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We show that it is possible to quantify the information content of a nonautonomous free field state in

curved space-time. A covariance matrix is defined and it is shown that, for symmetric Gaussian field

states, the matrix is connected to the entropy of the state. This connection is maintained throughout a

quadratic nonautonomous (including possible phase transitions) evolution. Although particle-antiparticle

correlations are dynamically generated, the evolution is isoentropic. If the current standard cosmological

model for the inflationary period is correct, in absence of decoherence such correlations will be preserved,

and could potentially lead to observable effects, allowing for a test of the model.
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I. INTRODUCTION

Quantum information theory [1], which promises im-
portant technological advances, is usually formulated in
the framework of nonrelativistic quantum mechanics. It
has achieved remarkable success both from the formal as
well as from the experimental point of view. The general-
ization of typical quantum information concepts, such as
entanglement, in a relativistic context has been attempted
in many papers [2–5], although a definitive answer is not
yet clear. It is only natural to say that, no matter how
complicated this problem may seem, quantum field theory
is the appropriate framework to formalize it. Gaussian
states, completely defined by their second moments, allow
for the generalization of important theoretical tools from
information theory to field theory. Moreover, they are of
special interest in cosmology, where particle creation is
usually treated in the inflationary period as parametric
oscillators of time-dependent frequencies. Thus, the gen-
eral theoretical scenario is that of a nonautonomous field in
curved space-times [6]. The purpose of the present work is
twofold: to show that entropy, an important quantity in the
cosmological context, is related to a quantum field theo-
retical covariance matrix, whose elements are two-point
functions; and to exemplify the result in a model used to
describe the inflationary period. We also find a general-
ization of the Robertson-Schrödinger uncertainty principle
and show that for Gaussian field states entropy is pre-
served, even through phase transitions. Thereby, entropy
production is not necessarily related to particle production,
at least for nonautonomous free fields in curved space-
times. Besides, in the absence of decoherence mechanisms,
some particle-particle quantum correlations will be present
in the final stages of the inflationary evolution and could, in
principle, have observable consequences and may help us
to test the validity of the standard cosmological model.

This paper is organized as follows. The connection
between the entropy and the uncertainty of Gaussian states
in nonrelativistic quantum mechanics, reviewed in Sec. II,

is used in III to describe the entropy dynamics of two-mode
Gaussian states in the presence of decoherence. We apply
the generalization of the covariance matrix used in these
two sections to quantum fields IV to show that, in a
cosmologically inspired model, Gaussian fields in curved
spaces preserve entropy through their evolution V. Final
considerations and conclusions can be found in Sec. VI.

II. GAUSSIAN STATES: ENTROPYAND
SCHRÖDINGER DETERMINANT

We define the covariance matrix �, for an arbitrary
quantum state �̂ of a one-dimensional particle with
moment operator p̂ and position operator q̂, as

� ¼ �qq �qp

�qp �pp

 !

¼ hq̂2i � hq̂i2 1
2 hfp̂; q̂gi � hp̂ihq̂i

1
2 hfp̂; q̂gi � hp̂ihq̂i hp̂2i � hp̂i2

 !
: (1)

The average values hÔi are defined as Trð�̂ ÔÞ. As we show
in this section, the determinant of this matrix is related to
the entropy, for Gaussian states. The general Gaussian
density operator corresponds to a displaced squeezed ther-
mal density operator

�̂ G ¼ Dð�ÞSðr; �Þ�̂�Syðr; �ÞDyð�Þ; (2)

where Dð�Þ is the displacement operator, Sðr; �Þ is the
squeezing operator, and �̂� the thermal density operator
with average number of excitations �. This decomposition
plays an important role to establish the connection between
entropy and the determinant of the covariance matrix.
More explicitly we have

D ð�Þ ¼ expð�ây � ��âÞ; (3)

S ðr;�Þ ¼ exp

�
1

2
rei�ây � 1

2
rei�â

�
; (4)
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�̂ � ¼ 1

1þ �
exp

�
ln

�
�

�þ 1

�
âyâ

�
: (5)

The dimensionless position q̂ and momentum p̂ operators
are linear combinations of creation ây and annihilation

â operators, and as usual p̂ ¼ �iðâ� âyÞ= ffiffiffi
2

p
, q̂ ¼

ðâþ âyÞ= ffiffiffi
2

p
. In order to compute the elements of the

covariance matrix for a Gaussian state, it is sufficient to
know that the following averages for thermal states:

hâây�̂�
i ¼ hâyâ�̂�

i þ 1 ¼ �þ 1; (6)

and the following transformation properties. The average
value of a function of creation and annihilation operators is

hfðâ; âyÞi�G
¼ Trðfðâ; âyÞDð�ÞSðr;�Þ�̂�Syðr;�ÞDyð�ÞÞ
¼ TrðSyðr;�ÞDyð�Þfðâ; âyÞDð�ÞSðr;�Þ�̂�Þ
¼ TrðfðÂ; ÂyÞ�̂�Þ;

where Â ¼ Syðr; �ÞDyð�ÞâDð�ÞSðr; �Þ ¼ coshðrÞâþ
ei� sinhðrÞây þ �. If fðx; yÞ is a quadratic polynomial we
need only the nonzero averages (6). Now, the elements of
the covariance matrix

�pp ¼
�
�þ 1

2

�
ðcoshð2rÞ � cosð�Þ sinhð2rÞÞ;

�qq ¼
�
�þ 1

2

�
ðcoshð2rÞ þ cosð�Þ sinhð2rÞÞ;

�qp ¼
�
�þ 1

2

�
sinð�Þ sinhð2rÞ;

enable us to compute the determinant,

D ¼ �pp�qq � �2
qp ¼

�
�þ 1

2

�
2
; (7)

which turns out to be a function of only �, the mean
number of excitations of the initial thermal state, ��. The
Schrödinger determinant (7) contains the famous
Heisenberg’s uncertainty principle as a particular case.

The entropy of the Gaussian state is equal to the entropy
of the corresponding thermal state,

S½�̂G� ¼ �Trð�̂G ln�̂GÞ
¼ �TrðDS�̂�SyDy lnðDS�̂�SyDyÞÞ
¼ �TrðDS�̂�SyDyDS lnð�̂�ÞSyDyÞ
¼ �TrðSyDyDS�̂� lnð�̂�ÞÞ ¼ �Trð�̂� lnð�̂�ÞÞ
¼ S½�̂��:

Here the arguments of the displacement D and squeezing
S operators were omitted. The thermal state �̂� is diagonal
in the basis of number of excitations, �̂� ¼ P

k�
kjki�

hkj=ð1þ �Þ, where � ¼ �=ð�þ 1Þ. The entropy of the
thermal state, on the other hand, is given by

S½�̂�� ¼ �X1
k¼0

�k

�þ 1
ln

�
�k

�þ 1

�

¼ lnð�þ 1Þ
�þ 1

X1
k¼0

�k � ln�

�þ 1

X1
k¼0

k�k:

Taking into account the well-known results for infinite
sums we obtain the entropy of the thermal state,

S½�̂�� ¼ ð�þ 1Þ lnð�þ 1Þ � � ln� ¼ S½�̂G�; (8)

which also is a function of �, the mean number of thermal
excitations. We have shown that the entropy of Gaussian
states �G is a function of D, the determinant of its covari-
ance matrix �,

S½�̂G� ¼
� ffiffiffiffi

D
p þ 1

2

�
ln

� ffiffiffiffi
D

p þ 1

2

�

�
� ffiffiffiffi

D
p � 1

2

�
ln

� ffiffiffiffi
D

p � 1

2

�
: (9)

Now, a technical digression is in order. It is important to
realize that major simplifications were possible due to the
specific decomposition of the Gaussian state employed here
[see (2)]. Although (9) is a kinematical relationship, it is
more useful in the study of dynamical evolution, whether
unitary or nonunitary, driven by quadratic Hamiltonians in
the former case, or quadratic Liouvillians in the latter.

III. DYNAMICAL EVOLUTION OF ENTROPY

In this section we show how our approach can be used in
dynamical situations. We know, from the previous section,
that in order to obtain the entropy dynamics all we need to
calculate is the time evolution of the covariance matrix
elements, which turns out to be much easier than the
dynamics of the whole state, at least for Gaussian states.
The full Gaussian state can be reconstructed at any time, as
a function of the covariance matrix elements, even for
nonunitary quadratic dynamics, making it possible to study
how quantum correlations are washed out by dissipation.
We consider two initially entangled modes subject to a

Lindblad-type dynamics. This example is simulating the
physical situation when two correlated particles are cre-
ated, e.g. in the interior of two colliding heavy nuclei, and
then cross a dissipative medium before they are released to
the detector. The Gaussian state �GðtÞ that we consider,

�̂ GðtÞ ¼ S12ðzðtÞÞ�̂�1ðtÞ�̂�2ðtÞS
y
12ðzðtÞÞ; (10)

is not the most general two-mode Gaussian state. However
it is adequate for the purpose of this section. Here �̂�1ðtÞ
(�̂�2ðtÞ) is a thermal state (5) for the first (second) mode

with �1ðtÞ (�2ðtÞ) mean excitations, and

S 12ðzÞ ¼ expðzây1 ây2 � z�â1â2Þ (11)

is the two-mode squeezing operator.
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Our nonunitary dynamical evolution

d�̂

dt
¼ ðL1 þL2Þ�̂ðtÞ

preserves the chosen form of the initial state (10). The
Liouvillian superoperator Li, i ¼ 1; 2

Li ¼ �i!i½âyi âi�� þ �ið �ni þ 1Þð2âi � âyi � �âyi âi � âyi âi�Þ
þ �i �nið2âyi � âi � �âiâyi � âiâ

y
i �Þ;

corresponds to a harmonic mode with frequency !i

coupled to a heat bath, with mean number of excitations
�ni. The relaxation time of the first mode �1 (second mode
�2) is the inverse of the relaxation rate �1 (�2).

The elements of the covariance matrix �2

�2 ¼

�q1q1 �q1q2 �q1p1
�q1p2

�q1q2 �q2q2 �q2p1
�q2p2

�q1p1
�q2p1

�p1p1
�p1p2

�q1p2
�q2p2

�p1p2
�p2p2

0
BBBBB@

1
CCCCCA (12)

are defined by

�rirj ¼
1

2
Trðfr̂i; r̂jg�̂Þ � Trðr̂i�̂ÞTrðr̂j�̂Þ;

where r̂ can be q̂ or p̂, and i ¼ 1; 2. Here, besides the

averages of âiâ
y
i (and âyi âi) in the thermal state, we need

the following transformation relations:

Sy
12ðzÞ

â1

â2

 !
S12ðzÞ¼ coshðjzjÞ â1

â2

 !
þei� sinhðjzjÞ ây2

ây1

0
@

1
A;

where z ¼ jzjei�.
Under the assumed conditions, the elements of the

symmetric covariance matrix (12) acquires a particularly
simple form,

�q1q1 ¼ �p1p1

¼ 1

2
ð�1 � �2Þ þ 1

2
ð�1 þ �2 þ 1Þ coshð2jzjÞ;

�q2q2 ¼ �p2p2

¼ 1

2
ð�2 � �1Þ þ 1

2
ð�1 þ �2 þ 1Þ coshð2jzjÞ;

�q1q2 ¼ ��p1p2

¼ 1

2
ð�1 þ �2 þ 1Þ sinhð2jzjÞ cosð�Þ; �q1p1

¼ �q2p2

¼ 0;

�q1p2
¼ �q2p1

¼ 1

2
ð�1 þ �2 þ 1Þ sinhð2jzjÞ sinð�Þ:

Initially we assume a two-mode squeezed state, that is
�1ðt ¼ 0Þ ¼ 0 ¼ �2ðt ¼ 0Þ, with zðt ¼ 0Þ ¼ jzj0 � 0.
The covariance matrix of this state is

1

2

coshð2jzj0Þ sinhð2jzj0Þ 0 0

sinhð2jzj0Þ coshð2jzj0Þ 0 0

0 0 coshð2jzj0Þ �sinhð2jzj0Þ
0 0 �sinhð2jzj0Þ coshð2jzj0Þ

0
BBBBB@

1
CCCCCA:

Now, we need the equations of motion for the elements
of the covariance matrix. In this case, it is easier to solve

the equations of motion of the expected values of âðyÞi âðyÞj .

Thus, it is worth knowing that, for the considered form of
the Gaussian state (10), we have

hây1 â1i þ hây2 â2i þ 1 ¼ ð1þ �1 þ �2Þ coshð2jzjÞ;
hây1 â1i � hây2 â2i ¼ �1 � �2;

2hâ1â2i ¼ ð1þ �1 þ �2Þ sinhð2jzjÞei�:
We set niðtÞ ¼ hâyi âiiðtÞ and 	ðtÞ ¼ hâ1â2iðtÞ. The equa-
tions of motion of these expectation values,

dni
dt

¼ �2�ini þ �ni; i ¼ 1; 2;

d	

dt
¼ �ð�1 þ �2 þ i!1 þ i!2Þ	;

are easily solvable. The initial conditions are given by

n1ð0Þ þ n2ð0Þ þ 1 ¼ coshð2jzj0Þ; n1ð0Þ � n2ð0Þ ¼ 0;

2	ð0Þ ¼ sinhð2jzj0Þ:
From the first and second equations above we find

n1ð0Þ ¼ n2ð0Þ ¼ sinh2ðjzj0Þ:
The solutions of the dynamical equations for the elements
of the covariance matrix are

niðtÞ ¼ sinh2ðjzj0Þe�2�it þ �nið1� e�2�itÞ;

	ðtÞ ¼ sinhð2jzj0Þ
2

e�ð�1þ�2Þte�ið!1þ!2Þt:

The time dependence parameters of the Gaussian state
�̂GðtÞ are functions of these elements

zðtÞ ¼ e�ið!1þ!2Þt

4
ln

�
1þ n1ðtÞ þ n2ðtÞ þ 2j	ðtÞj
1þ n1ðtÞ þ n2ðtÞ � 2j	ðtÞj

�

�1;2ðtÞ þ 1

2
¼ �n1ðtÞ � n2ðtÞ

2

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ n1ðtÞ þ n2ðtÞÞ2 � ð2j	ðtÞjÞ2

q
:

The relation between the entropy and the covariance
matrix can be introduced via a generalization of the
Robertson-Schrödinger uncertainty relation for two or
more degrees of freedom [7],

CJC ¼ ℏ2

4
J: (13)

Here the simplectic matrix J is defined as
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J ¼

0 0 1 0

0 0 0 1

�1 0 0 0

0 �1 0 0

0
BBBBB@

1
CCCCCA:

The uncertainty relation (13) works if the state is symmet-
ric under the exchange of the 2 degrees of freedom.

For the sake of simplicity we consider identical baths. In
this case the entropy of the Gaussian state, S ¼ 2ð�ðtÞ þ
1Þ logð�ðtÞ þ 1Þ � 2�ðtÞ log�ðtÞ, can also be written in
terms of the determinant of the covariance matrix D ¼
ð12 þ �ðtÞÞ4, or in terms of the uncertainty relation (13),

which gives ℏ2ð�þ 1=2Þ2J. We have assumed �1 ¼ �2 ¼
�. In the asymmetric case it is still possible to quantify the
Gaussian state information using the determinants of the
2� 2 submatrices of the covariance matrix. A full dynam-
ics of this sort is given in [8].

As can be seen in Fig. 1, even in this simple case one
observes two time scales. One of them, related to the
particle production rate, is larger than the time scale for
decoherence.

IV. QUANTUM FIELDS

As in II, in this section we study only kinematics, that is,
we generalize the concept of a covariance matrix to quan-
tum fields, and derive a relation between its determinant
and the entropy, for symmetric Gaussian states of complex
scalar fields. We find a generalization of the Robertson-

Schrödinger uncertainty principle. We show that it is pos-
sible to quantify the information content of a Gaussian
symmetric field state in terms of its second
moments only.
We will consider a complex scalar field subjected to a

flat-space Robertson-Walker metric. The associated metric
is given by

d2s ¼ �d�2 þ a2ðzÞðdx2 þ dy2 þ dz2Þ: (14)

It is very convenient to define the conformal time as


ðtÞ ¼
Z t

t0

d�

aðzÞ (15)

and to explicitly write down the original Lagrangian

S ¼
Z

a3ðtÞ
�
_̂
�

_̂
�

� � 1

a2ðtÞ r�̂r�̂� �m2�̂�̂�
�

(16)

in terms of the auxiliary field �̂ ¼ að
Þ�̂. We get

S¼
Z
d3xd


�
�̂0�̂0��r�̂r�̂��

�
m2a2�a00

a

�
�̂�̂�

�
; (17)

where the prime denotes derivation with respect to 
. We
can define the Hamiltonian in the usual way and expand
the fields and their conjugated momenta in their Fourier
components

�̂ðx; 
Þ ¼
Z d3k

ð2�̂Þ3 �̂kð
Þeik�x; (18a)

�̂ðx; 
Þ ¼
Z d3k

ð2�̂Þ3 �̂kð
Þe�ik�x; (18b)

�̂yðx; 
Þ ¼
Z d3k

ð2�̂Þ3 �̂
y
k ð
Þe�ik�x; (18c)

�̂yðx; 
Þ ¼
Z d3k

ð2�̂Þ3 �̂
y
k ð
Þeik�x: (18d)

It is usual to define the time-dependent mass

m2ð
Þ ¼ m2a2ð
Þ � a00ð
Þ
að
Þ ; (19)

and the following annihilation and creation operators:

âkð
Þ ¼ ið’�
kð
Þ�̂y

k � ’0�
k ð
Þ�̂kÞ ¼ ðâyk ð
ÞÞy; (20a)

b̂kð
Þ ¼ ið’�
kð
Þ�̂k � ’0�

k ð
Þ�̂y
k Þ ¼ ðb̂yk ð
ÞÞy: (20b)

The time-dependent functions ’kð
Þ satisfy the equation
of motion

’00
kð
Þ þ ðk2 þm2ð
ÞÞ’kð
Þ ¼ 0; (21)

and the condition

ℏ ð’0�
k ð
Þ’kð
Þ � ’0

kð
Þ’�
kð
ÞÞ ¼ i: (22)

Adopting the classical solution as expansion coefficients
for the field in this context is of extreme technical impor-
tance, as will become clear later. They are specially

 0

0.5

 1

1.5

 2

2.5

 3

3.5

 4

 0  0.25  0.5  0.75  1  1.25  1.5

FIG. 1 (color online). Dynamics of a symmetric two-mode
Gaussian state coupled to local identical baths with mean num-
ber of excitations �n ¼ 1 and relaxation rates � ¼ 1. The pa-
rameters of the initial state (10) are z ¼ ffiffiffi

2
p

and �1 ¼ 0 ¼ �2.
The solid (black) line depicts the evolution of twice the norm of
the two-mode squeezing parameter (2jzj), the dashed (blue) line
corresponds to the entropy of the state S, and the dotted (red) line
corresponds to the mean number of excitations of one of the
modes, n.
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important when one includes a relativistic background.
This is one of the vital technical points of this paper.

Since the equation of motion does not depend on k but
only on its magnitude, the coefficients ’k can be simply
written as ’k. For example, the condition (22) reduces to

ℏ ð’0�
k ð
Þ’kð
Þ � ’0

kð
Þ’�
kð
ÞÞ ¼ i: (23)

For future reference we also give the expressions of the
creation and annihilation operator in terms of the fields

�̂k ¼ ℏð’kð
Þâkð
Þ þ ’�
kð
Þb̂yk ð
ÞÞ; (24a)

�̂y
k ¼ ℏð’�

kð
Þâyk ð
Þ þ ’kð
Þb̂kð
ÞÞ; (24b)

�̂k ¼ ℏð’0�
k ð
Þâyk ð
Þ þ ’0

kð
Þb̂kð
ÞÞ; (24c)

�̂y
k ¼ ℏð’0

kð
Þâkð
Þ þ ’0�
k ð
Þb̂yk ð
ÞÞ: (24d)

In order to evaluate the two-point correlation functions
we assume the most general Gaussian state, which besides
being very general, implies a considerable technical sim-
plification. This state is not necessarily pure and this
impurity can mask quantum effects present in the initial
Gaussian states, such as squeezing or, more generally, sub-
Poissonian statistics, as will become clear in the examples.

We now define a covariance matrixCðx; y; 
Þ, which is a
direct generalization of the one proposed in [7], as

Cðx; y; 
Þ

¼

h�̂ �̂i h�̂�̂yi 1
2 hf�̂; �̂gi 1

2 hf�̂; �̂ygi
h�̂y�̂i h�̂y�̂yi 1

2 hf�̂y; �̂gi 1
2 hf�̂y; �̂ygi

1
2 hf�̂; �̂gi 1

2 hf�̂; �̂ygi h�̂ �̂i h�̂�̂yi
1
2 hf�̂y; �̂gi 1

2 hf�̂y; �̂ygi h�̂y�̂i h�̂y�̂yi

0
BBBBBB@

1
CCCCCCA;

(25)

where the dependence of the entries of the matrix on x, y,
and 
 has been ignored, for the sake of clarity. The
example below shows how the two-point functions are
calculated. We have

hf�̂; �̂gi ¼ hf�̂; �̂giðx; y; 
Þ
¼ h�̂ �̂iðx; y; 
Þ þ h�̂ �̂iðx; y; 
Þ
¼ Trð�̂ðx; 
Þ�̂ðy; 
Þ�̂Þ þ Trð�̂ðx; 
Þ�̂ðy; 
Þ�̂Þ;

with �̂ ¼ �̂ð
Þ being the density operator for the field, at
time 
. The average values of the fields were assumed to
vanish h�̂i ¼ 0 ¼ h�̂i without losing generality. For fields
of nonvanishing average it suffices to subtract the mean
values. For example, instead of hf�̂; �̂gi, we would con-
sider hf�̂� h�̂i; �̂� h�̂igi.

In terms of the covariance matrix, we will show that the
condition for saturation of Robertson-Schrödinger uncer-
tainty relation in quantum field theory reads

Z
d3ud3vCðx;u;
ÞJðu;vÞCðv;y;
Þ¼ℏ2

4
Jðx;yÞ; (26)

where Jðx; yÞ ¼ ð3Þðx� yÞ~J, and

~J ¼

0 0 1 0

0 0 0 1

�1 0 0 0

0 �1 0 0

0
BBBBB@

1
CCCCCA;

is a simplectic matrix. For the sake of economy, the left-
hand side of Eq. (26) will be referred to as Dðx; y; 
Þ.
In what follows we consider the following Gaussian

state, defined as

�̂ð
0Þ ¼
Y
k

S1ðrk�kÞS2ðrk�kÞ�̂ð1Þ
�k �̂

ð2Þ
�kS

y
2 ðrk�kÞSy

1 ðrk�kÞ;

(27)

where S1ðrk�kÞ and S2ðrk�kÞ are squeezing operators
[defined in (4)], acting on the modes a and b, respectively.

The mean number of excitations of the thermal state �̂ð1Þ
�k ,

corresponding to mode a, is �k. The Gaussian state defined
here, a squeezed thermal state, includes as particular cases
the vacuum, squeezed states, and thermal states. It is worth
pointing out the symmetry between particles and antipar-
ticles, given by the symmetry of the state (27) under
exchange of the modes a and b. An additional rotation
symmetry can be seen: although the product is over k, the
squeezing parameters and the number of excitations
depend only on its norm, k. For example,

�̂ ð1Þ
�k ¼ 1

1þ �k

exp

�
ln

�
�k

�k þ 1

�
âyk âk

�
:

The calculation of the covariance matrix is a straightfor-
ward procedure. As an illustration we presently calculate
its element C1;2ðx; t; 
Þ,

h�̂�̂yixy ¼
Z d3q

ð2�Þ3
d3k

ð2�Þ3 e
iq�xe�ik�y Trð�̂qð
Þ�̂y

k ð
Þ�̂Þ

¼
Z d3q

ð2�Þ3
d3k

ð2�Þ3 e
iq�xe�ik�yh�̂q�̂

y
k i;

where we used the Fourier decomposition of the field,
given by (18). If we use the expressions (24a) and (24b)
we find

h�̂q�̂
y
k i ¼ ℏ2hð’qð
Þâqð
Þ þ ’�

qð
Þb̂yq ð
ÞÞð’�
kð
Þâyk ð
Þ

þ ’kð
Þb̂kð
ÞÞi: (28)

This expression is of the form f ¼ fhðâq; b̂yq ; âyk ; b̂kÞi

f ¼ Tr

�
fðâq; b̂yq ; âyk ; b̂kÞ

Y
l

S1lS2l�̂
ð1Þ
�l �̂

ð2Þ
�l S

y
2lS

y
1l

�
;

which can be recast as
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f ¼ Tr

�Y
l

Sy
2lS

y
1lfðâq; b̂yq ; âyk ; b̂kÞS1lS2l�̂

ð1Þ
�l �̂

ð2Þ
�l

�

¼ Tr

�Y
l

fðÂq; B̂
y
q ; Â

y
k ; B̂kÞ�̂ð1Þ

�l �̂
ð2Þ
�l

�
;

where the transformed operator âq is

Â q ¼ Sy
1qâqS1q ¼ coshðrqÞâq þ ei�q sinhðrqÞâyq

¼ xqâq � y�qâ
y
q :

The short notation xq ¼ coshðrqÞ, yq ¼ �ei�q sinhðrqÞ is
useful to perform this calculation. Taking into account the
equality above, and similar relationships which hold for the

other operators ðB̂y
q ; Â

y
k ; B̂kÞ, we have

h�̂q�̂
y
k i�G

¼ ℏ2hð’qðxqâq � y�qâ
y
q Þ þ ’�

qðx�qb̂yq � yqb̂qÞÞ
� ð’�

kðx�kâyk � ykâkÞ þ ’kðxkb̂k � y�kb̂
y
k ÞÞiTh

¼ ℏ2h’qxqâq’
�
kx

�
kâ

y
k þ ’qy

�
qâ

y
q’�

kykâkiTh
þ ℏ2h’�

qx
�
qb̂

y
q’kxkb̂k þ ’�

qyqb̂q’ky
�
kb̂

y
k iTh;

(29)

with the subscript reminding us that the averages on the
right-hand side are taken on the thermal density operator.
Taking into account that

hâyq âkiTh ¼ ð2�Þ3�kðq� kÞ ¼ hb̂yq b̂kiTh
we can write

h�̂q�̂
y
k i ¼ ℏ2ðq� kÞ’k’

�
kðxkx�kðnk þ 1Þ þ y�kyknk

þ x�kxknk þ yky
�
kðnk þ 1ÞÞ

¼ ℏ2ðq� kÞj’kj2ðjxkj2 þ jykj2Þð2nk þ 1Þ:
Finally we can write the first term as

h�̂�̂yixy¼
Z d3q

ð2�Þ3
d3k

ð2�Þ3e
iq�xe�ik�yℏ2

�ðq�kÞj’kj2ðjxkj2þjykj2Þð2nkþ1Þ

¼ℏ2
Z d3k

ð2�Þ3e
ik�ðx�yÞj’kj2ðjxkj2þjykj2Þð2nkþ1Þ:

After evaluation of all of the elements of the covariance
matrix we get

C ðx; y; 
Þ ¼ ℏ2
Z d3k

ð2�Þ3 ð2nk þ 1ÞC1ðk; x; y; 
Þ;

where the new matrix C1 is

eik�ðxþyÞc1 eik�ðx�yÞc2 eik�ðx�yÞc3 eik�ðxþyÞc4
eik�ðy�xÞc2 e�ik�ðxþyÞc1 e�ik�ðxþyÞc4 eik�ðy�xÞc3
eik�ðy�xÞc3 e�ik�ðxþyÞc4 e�ik�ðxþyÞc5 eik�ðy�xÞc6
eik�ðxþyÞc4 eik�ðx�yÞc3 eik�ðx�yÞc6 eik�ðxþyÞc5

0
BBBBB@

1
CCCCCA:

The explicit expressions for the coefficients ci are as
follows:

c1 ¼ �’2
kxky

�
k � ð’�

kÞ2x�kykc2¼ j’kj2ðjxkj2 þ jykj2Þ
c3 ¼ 1

2
ð’0

k’
�
k þ ’k’

0�
k Þðjxkj2 þ jykj2Þ

c4 ¼ x�kyk’
�
k’

0�
k þ xky

�
k’k’

0
k

c5 ¼ �’0
k’

0
kxky

�
k � ’0�

k ’
0�
k x

�
kyk

c6 ¼ j’0
kj2ðjxkj2 þ jykj2Þ:

Now we are able to compute Dðx; y; 
Þ, the left-hand
side of (26),

Dðx; y; 
Þ ¼
Z

d3ud3vCðx;u; 
ÞJðu;vÞCðv; y; 
Þ

¼ ℏ4
Z

d3u
d3k

ð2�Þ3
d3q

ð2�Þ3 ð2nk þ 1Þ

� ð2nq þ 1ÞC1ðk; x;u; 
Þ~JC1ðq; u; y; 
Þ

¼ ℏ4
Z d3k

ð2�Þ3 ð2nk þ 1Þ2D1ðk; x; y; 
Þ:

After integration over u and q matrix D1ðx; y; 
Þ reads
0 0 �d1e

ik�ðx�yÞ d2e
ik�ðxþyÞ

0 0 d2e
�ik�ðxþyÞ �d1e

�ik�ðx�yÞ

d1e
�ik�ðx�yÞ �d2e

�ik�ðxþyÞ 0 0

�d2e
ik�ðxþyÞ d1e

ik�ðx�yÞ 0 0

0
BBBBB@

1
CCCCCA;

with

d1 ¼ c23 þ c24 � c1c5 � c2c6;

d2 ¼ c1c6 � 2c3c4 þ c2c5:

After the use of the explicit expressions of the coefficients
ci we obtain

d1 ¼ 1

4
ð’0�

k ð
Þ’kð
Þ � ’0
kð
Þ’�

kð
ÞÞ2ðjxkj2 � jykj2Þ2

¼ 1

4

��1

ℏ2

�
d2 ¼ 0;

where the Wronskian (23) and the explicit form of the
coefficients xk and yk was used.
Making the appropriate simplifications, we find that the

left-hand side of (26), evaluated at time 
0, is given by

D ðx; y; 
Þ ¼ ℏ2

4
~J
Z d3k

ð2�Þ3 e
ik�ðx�zÞð2�kð
0Þ þ 1Þ2: (30)

The integral above is a smoothed version of a Dirac delta
function. For the vacuum state (and for squeezed vacuum
states) �k ¼ 0, we recover the delta function behavior. We
have written
0 instead of 
 to stress the fact that, although

J. E. PARREIRA, K.M. FONSECA-ROMERO, AND M.C. NEMES PHYSICAL REVIEW D 83, 064033 (2011)

064033-6




 is an arbitrary instant of time, it is fixed. Dynamical
considerations are left to the following section.

It is easy to find a relationship between entropy and the
covariance matrix in quantum field theory. Let us remem-
ber that entropy is defined, for separable field states, as

S
�Y

k

�̂k

�
¼
Z d3k

ð2�Þ3 Trð�̂k ln�̂kÞ:

If the field happens to be in a Gaussian state like (27) then
we can write

S
�Y

k

�̂k

�
¼
Z d3k

ð2�Þ3 2ðð�k þ 1Þ lnð�k þ 1Þ � �k ln�kÞ;

where the factor of 2 comes from the existence of two
modes, a and b for the same value of k. Now, given the
result (30)Z

d3�e�ik��Dðzþ �; z; 
Þ

¼
Z

d3�e�ik�� ℏ
2

4
~J
Z d3q

ð2�Þ3 e
iq��ð2�k þ 1Þ2

¼ ℏ2

4
~Jð2�k þ 1Þ2:

Since �~J is the inverse of ~J, we can write

�k ¼ 1

2ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Tr

�Z
d3�e�ik��~JDðzþ �; z; 
0Þ

�s
� 1

2
:

Now, entropy depends only on the numbers �k and hence
only on the covariant matrix.

Thermal state

A particularly important example is a thermal state,
with inverse temperature �. The average value of the
excitations is

�kð
0Þ ¼ e��ℏ!kð
0Þ

1� e��ℏ!kð
0Þ ; !2
kð
0Þ ¼ k2 þm2ð
0Þ;

so that the function �ðx; z; 
0Þ can be written as

�ðx;z; 
0Þ ¼ ℏ2

4

Z d3k

ð2�Þ3 e
ik�ðx�zÞcoth2

�
�!kð
0Þ

2

�
:

For any temperature the argument of the hyperbolic cotan-
gent function can be small, but not smaller than �ℏm=2, or
large, depending on the value of k. Hence, the asymptotic
behavior of this function

coth2
�
�ℏ!k

2

�
! 4

�2ℏ2!2
k

if �ℏ!k � 1; (31)

coth 2

�
�ℏ!k

2

�
! 1þ 4e�ðð�ℏ!kÞ=2Þ if �ℏ!k 	 1;

(32)

can be used to approximate it as follows:

coth 2

�
�ℏ!k

2

�

 4e�ðð�2ℏ2!2

k
Þ=4Þ

�2ℏ2!2
k

þ 1þ 4e�ðð�ℏ!kÞ=2Þ;

where the maximum fractional error is of the order of 20%.
Note that the asymptotic result (31) is small for large
arguments and the asymptotic result (32) is small for small
arguments, so the simpler approximation [9],

coth 2

�
�ℏ!k

2

�

 4

�2ℏ2!2
k

þ 1;

can be used, giving a maximum fractional error of the same
magnitude (although the integrated fractional error is
larger). Employing the second approximation we obtain

�ðx; z; 
0Þ 
 ℏ2

4
3ðx� zÞ

þ ℏ2

4

Z d3k

ð2�Þ3
4eik�ðx�zÞ

�2ℏ2ðk2 þm2ð
0ÞÞ


 ℏ2

4
3ðx� zÞ þ e�mð
0Þjx�zj

4��2jx� zj ;

where the second term can be interpreted as a classical
correction, because it does not depend on Planck’s
constant.

V. QUANTUM FIELD EVOLUTION

The calculation of the left-hand side of (26) can be
extended to other times as follows. After the promotion
of the fields to field operators we obtain the Hamiltonian

Ĥð
Þ ¼
Z d3k

ð2�Þ3 ð�̂
y
k�̂k þ ðk2 þm2ð
ÞÞ�̂y

k �̂kÞ;

where we have defined the time-dependent mass

m2ð
Þ ¼ m2a2ð
Þ � a00ð
Þ
að
Þ :

In terms of the annihilation and creation operators

�̂y
k�̂k þ ðk2 þm2ð
ÞÞ�̂y

k �̂k

¼ ℏ2ð _��
k _�k þ!2

k�
�
k�kÞðâyk âk þ b̂yk b̂k þ 1Þ

þ ℏ2ð _��
k _��

k þ!2
k�

�
k�

�
kÞâyk b̂yk

þ ℏ2ð _�k _�k þ!2
k�k�kÞâkb̂k

¼ Aðâyk âk þ b̂yk b̂k þ 1Þ þ Bâyk b̂
y
k þ B�âkb̂k:

The equations of motion for the annihilation and creation
operators are
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iℏ _̂ak ¼ ½Ĥð
Þ; âk� / �Aâk � Bb̂yk

iℏ _̂b
y
k ¼ ½Ĥð
Þ; b̂yk � / B�âk þ Ab̂yk

iℏ _̂bk ¼ ½Ĥð
Þ; b̂k� / �Ab̂k � Bâyk
iℏ _̂ayk ¼ ½Ĥð
Þ; âyk � / B�b̂k þ Aâyk :

Taking into account the symmetry of the equations the
solutions can be written as

âkð
Þ
âyk ð
Þ
b̂kð
Þ
b̂yk ð
Þ

0
BBBBBB@

1
CCCCCCA ¼

uk 0 0 vk

0 u�k v�
k 0

0 vk uk 0

v�
k 0 0 u�k

0
BBBBB@

1
CCCCCA

âkð
0Þ
âyk ð
0Þ
b̂kð
0Þ
b̂yk ð
0Þ

0
BBBBBB@

1
CCCCCCA;

with time-dependent coefficients uk ¼ ukð
;
0Þ, vk ¼
vkð
;
0Þ. In order to preserve the canonical commutation
relations we must have

jukj2 � jvkj2 ¼ 1:

Notice that this evolution corresponds to a time-dependent
two-mode squeezing, defined in (11),

â kð
Þ ¼ Sy
12;kðzð
;
0ÞÞâkð
0ÞS12;kðzð
;
0ÞÞ:

Physically, we have a mechanism of production of
correlated particles and antiparticles.

The calculation of the covariance matrix (25) proceeds
as in the previous section. However, the two-point func-
tions are now understood as

h�̂ �̂i ¼ h�̂ �̂iðx; y; 
Þ ¼ Trð�̂ðx; 
Þ�̂ðy; 
Þ�̂ð
0ÞÞ:

The fields �̂ðx; 
Þ, �̂yðx; 
Þ, etc., are functions of the

creation and annihilation operators âkð
Þ, b̂yk ð
Þ, etc. To
highlight this fact we write �̂ðâkð
Þ; . . . ; b̂yk ð
ÞÞ. In the

two-point function used above as an example, we would
write

�̂ �̂ ¼ Trð�̂ðâkð
Þ; . . . ; b̂yk ð
ÞÞ�̂ðâkð
Þ; . . . ; b̂yk ð
ÞÞ�̂ð
0ÞÞ
¼ Trðfðâkð
Þ; . . . ; b̂yk ð
ÞÞ�̂ð
0ÞÞ

¼ TrðSy
12fðâkð
0Þ; . . . ; b̂yk ð
0ÞÞS12�̂ð
0ÞÞ:

We see that the effect of evolution is an additional trans-
formation on the operators. For example, the calculation of
the element C12 of the previous section remains essentially
unaltered. For example, (29), now reads

h�̂q�̂
y
k i�G

¼ ℏ2hSy
12ð’qðxqâq � y�qâ

y
q Þ

þ ’�
qðx�qb̂yq � yqb̂qÞÞð’�

kðx�kâyk � ykâkÞ
þ ’kðxkb̂k � y�kb̂

y
k ÞÞS12iTh:

Proceeding with the evaluation of C12 we finally obtain

h�̂�̂yixy ¼ ℏ2
Z d3k

ð2�Þ3 e
ik�ðx�yÞc2ðkÞ;

where the coefficient c2ðkÞ is slightly more complicated,

ð2nk þ 1Þðjxkj2 þ jykj2Þð’�u�k þ ’vkÞð’uk þ ’�v�
kÞ:

After obtaining all of the elements of the covariance matrix
we follow the procedure sketched in the previous section.
We finally obtain that the left-hand side of (26), evaluated

at time 
, is given by ℏ2�ðx; z; 
0Þ~J=4, that is, it is
conserved in the course of the evolution.

VI. CONCLUSIONS

We established a quantum field theoretical counterpart
of well-known quantum mechanical measures of informa-
tion. We consider 1 and 2 degrees of freedom and establish
the connection between entropy and the covariance matrix.
We generalize this important concept (covariance matrix)
to a quantum field theoretical scenario of nonautonomous
fields in curved space-time. We work with symmetric
complex fields, showing that in this case it is also possible
to implement a relationship between the covariance matrix
and the state entropy. We show that unitary (even non-
autonomous) evolutions are isoentropic, a result also ob-
tained in [10]. This does not mean, however, that the
dynamics does not produce quantum correlations. In the
case studied we show that particle-antiparticle correlations
are dynamically generated and, provided environmental
effects are weak enough, such correlations remain as a
hallmark of the inflationary period.
There are some scenarios in which it would be natural to

use the tools introduced here, such as variational Gaussian
approximations (however, the evolution will be always
isoentropic), proposals of a decoherence mechanism, by
interaction with other fields or by lack of information of
correlation functions higher than the second order.
Systematic approximations beyond Gaussian states have
been derived [11,12], but their technical complexities pre-
vent current use. Thus it would be highly desirable to find
suitable approximation schemes in which the decoherence
mechanisms, and their consequences, become more trans-
parent. We hope our results to be useful as a first step in that
direction, because they will be of use for interacting fields.
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