the result at Iþ reduces to the Isaacson tensor. The
features of CS gravity that lead to the effective stress-
energy tensor being identical to the one in GR are the

5To prove that the TT gauge exists at Iþ for this theory, the
proof in Appendix A of Flanagan and Hughes [64] must be
extended. Their Eq. (A.12) must be replaced by our (68a) and a
small-coupling expansion performed. The result will again be
(70c), which is identical to Flanagan and Hughes’s Eq. (A.12).
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dynamical nature of the scalar field and the topological
nature of the curvature correction to the action.

We then generalized this finding to all action modifica-
tions of a similar nature: a dynamical scalar field coupled
to a scalar curvature invariant of rank 2 or higher in a
spacetime that is asymptotically flat. For scalar curvature
invariants of rank 3 or higher, we showed that there is no
modification to the stress-energy tensor or the equations of
motion at Iþ. For rank 2, we calculated the contribution to
the effective stress-energy tensor and to the first-order
equation of motion. In the weak-coupling limit, the only
solutions to the first-order equations of motion satisfy
the GR first-order equations of motion at Iþ, namely,
�h~h�� ¼ 0. Evaluating the effective stress-energy tensor

on-shell with these solutions leads, again, to the Isaacson
stress-energy tensor.

A few caveats are in order. As we have stressed before,
this result is evaluated at asymptotically flat, future null
infinity, so it does not apply to cosmological spacetimes,
e.g. de Sitter spacetime. Not all of the energy that is lost by
a system is carried away by GWs to Iþ: There is also
radiation in the scalar field (which is calculated straight-

forwardly from Tð#Þ
�� ), and both GWs and the scalar field

radiation are lost to trapped surfaces. All of these effects
must be accounted for in calculating the radiation reaction
of a system. Finally, we did not address modifications to
the action of the form fð#ÞR, which reduce to a classical
scalar-tensor theory.

There are several avenues open for future work.
Considering classical scalar-tensor modifications is one

possible extension. The work should also be extended to
the next simplest spacetimes, those that are asymptotically
de Sitter. This is appropriate for calculating GWs from
inflation, for example. Extending this approach to calcu-
lating energy lost to trapped surfaces is another possibility.
The most natural application of this work is in tests of

GR with pulsar binaries and with GWs emitted by EMRIs.
The former problem requires performing a post-Keplerian
expansion of the motion of bodies orbiting each other. The
latter requires knowing the BH spacetime (background)
solution in the class of modified gravity theories and the
geodesic or nongeodesic motion on that spacetime. Both of
these programs require knowledge of radiation reaction in
GWs at Iþ, which we have here computed for a large class
of modified gravity theories.
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[65] É. É. Flanagan and R.M. Wald, Phys. Rev. D 54, 6233
(1996).

[66] R. Woodard, in The Invisible Universe: Dark Matter
and Dark Energy, edited by L. Papantonopoulos, Lect.
Notes Phys. Vol. 720 (Springer-Verlag, Berlin, 2007),
p. 403.

EFFECTIVE GRAVITATIONAL WAVE STRESS-ENERGY . . . PHYSICAL REVIEW D 83, 064038 (2011)

064038-19

http://dx.doi.org/10.1103/PhysRevD.77.044015
http://dx.doi.org/10.1103/PhysRevD.77.044015
http://dx.doi.org/10.1103/PhysRevD.79.084043
http://dx.doi.org/10.1103/PhysRevD.68.104012
http://dx.doi.org/10.1103/PhysRevD.78.066005
http://dx.doi.org/10.1103/PhysRevD.78.066005
http://dx.doi.org/10.1103/PhysRevD.82.064017
http://dx.doi.org/10.1143/PTP.113.481
http://arXiv.org/abs/0711.0996
http://dx.doi.org/10.1103/PhysRev.135.B271
http://dx.doi.org/10.1007/BF00756944
http://dx.doi.org/10.1007/BF02113091
http://dx.doi.org/10.1007/BF01645977
http://dx.doi.org/10.1007/BF01645977
http://dx.doi.org/10.1103/PhysRevLett.104.091102
http://arXiv.org/abs/1009.6013
http://dx.doi.org/10.1143/PTPS.128.1
http://dx.doi.org/10.1103/PhysRevD.82.101502
http://dx.doi.org/10.1103/PhysRevD.82.101502
http://dx.doi.org/10.1016/j.cpc.2007.05.015
http://dx.doi.org/10.1016/j.cpc.2007.05.015
http://dx.doi.org/10.1016/j.cpc.2008.04.018
http://dx.doi.org/10.1016/j.cpc.2008.04.018
http://dx.doi.org/10.1016/j.cpc.2008.05.009
http://dx.doi.org/10.1016/j.cpc.2008.05.009
http://dx.doi.org/10.1007/s10714-009-0773-2
http://www.xact.es/
http://dx.doi.org/10.1103/PhysRevD.71.063526
http://dx.doi.org/10.1103/PhysRevD.71.063526
http://dx.doi.org/10.1103/PhysRevD.82.064017
http://dx.doi.org/10.1103/RevModPhys.52.299
http://dx.doi.org/10.1086/497332
http://dx.doi.org/10.1086/497332
http://dx.doi.org/10.1103/PhysRevD.77.064007
http://dx.doi.org/10.1103/PhysRevD.77.064007
http://dx.doi.org/10.1103/PhysRevLett.96.081301
http://dx.doi.org/10.1088/1475-7516/2006/06/018
http://dx.doi.org/10.1088/1475-7516/2006/06/018
http://dx.doi.org/10.1103/PhysRevD.80.065003
http://dx.doi.org/10.1103/PhysRevD.80.065003
http://dx.doi.org/10.1088/1367-2630/7/1/204
http://dx.doi.org/10.1088/1367-2630/7/1/204
http://dx.doi.org/10.1103/PhysRevD.54.6233
http://dx.doi.org/10.1103/PhysRevD.54.6233

