
Gravitational wave asteroseismology with fast rotating neutron stars

Erich Gaertig1 and Kostas D. Kokkotas1,2

1Theoretical Astrophysics, Eberhard-Karls University of Tübingen, Tübingen 72076, Germany
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We investigate damping and growth times of the quadrupolar f mode for rapidly rotating stars and a

variety of different polytropic equations of state in the Cowling approximation. This is the first study of

the damping/growth time of these types of oscillations for fast-rotating neutron stars in a relativistic

treatment where the spacetime degrees of freedom of the perturbations are neglected. We use these

frequencies and damping/growth times to create robust empirical formulae which can be used for

gravitational-wave asteroseismology. The estimation of the damping/growth time is based on the

quadrupole formula and our results agree very well with Newtonian ones in the appropriate limit.
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I. INTRODUCTION

During the birth of a proto-neutron star or the merging of
two older compact stars, violent nonradial oscillations may
be excited, resulting in the emission of significant amounts
of gravitational radiation [1]. The detection of gravitational
waves from oscillating neutron stars will allow the study of
their interior, in the same way as helioseismology provides
information about the interior of the Sun. It is expected
that the identification of specific pulsation frequencies in
the observational data will reveal the true properties of
matter at densities that cannot be probed today by any
other experiment. In this paper, we present new empirical
relationships for mode frequencies and damping times of
the quadrupolar f mode for rapidly rotating neutron stars,
extending previous studies which deal with the nonrotating
case [2–4].

These original suggestions about gravitational-wave as-
teroseismology have been supported by many complemen-
tary works which studied specific features of oscillation
spectra for various compact objects, such as typical neu-
tron stars [5–12], but also for strange [13–15] or superfluid
stars [16,17]. More recently, it has also been suggested that
one may use asteroseismology to find the imprints of scalar
or even vector components of gravity [18–21]. It should be
noted here that all previous studies [1–21] have been
performed for nonrotating relativistic stars. The treatment
of rotation was always a problem in general relativity and
thus the majority of the studies for the oscillation spectra of
fast-rotating compact stars was done mainly in Newtonian
theory which gives only qualitative answers.

Since stellar oscillations may become unstable in the
presence of rotation, there was an increased interest during
the last decade or so to study the dynamics of rotating stars,
also thanks to the discovery of the r- and w-mode insta-
bility [22–26]. Still, the majority of these studies have been
performed in Newtonian theory [27–29] while there are
only a few works in which general relativity (GR) has been
used, mainly in the so-called slow-rotation approximation.

The slow-rotation approximation was successfully applied
to study various aspects of the r-mode instability [30,31],
effects of uniform and differential rotation on the oscilla-
tion spectrum [32–34] and on the crustal modes [35].
As it has been originally suggested by Chandrasekhar

[36] and verified by Friedman & Schutz [37,38] certain
nonaxisymmetric pulsation modes may grow exponentially
in rotating stars; this is due to the emission of gravitational
waves and is called Chandrasekhar-Friedman-Schutz (CFS)
instability. Exploring this type of instability in rapidly rotat-
ing stars turned out to be very difficult. In linear perturba-
tion theory, for example, rapid rotation was never treated
properly until recently; almost all formulations of the rele-
vant perturbation equations were prone to numerical insta-
bilities either at the surface or along the rotation axis of the
neutron star. Thus, it was not surprising that the first results
for the oscillations of rapidly rotating stars were derived
using evolutions of the nonlinear equations [39–42]. Still all
these studies were purely axisymmetric and thus the effects
of rotation on the spectra was present only for very high
rotation rates. Rotational instabilities are driven by non-
axisymmetric modes and thus these first two-dimensional
calculations were not of much use for their study.
In the last two years there was significant progress in the

study of nonaxisymmetric perturbations of rapidly rotating
neutron stars. For the first time it was possible to calculate
in GR the oscillation spectra of fast-rotating relativistic
stars by using the linearized form of the fluid equations.
Thus the effect of fast rotation on f and r modes has been
demonstrated while the critical points for the onset of the
f-mode (CFS) instability have been derived [43]. In addi-
tion it has been demonstrated that there is a way to derive
empirical relations connecting the oscillation frequencies
with the rotation of the stars. This study has been recently
extended to gmodes [44] and even more recently has been
expanded to study the oscillation spectra of fast and differ-
entially rotating neutron stars [45].
It should be noted that the previous results have been

derived using the so-called Cowling approximation where
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the spacetime is assumed to be frozen. This approxi-
mation is very good for the estimation of the spectra
of r and g modes but it gives only qualitatively good
results for the f mode. Moreover, using nonlinear codes
it became possible for the first time to study the complete
problem [46], i.e. the nonaxisymmetric stellar oscillations
of fast-rotating stars without the constraints of the Cowling
approximation. The results are in qualitative agreement
with those found in [43] and for the critical point for the
onset of the f-mode instability with the studies presented
in [47].

The next step for gravitational-wave asteroseismology is
to use additional information about the damping times to
construct model-independent relations which allow for a
robust determination of stellar key parameters. The damp-
ing time � of the potentially CFS-unstable branch in the
high rotation regime, for example, can be approximated
very accurately by using a simple relation of the form
�0=� ¼ sgnð�iÞ0:256ð�i=�0Þ4, where �0 and �0 are the
damping time and mode frequency of the nonrotating
model, respectively, sgnðxÞ is the signum function, and
�i is the actual mode frequency in the inertial frame.

The structure of the paper is as follows. In Sec. II we
give an essential overview about our method of computing
mode-frequencies and damping times of the f mode. We
then show the results of our simulations in Sec. III, where
we present empirical relations which can potentially be
used to estimate masses, radii, and angular frequencies of
rapidly rotating neutron stars. A more elaborate discussion
about the numerical procedure, the equations of state and
background models used in this study as well as a consis-
tency check can be found in the Appendix.

II. PROBLEM SETUP

Mode frequencies and damping times of neutron star
oscillations can be calculated in two different ways. In a
time-independent boundary-value formulation of the per-
turbation equations, they are directly obtained from the
real and the imaginary part of the complex eigenfrequen-
cies. In a time-dependent evolution problem on the other
hand, both these quantities have to be computed in post-
processing routines. The frequency of specific fluid modes
is obtained by Fourier transforming the time series at
different points inside the star into the frequency domain
and correctly identifying the corresponding peaks in the
power spectrum, see [43] for a detailed description of this
method.

Concerning the damping time, one has to calculate both
the energy that is contained within a mode as well as the
energy loss due to gravitational-wave emission which in
our case is done via the quadrupole formula, see e.g. [28]
for an application of this formalism to rmodes. A different
procedure is to use the behavior of metric perturbations at
future null infinity to derive a gauge-invariant expression
for the luminosity, see [48]. However, sincewewill work in

the Cowling approximation, the quadrupole formalism is
utilized in this study.
The energy of a mode in a comoving frame is then

given by

E ¼ 1

2

Z �
��ua�u�a þ

�
�p

�
þ ��

�
���

�
d3x; (1)

where � is the rest-mass density and �� its corresponding
perturbation, �p, �� the perturbations of pressure and
gravitational potential, respectively. On the other hand,
the quadrupole formula for the emission of gravitational
radiation gives

dE

dt
¼ ��ið�i þm�ÞX

l�2

Nl�
2l
i ðj�Dlmj2 þ j�Jlmj2Þ; (2)

where

Nl ¼ 4�G

c2lþ1

ðlþ 1Þðlþ 2Þ
lðl� 1Þ½ð2lþ 1Þ!!�2 (3)

is the coupling constant for spherical mode number l, �i

the mode frequency in the inertial frame, � the angular
velocity of the neutron star, and where �Dlm, �Jlm are the
mass- and the current-multipole moments, respectively.
The damping time is then computed by

1

�gr
¼ � 1

2E

dE

dt
: (4)

Several remarks are now worth considering. First, as al-
ready mentioned we are working in the Cowling approxi-
mation which means that the spacetime is kept fixed during
the time evolution, i.e. �� ¼ 0 in Eq. (1). Second, we will
focus on the nonaxisymmetric l ¼ jmj ¼ 2 fundamental
mode since in general it has the smallest growth time and is
therefore more relevant in real astrophysical scenarios.
Higher order modes typically not only grow on larger
time scales but are also damped stronger by various
dissipative effects. In the case of pressure modes, the
emission of gravitational waves is to a great extent due to
the mass-quadrupole moment, and we will neglect the
current quadrupole moment �J22. Taking these comments
into account, Eqs. (1) and (2) adjusted for f modes in the
Cowling approximation, read

E ¼ 1

2

Z �
��ua�u�a þ �p

�
���

�
d3x (5)

and

dE

dt
¼ ��ið�i þm�ÞN2�

4
i j�D22j2 (6)

with

D22 ¼
Z

��r2Y�
22d

3x (7)

as mass-quadrupole moment.
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The damping time �gr depends crucially on how the

mode frequencies of nonaxisymmetric perturbations
change with rotation rate. While degenerated in the non-
rotating limit, the frequencies of modes with the same
spherical mode number l but opposite azimuthal index
m ¼ �jmj, i.e. co- and counterrotating modes, diverge.
Figure 1 shows an example of this behavior for a certain
sequence of equilibrium models with increasing angular
frequency �=2� in a system comoving with the star. The
power spectral density of the pressure perturbation variable
H is taken at an arbitrary point inside the neutron star
(typically s ¼ t ¼ 0:5; for a description of the computa-
tional domain and the coordinates used there, see
Appendix A) and color coded for the different models.
In the nonrotating limit, one can identify various peaks
with the strongest and sharpest ones located at
�1=2� ¼ 3:837 kHz and at �2=2� ¼ 9:432 kHz.

Inspection of the corresponding eigenfunctions shows
that the peak at �1 belongs to the quadrupolar fmodewhile
�2 matches its first overtone, the 2p1 mode with an addi-
tional node in radial direction. Increasing the angular
velocity leads to a splitting of nonaxisymmetric perturba-
tions which can most clearly be seen for the two modes
mentioned. Other peaks in Fig. 1 split as well, however due
to broader edges this behavior is harder to follow.

The imaginary part of the complex mode frequency,
which is approximated by Eq. (4), controls the exponential
damping or growing of nonaxisymmetric perturbations.
For nonrotating stars it is E> 0 and dE=dt < 0, see
Eqs. (1) and (2). The imaginary part of the mode frequency

then becomes positive, indicating a damped oscillation.
The perturbations remain damped as long as �ið�i þ
m�Þ> 0, that is, counterrotating modes in the comoving
frame are still counterrotating in the inertial frame. This
behavior changes once the pattern speed of the mode is
matched by the angular velocity. In this case, dE=dt ¼ 0
and there is no loss of energy due to gravitational radiation.
Finally, for background configurations that allow mode
frequencies beyond the zero-frequency limit in the inertial
frame it is dE=dt > 0 and the oscillation is exponentially
growing on a time scale given by �gr.

These are the astrophysically most interesting cases
since the oscillation is unstable in this regime, emitting
significant amounts of gravitational radiation. While
damping times have already been computed for nonrotat-
ing stars [3–5,7,49] as well as in the relativistic slow-
rotation approximation [50], so far there are no numerical
simulations for calculating damping times of rapidly rotat-
ing relativistic models. However, in Newtonian theory the
quadrupole formula has been used successfully for com-
puting damping times of rotating polytropes [51,52] and
recently also for gravitational-wave extraction of rotating
superfluid stars [53].

III. ASTEROSEISMOLOGY

A. Frequencies of co- and counterrotating modes

In [43] we already presented results about the splitting of
the fundamental mode in a coordinate frame comoving
with the star. The conclusions there suggested that while
in the inertial frame the exact details of the f-mode
splitting depend on the particular background model
and the given equation of state, when properly normalized
in the comoving frame, one can actually construct a
model-independent relation between mode frequency and
rotation rate.
In parts, this is due to the following reason. In the inertial

frame there is a clear cut between configurations that allow
for potentially CFS-unstable models and configurations
which never become CFS-unstable. If one were to fit, for
example, all counterrotating modes with just one fitting
curve, either all models will become unstable at some point
or no model at all. Clearly, this would be implausible for a
proper fitting.
In the comoving frame on the other hand, the situation is

different. There, the two branches of counter- and corotat-
ing modes never reach the zero-frequency limit even
remotely and this is due to the fact that the absolute value
of the splitting between the m ¼ jmj and the m ¼ �jmj
branches is smaller there. The relation between mode
frequencies�i in the inertial frame and�c in the comoving
frame is given by

�i ¼ �c �m�: (8)

It then follows from Eq. (8), that the frequency separation
� between the two branches transforms according to

FIG. 1 (color online). Splitting of the power spectral density
(normalized units) for nonaxisymmetric jmj ¼ 2 modes in a
comoving reference frame with corresponding mode frequency
�c. The mass-shedding limit for this particular sequence is
reached for �=2� ¼ 2:18 kHz.
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�i ¼ �c þ 2jmj�; (9)

that is, the separation is always smaller in the comoving
system, and it is actually the corotating branch that has the
lower frequencies in this frame, see e.g. [43,54].

Figure 2 shows the results of our simulations regarding
the mode frequencies and, as expected, they show a large
variety in the inertial frame. Depending on the actual
configuration and equation of state, some models become
unstable before reaching the mass-shedding limit, some are
only marginally unstable, and some remain stable even at
the Kepler frequency.

Despite this apparent diversity in the inertial frame, the
two branches can very well be fitted with a second-order
polynomial in the comoving frame, see Panel (ii) of Fig. 2.
There, the mode frequency is normalized by its value in the
nonrotating limit �0 while the angular velocity is pre-
scribed in units of the Kepler frequency �K. As one can
see, the fitting describes the overall behavior of the mode
frequencies very well; only for values close to the mass-
shedding limit, the various curves for the different equa-
tions of state (EoS) show larger deviations from the
quadratic fit. One should also keep in mind that the order
of co- and counterrotating modes is reversed in the comov-
ing frame, that is, while unstable modes have lower
frequencies in the inertial frame, they represent the high-
frequency branch in the comoving frame and vice versa.

Based on the data of our simulations, we propose the
following relationships for the quadratic fitting polyno-
mials. It is

�s
c

�0

¼ 1:0–0:27

�
�

�K

�
� 0:34

�
�

�K

�
2

(10)

for the always stable (m ¼ �2) and

�u
c

�0

¼ 1:0þ 0:47

�
�

�K

�
� 0:51

�
�

�K

�
2

(11)

for the potentially unstable (m ¼ 2) branch. This also
agrees very well with our previous findings for a more
limited set of equilibrium configurations and equations of
state in [43].
In addition, an auxiliary condition is needed that con-

nects the mode frequency in the nonrotating limit �0 with
fundamental stellar parameters. It is well known that for

the fmode�0 scales with the mean density ðM=R3Þ1=2, see
e.g. [3,4], where fitting coefficients based on a variety of
realistic EoS are provided.
We repeated this calculation in the time-domain and

with our set of equation of states, and the results are
depicted in Fig. 3. In order to better compare them with
the findings in [3], we picked out the very same range of
mean densities. Depending on the particular EoS, it may
happen that certain configurations never reach the range of
mean densities depicted in Fig. 3; for example, the very
stiff EoS P1.4 is completely absent.
The frequencies computed with our approach generally

tend towards larger values. This can very well be under-
stood with the Cowling-approximation which is used to
simplify the time-evolution equations, see Appendix A.
The freezing of all metric perturbations systematically

FIG. 2 (color online). Co- and counterrotating branches of the different polytropic EoS studied in this paper. Panel (i): Mode
frequencies in the inertial frame; the solid line of each EoS depicts the more compact sequence, while the dashed line traces the less
compact configurations. Panel (ii): Normalized mode frequencies and fitting curve in the comoving frame; the larger circles represent
again the more compact models, while the small circles stand for the less compact ones. �0 is the frequency in the nonrotating limit,
�K represents the Kepler-limit.
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overestimates pressure-mode frequencies though this ef-
fect becomes less pronounced for higher order modes, see
also [46] and references therein. Another difference is the
use of polytropic equations of state in contrast to tabulated
EoS utilized in [3]; this also has an effect on the mode
frequencies, and preliminary studies show that this might
be an even stronger restriction than the Cowling-
approximation [55].

Nevertheless, it is still possible to fit the frequencies
very well with a linear dependence in the mean density,
and we find

1

2�
�0ðkHzÞ ¼ 0:498þ 2:418

� �M
�R3
f

�
1=2

; (12)

where we introduced the dimensionless variables

�M ¼ M

1:4M�
and �R ¼ R

10 km
: (13)

B. Damping times of co- and counterrotating modes

A similar procedure can be applied to the damping times
of the two fundamental mode branches. However, in order
to find a model-independent relation, we cannot use the
angular velocity� directly as a measure of the rotation rate
as it was done in Panel (ii) of Fig. 2. The reason for this is
that the damping time changes its sign when a particular
fundamental mode eventually becomes unstable, see the
discussion in Sec. II. A negative damping time signals an
exponential growth instead of a damped oscillation. If one
were to fit the various damping times of the counterrotating
modes as function of angular velocity with just one fitting
curve, then again, either all models would become unstable
at some point or no model at all, see also the discussion in

Sec. III A, where we discussed a similar effect for mode
frequencies in the inertial frame.
What is needed for the potentially unstable branch is a

quantity that also changes its sign when a mode becomes
prone to the CFS-instability and which is a monotonic
function of the rotation rate. The f-mode frequency in
the inertial frame �i exactly conforms to these require-
ments. From Eqs. (5) and (6), we can also make an esti-
mation on how the damping times depend on the mode
frequency �. Since dE=dt� �6 and for any oscillation
E� �2, we have

1

�
� dE=dt

E
� �4: (14)

In Panel (i) of Fig. 4, we show the corresponding results of
our simulations. There, we plot normalized values of

ð1=�Þ1=4 against normalized mode frequencies �i in the
inertial frame. Here, the normalization constants are the
damping time �0 and mode frequency�0 in the nonrotating
limit. The rotation rate increases from right to left, i.e. with
decreasing frequency, where the points P 1 ¼ ð1; 1Þ and
P 2 ¼ ð0; 0Þ correspond to the nonrotating case and to an
infinite damping time at the onset of the CFS-instability,
respectively.
Since for a linear fitting, the two fixed points P 1 and P 2

already determine the fitting coefficients independent of
our actual simulations, we decided to fit the data points
with the next highest reasonable polynomial which would
be of cubic order. This not only fits the simulation data
better but using a third order polynomial also turns out to
be a very good approximation for the damping times of the
corotating branches as we will see later.
A generic cubic polynomial is of the form yðxÞ ¼ ax3 þ

bx2 þ cxþ d. Imposing the constraints that the fit has to
pass through P 1 and P 2 leads to d ¼ 0 and c ¼ 1� a� b
and least-square methods finally yield

�0
�
¼ sgnð�u

i Þ0:256
�
�u

i

�0

�
4

�
�
1þ 0:048

�
�u

i

�0

�
þ 0:359

�
�u

i

�0

�
2
�
4
; (15)

where sgnðxÞ is the sign function. Eqs. (8) and (11) can then
be used to cast this relation into a form that depends on the
angular velocity again.
For the corotating branch, this type of scaling will not

work for the following reasons. First, the damping times of
the stable branch decrease with the rotation rate so instead
of fitting 1=� we will rather use � itself. Second, and more
importantly, the frequencies of the corotating branch do not
depend monotonically on the rotation rate, see Panel (ii) of
Fig. 2. For angular velocities near the mass-shedding limit,
the mode frequencies tend to decrease. However, as al-
ready discussed in Sec. III A, the order of the two non-
axisymmetric branches is reversed in the comoving frame.
There, the frequencies of the comoving modes indeed

FIG. 3 (color online). Scaling of the f-mode frequency with
mean density in the nonrotating limit. M and R are given in km,
�0 in kHz.
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again decrease monotonically with rotation rate, see once
more Panel (ii) of Fig. 2. Thus, for these modes we can use
the mode frequencies in the comoving frame as indicator
for the angular velocity, and the results for this type of
parametrization is depicted in Panel (ii) of Fig. 4. Again,
the rotation rate increases from right to left with P 1 ¼
ð1; 1Þ representing the nonrotating limit.

Here, the spread of the data points in the ð�; �Þ plane is
larger when compared to the unstable branch but still
it can be fitted very well with a third order polynomial.
Especially the boosted decrease in the damping times for
high rotation rates which directly correlates with the de-
crease of the mode frequencies in the inertial frame is
captured very good with a cubic fit and cannot be repro-
duced properly by a quadratic polynomial.

Starting again with a generic cubic fitting function and
including the point P 1 leads to

�

�0
¼ �0:656�

�
1� 7:33

�
�s

c

�0

�
þ 14:07

�
�s

c

�0

�
2

� 9:26

�
�s

c

�0

�
3
�
; (16)

where Eqs. (8) and (10) can be used to replace the comov-
ing mode frequency by the rotation rate of the star.

Similar to Sec. III A, an additional, model-independent
relation for the damping time �0 of nonrotating configura-
tions is needed. As it was shown in [3], the behavior of
R4=ðM3�Þ with respect to the compactness M=R proves to
be quite insensitive to details of the particular equation
of state.

In Fig. 5, we again compare our results with the corre-
sponding findings in [3]. In this case, only the softest
equations of state from our sample, i.e. EoS II, A, P0.66,
and P1.0 attained high values in M=R which allow for
enough data points and a proper fitting in the compactness
range depicted in Fig. 5. As before, the overall behavior is
in good agreement with previous results; the larger spread-
ing of the various EoS in Fig. 5 is most likely due to
numerical errors which are introduced by the coordinate
system used for our simulations.

FIG. 4 (color online). Model-independent relations for the damping time. Larger circles represent the more compact models, while
small circles stand for the less compact configurations of each EoS. Panel (i): Damping times for the counterrotating branch, �u

i is the
mode frequency in the inertial frame. Panel (ii): Damping times for the corotating branch, �s

c is the mode frequency in the comoving
frame.

FIG. 5 (color online). Scaling of the f-mode damping time in
the nonrotating limit. M, R, and �0 are given in km.
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Based on the data for nonrotating configurations, a linear
fit leads to

1

�0ðsÞ ¼ �M3

�R4

�
22:49� 14:03

� �M
�R

��
; (17)

where again �M and �R are given by (13).
The number of unknown variables which determine

frequencies and damping times of the f mode in relations
(10)–(12) and (15)–(17) can be reduced further by the well-
known fact that to a very good accuracy, typically between
5–7%, the Kepler-limit can be estimated by

�K 	 0:67

ffiffiffiffiffiffiffiffiffi
GM

R3

s
; (18)

see e.g. [56,57]. This is only 23% larger than the
Newtonian value for polytropic stars. For realistic equa-
tions of state on the other hand, a similar empirical relation
can be derived. In this case it was found that

�K ¼ Cð�sÞ
ffiffiffiffiffiffiffiffiffi
GM

R3

s
(19)

with

�s ¼ 2GM

Rc2
and Cð�sÞ ¼ 0:468þ 0:378�s (20)

can reproduce the original values with a relative error of
only 1.5% [58,59]. In this sense,�K is not an independent
parameter but can be computed very accurately from the
mass and the radius of the nonrotating neutron star.

C. Asteroseismology examples

The empirical relations found in this Section can be used
in two ways. By prescribing M, R, and �, one can easily
compute frequencies and damping times of both the co-
and counterrotating mode branches for any rotation rate up
the mass-shedding limit.

On the other hand, they allow to do asteroseismology,
for example, three independent measurements, two fre-
quencies, and one damping time will lead to a robust
estimate of mass, radius, and angular frequency and will
therefore help to restrict the range of possible equations of
state to those in agreement with these measurements. Of
course, this is a very idealized point of view because it will
be very difficult to observe damping times and frequencies
of stable oscillations; this applies both for the co- and
counterrotating modes. In these cases, a possible way of
estimating the feasibility of a detection is to set a certain
threshold on the gravitational-wave amplitude and relate it
to the energy that has to go into the f mode as it was
already done in [3] for the nonrotating case. It was shown
there that the oscillations of a nascent neutron star can
potentially be detected from within the local group of
galaxies or even within the Virgo cluster if one assumes
a more optimistic estimate for the radiated energy.

Before damping/growth times are included in the ex-
amples, one might first ask what kind of information can be
extracted by just detecting the f-mode frequencies of
the co- and counterrotating branch. Since the relations
(10)–(12) and (18) depend on average density and rotation
rate, one will not be able to determine mass and radius
separately but merely the combination M=R3 and �=�K.
To give a simple example, we choose a certain back-

ground model of the less compact EoS II sequence with
f-mode frequencies �1=2� ¼ 2:250 kHz and �2=2� ¼
1:804 kHz in the inertial frame. Solving for the mean
density and angular velocity yields �M= �R3 ¼ 0:397 and
�=�K ¼ 0:199, while the correct values for this particular
model are 0.467 and 0.173, respectively. As one can see,
the relative error in average density and rotation rate is only
around 15% in both cases. Of course, in this example mass
and radius cannot be determined independently; for this
additional information about the damping times need to be
taken into account as it is shown next.
We will address two separate questions here. The first

one concerns the accuracy of the fittings when compared to
the exact results, and the second examines the possibility to
use them for actual asteroseismology, i.e. how accurately
they constrain the neutron star parameters for a given set of
measured frequencies and damping times.
As first example, we choose the less compact equilib-

rium sequence of EoS P0.66 and an arbitrary value for the
rotation rate, e.g. �=2� ¼ 0:676 kHz, which is roughly
38% of the mass-shedding limit and corresponds to a ratio
of polar to equatorial coordinate radius of rp=re ¼ 0:95.

Inserting the values for mass and radius of this particular
model from Table IV into relation (18) leads to �K=2� 	
1:742 kHz which is only slightly smaller than the correct
value of �K=2� ¼ 1:775 kHz computed from the back-
ground code.
The f-mode frequencies extracted from our time

evolution are given by �1=2� ¼ 4:192 kHz for the coro-
tating and �2=2� ¼ 2:397 kHz for the counterrotating
branch; both frequencies are given in the inertial frame.
On the other hand, evaluating the fitting formulas (10)–(12)
and (18) with the correct values for M, R, and � yields
~�1=2� ¼ 4:205 kHz and ~�2=2� ¼ 2:425 kHz, respec-
tively which is an excellent match with the correct
frequencies.
A similar comparison can be made for the damping

times. Using the correct f-mode eigenfunctions for com-
puting energy and energy loss due to gravitational radia-
tion, i.e. relations (5)–(7), leads to �1 ¼ 0:035 secs and
�2 ¼ 0:559 secs. Then again, when using the correct val-
ues for M, R, and � in relations (10)–(12) and (15)–(18)
one arrives at ~�1 ¼ 0:050 secs and ~�2 ¼ 0:702 secs,
respectively. This agrees quite well with the correct results,
see Table I for a summary.
Overall, the accuracy by which the fitting relations can

reproduce the exact results from actual simulations is
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reasonable. The difference is less than 2% for the various
frequencies and 25%–40% for the damping times.

The second issue we would like to address is the inverse
problem, i.e. how precise are the restrictions on mass,
radius, and angular velocity for a given triple of measure-
ments. To continue with the previous example, we first
look at the tuple of measurementsM1 :¼ ð�1; �2; �1Þ that
is the two f-mode frequencies of the co- and counterrotat-
ing branch and the damping time of the corotating mode.
Reversing relations (10), (11), and (16) leads to a system of
nonlinear equations that is solved by an iterative root-
finding algorithm as described in [60]. For a reasonable
choice of starting parameters, this algorithm converges
with adequate precision to an estimate of M, R and �.
More specifically, from S1 we get M ¼ 1:44M�, R ¼
8:98 km, and �=�K ¼ 0:386 and using relation (18)
with these values of mass and radius leads to �=2� ¼
0:669 kHz.

One should note, that, for a given tuple of measurements
M, the root-finding algorithm can in principle lead to
other solutions as well, depending on the initial guess for
the beginning of the iterations. For example, if one uses
ð �M; �R;�=�KÞ ¼ ð2:0; 1:0; 0:0Þ as starting values, the root
finder converges to M ¼ 11:54M�, R ¼ 17:98 km, and
�=�K ¼ 0:386. However, the estimates for M and R are
well beyond the range of expected neutron star masses and
radii so that they can safely be discarded, although the
rotation rate is matched perfectly. On the other hand,
discarding these unphysical solutions, the nonlinear solver
converges to essentially the same set of roots indepen-
dently of the initial setup for the start of the iteration. In
this example, the various solutions obtained with different
initial guesses differ by less than 2%.

Alternatively, one can also check the corresponding
results when providing the measurements M2 :¼
ð�1; �2; �2Þ as input data, this time with the damping
time of the potentially CFS-unstable branch. Since now a
different fitting function for � is used, the corresponding
findings from the nonlinear root solver will be slightly
different in general. However, for this particular example
we find practically the same values forM, R, and�=�K as
in the first case, see Table II.

We repeated these two types of checks, i.e. comparison
between exact results and fitting functions as well as solv-
ing the inverse problem, also for other EoS and larger
angular velocities and a summary of these results for the
more compact equilibrium model of EoS P1.2 is given in
Table III.
This time, the angular velocity of the actual model is

increased to about 60% of the mass-shedding limit.
Consequently, the damping time of the counterrotating
mode �2 is in the range of a few seconds already and it
will continue to grow for more rapidly rotating models
until the CFS-instability begins to operate. Still, the fitting
functions provided in this study can reproduce the exact
values for the frequencies within an error of 3% while the
difference in the damping times again is around 6%–40%.
Concerning the solutions of the inverse problem, the two

different measurements M1 and M2 lead to different
values for mass and radius of the neutron star in this
example. Here, using either M1 or M2 alone over- or
underestimates somewhat the correct values for M and R,
whereas the angular velocity and the Kepler-limit is
matched almost perfectly with any of the data sets; the
error there is around 3%.
Altogether we were able to demonstrate the applicability

of the fitting functions provided in this study for a wide
range of different polytropic equations of state and rotation
rates ranging from moderate to rapid. The accuracy of the
empirical relations decreases for rapidly rotating models as

TABLE I. Comparison of the stellar parameters�K ,� (both in
kHz) and � (in secs) for a less compact EoS P0.66 model with
� ¼ 4:247 kHz between actual simulations and the empirical
relations.

parameter exact value value from the fit

�K=2� 1.775 1.742

�1=2� 4.192 4.205

�2=2� 2.397 2.425

�1 0.035 0.050

�2 0.559 0.702

TABLE II. Comparison between exact and estimated stellar
parameters from solving the inverse problem for measurements
M1,M2. Here,M is in units ofM�, R in km and�,�K in kHz.

M R �=2� �K=2�

exact 1.10 8.18 0.676 1.775

using M1 1.44 8.98 0.669 1.732

using M2 1.44 8.98 0.669 1.732

TABLE III. Comparison between exact and estimated stellar
parameters for an EoS P1.2 model rotating at roughly 60% of the
mass-shedding limit.M is in units ofM�, R in km, and�,�K in
kHz, while � is given in secs.

parameter exact value value from the fit

�K=2� 0.777 0.806

�1=2� 2.259 2.283

�2=2� 1.043 1.059

�1 0.099 0.093

�2 4.716 6.650

M R �=2� �K=2�

exact 1.58 15.42 0.464 0.777

using M1 1.51 15.33 0.479 0.796

using M2 2.43 17.97 0.479 0.795
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expected but otherwise provides results within an error of a
few percent for the frequencies. The dependency of the fits
for the damping times on the mode frequency is very
strong; this is especially true for the potentially unstable
modes, and hence the estimates for the damping times are
less accurate the closer one approaches the Kepler-limit.

The solution of the inverse problem delivered reasonable
values for stellar key parameters like mass, radius, and
rotation rate. Typically, using the measurements M1 or
M2 alone either under- or overestimates the correct values
for mass and radius, while the rotation rate proved to be
more robust to estimate by a single measurement alone.
Ideally, the scheme presented here should be used itera-
tively in the following way: A first solution of the inverse
problem already puts some constraints on the possible
values for mass, radius, and rotation rate in parameter
space. Based on these constraints, certain EoS and rotation
rates can be discarded and improved fits for frequencies
and damping times within this region in parameter space
will lead to further restrictions for mass, radius, and angu-
lar velocity. This procedure can then be repeated until the
desired accuracy is reached.

Another important issue is related to the issue of
accurately determining mode parameters by an actual
gravitational-wave detector. However, a thorough discus-
sion of measurement errors in frequencies and damping
times is beyond the scope of this paper; we refer the
interested reader to [4] and references therein.

IV. SUMMARY

In this work we demonstrated how one can do
gravitational-wave asteroseismology by using the frequen-
cies and possibly the damping/growth times of the emitted
waves from oscillating and rapidly rotating relativistic
stars. This is possible by the empirical relations that we
have derived and which connect the frequencies and the
damping/growth times of the oscillation modes with the
stellar characteristics, i.e. with the mass, radius, and rota-
tion rate. We have actually shown that for polytropic
equations of state of varying stiffness one can create very
robust formulae connecting the observable frequency and
damping times with the quantities like rotation frequency,
average density, and/or compactness.

We have shown on a few examples how one can use the
empirical formulae in order to derive the stellar parame-
ters. In a realistic situation when an fmode will be excited,
it will be possible to detect the signal at least from galactic
sources if the mode is CFS-stable and at least from sources
in the Virgo cluster if it is unstable [61–64]. This will be
possible with the sensitivity of the advanced Virgo and
LIGO detectors [65,66] and probably even more feasible
with the next generation gravitational-wave telescopes
such as ET (Einstein Telescope) [1,67].

The ‘‘weak’’ point of the whole procedure relies in the
approximate calculation of both frequencies and damping

times. As we already mentioned, we have neglected the
spacetime perturbations and thus there is a systematic
quantitative but not qualitative error in all data. Thus, it
is expected that the coefficients in relations (10), (11), (15),
and (16) will be affected by a proper treatment of the
spacetime degrees of freedom. However, it is believed
that these changes will not alter the results significantly
since the relations for frequencies and damping times are
normalized with their corresponding values in the non-
rotating limit. These values will absorb most of the differ-
ences when compared with the correct results in the
presence of spacetime perturbations, but of course, this is
an issue that has to be addressed properly in future work.
An additional outcome of this analysis will be the frequen-
cies and damping times of the w modes.
Finally, the empirical relations found in this study have

been derived for polytropes of varying stiffness which are
able to mimic the global properties of realistic equations of
state, see, for example, EoS A, and EoS II which are
polytropic fits to tabulated EoS. Realistic hot equations
of state are the best candidates for newly born neutron stars
and have a higher chance of becoming unstable; prior
mutual friction completely suppresses any instability
[68], but currently our code is unable to perform time
evolutions of rapidly rotating neutron stars for generic
tabulated data. Preliminary studies regarding this issue
are promising but in a very early stage.
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APPENDIX A: NUMERICAL PROCEDURE

This work is a continuation of our previous efforts
[43,44] and relies on the foundations laid therein. We
will therefore briefly summarize the crucial parts of the
previous studies that are needed for the computation of the
damping times here.
We are numerically solving the relativistic hydrodynam-

ics equations, linearized around background equilibrium
configurations of uniformly rotating neutron stars. For
this purpose, the time-evolution of the fluid perturbations
is performed in a cylindrical coordinate frame ð%; �;	Þ
which is comoving with the neutron star, surface fitted for
all rotation rates and where the metric takes the form

ds2 ¼ e�2U½e2kðd%2þd�2ÞþW2d’2�� e2Uðdtþad’Þ2:
(A1)

Here, the metric potentials U, k, W, and a depend on %
and � only and are obtained by solving the generalized
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Tolman-Oppenheimer-Volkoff (TOV) equations for axi-
symmetric equilibrium configurations and a perfect-fluid
energy-momentum–tensor. For computational purposes,
the physical domain of the simulations

D ¼ ½ð%; �Þ; ’ ¼ const� (A2)

is mapped onto a rectangular grid

T ¼ ½s; tÞ 2 ½0;1�� ½0;2�; ð%¼ %ðs; tÞ; � ¼ �ðs; tÞÞ 2D�;
(A3)

where the barotropic fluid equations for the perturbed
velocity and pressure are discretized and, together with
appropriate boundary conditions, are numerically inte-
grated by using an Iterated Crank-Nicholson scheme with
an additional amount of Kreiss-Oliger dissipation.

Actually, we do not directly evolve the fluid perturba-
tions but certain combinations of hydrodynamical and
metric variables. This considerably reduces the complexity
of the differential equations and simplifies the boundary
treatment of the computational domain. More specifically,
for azimuthal mode numberm our time-evolution variables
are given by

f1ð%; �; tÞeim’ ¼ ð
þ pÞWeU�u%

f2ð%; �; tÞeim’ ¼ ð
þ pÞWeU�u�

f3ð%; �; tÞeim’ ¼ ð
þ pÞ�u’
Hð%; �; tÞeim’ ¼ c2se

U�
;

(A4)

where f1, f2, f3, H are integrated in time and �u%, �u� ,

�u’, �
 are the perturbed fluid velocities and energy

density, respectively. Furthermore, p is the background
pressure, 
 the unperturbed energy-density, and cs the
speed of sound which can be computed analytically
from the equilibrium configuration for polytropic equa-
tions of state.

After a successful time integration, which is typically
cancelled after 50–70 ms, one can use fast Fourier trans-
forms to extract oscillation frequencies and eigenfunctions
of any mode one wants to study. This data is then used for
further post-processing, for example, in order to compute
damping times.

For this, one has to adapt Eqs. (5)–(7) to the computa-
tional domain T . The corresponding relations are

E ¼ 1

2

Z ffiffiffiffi
�

p �
��ua�u�a þ �p

�
���

�
j detJðs; tÞjdsdtd	

(A5)

for the energy contained within a mode,

dE

dt
¼ ��ið�i þm�ÞN2�

4
i j�D22j2 (A6)

for the energy-loss due to gravitational radiation, and

D22 ¼
Z ffiffiffiffi

�
p

��r2Y�
22j detJðs; tÞjdsdtd	 (A7)

for the mass-quadrupole moment. Here

� ¼ ðW2 expð�2UÞ � a2 expð2UÞÞ expð�4Uþ 4kÞ
(A8)

is the determinant of the spatial 3-metric from (A1), Jðs; tÞ
is the Jacobian matrix of the coordinate mapping (A3), and
r is the radial distance. Because of the azimuthal decom-
position of the perturbation variables, the integration in 	
direction is trivial and raising the covariant fluid perturba-
tions with the inverse metric yields

�u%�u% ¼
�

1

ð
þ pÞW expðkÞ
�
2jf1j2

�u��u� ¼
�

1

ð
þ pÞW expðkÞ
�
2jf2j2

�u’�u’ ¼
�

expðUÞ
ð
þ pÞW

�
2jf3j2:

(A9)

Note, that energy density and pressure vanish at the stellar
surface, the same applies for the metric potential W along
the rotation axis. These critical points might lead to nu-
merical problems when evaluating the expressions in (A9).
However, in practice it turns out that our time integration
ensures the correct behavior of the perturbation variables in
order for Eqs. (A9) to remain finite.
Furthermore, the adiabatic condition leads to

�p ¼ H

expðUÞ (A10)

for the pressure perturbation, whereas the corresponding
change in density can be computed once an equation of
state is specified. In this study, we are considering poly-
tropic EoS which take the form

p ¼ K�1þ1=N where 
 ¼ �þ Np: (A11)

Here K is the polytropic constant, N the polytropic expo-
nent, and � ¼ 1þ 1=N the polytropic index. In gravita-

tional units (G ¼ c ¼ M� ¼ 1Þ, KN=2 can be used as
scaling factor, and in this new system, one arrives at

�� ¼ 1

�
p1=��1�p: (A12)

Finally, the Jacobian matrix needs to be computed. This
can either be done by first interpolating %ðs; tÞ, �ðs; tÞ onto
the computational domain T , followed by a finite-
difference routine or alternatively by interpolating the
pseudospectral expressions for the transformation coeffi-
cients aij :¼ f@xi=@yk; xi 2 ðs; tÞ; yk 2 ð%; �Þg and using

the inverse function theorem to obtain the Jacobian of the
inverse function. Because of interpolation errors in the first
approach, the subsequent finite-difference scheme leads to
highly nonsmooth results for the Jacobian J and the error
introduced there can be as high as 30%; we are therefore
favoring the second approach.

ERICH GAERTIG AND KOSTAS D. KOKKOTAS PHYSICAL REVIEW D 83, 064031 (2011)

064031-10



Eventually, standard finite integration schemes are de-
ployed to evaluate the integrals in the expressions for
energy and energy loss (A6) and (A7).

As an example and in order to get an impression of
how the extracted eigenfunctions are arranged on the com-
putational domain, Fig. 6 shows the power spectral density
of the scalar perturbation variable H, see (A4) for the
definition.

There, the value of s labels the radial coordinate which
starts at the origin of the star for s ¼ 0 and terminates at the
stellar surface for s ¼ 1. The use of surface-fitted coordi-
nates ensure that the surface is always located at s ¼ 1,
even for rapidly rotating models. On the other hand, t acts
as an angular coordinate ranging from t ¼ 0 at the rotation
axis above the equatorial plane (i.e. � > 0) to t ¼ 1 at the
equatorial plane and to t ¼ 2 at the rotation axis below the
equatorial plane (� < 0).

It is then clear that the eigenfunction depicted in Fig. 6
can indeed be identified with the fundamental l ¼ m ¼ 2
oscillation mode. It has no nodes in the radial direction and
the angular pattern matches the scalar spherical harmonic
Y22 � sin2�, which has a maximum for � ¼ �=2, i.e. the
equatorial plane, as well as global minima along the rota-
tion axis. The eigenfunction also vanishes at the origin and
along the surface of the star; this is due to boundary
conditions and the special choice of the time-evolution
variables, see [44] for more details.

One should also keep in mind that the power spectral
density essentially measures the energy contained within a
mode; this is at least true for the velocity perturbations f1,
f2, f3. Any auxiliary normalization coefficients that
are included from the fast Fourier transform algorithms
cancel out in the final Eq. (4) for the damping time. This
means that we can directly use the data output of the

eigenfunction extraction routine for computing the energy
and energy loss of the fundamental mode.

APPENDIX B: BACKGROUND CONFIGURATIONS

In this study, we treat neutron stars as perfect-fluid
objects that obey a polytropic equation of state (A11).
Naturally, this is a rather crude approximation, neglecting
a variety of micro-physical effects such as the true internal
constitution of neutron stars (i.e. the distribution of bary-
ons, leptons, optionally also hyperons and kaons) or the
influence of a finite temperature as well as superfluidity
and the existence of a solid crust (which will become
important for temperatures around 1010 K), see [69,70].
We also do not account for the influence of magnetic fields
which affect oscillation modes only for very high field
strengths, see e.g. [71].
In this sense, a simple polytropic equation of state

parametrizes our ignorance about the true microphysical
description of neutron star matter which is still unknown
presently. However, one can nevertheless use relativistic
polytropes to cover the wide range of expected neutron star
masses and radii [72,73] and this is our proposed strategy
here. We utilize a variety of polytropic EoS, which
are used in large parts in several other simulations of
neutron star oscillations, either perturbatively or nonlinear
[14,39–46,74]; two of them (EoS A and EoS II) actually
are polytropic fits to tabulated data. Excluding this last two
equations of state, the naming convention EoS P# has been
chosen here, where # is replaced by the polytropic indexN.
For each equation of state, we choose two different

models; one rather close to the maximum allowed mass
and another less compact one. A brief summary of basic
stellar parameters for the nonrotating configurations can be
found in Table IV.

FIG. 6 (color online). Power spectral density of H (normalized
units) for the quadrupolar f mode and a nonrotating background
configuration.

TABLE IV. EoS parameters and basic stellar properties for the
nonrotating models. K is given in dimensionless units (G ¼ c ¼
M� ¼ 1), M is the gravitational mass, and Re the equatorial
circumferential radius.

EoS K � M ðM�Þ Re (km)

II 1186 2.34 1.91 11.62

1.50 13.19

A 1528 2.46 1.61 9.47

1.25 10.54

P0.66 1000 5=2 1.29 7.60

1.10 8.18

P1.0 100 2.0 1.51 13.32

1.40 14.07

P1.2 35 11=6 1.58 15.42

1.32 18.38

P1.4 20 12=7 1.91 20.69

1.83 23.17
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Starting from the nonrotating configuration and by keep-
ing the central rest-mass density fixed, the ratio of polar
to equatorial coordinate radius rp=re is successively de-

creased, typically by a factor of 0.05, until the mass-
shedding limit is reached. In addition, supplementary equi-
librium models were constructed especially for resolving
the regime of slow rotation since, for example, moving
from rp=re ¼ 1:0 to rp=re ¼ 0:95 for EoS P0.66 already

means to reach roughly 40% of the Kepler-limit.
Since the centrifugal force now supports the pressure in

sustaining gravity, rotating models attain much larger
masses. In Table V, we summarize fundamental stellar
parameters for the maximally rotating equilibrium models.

As it can be inferred from the data in this Table, the less
compact models of any sequence can be deformed to a

greater extent than the more compact ones as one would
expect. This effect is of course more pronounced for softer
equations of state.
In order of increasing stiffness, the equations of

state investigated in this paper can be ordered P0:66< A<
II< P1:0< P1:2< P1:4. This can also be seen from the
mass-radius relations depicted in Fig. 7, where in addition
the uniformly rotating background configurations are ref-
erenced as well.
Typically, the increase in mass is not as pronounced as

the increase in the radius when turning on rotation. While
the percentaged increase in the gravitational mass can be as
low as around 10% in our sequences of constant rest-mass
density, the corresponding increase in equatorial circum-
ferential radius is always larger than at least 30%.

APPENDIX C: CONSISTENCY CHECK

Here, we compare our results for the damping time of
nonrotating polytropes with literature values in full general
relativity.
In [75], the authors compute damping times and funda-

mental mode frequencies for several relativistic polytropes
with different polytropic indices. In Newtonian theory,
damping times and mode frequencies for polytropes only
depend on mass and radius of the neutron star and on the
polytropic index N of the particular equation of state but
not on the polytropic constant K or the central energy-
density. This scale invariance is no longer valid in general
relativity, but it can be shown that the relativistic calcula-
tions match with the Newtonian ones in the limit of small
masses and large radii.
More specifically, if one defines a dimensionless pa-

rameter c� via

� ¼ c�
R

c

�
GM

c2R

��3
; (C1)

then the relativistic results for a � ¼ 2 polytrope approach
the scale-invariant Newtonian value of c� ¼ 8:46 in the
low-mass limit.
For this purpose, a sequence of nonrotating back-

ground models was computed in [75] with N ¼ 1 and
K ¼ 100 km2 and central rest-mass densities ranging
from %c ¼ 3� 1015 � 0:05� 1015 g=cm3. Then, damp-
ing times and oscillation frequencies of the fundamental
quadrupolar mode were computed and compared with their
Newtonian counterparts.
We repeated the calculation with our code and an ad-

justed equilibrium sequence of EoS P1.0 which has the
same polytropic index as the background models but a
different value of K. Adopting K ¼ 100 km2 leads to
more compact neutron stars with a maximum mass of
Mmax ¼ 1:1M� and Rmax ¼ 7:2 km, compare with Fig. 7.
One should also keep in mind that the results in [75] are
obtained by solving a complex eigenvalue problem. Here,
we perform the calculation with our method of computing

TABLE V. Basic stellar properties of the maximally rotating
configuration and percentaged increase compared to the non-
rotating case. rp=re is the ratio of polar to equatorial coordinate

radius and �K=2� represents the Kepler-limit, given in kHz.

EoS rp=re �K=2� M ðM�Þ Re (km)

II 0.564 1.393 2.61 (þ37%) 15.64 (þ35%)

0.546 0.998 1.94 (þ29%) 18.77 (þ42%)

A 0.558 1.759 1.97 (þ22%) 12.71 (þ34%)

0.537 1.282 1.64 (þ31%) 15.05 (þ43%)

P0.66 0.555 2.180 1.58 (þ22%) 10.24 (þ35%)

0.540 1.775 1.42 (þ29%) 11.50 (þ41%)

P1.0 0.579 0.966 1.80 (þ19%) 18.57 (þ39%)

0.570 0.853 1.70 (þ21%) 19.83 (þ41%)

P1.2 0.597 0.777 1.81 (þ15%) 21.39 (þ39%)

0.593 0.543 1.57 (þ19%) 26.19 (þ42%)

P1.4 0.62 0.538 2.13 (þ12%) 28.55 (þ38%)

0.61 0.445 2.07 (þ13%) 32.64 (þ41%)

FIG. 7 (color online). Mass-radius diagram for the six EoS and
in our sample. The 12 different background sequences (two for
every EoS) are marked as circles which branch off their corre-
sponding nonrotating equilibrium curve.
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the eigenfunction from a time evolution of the fluid per-
turbations and evaluating the integrals (A5) and (A6).
These are two completely different approaches and an
agreement between these two methods would be a strong
indication for the accuracy of our procedure. Figure 8
shows a comparison between the values of c� obtained
by these two approaches.

The overall agreement between the different methods is
very good. Using a second-order fit for our results leads to
a value of c� 	 8:95 in the Newtonian limit compared to
c� ¼ 8:46 found in [75]. Especially for models with low
M=R, the least compact object in our simulations has a
mass of M ¼ 0:034M� and a radius of R ¼ 12:5 km, the
f-mode frequencies are in the range of several hundred
Hertz which impairs a proper eigenfunction extraction with
our code.

The last remark concerns the limit of large masses in
Fig. 8. Although we also use a polytropic equation of state,
both are implemented slightly different here and in [75].
Here, a relation of the form (A11) is considered, which
properly describes an ideal gas undergoing adiabatic pro-

cesses, while the authors in [75] use p ¼ K%1þ1=N with

 ¼ % in the relativistic case. This description of the fluid
neglects the pressure contribution to the energy density and
permits the speed of sound to become potentially larger
than c for all values of the polytropic index N, see also
[76]. Both prescriptions lead to the same stellar models in
the limit of small compactness because the energy density
is dominated by the rest mass in this case and the contri-
bution of the pressure is negligible. In more relativistic

cases, the pressure contribution is noticeable and leads to a
decrease in the mass of the most massive star which is
dynamically stable to radial oscillations. This is the reason
why our sequence of equilibrium configurations already
terminates at Mmax � 1:1M�, while the sequence in [75]
can reach up to Mmax � 1:3M�. However, this has only a
modest effect on the computation of c�.
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