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We study the thermodynamic parameters like entropy, energy etc. of a box of gas made up of

indistinguishable particles when the box is kept in various static background spacetimes having a horizon.

We compute the thermodynamic variables using both statistical mechanics as well as by solving the

hydrodynamical equations for the system. When the box is far away from the horizon, the entropy of

the gas depends on the volume of the box except for small corrections due to background geometry. As the

box is moved closer to the horizon with one (leading) edge of the box at about Planck length (Lp) away

from the horizon, the entropy shows an area dependence rather than a volume dependence. More precisely,

it depends on a small volume A?Lp=2 of the box, up to an order OðLp=KÞ2 where A? is the transverse

area of the box and K is the (proper) longitudinal size of the box related to the distance between leading

and trailing edge in the vertical direction (i.e. in the direction of the gravitational field). Thus the

contribution to the entropy comes from only a fraction OðLp=KÞ of the matter degrees of freedom and the

rest are suppressed when the box approaches the horizon. Near the horizon all the thermodynamical

quantities behave as though the box of gas has a volume A?Lp=2 and is kept in a Minkowski spacetime.

These effects are: (i) purely kinematic in their origin and are independent of the spacetime curvature (in

the sense that the Rindler approximation of the metric near the horizon can reproduce the results) and

(ii) observer dependent. When the equilibrium temperature of the gas is taken to be equal to the horizon

temperature, we get the familiar A?=L2
p dependence in the expression for entropy. All these results hold in

a Dþ 1 dimensional spherically symmetric spacetime. The analysis based on methods of statistical

mechanics and the one based on thermodynamics applied to the gas treated as a fluid in static geometry,

lead to the same results showing the consistency. The implications are discussed.

DOI: 10.1103/PhysRevD.83.064034 PACS numbers: 04.50.�h, 04.70.Dy

I. INTRODUCTION

The first indication of the connection between thermo-
dynamics and gravity came with the work of Bekenstein
[1–3] who proposed the idea that a black hole should have
an entropy that is proportional to the area of its horizon.
This interpretation became well established with the dis-
covery of the temperature of the black hole [4,5]. Soon
afterwards, it was discovered that all horizons can be
attributed at a temperature [6–8] which is independent of
the field equations of the theory. Later work also showed
that the entropy attributed to a horizon, in sharp contrast,
depends explicitly on the gravitational theory [9,10]. Work
in the last several decades attempted to understand the
physical origin of the thermodynamical variables attrib-
uted to the horizons concentrating mostly on black hole
horizons. In spite of extensive work and different possible
suggestions for the source of, for example, entropy, it is
probably fair to say that we still do not quite understand the
physics behind this phenomenon.

Somewhat ironically, the difficulty is not only about
understanding gravitational entropy—though that is a seri-
ous issue—but also in relating it properly to the matter
sources which can also possess an entropy described by

conventional thermodynamics. In a situation involving
both matter sources and gravity, it is not quite clear what
precisely is the interrelationship between the usual ther-
modynamic entropy of matter and the entropy of the
horizon. The two extreme views which are possible would
be: (i) The entropy of the horizon is the same as the entropy
of the matter source, the gravity of which leads to the
formation of the horizon (see, for e.g., [11,12]). (ii) The
horizon entropy arises from a microscopic quantum struc-
ture of spacetime (see, for e.g., [13]) and the matter fields
inherits the thermodynamic variables just as material kept
in a hot oven inherits its temperature. As usual, there are
open questions in both points of view and it could very well
be that neither approach fully captures the reality. There
are at least two more facts which we need to keep in mind
while studying a situation in which both normal matter and
gravity are present.
First, we know that one of the thermodynamical varia-

bles, viz. the temperature, attributed to the vacuum state of
the theory is observer dependent. In flat spacetime, an
inertial observer would attribute zero temperature to the
vacuum state while a uniformly accelerating Rindler ob-
server will attribute a nonzero temperature to the vacuum
state. This result continues to hold in an approximate sense
[14,15] for more realistic noninertial trajectories and in-
dicates that vacuum fluctuations can mimic thermal fluc-
tuations in certain contexts. Consider now a highly excited
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state of the vacuum with nk quanta in a state labeled by the
momentum k. It is obvious that the thermodynamical
properties of such a highly excited state (which could,
for example, represent a quantum gas of particles) will
also be viewed differently by inertial and noninertial ob-
servers. In other words, once the thermodynamic proper-
ties of the vacuum state have become observer dependent,
the thermodynamic properties of any system becomes ob-
server dependent. We can no longer attribute to a box of
gas a temperature or entropy, say, in an observer indepen-
dent fashion. This situation is peculiar and requires deeper
understanding.

Second, the coexistence of matter and gravitational field
can lead to both kinematic and dynamical effects depend-
ing on whether we take into consideration the self-gravity
of matter or not. For example, consider a spherical cloud of
gas which collapses to form a black hole under its own
gravity. It will be interesting to understand how the
‘‘normal’’ entropy of the gas cloud is related to the entropy
of the black hole (see, for e.g., [11,12]), both with respect
to an observer collapsing with the cloud and with respect to
an outside observer (who will see the black hole formation
only at asymptotic infinity). On the other hand, we can also
ask a purely kinematical question of what happens to a
cloud of gas, as regard to its thermodynamical properties
when it is located in a spacetime with horizon. In this case,
the gas is not self-gravitating and the horizon is produced
by an external source or could even be due to the
acceleration of the observer.

This paper attempts to analyze the last aspect mentioned
above, in the context of the thermodynamical behavior of a
box of gas, treated as a test system located in an external
spacetime with horizon, neglecting its self-gravity. Such a
study is important to distinguish sharply between the ki-
nematical and dynamical effects when both matter and
gravity are present. It will also reinforce the essential
observer dependence of thermodynamics arising princi-
pally through Davies-Unruh effect. Specifically, we study
in this paper a box containing a gas of indistinguishable
particles in a static background spacetime having a hori-
zon. The box is oriented such that one of its faces is
(approximately) parallel to the horizon surface (which we
call the transverse direction) and its proper ‘‘height’’ in the
direction normal to this face is K (borrowing the terminol-
ogy from the case of approximate planar symmetry, we call
this the height of the box, which is in the direction of the
gravitational acceleration). We then calculate the entropy
of the gas when the box is situated far away and near the
horizon. We obtain the relevant expressions in two differ-
ent ways. In Sec. II A, we use the standard techniques of
statistical mechanics to find the thermodynamical quanti-
ties from the phase space volume of the system using the
results of [16]. We analyze its thermal behavior in various
background spacetimes having a horizon for which the
near horizon limit of the metric is the Rindler metric.

Our analysis shows that far away from the horizon, the
entropy of the gas depends on the volume of the box with
negligible corrections due to the background geometry. As
we move towards the horizon, in general, entropy etc.
depends on the location of the box in a way dictated by
the background metric (and in general is not a function of
its volume alone because of finite size effects in an external
geometry). In spherically symmetric spacetimes the trans-
verse directions are unaffected and quantities such as
transverse pressure take their usual Minkowski form.
However, when the leading edge of the box is about
Planck length Lp away from the horizon the entropy de-

pends on a smaller volume A?Lp=2 instead of the total

volume V of the box, up to an orderOðLp=KÞ. Further, we
find that near the horizon all the thermodynamical quanti-
ties behave as though the box of gas has a volume A?Lp=2

and is kept in an Minkowski spacetime. If we further
assume that the box in thermal equilibrium is at the horizon
temperature ��1

H , then we get a A?=L2
p dependence in

entropy. In Sec. II B, we repeat our analysis using thermo-
dynamics and obtain the same results as in Sec. II A. As a
by-product, we obtain the explicit expressions for the
thermodynamic potentials in a general case of a spherically
symmetric background metric of the form

ds2 ¼ �fðrÞdt2 þ 1

fðrÞdr
2 þ r2d�: (1)

The conclusions are discussed in Sec. III.

II. THERMODYNAMICS OF A BOX OF GAS

We consider a box of an ideal gas consisting of N
indistinguishable classical Boltzmann particles to be in
thermal equilibrium. We will assume that the system
does not have a backreaction on the given background
metric and study the thermal behavior of the system using
two different approaches. First, we calculate the number of
possible microstates of the system and employ the usual
techniques of statistical mechanics for a canonical en-
semble to find all the thermodynamic variables from the
partition function for the system. Second, we write down
the thermodynamical equations for the gas treated as an
ideal fluid located in an external spacetime, solving which
we find all the relevant thermodynamic quantities. Both
approaches, of course, lead to the same results.

A. Statistical mechanics of the gas

Consider the box of ideal gas in thermal equilibrium
with its surroundings at temperature ��1. It is well known
that the partition function of a system in canonical en-
semble is sufficient to find all the thermodynamical varia-
bles of the system. The partition function Zð�Þ is related by
a Laplace transform to the density of states gðEÞ available
to the particles which, in turn, can be obtained from the
phase space volume PðEÞ as
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gðEÞ ¼ dPðEÞ
dE

(2)

Qð�Þ ¼
Z

e��EgðEÞdE ¼
Z

e��EdðPðEÞÞ: (3)

Therefore, we only need a generally covariant expression
for the phase space volume PðEÞ to work in a general
coordinate system and determine the thermodynamics.
Such a definition [16] of phase space volume PðEÞ in any
static spacetime (described briefly in Appendix A for
completeness) is given by

PðEÞ ¼
Z

d3xd3p�ðE� �apaÞ; (4)

where pa is the four-momentum of the particle and �a �
ð1; 0Þ is the killing vector of the static spacetime. This
expression of PðEÞ is generally covariant, it is observer
dependent due to the presence of the Killing vector �a used
in defining the energy of the particles. When the spacetime
has, say, two timelike Killing vectors in a region (for e.g.
the ones corresponding to translation in Minkowski and
Rindler time coordinates) used by two different class of
observers, the phase space volume and hence the thermo-
dynamic properties of the gas as measured by the two
observers will be different. In Dþ 1 dimensional space-
time, it is easy to show that the above relation reduces to

PðEÞ¼ �D=2

�ðD2þ1Þ
Z ffiffiffiffi

�
p

dDx

�
E2

g00
�m2

�
D=2

¼ �D=2

�ðD2þ1Þ
Z
dDx

ffiffiffiffi
�

p ED

ðg00ÞðD=2Þ

�
1�m2g00

E2

�
D=2

; (5)

where ��� ¼ g�� is the spatial part of the metric. From the
second equality in the above equation, one can see that near
a horizon where g00 ! 0, the contribution from the mass
term can be ignored. Since we will be primarily interested
in the near horizon behavior, we will take m ¼ 0 for the
sake of calculational simplicity when dealing with curved
spacetimes. We will later see that this assumption does not
affect our key results as, near a horizon, the correction to
the leading order term due to the nonzero mass turns out to
be negligible. We will now explore the system in various
backgrounds having a horizon. For having a standard
reference to compare with, we begin with the Minkowski
spacetime.

1. Minkowski spacetime

For gab ¼ �ab in Eq. (5), we find the usual form of the
phase space volume PðEÞ:

PðEÞ ¼ �D=2

�ðD2 þ 1ÞVE
D ! 4�

3
VE3; (6)

where we have taken m ¼ 0 and in the second step, we
have taken D ¼ 3. The partition function Q1ð�Þ for a
single massless particle is then obtained to be

Q1ð�Þ ¼
�
D!�D=2

�ðD2 þ 1Þ
�
VD

�D ! 8�
V3

�3
; (7)

where VD is the volume of the D dimensional box. The
partition function QNð�Þ for N noninteracting indistin-
guishable particles is QNð�Þ ¼ ð1=N!Þ½Q1ð�Þ�N , where
ð1=N!Þ is the Gibbs counting factor. For large N, we use
the Stirling approximation logN!� N logN � N to get the
usual result:

logQN ¼ N log

��
D!�D=2

�ðD2 þ 1ÞN
�
VD

�D

�
� N: (8)

The entropy of the gas is

S ¼
�
1� �

@

@�

�
logQN ¼ N

�
log

�
D!�D=2

�ðD2 þ 1ÞN
VD

�D

�
þD

�

! N

�
log

�
8�

N

V3

�3

�
þ 3

�
; (9)

which is the standard result [17]. The corresponding equa-
tion of state obtained is the ideal gas equation

P ¼ 1

�

@S

@V
¼ N

�V
: (10)

The total energy of the system is

E ¼ �@ logQN

@�
¼ DN

�
! 3N

�
: (11)

Since settingm ¼ 0 is effectively considering a relativistic
gas, we get the correct factor of 3 in the above expression.
From Eq. (9) for entropy, one can see that entropy per
particle S=N depends on the logarithm of the total volume
V of the system. This is a standard result [17] known in
thermodynamics and is the expected of the behavior of
entropy. It is this volume dependence of entropy that we
investigate further when the system is in a background
static spacetime having a horizon. We begin to do so
starting with the simplest of static spacetimes with a hori-
zon, namely, the Rindler spacetime.

2. Rindler spacetime

Consider the following form of the Rindler metric:

ds2 ¼ ð1þ �xÞ2dt2 � dx2 � dy2 � dz2

¼ g00ðxkÞdt2 � dx2k � dx2?; (12)

given by the mapping

X þ 1

�
¼ ��1ð1þ �xÞ cosh�t;

T ¼ ��1ð1þ �xÞ sinh�t
(13)

from the Minkowski coordinates ðT; XÞ to the Rindler
coordinates ðt; xÞ. Here xk � x and x? � ðy; zÞ. The

Rindler observer’s motion corresponds to a hyperbolic
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trajectory ðX þ 1
�Þ2 � T2 ¼ ��2 with constant proper ac-

celeration � in the Minkowski frame. The Rindler observer
perceives a horizon at x ¼ ���1 which is the X � T �
��1 ¼ 0 surface in the Minkowski frame. Here g00 ¼ ð1þ
�xÞ2 and

ffiffiffiffi
�

p ¼ 1. Hence the phase space volume for a

single particle using Eq. (5) is

PðEÞ ¼ 4

3
�A?

Z xb

xa

dx

�
E2

ð1þ �xÞ2 �m2

�
3=2

¼ 4

3
�E3A?

Z xb

xa

dxð1þ �xÞ�3; (14)

where A? is the transverse area of the box and ðxa; xbÞ are
the ends of the system in the longitudinal direction and
we have set m ¼ 0 in the second step. On integrating,
we get

PðEÞ ¼ 2

3
�E3A?

1

�

�
1

ð1þ �xaÞ2
� 1

ð1þ �xbÞ2
�

¼ 2

3
�E3A?

1

�

�
1

g00ðxaÞ �
1

g00ðxbÞ
�
: (15)

One can check that in the � ! 0 limit, we get back the
classical result Eq. (6).

We now consider what happens when one edge of the
box gets close to the horizon. Later on, we will treat the
Rindler metric as an approximation close to the horizon of,
for example, the Schwarzschild metric. In such a context,
for an observer at infinity, the box of gas will take an
infinite time to reach the horizon and will never cross the
horizon. However, given the inevitable quantum uncer-
tainty in the position of any object [18], and the fuzziness
of the horizon, one cannot differentiate between a particle
which is at a Planck length away from the horizon from the
one which has crossed the horizon. Since the box of gas
reaches xa ¼ ���1 þ Lp in large but yet a finite time, this

is a more appropriate limit to consider for our purpose. So
consider what happens when one end of the box is at a
Planck distance Lp from the horizon xa ¼ ���1 þ Lp.

Let the height of the box be H ¼ xb � xa, then g00ðxaÞ ¼
�2L2

p and g00ðxbÞ ¼ �2ðHþ LpÞ2. (Here, and in what

follows, one would prefer to work with proper distances,
but since the spatial part of the metric is flat, that is g�� ¼
���, the coordinate distances and proper distances are the

same.) We then have for the phase space volume:

PðEÞ ¼ 2

3
�E3A?

1

�3L2
p

�
1� L2

p

ðH þ LpÞ2
�
: (16)

The one particle partition function is

Q1 ¼ 4�A?
�3�3L2

p

�
1� L2

p

ðH þ LpÞ2
�

¼ 8�
A?ðLp=2Þ
ð�locðxaÞÞ3

�
1� L2

p

ðHþ LpÞ2
�
; (17)

where �locðxaÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðxaÞ

p ¼ ��Lp is the redshifted

local (Tolman) temperature [19]. When Lp=H � 1, which

is trivially satisfied for a finite height of the box, we can
neglect the second term in the bracket, which is of
OðL2

p=H
2Þ compared to unity, and obtain

Q1 � 8�
A?ðLp=2Þ
ð�locðxaÞÞ3

: (18)

We can now calculate the various thermodynamic quanti-
ties from the N particles partition function QN ¼ QN

1 =N!
in a manner similar to what we did in the case of
Minkowski spacetime. The entropy of the system is

S � N

�
log

�
8�

N

A?ðLp=2Þ
ð�locðxaÞÞ3

�
þ 3

�
: (19)

(This expression is equivalent with the one obtained in a
completely different context in [20].) The average energy
of the system as measured by a stationary observer at xa is

U ¼ � @ logQN

@�loc

¼ 3N

�loc

: (20)

To find the pressure, we can imagine the sides of box to be
attached to movable pistons such that we can, one by one,
displace each side by an infinitesimal amount while keep-
ing the others fixed. The pressure is then related to the work
done by the system against its change in volume and is
given as P ¼ ��1

loc@S=@V. The transverse pressure is ob-

tained when we do work on the box in one of the transverse
directions keeping xk and the remaining transverse coor-

dinate fixed. We find that it obeys the usual ideal gas
equation of state

P? ¼ N

�locV
; (21)

showing that the transverse directions are not affected by
the existence of the horizon. Proceeding in a similar man-
ner to find the pressure in the longitudinal direction at xa,
we again get the ideal gas equation of state but the pressure
now depends on a much smaller volume, A?ðLp=2Þ, rather
than the total volume A?K of the box

Pjjxa ¼
1

�loc

@ðSÞ
A?@xa

� N

�locA?ðLp=2Þ : (22)

Comparing the expressions of partition function, energy,
longitudinal pressure and entropy in Eq. (18), (20), (22),
and (19) with those in Minkowski spacetime in Eq. (7),
(11), (10), and (9) we find that near the horizon, the
dynamics of the system is same as though the system
was kept in a Minkowski spacetime but with the total
volume A?H of the box replaced by a smaller volume of
A?ðLp=2Þ and with a inverse temperature � ¼ �locðxaÞ.
The main reason for this effect is the large contribution

to the phase space volume coming from near the horizon
because of the infinite blueshift in the particle energy
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arising from the divergent nature of g00 near the horizon. In
other words, the density of states in phase space available
to the particle near the horizon is huge as compared to the
contribution from farther away. Thus the contribution to
the entropy comes from only a fraction, OðLp=HÞ, of the
microscopic matter degrees of freedom near the horizon
out of the total degrees present. Since Rabcd ¼ 0 for the
Rindler spacetime, we see that even in a flat spacetime that
has a horizon, the dependence of entropy is only on a small
volume of A?ðLp=2Þ instead of the whole volume, A?H, of

the box.
We therefore conclude that (i) this effect is purely kine-

matical in its origin and is independent of spacetime cur-
vature (ii) it is observer dependent as the Rindler horizon is
observer dependent. We will briefly comment on the sec-
ond point before proceeding further. For an inertial ob-
server (say the stationary observer at the origin in the
Minkowski frame), the box of gas will appear to be accel-
erating. If we make an assumption, that at each point in its
acceleration the gas maintains its thermal equilibrium, then
Eq. (9) shows that the entropy as seen by the inertial
observer depends on the volume of the box even as the
box approaches the X � T � ��1 ¼ 0 null surface. Here,
the volume VM of the box as measured by the inertial
observer is a function of time and is given by

VM ¼ A?ðMÞ½X2ðTÞ � X1ðTÞ�; (23)

where A?ðMÞ is the area of the box transverse to the X
direction and X2ðTÞ, X1ðTÞ are the two ends of the box in
the X direction satisfying the hyperbolic trajectory
equation

X2
1 � T2 ¼ ð1þ �xaÞ2

�2
¼ L2

p;

X2
2 � T2 ¼ ð1þ �xbÞ2

�2
¼ ðH þ LpÞ2:

(24)

One can check that X2ðTÞ � X1ðTÞ goes from X2ð0Þ �
X1ð0Þ ¼ H at T ¼ 0 to X2 � X1 ! 0 at T ! 1 and hence
the volume of the box goes from VM ¼ A?ðMÞH at T ¼ 0 to
VM ! 0 at T ! 1. This is purely due to the continuous
length contraction in the X direction and is expected since
the accelerated trajectory of the box is a result of continu-
ous Lorentz boots in the X � T plane. One should however
note that this volume contraction in the dependence of
entropy of the gas as it approaches the X � T � ��1 ¼ 0
as T ! 1 is completely different from the effect described
above in which an area dependence is obtained.

It is also easy to check that if we include a mass term in
the expression for phase space volume, the corrections to
the leading term in the above expressions for partition
function, entropy, etc. are negligible and are of order
OðLpmÞ2. Hence our assumption of taking m ¼ 0 does

not affect our results in the order with which we are work-
ing and hold true to the same order for massive particles as
well. Further, since the box is fixed at its location near the

horizon for an arbitrarily large amount of time, it is rea-
sonable to assume that the gas is thermalized at the same
temperature as the horizon temperature. If we substitute for
� in the expression for entropy as � ¼ 2�=�, then we get

S � N

�
log

�
4�

ð2�Þ3N
A?
L2
p

�
þ 3

�
; (25)

which is the familiar scaling of A?=L2
p. Of course, since by

Lp we strictly mean a length of the order of Planck length,

the numerical factor of the order of unity cannot be fixed by
this analysis.

3. Schwarzschild spacetime

We next consider the system having its boundary in the
shape of a 3-dimensional annular ring subtending a solid
angle� at the origin and with an inner radius ra and outer
radius rb, located in the Schwarzschild spacetime with
metric given by

ds2 ¼ �
�
1� 2M

r

�
dt2 þ

�
1� 2M

r

��1
dr2 þ r2d�2: (26)

The phase space volume Eq. (5) becomes

PðEÞ ¼ 4�E3

3

Z
�
sin	d	d


Z rb

ra

r2dr

ð1� 2M
r Þ2

¼ 4��E3

3

�
� ð2MÞ4
r� 2M

þ 4ð2MÞ3 logðr� 2MÞ
þ 6ð2MÞ2ðr� 2MÞ þ 2ð2MÞðr� 2MÞ2

þ ðr� 2MÞ3
3

�
rb

ra

: (27)

We take the outer radius rb ¼ 2MþH to be such that
Lp � H � ð2MÞ2=Lp; as regards the inner radius ra ¼
2Mþ h which is near the horizon, we will choose h such
that the proper length from the horizon is equal to Lp. (This

is precisely what we did in the previous section except that
the proper and coordinate distances coincided in the
Rindler spacetime.). This fixes h to be

Lp ¼
Z h

2M

drffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

r

q � 2
ffiffiffiffiffiffiffiffiffiffi
2hM

p
; (28)

where we have used g00ðrÞ � ðr� 2MÞg000ð2MÞ near the
horizon. Then we have

PðEÞ ¼ 4�E3

3
�

ð2MÞ4
h

�
1� 2h

M
log

h

H
þ . . .

�

� 4�E3

3
�

ð2MÞ4
ðL2

p=8MÞ
�
1� L2

p

ð2MÞ2 ðlog
h

H
� 1

12

H3

ð2MÞ3

þOðH=2MÞ2Þ þOðLp=2MÞ4 þ . . .

�
: (29)

Ignoring the OðLp=2MÞ2 and higher order terms; using

� ¼ g000=2 ¼ 1=4M, we get
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PðEÞ � 2�E3

3

AH

ðL2
p�

3Þ ; (31)

where AH ¼ �ð2MÞ2 is the area of the horizon intercepted
by solid angle �. To be precise, this is slightly different
from the transverse area (facing the horizon) of a
3-dimensional annular container, which is A? ¼ �ð2Mþ
ðL2

p=8MÞÞ2. But they are equal to the zeroth order of

ðLp=MÞ2 which will be the relevant order for us; so we

will not make any distinction between the two. Also note
that for a sufficiently large H, if we set the outer radius at
rb ¼ 2MþH and let H ! 1, say, then the last term in
Eq. (27) will also contribute to PðEÞ at outer radius along
with the term in Eq. (31) at the inner radius. Since we are
mainly interested in the effects due to a horizon, we do not
consider such cases and treatH to be bounded. Calculating
the partition function using Eq. (31), we get

Q1� 4�AH

�3�3L2
p

�4�
AHLp

�3ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðraÞ

p Þ3¼8�
AHðLp=2Þ
ð�locðraÞÞ3

: (32)

The entropy of the system is then

S � N

�
log

�
8�

N

AHðLp=2Þ
ð�locðraÞÞ3

�
þ 3

�
: (33)

The average energy of the system is

U ¼ 3N

�loc

: (34)

The longitudinal pressure is

Pra �
N

�locA?ðLp=2Þ : (35)

Once again we find that the near horizon dynamics of the
system is reduced to the dynamics of a system in
Minkowski spacetime with volume V3 ¼ AHðLp=2Þ and

with � ¼ �locðraÞ. This is in some sense anticipated since
we know that the near horizon limit of the Schwarzschild
metric is the Rindler metric and in the latter case we found
the same thermodynamical behavior of the system. Also
we know that far from the horizon at R ! 1, the
Schwarzschild metric reduces to the flat spacetime metric
and the entropy of the gas depends on the total volume of
the gas. Hence if we bring the box of gas from infinity to a
distance Lp from the horizon in a quasistatic way such that

at each point it is in thermal equilibrium with its surround-
ings, then the dependence of entropy changes to AHðLp=2Þ.
This behavior is again purely kinematical in its origin and
is independent of curvature effects. When the gas has come
to a thermal equilibrium at the Hawking temperature of the
horizon, we have � ¼ 2�=� and the entropy becomes

S � N

�
log

�
4�

ð2�Þ3N
AH

L2
p

�
þ 3

�
; (36)

showing again the AH=L
2
p scaling. In this case, it is of some

interest to check the nature of the next higher order cor-
rection to the entropy. A simple calculation gives

S � N log

�
4�

ð2�Þ3N
�
AH

L2
p

þ�log
8HM

L2
p

��
þ 3N: (37)

Thus we get a correction to the area dependence of entropy
by a term which has a logM dependence (rather than, say, a
power law). It is curious to note that similar corrections of
order logM to the black hole entropy of A=4L2

p have been

proposed in the context of loop quantum gravity.
We now study a general metric with a horizon such that

its near horizon limit is the Rindler metric. We show that
the thermal behavior of the system near the horizon is
similar to that in the Rindler spacetime.

4. Spherically symmetric static spacetimes

Consider the following form of the metric

ds2 ¼ �fðrÞdt2 þ 1

fðrÞdr
2 þ rD�1d�D�1 (38)

with the following conditions: fðrH Þ ¼ 0 defines the
horizon at r ¼ rH and f0ðrH Þ ¼ 2� is nonzero and finite.
The phase space volume is

PðEÞ ¼ �D=2

�ðD2 þ 1Þ
Z rD�1ffiffiffi

f
p drd�D�1

�
E2

f
�m2

�
D=2

(39)

¼ �D=2

�ðD2 þ 1ÞE
D�

Z rb

ra

rD�1dr

fððDþ1Þ=2Þ ; (40)

where � is the corresponding solid angle in D dimensions
and we have takenm ¼ 0 in the last expression. Like in the
previous cases we consider ra ¼ rH þ h to be very close
to the horizon such that h=rH � 1 and rb ¼ rH þH
where h and H are coordinate distances of the ends of
the ‘‘box‘‘ from the horizon along the radial direction. The
main contribution to this integral comes from near the
horizon, hence we evaluate the integral taking g00 ¼ f �
ðr� rH Þf0ðrH Þ. Also we use the proper length Lp from

the horizon instead of h by using

Lp ¼
Z h

rH

dr=
ffiffiffi
f

p � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h=f0ðrH Þ

q
: (41)

The phase space volume then becomes

PðEÞ � �D=2

�ðD2 þ 1ÞE
D�

1

ðf0ðrH ÞÞððDþ1Þ=2Þ

�
Z rD�1dr

ðr� rH ÞððDþ1Þ=2Þ : (42)

Substituting u ¼ r� rH and expanding the numerator in
a Binomial expansion, the integral becomes
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Z rD�1

ðr� rH ÞððDþ1Þ=2Þ dr

¼
Z ½uD�1 þ . . .þ ðD� 1ÞurD�2

H þ rD�1
H �

uððDþ1Þ=2Þ du: (43)

The main contribution to this integral comes from the

lower limit of the integral of rD�1
H

=uððDþ1Þ=2Þ near the

horizon where u ¼ h and is obtained to be

Z rD�1
H

uððDþ1Þ=2Þ du � 2rD�1
H

ðD� 1ÞhððD�1Þ=2Þ

� 2DrD�1
H

ðD� 1ÞLD�1
p ðf0ðrH ÞÞððD�1Þ=2Þ : (44)

All the remaining terms contribute to the integral in
Eq. (43) at most by OðLp=HÞ2 times the last term. Hence

we can write to the lowest order:

PðEÞ � �D=2

�ðD2 þ 1ÞE
D�

2DrD�1
H

ðD� 1ÞLD�1
p ðf0ðrH ÞÞD

¼ �D=2

�ðD2 þ 1ÞE
D AD�1

ðD� 1ÞLD�1
p �D

; (45)

where AD�1 ¼ �rD�1
H

. The partition function becomes

Q1 � 1

ðD� 1Þ
D!�D=2

�ðD2 þ 1Þ
�

AD�1

�DLD�1
p �D

�

¼ D!�D=2

�ðD2 þ 1Þ
�
AD�1ðLp=ðD� 1ÞÞ

ð�locðraÞÞD
�
: (46)

Comparing the above expression with the expression of the
partition function in Eq. (18) to the gas in Rindler space-
time, it is obvious that the thermal behavior of the gas in
the two cases is identical. We calculate the entropy to be

S � N

�
log

�
D!�D=2

�ðD2 þ 1ÞN
AD�1ðLp=ðD� 1ÞÞ

ð�locðraÞÞD
�
þD

�
: (47)

Once again we find the similar dependence of entropy on
the volume AD�1Lp=ðD� 1Þ. When the gas is thermalized

at the horizon temperature � ¼ 2�=�, the above expres-
sion reduces to

S � N

�
log

�
1

ð2�ÞDðD� 1Þ
D!�D=2

�ðD2 þ 1ÞN
AD�1

LD�1
p

�
þD

�
:

(48)

One should note that even when the metric given in
Eq. (38) is a solution of the field equations for gravity in
a general Lanczos-Lovelock theory [21,22], the form of the
expressions obtained above for a box of gas will remain
valid. The dependence of entropy changes from a volume
scaling to an area scaling as we approach the horizon. We
will comment more on this in Sec. III.

B. Thermodynamics of the gas

We repeat the analysis of the previous section by doing
thermodynamics in a covariant manner [23]. Basically, we
find the same results as in the previous section but the
analysis serves as a consistency check.

1. Formalism

Consider a box of ideal gas in thermal equilibrium with
its surroundings in a given background metric. For a small
volume element of the fluid, we can define the following
quantities in the proper reference frame of the observer
moving with the fluid element, that is, in the rest frame of
the fluid element. (i) c2� is the total energy density (in-
cluding rest mass energy, thermal energy, etc). We have
reintroduced c, the speed of light in a vacuum and it is not
set equal to unity in the following analysis. (ii) p is the
pressure (iii) n is the number density (iv) T is the tempera-
ture (v) s is the entropy per particle such that ‘‘ns’’ is the
entropy density. We take the energy momentum tensor of
the gas satisfying rbT

ab ¼ 0 to be that of an ideal fluid:

Tab ¼ ð�þ p

c2
Þuaub þ pgab: (49)

The first law of thermodynamics can be written, in terms of
these variables, as

d� ¼ ð�þ p
c2
Þ

n
dnþ nTds: (50)

We assume that the two usual constitutive equations will
hold for a local inertial observer. First is the ideal gas
equation

p ¼ nT (51)

and the second is the expression for the entropy density

ns ¼ n log

�
pCv

nCp

�
þ nB; (52)

where B is a constant, Cv is the specific heat of the gas at
constant volume, Cp is the specific heat of the gas at

constant pressure and Cp � Cv ¼ 1. Note that the above

two equations are local in nature and are the equations
which will describe an ideal gas.
Thus we have 9 unknowns, namely, �, p, n, T, s, ua and

9 equations to solve for them, namely, 4 equations from
rbT

ab ¼ 0, first law of thermodynamics, two constitutive
equations, normalization condition of proper velocity
uaua ¼ �1 and the baryon conservation law

raðnuaÞ ¼ 0: (53)

We will now solve the equations for the gas in thermal
equilibrium.
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2. The solution

We follow the usual procedure of projecting the equation
rbT

ab ¼ 0 along ua and orthogonal to ua with the latter
accomplished by using the projection tensor Pab ¼ gab þ
uaub=c2. The projection uarbT

ab ¼ 0 along ua with the
definition of energy momentum tensor in Eq. (49), gives

d�

d�
¼ ð�þ p

c2
Þ

n

dn

d�
: (54)

Comparing with the first law in Eq. (50) we get ds=d� ¼ 0.
Further the projectionPc

arbT
ab ¼ 0 orthogonal to ua leads

to the Euler equation

ðc2�þ pÞai ¼ Pikrkp; (55)

where ai ¼ ukrku
i. We will now specialize to the case of

the gas located in a spherically symmetric spacetime with
metric

ds2 ¼ �fðrÞc2dt2 þ 1

fðrÞdr
2 þ rD�1d�D�1: (56)

The stationary nature of the equilibrium requires that

ua ¼
�
1ffiffiffi
f

p ; 0; 0; 0

�
: (57)

With the choice of our metric and the stationarity of ua, all
of the thermodynamic potentials are independent of time
and the baryon conservation equation is satisfied identi-
cally. Further, the three Euler equations reduces to just one
nontrivial equation describing force balance in the radial
direction:

dp

dr
¼ �ðc2�þ pÞ

2f

df

dr
: (58)

The stationarity condition also implies that the local tem-
perature obeys the Tolman condition:1

T
ffiffiffi
f

p ¼ Tc; (59)

where Tc is a constant usually identified as the temperature
in the asymptotic limit f ! 1. Thus we are left with 5
unknowns: �, p, n, T, s and 5 equations, namely, the first
law of thermodynamics, two constitutive equations, one
Euler equation and the Tolman condition. As we shall
show, these can be solved even without assuming a par-
ticular form of fðrÞ. Using the two constitute equations in
the first law, we get

d� ¼ ð�� CvpÞ
n

dnþ Cvdp: (60)

One can check that the above differential relation is
defined locally at any arbitrary point and satisfies the
integrability condition @ð@�=@nÞ=@p ¼ @ð@�=@pÞ=@n
with both @ð@�=@nÞ=@p ¼ n�1ð@�=@p� CvÞ ¼ 0 and
@ð@�=@pÞ=@n ¼ @ðCvÞ=@p ¼ 0. We integrate the differ-
ential relation to find �ðn; pÞ at each r which is kept fixed.
The solution is

� ¼ Anþ Cvp; (61)

where A ¼ AðrÞ is a constant (i.e. independent of n, p
while integrating) but can depend on r. The r dependence
can be easily determined from the fact that the energy
density should be

c2� ¼ mc2n
ffiffiffi
f

p þ Cvp: (62)

(Note that in the Newtonian limit 
 � c2, where f ¼
ð1þ 2
=c2Þ, this energy density becomes c2� ¼ nmc2 þ
m
þ CvnTc which is the sum of rest mass energy,
gravitational potential energy and the thermal energy.
This requires AðrÞ ¼ m

ffiffiffi
f

p
.) Using Eqs. (58), (51), (59),

and (62), we get

p ¼ p0ðfð�Cp=2ÞÞe�ðmc2=2TcÞf (63)

n ¼ p0

Tc

ðfð�Cv=2ÞÞe�ðmc2=2TcÞf; (64)

where p0 is some constant of integration which we will
fix by using the condition

Z
ndV ¼ N: (65)

The total energy is given by

E ¼
Z
ð ffiffiffi

f
p

c2�Þ r
2 sin	ffiffiffi
f

p drd	d
: (66)

This expression has the following interpretation. Since
c2�ðrÞ is the energy density as defined in the local rest
frame of the fluid element, it is the local energy density as
measured by the observer at r ¼ constant. Hence the
redshifted energy density as measured by an observer at

infinity is
ffiffiffiffiffiffiffiffiffi
fðrÞp

c2�ðrÞ. (Here we may assume that the �V
associated with the energy density is same for both
observers.) Hence the total energy as measured by an
observer at infinity is the integral of

ffiffiffi
f

p
c2� over the

volume of the box.
The expressions for pressure, entropy, energy, etc. match

with their standard expressions in the literature when the
gas is located in a flat spacetime or in a weak gravitational
field; for example, the earth’s atmosphere (see Appendix B
for a discussion of different limits). We now discuss the
case when the box of gas is near the horizon.

1As an aside, note that, this well-known result can be obtained
from the following argument: We know that for photons in a
static metric !

ffiffiffiffiffiffiffiffiffiffiffi�g00
p

is a constant. Now consider two regions in
the spacetime, say A and B which can exchange energy by the
emission and absorption of photons. For thermal equilibrium to
be maintained, the Planckian distribution (which depends on
!=T) should always hold both at A and B. Hence, the tempera-

tures should be related by TB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�g00ðBÞ
p ¼ TA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�g00ðAÞ
p

which
implies T

ffiffiffiffiffiffiffiffiffiffiffi�g00
p

is a constant as required.
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3. Near horizon strong field limit

We take the form of fðrÞ such that fðrH Þ ¼ 0 defines the
horizon at r ¼ rH and f0ðrH Þ ¼ 2� is nonzero and finite.
It is then clear from the expressions for pressure Eq. (63),
number density Eq. (64) and entropy density Eq. (52), that
the main contribution to them and to the integrated quanti-
ties such as total energy E and total entropy S comes from
near the horizon because of the inverse dependence on f.

The effective contribution from the factor expð� mc2

2Tc
fÞ then

is just unity near the horizon. So we again set m ¼ 0 from
the beginning as the corrections from the nonzero mass
terms to the leading order terms are negligible. The pressure
and number density then become

p ¼ p0ðf�ðCp=2ÞÞ (67)

n ¼ p0

Tc

ðf�ððCvÞ=2ÞÞ: (68)

Thus we see that the number density is very large near the

horizon and starts to fall as 1=ðr� rH ÞCv=2 in the outward
direction. This is expected since the (coordinate) gravita-
tional acceleration a ¼ f0=2

ffiffiffi
f

p
on a stationary fluid ele-

ment is unbounded at the horizon. This result is consistent
with the results of previous Sec. II A, where we saw that the
density of states in the phase space available to the particles,
is huge near the horizon. Using the above expressions for
pressure and number density in Eq. (52), we find a similar
behavior for the entropy density because of its linear de-
pendence on number density:

ns ¼ n log

�
TCp

p0

�
þ nB: (69)

Thus the entropy per particle s is a constant and depends on
the scaling of the constant p0. To find p0, we use the
condition

N ¼
Z 4�r2ffiffiffi

f
p ndr ¼ p0

Tc

Z 4�r2

f2
dr; (70)

where we have chosen Cv ¼ 3 for a ultra relativistic gas
which is consistent with m ¼ 0. This integral has been
evaluated before in Eq. (27) and (42). Hence, we get

p0 � NTc

A?
2L2

p�
3; (71)

where Lp is the proper distance from the horizon to the

nearer end of the box. The entropy density then becomes

ns � nBþ n log

�
A?Lp=2

N�3
loc

�
; (72)

where � ¼ 1=Tc. Thus we find that entropy per particle s
depends on the logarithm of the volume A?Lp=2 and is

consistent with the results obtained in the previous section.
The total entropy obtained by integrating the above expres-
sion over the volume of the box is

S � NBþ N log

�
A?Lp=2

N�3
loc

�
: (73)

Substitutingp0 in the expression of pressure and evaluating
it at distance Lp, we get

pLp
� N

�locA?Lp=2
: (74)

The total energy is

E ¼
Z
ð ffiffiffi
f

p
c2�Þ r

2 sin	ffiffiffi
f

p drd	d
 ¼ CvNTc: (75)

The above expressions of pressure, entropy and energy are
essentially the same as the corresponding expressions
obtained in the previous section using the techniques of
statistical mechanics.
A simple way to understand these results is to recall the

expression of entropy of an isothermal ideal gas of N
particles, each of mass m located in a uniform weak
gravitational field g, say on the surface of the Earth. The
expression obtained e.g. in Appendix B 3, is

S ¼ NðBþ 1Þ �
�
NmgL=Tc

emgL=Tc � 1

�

þ N log

�ðTcÞCpA?
Nmg

�
emgL=Tc � 1

emgL=Tc

��
: (76)

There are two length scales (i) L, the length of the box and
(ii) 
 ¼ Tc=mg in the above expression. The ratio L=
 can
be thought of as a measure of the relative strength between
the gravitational potential energy and the thermal energy.
When 
 � L, the logarithmic dependence in the second

term becomes logðTCV
c A?LÞ which is the usual ‘‘volume of

the box’’ dependence of entropy we are familiar with.
However, if L � 
, the logarithmic dependence in the

second term changes to logðTCV
c A?
Þ showing that the

entropy now depends on a smaller volume than the total
volume of the box and is analogous to the behavior of
entropy of the gas near the horizon. This would correspond
to a box with vertical length L that is bigger than the scale
length 
 / T=g of the atmosphere, which is unrealistic in
normal circumstances. But note that if g ! 1, then 
 ! 0
for any finite L and we get the area dependence. This is
what happens in the case of a box approaching the horizon.
When the box of gas is near to the horizon the two length
scales involved are (i) a� 1=Lp, the gravitational accel-

eration near the horizon and (ii) H, the height of the box.
Since H is a macroscopic quantity, it can never be smaller
than Lp and hence we always have H � a�1 near the

horizon which gives rise to the logðTCV
c A?LpÞ dependence

of entropy. When one doubles the system by making a
scaling change Li ! �Li for i ¼ 1; 2 . . . ; D and N ! �3N
where �3 ¼ 2, the entropy of the gas near the horizon
goes as S ! �3N logA?Lp=�N instead of the usual
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S ! �3N logV=N ¼ �3S. Thus the extensive property of
entropy no longer holds and one can check that it does not
hold even in the weak field limit discussed above when
L � 
 that is, when gravitational effects subdue the ther-
mal effects along the direction of the gravitational field.

III. DISCUSSION AND CONCLUSIONS

To summarize, we have studied in two independent ways
the kinematic relationship between entropy and area near a
Rindler-like horizon in a static spacetime. We have shown
that when the box is far away from the horizon, the entropy
of the gas depends on the volume of the box in the asymp-
totic flat limit of the background spacetime, except for
small corrections due to background geometry. As the
box is moved closer to the horizon with one (leading)
edge of the box at about Planck length (Lp) away from

the horizon, the entropy shows an area dependence rather
than a volume dependence. More precisely, it depends on a
small volume A?Lp=2 of the box, up to an orderOðLp=KÞ2
where A? is the transverse area of the box and K is the
longitudinal size of the box related to the distance between
leading and trailing edge in the vertical direction (i.e. of the
gravitational field). Thus the contribution to the entropy
comes from only a fractionOðLp=KÞ of the matter degrees

of freedom and the rest are suppressed when the box
approaches the horizon. Near the horizon all the thermo-
dynamical quantities behave as though the box of gas has a
volume A?Lp=2 and is kept in a Minkowski spacetime.

Since all these effects are true in a Rindler spacetime, we
argued that they are purely kinematic in their origin and
independent of spacetime geometry. When the equilibrium
temperature of the gas is taken to be equal to the horizon
temperature, we got the familiar A?=L2

p dependence in the

expression for entropy. All these results hold in a Dþ 1
dimensional spherically symmetric spacetime.

We saw that the expression of entropy of a gas changes
from a volume dependence to an area dependence as we
change our perspective from that of an inertial observer to
an accelerated observer highlighting the role of observer
dependence in the thermal behavior of a gas. Such an
observer dependence is well-known in the familiar quan-
tum phenomenon in which the inertial vacuum state of a
scalar field in a flat spacetime appears to be a thermal state
to a Rindler observer. If we treat normal matter systems as
highly excited states of the vacuum we do expect an ob-
server dependence for all thermodynamical variables.
Here, the real surprise is probably in the fact that we
have done a purely classical analysis. The phenomenon
seems to be closer to another well-known classical fact,
viz. that an observer outside a horizon sees material sys-
tems to reach the horizon only after infinite time while the
comoving observer will cross the horizon in finite time as
shown by the comoving clock. This is not usually chris-
tened explicitly as ‘‘observer dependence’’ in literature but
it definitely is. Most of the effects studied in this paper are

related to the vanishing of the lapse function on the horizon
and the consequent infinite redshift [24]. Ultimately, this is
related to the existence of two different time coordinates
adapted to two different observers. (In the context of
inertial and Rindler frames, these are the @=@T and
@=@t.) Since the standard observer dependent temperature
etc. of the vacuum state is also related to this feature, viz.
the nonlinear relationship between the two time coordi-
nates, one may claim that the root cause of both the
classical observer dependence studied here and the quan-
tum observer dependence of the temperature of the vacuum
state are the same.
There is another aspect of our analysis which is worth

noting. In maintaining the validity of the generalized sec-
ond law, which was the original concern and motivation for
Bekenstein’s proposal, the loss of the entropy of an object
falling into the horizon is related to the increase of the
entropy of the horizon so that the total entropy never
decreases. In the conventional analysis, usually done in
the case of black holes, one considers the loss of the energy
of the object and associates it with the increase in the mass
of the black hole and hence the area of the black hole.
However as viewed from an outside observer the infalling
matter takes infinite time to reach the horizon and hence it
never crosses the horizon. One could therefore claim that
no entropy is lost. This we believe is incorrect because one
cannot operationally distinguish between a particle located
within one Planck length from the horizon and a particle
which has crossed the horizon and the former event occurs
in large but yet a finite time. Given such an operational
interpretation, it is interesting to study the matter entropy
directly. We see that although the degrees of freedom
contributing to entropy are expected to be distributed all
over the volume of the object, near the horizon only those
degrees contribute which are in a small volume A?Lp=2

and will interact with the horizon degrees of freedom.
Finally, note that we had not assumed any gravitational

field equations obeyed by the spherically symmetric metric
given in Eq. (38). It could, for example, be a solution of the
field equations for gravity in a very general theory like e.g.,
Lanczos-Lovelock theory [21,22]. Our analysis of the ther-
mal behavior of a box of gas will still remain valid and
scaling change of the entropy volume dependence to an
area dependence, as we approach the horizon, will hold.
However, for a general theory like e.g., Lanczos-Lovelock
theory inDþ 1 dimensions (D> 4), the entropy of a black
hole is not proportional to the D� 1 dimensional hyper-
surface area of the horizon. It follows that when both
matter sources and gravity are present, the gravitational
entropy is dependent on the theory of gravity whereas the
matter entropy is independent of the field equations of
gravity [25]. This is similar to the result in the case of
entanglement entropy and it is not clear whether the regu-
larization procedure of introducing a cutoff of order Planck
length near the horizon should be different, say, in the case
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of Lanczos-Lovelock theory (see e.g., [26]). Alternatively,
it could be that the entropy of matter degrees of freedom
and that of gravitational degrees of freedom scale differ-
ently in general theories and the area scaling we obtain for
the gravitational entropy is a result of no special signifi-
cance. These issue requires further study.
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APPENDIX

1. Phase space volume

To work in a general coordinate system, we need to have
an invariant description of the phase space volume PðEÞ.
We follow the definition of phase space volume PðEÞ as
given in [16], which we will describe here in brief.

To define PðEÞ one first needs to have a conserved
definition of energy E. This is done with the help of the
timelike killing vector of the static spacetime �a ¼ ð1; 0Þ.
A conserved energy E is defined through E ¼ �apa where
pa is the four-momentum of the particle. The phase space
volume is taken to be

PðEÞ ¼
Z

d3xd3p�ðE� �apaÞ: (A1)

The product d3xd3p can easily be shown to be invariant.
Hence the above expression for PðEÞ is invariant. Using the
fact papa ¼ m2, one writes �apa ¼ g00p

0 ¼ g1=200 ðm2 þ
���p�p�Þ1=2, where ��� ¼ g�� is the spatial part of the

metric. The p integration will give the volume of a 3-

sphere in momentum space of radius ðE2=g00 �m2Þ1=2
which is 4�=3

ffiffiffiffi
�

p ðE2=g00 �m2Þ3=2 Therefore, the phase

space volume takes the form

PðEÞ ¼ 4

3
�
Z ffiffiffiffi

�
p

d3xðE2=g00 �m2Þ3=2: (A2)

In Dþ 1 dimensional spacetime, it is easy to show that

PðEÞ ¼ �D=2

�ðD2 þ 1Þ
Z ffiffiffiffi

�
p

dDxðE2=g00 �m2ÞD=2: (A3)

One way to interpret Eq. (A2) as shown in [16] is to define
the energy measured by a locally defined observer ua as

Eloc ¼ uapa ¼ ð�apaÞg�1=2
00 ¼ Eg�1=2

00 . Then one can treat

ððE= ffiffiffiffiffiffiffi
g00

p Þ2 �m2Þ1=2 as the local momentum ploc. Then

PðEÞ ¼ 4

3
�
Z ffiffiffiffi

�
p

d3x½plocðx�Þ�3: (A4)

Hence one gets the integral in PðEÞ as the integral of local
momentum over the whole volume of the system, which
may not be proportional to the volume of the system.

In Minkowski spacetime with the metric �ab, the momen-
tum ploc is a constant p and one gets back the volume V ¼R ffiffiffiffi

�
p

d3x and the phase space volume takes the usual form

for a single free particle moving at relativistic momentum

p ¼ ðE2 �m2Þ1=2:
PðEÞ ¼ 4

3
�V½p�3 ¼ 4

3
�V½E2 �m2�3=2: (A5)

APPENDIX B: VARIOUS LIMITS

1. Flat spacetime

In this case f ¼ 1 and we get back our usual results in
flat spacetime. The ideal gas equation is

PV ¼ NT: (B1)

The total energy and entropy of the system is

E ¼ Nmc2 þ CvNT (B2)

S ¼ NBþ N log
TCp

p
: (B3)

2. Weak field limit: R0 � h

Consider the box of the gas to be on the surface of the
Earth (say). Let the radius of the surface of the Earth be
denoted by R0 and the height measured from the surface to
be h such that R0 � h. Then we have

f ¼
�
1� 2GM

c2ðR0 þ hÞ
�
� 1� 2GM

c2R0

þ 2GMh

c2R2
0

: (B4)

Then the pressure can be approximated as

p � p0ðfð�Cp=2ÞÞe�ðmc2=2TcÞð1�ð2GM=R0ÞÞe�ðmgh=TcÞ (B5)

� p0

�
1� 2GM

c2R0

þ 2gh

c2

�ð�Cp=2Þ

� e�ðmc2=2TcÞð1�ð2GM=R0ÞÞe�ðmgh=TcÞ: (B6)

where g ¼ GM=R2
0 is the gravitational acceleration near

the earth’s surface. Similarly the number density is

n � p0

Tc

ðfð�Cv=2ÞÞe�ðmc2=2TcÞð1�ð2GM=R0Þe�ðmgh=TcÞ (B7)

� p0

Tc

�
1� 2GM

c2R0

þ 2gh

c2

�ð�Cv=2Þ

� e�ðmc2=2TcÞð1�ð2GM=R0ÞÞe�ðmgh=TcÞ: (B8)

3. Nonrelativistic weak field limit: � � c2 , R0 � h

If we further consider the gas on the surface of the earth
to be nonrelativistic and take the limit ð
 ¼ �2GM=RÞ �
c2 in addition to R0 � h, then the power in f appearing in
the expressions for pressure and number density in the
above case can be neglected. Then we get
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p � �p0e
�ðmgh=TcÞ (B9)

and

n � �p0

Tc

e�ðmgh=TcÞ: (B10)

Therefore on normalizing, we get

�p 0 ¼
Z

ndV ¼ Nmg

A

�
emgL=Tc

emgL=Tc � 1

�
: (B11)

The energy is

E ¼ Nmc2 þ CpNT �
�

NmgL

emgL=Tc � 1

�
�mNGM

R0

:

(B12)

The total entropy is then

S ¼ NðBþ 1Þ �
�
NmgL=Tc

emgL=Tc � 1

�

þ N log

�ðTcÞCpA?
Nmg

�
emgL=Tc � 1

emgL=Tc

��
: (B13)

For the sake of comparison, we give below the standard
expressions of energy and entropy up to a constant [27].
One can see that both agree up to a constant:

E ¼ 5

2
NT �

�
NmgL

emgL=T � 1

�
(B14)

S ¼ E

T
þ N log

�ðTÞ5=2A?
Nmg

�
emgL=T � 1

emgL=T

��
: (B15)
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