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We show that in theories of generalized teleparallel gravity, whose Lagrangians are algebraic functions

of the usual teleparallel Lagrangian, the action and the field equations are not invariant under local Lorentz

transformations. We also argue that these theories appear to have extra degrees of freedom with respect to

general relativity. The usual teleparallel Lagrangian, which has been extensively studied and leads to a

theory dynamically equivalent to general relativity, is an exception. Both of these facts appear to have

been overlooked in the recent literature on fðTÞ gravity, but are crucial for assessing the viability of these

theories as alternative explanations for the acceleration of the Universe.
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Teleparallel gravity [1,2] is a gravity theory which uses
the curvature-free Weitzenbock connection [3] to define
the covariant derivative, instead of the conventional tor-
sionless Levi-Civita connection of general relativity, and
attempts to describe the effects of gravitation in terms of
torsion instead of curvature. In its simplest form it is
equivalent to general relativity (GR) but has a different
physical interpretation [2]. Motivated by attempts to ex-
plain the observed acceleration of the Universe in a natural
way, there has been a great deal of recent interest in a
generalization of this theory in which the Lagrangian is an
arbitrary algebraic function f of the Lagrangian of tele-
parallel gravity T. This is in direct analogy to creating fðRÞ
gravity theories as a generalization of GR (see Ref. [4] for a
review). This so-called fðTÞ gravity theory has cosmologi-
cal solutions which could provide alternative explanations
for the acceleration of the Universe [5–16]. The field
equations for the fðTÞ gravity have been claimed to be
very different from those for fðRÞ gravity, as they are
second order rather than fourth order. This has been con-
sidered as an indication that the theory may be the more
interesting relative of GR.

Here, we will look further into the symmetries and
dynamics of fðTÞ gravity. Our main findings will be that
such theories are not locally Lorentz invariant and appear
to harbour extra degrees of freedom not present in GR.
Remarkably, both of these features have been overlooked
in the literature.

Let us briefly introduce teleparallel gravity and its fðTÞ
generalization. Our dynamical variables are the vierbein or
tetrad fields, haðx�Þ, which form an orthonormal basis for
the tangent space at each point of the manifold with space-
time coordinates x�. Latin indices label tangent space
coordinates while Greek indices label spacetime coordi-
nates. All indices run from 0 to 3. Clearly, haðx�Þ is a
vector in tangent space, and can be described in a coor-
dinate basis by its components h

�
a . So, h

�
a is also a vector in

spacetime.

The spacetime metric, g��, is given by

g�� ¼ �abh
a
�h

b
�; (1)

where �ab ¼ diagð1;�1;�1;�1Þ is the Minkowski met-
ric for the tangent space. It follows that

h
�
a ha� ¼ �

�
� ; h

�
a hb� ¼ �b

a; (2)

where Einstein’s summation convention has been used. GR
uses the Levi-Civita connection

��
�� � 1

2
g��ðg��;� þ g��;� � g��;�Þ; (3)

in which commas denote partial derivatives. This leads to
nonzero spacetime curvature but zero torsion. In contrast,

teleparallel gravity uses the Weitzenbock connection ~��
��

(tilded to distinguish it from ��
��),

~� �
�� � h�b@�h

b
� ¼ �hb�@�h

�
b (4)

which leads to zero curvature but nonzero torsion. The
torsion tensor reads

T�
�� � ~��

�� � ~��
�� ¼ h�bð@�hb� � @�h

b
�Þ: (5)

The difference between the Levi-Civita and Weitzenbock
connections, which are not tensors, is a spacetime tensor,
and is known as the contorsion tensor:

K�
�� � ~��

�� � ��
�� ¼ 1

2
ðT�

�
� þ T�

�
� � T�

��Þ
¼ h

�
ar�h

a
�; (6)

where r� denotes the metric covariant derivative.
If one further defines the tensor S��� as

S��� � K��� � g��T��
� þ g��T��

�; (7)

then the teleparallel Lagrangian density is given by

L T � h

16�G
T � h

32�G
S���T���; (8)
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in which h ¼ ffiffiffiffiffiffiffi�g
p

is the determinant of h�a and g is the

determinant of the metric g��, G is the gravitational con-

stant and

T � 1

2
S���T��� ¼ �S���K���

¼ 1

4
T���T��� þ 1

2
T���T��� � T��

�T��
�: (9)

Variation with respect to the tetrad ha� after adding a matter
Lagrangian density Lm leads to the field equations

h�1@�ðhh�aS���Þ � h�a S
���T��� þ 1

2
h�aT ¼ 8�G��

a;

(10)

where ��
a � h�1�Lm=�h

a
�. The usual stress-energy ten-

sor is given in terms of ��
a as ��� ¼ �ab��

ah
�
b .

The fðTÞ gravity theory generalizes T in the Lagrangian
density to an arbitrary function of T:

L T ! L ¼ h

16�G
fðTÞ: (11)

The derivation of field equations is very similar to that
described above for teleparallel gravity. They are

fT½h�1@�ðhh�aS���Þ � h�a S
���T���� þ fTTh

�
aS��� @	T

þ 1

2
h�afðTÞ ¼ 8�G��

a; (12)

where fT � @fðTÞ=@T and fTT � @2fðTÞ=@T2. Clearly,
for fðTÞ ¼ T, Eq. (12) reduces to Eq. (10).

We now move on to consider the symmetries of the
action and the dynamical content of the field equations.
When working in terms of tetrads and making explicit
reference to a tangent space, two invariance principles
should hold [17]: the action should be a generally covariant
scalar, and so invariant under the infinitesimal coordinate
transformations x� ! x� þ 
�ðxÞ; and if special relativity
is to be recovered in locally inertial frames, the action must
also be invariant under local (position-dependent) Lorentz
transformations (i.e., we should be able to redefine the
locally inertial coordinate systems at each point). Let us
check if these properties hold for fðTÞ gravity.

We start with the matter action, which in the literature is
assumed to couple to the tetrad so as to couple effectively
only to the metric. In this case the matter action is, as usual,
both a generally covariant scalar and a Lorentz scalar.1 It is
worth considering the consequences of these assumptions
for the matter action as an explicit example.

We denote an infinitesimal Lorentz transformation as
�a

bðx�Þ ¼ �a
b þ!a

bðx�Þ with j!a
bj � 1 and !ab ¼

!½ab�. Square brackets denote antisymmetrization and pa-

rentheses symmetrization. As the vierbein h�a is a Lorentz

vector in index a, it changes by �h
�
a ¼ !a

bh
�
b under this

Lorentz transformation, where we have suppressed the
dependence on x� for simplicity. The matter action

S m ¼
Z

d4xLm (13)

is then changed by [2,17]

�Sm ¼
Z

�a
�h�ha

�d4x ¼ �bc
Z

�a
�h!abhc

�d4x:

(14)

!ab is an arbitrary antisymmetric (Lorentz) tensor, and

�bc�a
�hc

� ¼ �ac�b
�hc

� , ��� ¼ ���; (15)

so we see that �Sm ¼ 0 yields

��� ¼ ���: (16)

In other words, if Sm is invariant under local Lorentz
transformations, then ��� is symmetric, and vice versa.

Consider now the fact that the matter action is invariant
under the infinitesimal coordinate transformation x� !
x� þ 
�ðxÞ where j
�j � 1. Under this transformation,
the vierbein changes by �h�a ðxÞ ¼ h�a


�
;� � h�a;�


� [17]

and the invariance of Sm yields

0 ¼
Z

d4x
�½@�ðh�a
�h

�
aÞ þ h�a

�h
�
a;�� (17)

where we have dropped a total derivative. Now, 
� is an
arbitrary spacetime vector, so we must have

0 ¼ @�ðh�a
�h

�
aÞ þ h�a

�h
�
a;� ¼ hr���� þ h���K���:

(18)

Given that Kð��Þ� ¼ 0 and using Eq. (16), we get

r���� ¼ 0: (19)

Clearly, if��� were not symmetric, i.e. if the matter action

were not invariant under local Lorentz transformations,
then ��� would not be divergence-free either.

We now move to the gravitational sector. As already
mentioned, T�

�� behaves like a tensor under spacetime

coordinate transformations (the antisymmetry of the last
two indices allows us to promote the partial derivatives to
covariant ones). The last line of Eq. (6) demonstrates that
K�

�� is also a spacetime tensor. Consequently, S��� is also

a spacetime tensor and T is a generally covariant scalar.
Hence any action constructed with LT or L is generally
covariant and invariant under the infinitesimal coordinate
transformation x� ! x� þ 
�ðxÞ.
Some more algebra is needed to check whether such

actions are also local Lorentz scalars. From the relation

between ��
� and ~��

� given in Eq. (6), and the fact that the

curvature tensor associated with the Weitzenbock connec-

tion ~��
� vanishes, we can write the Riemann tensor for the

connection ��
� as [2]

1Dropping this assumption for the matter coupling would lead
to Lorentz violations in the matter sector.
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R�
��� ¼ @��

�
�� � @��

�
�� þ ��

���
�
�� � ��

���
�
��

¼r�K
�
�� �r�K

�
�� þK�

��K
�
�� �K�

��K
�
��:

(20)

The corresponding Ricci tensor is then

R�� ¼ r�K
�
�� �r�K

�
�� þ K�

��K
�
�� � K�

��K
�
�

¼ �r�S��� � g��r�T�
�� � S���K���; (21)

and the Ricci scalar

R ¼ �T � 2r�ðT�
��Þ: (22)

The relations

Kð��Þ ¼ T�ð�Þ ¼ S�ð�Þ ¼ 0;

S��� ¼ 2K�
�� ¼ �2T�

��;
(23)

and Eq. (9) were used in deriving Eqs. (21) and (22).
Equation (22) is very useful, as it shows that T and R

differ only by a total divergence. This immediately implies
that LT is completely equivalent to the Einstein–Hilbert
Lagrangian density, as the total divergence can be ne-
glected inside an integral, and teleparallel gravity is
equivalent to GR. We will see this below at the level of
the field equations as well. For the moment, let us focus on
a different feature. R is a generally covariant scalar and
also a local Lorentz scalar as it can be expressed in terms of
the metric and without any reference to the tetrad. Now
r�ðT�

��Þ is also a generally covariant scalar, as T�
�� is a

spacetime tensor. Thus, as argued above, T is a generally
covariant scalar. However,r�ðT�

��Þ is not a local Lorentz
scalar: as one can easily check, it is not invariant under a
local Lorentz transformation. Consequently, T is not a
local Lorentz scalar, either.

This has been pointed out already in the literature of
standard teleparallel gravity (see Ref. [2] and references
therein), i.e. when the action considered is constructed
simply with LT , as well as in studies of more general
theories where the action is constructed with the
Weitzenbock connection and is quadratic in the torsion
tensor [18–23]. The former case is very special as the
resulting theory is still locally Lorentz invariant. The rea-
son is that the Lorentz breaking term is a total divergence.
Therefore, the apparent lack of local Lorentz symmetry at
the level of the action appears to be of little importance in
teleparallel gravity, i.e. when the Lagrangian is just T.

However, the situation is quite different for the fðTÞ
generalization of teleparallel gravity. It is clear that if T
is not a local Lorentz scalar, then fðTÞ cannot be either.
Moreover, fðTÞ cannot be split into two parts with one a
local Lorentz scalar and the other a total divergence.
This implies that actions of the form given in Eq. (13)
are not locally Lorentz invariant. So, fðTÞ generalizations
are not special as the standard teleparallel gravity
where fðTÞ ¼ T, but instead behave like the more generic

theories where a general action constructed with a
Weitzenbock connection is considered. 2

To get a better understanding of this, we can verify what
was said above also at the level of the field equations.
Contracting with ha� and using Eqs. (21) and (22), after
some algebra we can bring Eq. (12) into the form

H�� � fTG�� þ 1

2
g��½fðTÞ � fTT� þ fTTS���r�T

¼ 8�G���; (24)

where G�� is the Einstein tensor. When fðTÞ ¼ T, GR is

recovered, which verifies the claim that teleparallel gravity
and GR are equivalent. In this case, the field equations are
clearly covariant and the theory is also local Lorentz
invariant. In the more general case with fðTÞ � T, how-
ever, this is not the case. Even though all terms in Eq. (24)
are covariant, the last two terms in the first line are not local
Lorentz invariant. Hence, the field equations are not in-
variant under a local Lorentz transformation.
Local Lorentz invariance would mean that we can only

determine the tetrad up to a local Lorentz transformation;
that is, only 10 of the 16 components of the tetrad would be
independent and fixing the rest would simply be a gauge
choice. Lack of Lorentz invariance implies that the field
equations must determine these 6 components as well,
leading to a system of 16 equations instead of 10. This is
indeed the case: notice thatH�� is not symmetric, but���

is, because matter is assumed to couple only to the metric
(see above). Therefore, we can split Eq. (24) in the follow-
ing way:

Hð��Þ ¼ 8�G���; (25)

H½��� ¼ 0; (26)

which forms a system of 16 component equations. As in
GR, we can do away with 4 of these equations by using the
usual spacetime gauge symmetry, but there still remain 6
more equations. Note also that since the action and the field
equations are covariant, and matter is assumed to couple
only to the metric, H�� does satisfy a generalized con-

tracted Bianchi identity. This means that the zero diver-
gence of ��� imposes no further constraints. This can be

easily argued at the level of the action in analogy with the
treatment of��� above (modulo the symmetry), but it can

also be demonstrated by a direct calculation. Using the
definition of H�� that

r�H�� ¼ fTT½R�� þ g��r�T�
�� þr�S����r�T;

(27)

2Even though this was mentioned already in Ref. [24] for a
specific action which falls under the general fðTÞ class, the
implications of the lack of local Lorentz symmetry were not
fully spelled out.
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and Eq. (21), one gets

r�H�� þ fTTr�TS���K���

¼ r�H�� þH��K��� ¼ 0: (28)

For the first equality we have used the fact the Kð��Þ� ¼ 0.

This equation is in direct agreement with the analogous
equation for ���, Eq. (18). If we now use Eq. (26), and

Kð��Þ� ¼ 0 again, then we get

r�H�� ¼ 0: (29)

Therefore, on shell, H�� satisfies a generalized contracted

Bianchi identity, as expected from our symmetry analyses
above. This is typically the case for covariant theories with
extra degrees of freedom nonminimally coupled to gravity,
e.g. scalar-tensor gravity theories. Indeed, the theory ap-
pears to propagate more degrees of freedom, as is consis-
tent with the lack of symmetry. Equations (25) and (26) are
second-order differential equations, but they are expected
to harbor more degrees of freedom than the two graviton
polarizations of GR, contrary to what has been implied in
the literature. Also, the fact that the field equations are
second order does not mean that extra excitations will
necessarily be healthy. For instance, a wrong sign could
lead to ghosts or classically unstable modes. The dynamics
of the extra degrees of freedom of fðTÞ gravity certainly
deserves further investigation.

Lack of local Lorentz symmetry implies that there is no
freedom to fix any of the components of the tetrad. They
must all be determined by the field equations. Now, sup-
pose that we want to impose a metric ansatz based on
specific spacetime symmetry assumptions. Does this imply
a certain ansatz for the tetrad? The answer is, only partially.
Equation (1) provides only 10 algebraic relations between
the 10 independent metric components and the 16 inde-
pendent tetrad components. Were the theory local Lorentz
invariant, one would be able to fix the remaining 6 tetrad
components. In absence of the symmetry, this is not an
option and they need to be determined by the field
equations.

For instance, assuming a spatially flat Friedmann-
Lemaı̂tre-Robertson-Walker line element,

ds2 ¼ dt2 � aðtÞ2ðdx2 þ dy2 þ dz2Þ (30)

does not uniquely lead to the tetrad choice

ha� ¼ diagð1; aðtÞ; aðtÞ; aðtÞÞ; (31)

as is very commonly assumed in the literature. There is
simply not enough freedom to make this assumption
and one would need to resort to the field equations and

explicitly show, not only the consistency, but also the
uniqueness of this specific choice.
To summarize, we have studied the symmetries and the

dynamics of fðTÞ theories of gravity. We have shown that,
even though they are covariant, such theories are not local
Lorentz invariant, with the exception of the fðTÞ ¼ T case,
which have been extensively studied in the literature and
is equivalent to GR. This fact has several consequences.
First, it is expected to lead to strong preferred-frame effects
which should in turn be crucial for the viability of the
theory. This casts serious doubt on whether such theories
can provide interesting alternatives to GR. Note that even
though matter will not ‘‘feel’’ the preferred frame effects
because it is only coupled to the metric, these effects still
leave an observational signature in gravitational experi-
ments, as in the case of Einstein-Aether theory [25].
Another consequence is that the lack of symmetry implies
the presence of more degrees of freedom. Indeed, there
appear to be 6 more dynamical equations than in GR. Even
though all equations are second order in derivatives, this is
not enough to guarantee that the extra excitations will be
well behaved. The lack of Lorentz symmetry also presents
a serious computational complication because there is no
freedom to gauge fix tetrad components.
We hope that this analysis will prompt a search for a

deeper understanding of the dynamics of fðTÞ gravity, the
presence of extra degrees of freedom in these theories, and
their cosmological behavior. There also needs to be a
thorough study on the observational consequences of local
Lorentz symmetry violations. We hope to address these
issues in future work.
Before closing, let us point out that it is rather trivial to

modify fðTÞ theory in order to make it manifestly Lorentz
invariant. If the partial derivative is replaced by a Lorentz
covariant derivative (see Ref. [17]) in the definition of
T�

��, Eq. (5), and then one defines a quantity �T in the

same way as T is defined here, �T or fð �TÞwill be manifestly
locally Lorentz invariant, see also Ref. [26]. Note,
however, that even though such a theory will reduce to
fðTÞ gravity in some local Lorentz frames (those for which
the Lorentz covariant derivative becomes a partial deriva-
tive), it will generically have different dynamics. It is,
therefore, a different theory which might deserve further
investigation.
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